1,197 research outputs found

    Optimal Selection of Power Converter in DFIG Wind Turbine With Enhanced System-Level Reliability

    Get PDF

    Impacts of high penetration of DFIG wind turbines on rotor angle stability of power systems

    Get PDF
    With the integration of wind power into power systems continues to increase, the impact of high penetration of wind power on power system stability becomes a very important issue. This paper investigates the impact of doubly fed induction generator (DFIG) control and operation on rotor angle stability. Acontrol strategy for both the rotor-side converter (RSC) and grid-side converter (GSC) of the DFIG is proposed to mitigate DFIGs impacts on the system stability. DFIG-GSC is utilized to be controlled as static synchronous compensator (STATCOM) to provide reactive power support during grid faults. In addition, a power system stabilizer (PSS) is implemented in the reactive power control loop of DFIG-RSC. The proposed approaches are validated on a realistic Western System Coordinating Council (WSCC) power system under both small and large disturbances. The simulation results show the effectiveness and robustness of both DFIG-GSC control strategy and PSS to enhance rotor angle stability of power system

    Mission Profile Based Reliability Evaluation of Capacitor Banks in Wind Power Converters

    Get PDF

    Doubly fed induction generator with integrated energy storage system for smoothening of output power

    Get PDF
    Wind energy is one of the fastest growing renewable energies in the world today. However, integration of wind power into the power system network is still confronting many challenges. One of the main challenges is the suppression of wind power fluctuations. This thesis focuses on integration of wind power with energy storage to overcome the integration challenges. The first part of this thesis investigates the suitability of energy storage systems for transmission, distribution and wind farm applications. A review on the available energy storage systems is performed considering several criteria. Efforts are made to investigate solutions that meet all the power system requirements. In the second part of the thesis, a wind turbine generator with integrated energy storage system is modeled and studied for smoothening of the output power fluctuations due to changes in wind velocity. An ultra-capacitor is used as an energy storage system which is integrated into the doubly-fed induction generator through a bidirectional buck-boost dc-dc converter. Different modes of operation for the integrated system are studied and the simulation results verify the effectiveness of the designed model using the software package MATLAB/Simulink. The last part of the thesis focuses on application of the doubly-fed induction machine. The grid-side converter of the machine is used to supply harmonics for nearby non-linear loads. A multiple reference frame synchronous estimator and controller are used to track and eliminate the dynamically changing 6k ±1 harmonics on the power system network. This complete system is developed and tested using the software package PSCAD/EMTDC. The simulation results and the harmonic analysis verify the correct operation of the system --Abstract, page iii

    THE STABILITY ANALYSIS FOR WIND TURBINES WITH DOUBLY FED INDUCTION GENERATORS

    Get PDF
    The quickly increasing, widespread use of wind generation around the world reduces carbon emissions, decreases the effects of global warming, and lowers dependence on fossil fuels. However, the growing penetration of wind power requires more effort to maintain power systems stability. This dissertation focuses on developing a novel algorithm which dynamically optimizes the proportional-integral (PI) controllers of a doubly fed induction generator (DFIG) driven by a wind turbine to increase the transient performance based on small signal stability analysis. Firstly, the impact of wind generation is introduced. The stability of power systems with wind generation is described, including the different wind generator technologies, and the challenges in high wind penetration conditions. Secondly, the small signal stability analysis model of wind turbines with DFIG is developed, including detailed rotor/grid side converter models, and the interface with the power grid. Thirdly, Particle swarm optimization (PSO) is selected to off-line calculate the optimal parameters of DFIG PI gains to maximize the damping ratios of system eigenvalues in different wind speeds. Based on the historical data, the artificial neural networks (ANNs) are designed, trained, and have the ability to quickly forecast the optimal parameters. The ANN controllers are designed to dynamically adjust PI gains online. Finally, system studies have been provided for a single machine connected to an infinite bus system (SMIB), a single machine connected to a weak grid (SMWG), and a multi machine system (MMS), respectively. A detailed analysis for MMS with different wind penetration levels has been shown according to grid code. Moreover, voltage stability improvement and grid loss reduction in IEEE 34-bus distribution system, including WT-DFIG under unbalanced heavy loading conditions, are investigated. The simulation results show the algorithm can greatly reduce low frequency oscillations and improve transient performance of DFIGs system. It realizes off-line optimization of MMS, online forecasts the optimal PI gains, and adaptively adjusts PI gains. The results also provide some useful conclusions and explorations for wind generation design, operations, and connection to the power grid. Advisors: Sohrab Asgarpoor and Wei Qia

    THE STABILITY ANALYSIS FOR WIND TURBINES WITH DOUBLY FED INDUCTION GENERATORS

    Get PDF
    The quickly increasing, widespread use of wind generation around the world reduces carbon emissions, decreases the effects of global warming, and lowers dependence on fossil fuels. However, the growing penetration of wind power requires more effort to maintain power systems stability. This dissertation focuses on developing a novel algorithm which dynamically optimizes the proportional-integral (PI) controllers of a doubly fed induction generator (DFIG) driven by a wind turbine to increase the transient performance based on small signal stability analysis. Firstly, the impact of wind generation is introduced. The stability of power systems with wind generation is described, including the different wind generator technologies, and the challenges in high wind penetration conditions. Secondly, the small signal stability analysis model of wind turbines with DFIG is developed, including detailed rotor/grid side converter models, and the interface with the power grid. Thirdly, Particle swarm optimization (PSO) is selected to off-line calculate the optimal parameters of DFIG PI gains to maximize the damping ratios of system eigenvalues in different wind speeds. Based on the historical data, the artificial neural networks (ANNs) are designed, trained, and have the ability to quickly forecast the optimal parameters. The ANN controllers are designed to dynamically adjust PI gains online. Finally, system studies have been provided for a single machine connected to an infinite bus system (SMIB), a single machine connected to a weak grid (SMWG), and a multi machine system (MMS), respectively. A detailed analysis for MMS with different wind penetration levels has been shown according to grid code. Moreover, voltage stability improvement and grid loss reduction in IEEE 34-bus distribution system, including WT-DFIG under unbalanced heavy loading conditions, are investigated. The simulation results show the algorithm can greatly reduce low frequency oscillations and improve transient performance of DFIGs system. It realizes off-line optimization of MMS, online forecasts the optimal PI gains, and adaptively adjusts PI gains. The results also provide some useful conclusions and explorations for wind generation design, operations, and connection to the power grid. Advisors: Sohrab Asgarpoor and Wei Qia

