669 research outputs found

    Cooperative Precoding with Limited Feedback for MIMO Interference Channels

    Full text link
    Multi-antenna precoding effectively mitigates the interference in wireless networks. However, the resultant performance gains can be significantly compromised in practice if the precoder design fails to account for the inaccuracy in the channel state information (CSI) feedback. This paper addresses this issue by considering finite-rate CSI feedback from receivers to their interfering transmitters in the two-user multiple-input-multiple-output (MIMO) interference channel, called cooperative feedback, and proposing a systematic method for designing transceivers comprising linear precoders and equalizers. Specifically, each precoder/equalizer is decomposed into inner and outer components for nulling the cross-link interference and achieving array gain, respectively. The inner precoders/equalizers are further optimized to suppress the residual interference resulting from finite-rate cooperative feedback. Further- more, the residual interference is regulated by additional scalar cooperative feedback signals that are designed to control transmission power using different criteria including fixed interference margin and maximum sum throughput. Finally, the required number of cooperative precoder feedback bits is derived for limiting the throughput loss due to precoder quantization.Comment: 23 pages; 5 figures; this work was presented in part at Asilomar 2011 and will appear in IEEE Trans. on Wireless Com

    Robust THP Transceiver Designs for Multiuser MIMO Downlink with Imperfect CSIT

    Get PDF
    In this paper, we present robust joint non-linear transceiver designs for multiuser multiple-input multiple-output (MIMO) downlink in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for inter-user interference pre-cancellation at the transmitter. We consider robust transceiver designs that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error (SE) model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean square error (SMSE) under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem. The other model we consider is a norm-bounded error (NBE) model, where the CSIT error can be specified by an uncertainty set. This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design. For this model, we consider robust i) minimum SMSE, ii) MSE-constrained, and iii) MSE-balancing transceiver designs. We propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semi-definite programs (SDP). Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints.Comment: Accepted for publication in EURASIP Journal on Advances in Signal Processing: Special Issue on Multiuser MIMO Transmission with Limited Feedback, Cooperation, and Coordinatio

    Hybrid Transceiver Optimization for Multi-Hop Communications

    Full text link
    Multi-hop communication with the aid of large-scale antenna arrays will play a vital role in future emergence communication systems. In this paper, we investigate amplify-and-forward based and multiple-input multiple-output assisted multi-hop communication, in which all nodes employ hybrid transceivers. Moreover, channel errors are taken into account in our hybrid transceiver design. Based on the matrix-monotonic optimization framework, the optimal structures of the robust hybrid transceivers are derived. By utilizing these optimal structures, the optimizations of analog transceivers and digital transceivers can be separated without loss of optimality. This fact greatly simplifies the joint optimization of analog and digital transceivers. Since the optimization of analog transceivers under unit-modulus constraints is non-convex, a projection type algorithm is proposed for analog transceiver optimization to overcome this difficulty. Based on the derived analog transceivers, the optimal digital transceivers can then be derived using matrix-monotonic optimization. Numeral results obtained demonstrate the performance advantages of the proposed hybrid transceiver designs over other existing solutions.Comment: 32 pages, 6 figures. This manuscript has been submitted to IEEE Journal on Selected Areas in Communications (special issue on Multiple Antenna Technologies for Beyond 5G

    Multiuser Millimeter Wave Beamforming Strategies with Quantized and Statistical CSIT

    Full text link
    To alleviate the high cost of hardware in mmWave systems, hybrid analog/digital precoding is typically employed. In the conventional two-stage feedback scheme, the analog beamformer is determined by beam search and feedback to maximize the desired signal power of each user. The digital precoder is designed based on quantization and feedback of effective channel to mitigate multiuser interference. Alternatively, we propose a one-stage feedback scheme which effectively reduces the complexity of the signalling and feedback procedure. Specifically, the second-order channel statistics are leveraged to design digital precoder for interference mitigation while all feedback overhead is reserved for precise analog beamforming. Under a fixed total feedback constraint, we investigate the conditions under which the one-stage feedback scheme outperforms the conventional two-stage counterpart. Moreover, a rate splitting (RS) transmission strategy is introduced to further tackle the multiuser interference and enhance the rate performance. Consider (1) RS precoded by the one-stage feedback scheme and (2) conventional transmission strategy precoded by the two-stage scheme with the same first-stage feedback as (1) and also certain amount of extra second-stage feedback. We show that (1) can achieve a sum rate comparable to that of (2). Hence, RS enables remarkable saving in the second-stage training and feedback overhead.Comment: submitted to TW

    Feedback of channel state information in multi-antenna systems based on quantization of channel Gram matrices

