68,754 research outputs found

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    Automation and schema acquisition in learning elementary computer programming: Implications for the design of practice

    Get PDF
    Two complementary processes may be distinguished in learning a complex cognitive skill such as computer programming. First, automation offers task-specific procedures that may directly control programming behavior, second, schema acquisition offers cognitive structures that provide analogies in new problem situations. The goal of this paper is to explore what the nature of these processes can teach us for a more effective design of practice. The authors argue that conventional training strategies in elementary programming provide little guidance to the learner and offer little opportunities for mindful abstraction, which results in suboptimal automation and schema acquisition. Practice is considered to be most beneficial to learning outcomes and transfer under strict conditions, in particular, a heavy emphasis on the use of worked examples during practice and the assignment of programming tasks that demand mindful abstraction from these examples

    Cognitive load theory, educational research, and instructional design: some food for thought

    Get PDF
    Cognitive load is a theoretical notion with an increasingly central role in the educational research literature. The basic idea of cognitive load theory is that cognitive capacity in working memory is limited, so that if a learning task requires too much capacity, learning will be hampered. The recommended remedy is to design instructional systems that optimize the use of working memory capacity and avoid cognitive overload. Cognitive load theory has advanced educational research considerably and has been used to explain a large set of experimental findings. This article sets out to explore the open questions and the boundaries of cognitive load theory by identifying a number of problematic conceptual, methodological and application-related issues. It concludes by presenting a research agenda for future studies of cognitive load

    Instructional strategies and tactics for the design of introductory computer programming courses in high school

    Get PDF
    This article offers an examination of instructional strategies and tactics for the design of introductory computer programming courses in high school. We distinguish the Expert, Spiral and Reading approach as groups of instructional strategies that mainly differ in their general design plan to control students' processing load. In order, they emphasize topdown program design, incremental learning, and program modification and amplification. In contrast, tactics are specific design plans that prescribe methods to reach desired learning outcomes under given circumstances. Based on ACT* (Anderson, 1983) and relevant research, we distinguish between declarative and procedural instruction and present six tactics which can be used both to design courses and to evaluate strategies. Three tactics for declarative instruction involve concrete computer models, programming plans and design diagrams; three tactics for procedural instruction involve worked-out examples, practice of basic cognitive skills and task variation. In our evaluation of groups of instructional strategies, the Reading approach has been found to be superior to the Expert and Spiral approaches

    Online discussion compensates for suboptimal timing of supportive information presentation in a digitally supported learning environment

    Get PDF
    This study used a sequential set-up to investigate the consecutive effects of timing of supportive information presentation (information before vs. information during the learning task clusters) in interactive digital learning materials (IDLMs) and type of collaboration (personal discussion vs. online discussion) in computer-supported collaborative learning (CSCL) on student knowledge construction. Students (N = 87) were first randomly assigned to the two information presentation conditions to work individually on a case-based assignment in IDLM. Students who received information during learning task clusters tended to show better results on knowledge construction than those who received information only before each cluster. The students within the two separate information presentation conditions were then randomly assigned to pairs to discuss the outcomes of their assignments under either the personal discussion or online discussion condition in CSCL. When supportive information had been presented before each learning task cluster, online discussion led to better results than personal discussion. When supportive information had been presented during the learning task clusters, however, the online and personal discussion conditions had no differential effect on knowledge construction. Online discussion in CSCL appeared to compensate for suboptimal timing of presentation of supportive information before the learning task clusters in IDLM

    Guidelines for Effective Online Instruction Using Multimedia Screencasts

    Get PDF

    Internet-delivered cognitive control training as a preventive intervention for remitted depressed patients : protocol for a randomized controlled trial

