977 research outputs found

    Distribution matching for transduction

    Get PDF
    Many transductive inference algorithms assume that distributions over training and test estimates should be related, e.g. by providing a large margin of separation on both sets. We use this idea to design a transduction algorithm which can be used without modification for classification, regression, and structured estimation. At its heart we exploit the fact that for a good learner the distributions over the outputs on training and test sets should match. This is a classical two-sample problem which can be solved efficiently in its most general form by using distance measures in Hilbert Space. It turns out that a number of existing heuristics can be viewed as special cases of our approach.

    Discrete-Continuous ADMM for Transductive Inference in Higher-Order MRFs

    Full text link
    This paper introduces a novel algorithm for transductive inference in higher-order MRFs, where the unary energies are parameterized by a variable classifier. The considered task is posed as a joint optimization problem in the continuous classifier parameters and the discrete label variables. In contrast to prior approaches such as convex relaxations, we propose an advantageous decoupling of the objective function into discrete and continuous subproblems and a novel, efficient optimization method related to ADMM. This approach preserves integrality of the discrete label variables and guarantees global convergence to a critical point. We demonstrate the advantages of our approach in several experiments including video object segmentation on the DAVIS data set and interactive image segmentation

    Extension of TSVM to Multi-Class and Hierarchical Text Classification Problems With General Losses

    Full text link
    Transductive SVM (TSVM) is a well known semi-supervised large margin learning method for binary text classification. In this paper we extend this method to multi-class and hierarchical classification problems. We point out that the determination of labels of unlabeled examples with fixed classifier weights is a linear programming problem. We devise an efficient technique for solving it. The method is applicable to general loss functions. We demonstrate the value of the new method using large margin loss on a number of multi-class and hierarchical classification datasets. For maxent loss we show empirically that our method is better than expectation regularization/constraint and posterior regularization methods, and competitive with the version of entropy regularization method which uses label constraints

    Conformal Prediction: a Unified Review of Theory and New Challenges

    Full text link
    In this work we provide a review of basic ideas and novel developments about Conformal Prediction -- an innovative distribution-free, non-parametric forecasting method, based on minimal assumptions -- that is able to yield in a very straightforward way predictions sets that are valid in a statistical sense also in in the finite sample case. The in-depth discussion provided in the paper covers the theoretical underpinnings of Conformal Prediction, and then proceeds to list the more advanced developments and adaptations of the original idea.Comment: arXiv admin note: text overlap with arXiv:0706.3188, arXiv:1604.04173, arXiv:1709.06233, arXiv:1203.5422 by other author

    DC Proximal Newton for Non-Convex Optimization Problems

    Get PDF
    We introduce a novel algorithm for solving learning problems where both the loss function and the regularizer are non-convex but belong to the class of difference of convex (DC) functions. Our contribution is a new general purpose proximal Newton algorithm that is able to deal with such a situation. The algorithm consists in obtaining a descent direction from an approximation of the loss function and then in performing a line search to ensure sufficient descent. A theoretical analysis is provided showing that the iterates of the proposed algorithm {admit} as limit points stationary points of the DC objective function. Numerical experiments show that our approach is more efficient than current state of the art for a problem with a convex loss functions and non-convex regularizer. We have also illustrated the benefit of our algorithm in high-dimensional transductive learning problem where both loss function and regularizers are non-convex

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research
    corecore