    Get PDF
    This dissertation deals with the proper design of efficient feedback strategies for Multiple-Input Multiple-Output (MIMO) communication systems. MIMO systems outperform single antenna systems in terms of achievable throughput and are more resilient to noise and interference, which are becoming the limiting factors in the current and future communications. Apart from the clear performance advantages, MIMO systems introduce an additional complexity factor, since they require knowledge of the propagation channel in order to be able to adapt the transmission to the propagation channel’s characteristics and achieve optimum performance. This channel knowledge, also known as Channel State Information (CSI), is estimated at the receiver and sent to the transmitter through a limited feedback link. In this dissertation, first, the minimum channel information necessary at the transmitter for the optimum precoding design is identified. This minimum information for the optimum design of the system corresponds to the channel Gram matrix. It is essential for the design of optimized systems to avoid the transmission of redundant feedback information. Following this idea, a quantization algorithm that exploits the differential geometry of the set of Gram matrices and the correlation in time present in most propagation channels is developed in order to greatly improve the feedback performance. This scheme is applied first to single-user MIMO communications, then to some particular multiuser scenarios, and finally it is extended to general multiuser broadcast communications. To conclude, the feedback link sizing is studied. An analysis of the tradeoff between size of the forward link and size of the feedback link isformulated and the radio resource allocation problem, in terms of transmission energy, time, and bandwidth of the forward and feedback links is presented.En un mundo cada vez más interconectado, donde hay una clara tendencia hacia un mayor número de comunicaciones inalámbricas simultáneas (comunicaciones M2M: Machine to Machine, redes de sensores, etc.) y en el que las necesidades de capacidad de transmisión de los enlaces de comunicaciones aumentan de manera vertiginosa (audio, video, contenidos multimedia, alta definición, etc.) el problema de la interferencia se convierte en uno de los factores limitadores de los enlaces junto con los desvanecimientos del nivel de señal y las pérdidas de propagación. Por este motivo los sistemas que emplean múltiples antenas tanto en la transmisión como en la recepción (los llamados sistemas MIMO: Multiple-Input Multiple-Output) se presentan como una de las soluciones más interesantes para satisfacer los crecientes requisitos de capacidad y comportamiento relativo a interferencias. Los sistemas MIMO permiten obtener un mejor rendimiento en términos de tasa de transmisión de información y a su vez son más robustos frente a ruido e interferencias en el canal. Esto significa que pueden usarse para aumentar la capacidad de los enlaces de comunicaciones actuales o para reducir drásticamente el consumo energético manteniendo las mismas prestaciones. Por otro lado, además de estas claras ventajas, los sistemas MIMO introducen un punto de complejidad adicional puesto que para aprovechar al máximo las posibilidades de estos sistemas es necesario tener conocimiento de la información de estado del canal (CSI: Channel State Information) tanto en el transmisor como en el receptor. Esta CSI se obtiene mediante estimación de canal en el receptor y posteriormente se envía al transmisor a través de un canal de realimentación. Esta tesis trata sobre el diseño del canal de realimentación para la transmisión de CSI, que es un elemento fundamental de los sistemas de comunicaciones del presente y del futuro. Las técnicas de transmisión que consideran activamente el efecto de la interferencia y el ruido requieren adaptarse al canal y, para ello, la realimentación de CSI es necesaria. En esta tesis se identifica, en primer lugar, la mínima información sobre el estado del canal necesaria para implementar un diseño óptimo en el transmisor, con el fin de evitar transmitir información redundante y obtener así un sistema más eficiente. Esta información es la matriz de Gram del canal MIMO. Seguidamente, se desarrolla un algoritmo de cuantificación adaptado a la geometría diferencial del conjunto que contiene la información a cuantificar y que además aprovecha la correlación temporal existente en los canales de propagación inalámbricos. Este algoritmo se implementa y evalúa primero en comunicaciones MIMO punto a punto entre dos usuarios, después se implementa para algunos casos particulares con múltiples usuarios, y finalmente se amplía para el caso general de sistemas broadcast multi-usuario. Adicionalmente, esta tesis también estudia y optimiza el dimensionamiento del canal de realimentación en función de la cantidad de recursos radio disponibles, en términos de ancho de banda, tiempo y potencia de transmisión. Para ello presenta el problema de la distribución óptima de dichos recursos radio entre el enlace de transmisión de datos y el enlace de realimentación para transmisión de información sobre estado del canal como un problema de optimización

    MIMO Transceiver Optimization With Linear Constraints on Transmitted Signal Covariance Components

    Get PDF
    This correspondence revisits the joint transceiver optimization problem for multiple-input multiple-output (MIMO) channels. The linear transceiver as well as the transceiver with linear precoding and decision feedback equalization are considered. For both types of transceivers, in addition to the usual total power constraint, an individual power constraint on each antenna element is also imposed. A number of objective functions including the average bit error rate, are considered for both of the above systems under the generalized power constraint. It is shown that for both types of systems the optimization problem can be solved by first solving a class of MMSE problems (AM-MMSE or GM-MMSE depending on the type of transceiver), and then using majorization theory. The first step, under the generalized power constraint, can be formulated as a semidefinite program (SDP) for both types of transceivers, and can be solved efficiently by convex optimization tools. The second step is addressed by using results from majorization theory. The framework developed here is general enough to add any finite number of linear constraints to the covariance matrix of the input
    corecore