    Get PDF
    Background: Preventing recurrence of depression forms an important challenge for current treatments. Cognitive control impairments often remain present during remission of depression, putting remitted depressed patients at heightened risk for new depressive episodes by disrupting emotion regulation processes. Importantly, research indicates that cognitive control training targeting working memory functioning shows potential in reducing maladaptive emotion regulation and depressive symptomatology in clinically depressed patients and at-risk student samples. The current study aims to test the effectiveness of cognitive control training as a preventive intervention in a remitted depressed sample, exploring effects of cognitive control training on rumination and depressive symptomatology, along with indicators of adaptive emotion regulation and functioning. Methods/design: We present a double blind randomized controlled design. Remitted depressed adults will complete 10 online sessions of a cognitive control training targeting working memory functioning or a low cognitive load training (active control condition) over a period of 14 days. Effects of training on primary outcome measures of rumination and depressive symptomatology will be assessed pre-post training and at three months follow-up, along with secondary outcome measure adaptive emotion regulation. Long-term effects of cognitive control training on broader indicators of functioning will be assessed at three months follow-up (secondary outcome measures). Discussion: This study will provide information about the effectiveness of cognitive control training for remitted depressed adults in reducing vulnerability for depression. Furthermore, this study will address key questions concerning the mechanisms underlying the effects of cognitive control training, will take into account the subjective experience of the patients (including a self-report measure for cognitive functioning), and explore whether these effects extend to broad measures of functioning such as Quality of Life and disability

    Theoretical models of the role of visualisation in learning formal reasoning

    Get PDF
    Although there is empirical evidence that visualisation tools can help students to learn formal subjects such as logic, and although particular strategies and conceptual difficulties have been identified, it has so far proved difficult to provide a general model of learning in this context that accounts for these findings in a systematic way. In this paper, four attempts at explaining the relative difficulty of formal concepts and the role of visualisation in this learning process are presented. These explanations draw on several existing theories, including Vygotsky's Zone of Proximal Development, Green's Cognitive Dimensions, the Popper-Campbell model of conjectural learning, and cognitive complexity. The paper concludes with a comparison of the utility and applicability of the different models. It is also accompanied by a reflexive commentary[0] (linked to this paper as a hypertext) that examines the ways in which theory has been used within these arguments, and which attempts to relate these uses to the wider context of learning technology research

    Integration of knowledge-based system, artificial neural networks and multimedia for gear design

    Get PDF
    Design is a complicated area consisting of a combination of rules, technical information and personal judgement. The quality of design depends highly on the designer's knowledge and experience. This system attempts to simulate the design process and to capture design expertise by combining artificial neural networks (ANNs) and knowledge based system (KBS) together with multi-media (MM). It has been applied to the design of gears. Within the system the knowledge based system handles clearly defined design knowledge, the artificial neural networks capture knowledge which is difficult to quantify and multi-media provides a user-friendly interface prompting the user to input information and to retrieve results during design process. The finished system illustrates how features of different Artificial Intelligence techniques, KBS, ANNs and MM, are combined in a hybrid manner to conduct complicated design tasks

    Simulating naturalistic instruction: the case for a voice mediated interface for assistive technology for cognition

    Get PDF
    A variety of brain pathologies can result in difficulties performing complex behavioural sequences. Assistive technology for cognition (ATC) attempts support of complex sequences with the aim of reducing disability. Traditional ATCs are cognitively demanding to use and thus have had poor uptake. A more intuitive interface may allow ATCs to reach their potential. Insights from psychological science may be useful to technologists in this area. We propose that an auditory-verbal interface is more intuitive than a visual interface and reduces cognitive demands on users. Two experiments demonstrate a novel ATC, the General User Interface for Disorders of Execution (GUIDE). GUIDE is novel because it simulates normal conversational prompting to support task performance. GUIDE provides verbal prompts and questions and voice recognition allows the user to interact with the GUIDE. Research with non-cognitively impaired participants and a single participant experiment involving a person with vascular dementia provide support for using interactive auditory-verbal interfaces. Suggestions for the future development of auditory-verbal interfaces are discussed
    corecore