    Multiterminal HVDC transmissions systems for offshore wind

    Get PDF
    Offshore wind is emerging as one of the future energy vectors. Offshore wind power plants locations provide more strong and constant wind speed that allows to extract more power compared to onshore locations. In addition, as wind turbine components transportation is less restricted to terrestrial infrastructure, bigger and more powerful wind turbines can be installed offshore. In Europe, 1,567 MW of offshore wind power was installed in 2013. It represents the 14\% of the total wind power installed in Europe. Offshore wind power plants near the shore can be connected to the main grid by means of conventional AC technology. However, if these wind farms are installed further than 80-100 km, the use of AC equipment is economically infeasible due to reactive power issues. In these applications, HVDC system based on static converters can be used. The projects build and commissioned nowadays are based on point-to-point connections, where, each wind farm or wind farm clusters are connected to the terrestrial grid individually. Consequently, these lines might be understood as an extension of the AC system. If different offshore wind farms are interconnected between them and connected at the same time to different AC systems, for example, different countries, the DC grid is created. This scenario creates one of the most important challenges in the electrical power system since its creation, more than 100 years ago. The most relevant challenges to be addressed are the stability and operation of the DC grid and the integration and interaction with the AC grid. This thesis addresses various aspects related to the future Multiterminal-HVDC systems for transmission of offshore wind power. First, the voltage control and the system operations are discussed and verified by means of emulations using an HVDC scaled experimental platform built for this purpose. Voltage stability might be endangered during contingencies due to the different inertia time constant of the AC and the DC system. DC systems only have the inertia of the capacitors compared to synchronous machines rotating masses of the AC systems. Therefore, in faulty conditions the power transmitted through the DC system must be reduced quickly and efficiently. For this reason, in this thesis a coordinated power reduction algorithm taking advantage of Dynamic Braking Resistors (DBR) connected to onshore converter stations and the ability of the power plants to reduce the generated power is presented. From the AC and DC grids integration point of view, the connection point between the offshore grid and the AC grid might be located remotely leading to a connection with a reduced Short Circuit Ratio (SCR). In the literature, several issues regarding the connection of transistor-based power converters to weak AC grid have been reported. In this thesis am advanced control for Voltage Source Converters connected to weak grids is presented and tested by means of simulations. From the AC and DC grids interactions, the voltage stability is not enough to operate a DC grid. Transport System Operators (TSO) operates the power flow through the cables and the power exchanged between by the power converters. In this thesis, a novel hierarchical power flow control method is presented. The aim of the proposed power flow control is to obtain the desired power flows changing the voltage control set-points while the system stability is ensured. Finally, a control procedure for offshore wind farms based on Squirrel Cage Induction Generators connected to a single power converter is introduced.L'energia eòlica marina emergeix com un dels vectors energètics del futur. Les localitzacions eòliques marines proporcionen vens més forts i constants que les terrestres, cosa que permet extreure més potència. A més a més, els aerogeneradors marins poden ser més grans i més potents ja que es redueixen les limitacions de gàlib existent en les infraestructures terrestres. A tall d'exemple, l'any 2013 a Europa es van instal.lar 1.567 MW de potència eòlica marina, cosa que representa un 14\% de la potència eòlica instal.lada a Europa. Els parcs eòlics marins poden ser connectats a la xarxa elèctrica terrestre utilitzant emparamenta convencional de corrent alterna, però quan la distancia amb la costa excedeix els 80-100 km l'ús d'aquesta tecnologia es torna econòmicament inviable degut a l'energia reactiva generada en els conductors. Per solucionar aquest problema, s'emparen els sistemes en corrent continua basats en convertidors estàtics. Els projectes construïts o projectats a dia d'avui es basen en esquemes de connexió punt-a-punt, on, cada parc eòlic o agrupació de parcs eòlics es troba connectat a la xara terrestre individualment. En conseqüència, l'operació d'aquestes línies es pot considerar com una extensió de la xarxa d'alterna. Però, si s'interconnecten diferents parc eòlics amb diferents xarxes terrestres d'alterna (per exemple, diferents països) en corrent continua, s'obtenen xarxes en corrent continua. Aquest nou escenari crea un dels majors reptes des de la creació dels sistema elèctric de potencia, ara fa més de 100 anys. Entre aquests reptes hi ha l'estabilitat i l'operació dels sistemes en corrent contínua i la seva integració i coexistència amb les xarxes en corrent alterna. En la present tesis s'han estudiat diferents aspectes dels futurs sistemes multi terminal en alta tensió en corrent contínua (HVDC, en anglès) per la transmissió de potencia generada mitjançant parcs eòlics marins. Primerament, es descriu el control de tensió i els modes d'operació dels sistemes multi terminal i es verifiquen en una plataforma experimental construïda per aquest propòsit. L'estabilitat de tensió dels sistemes en corrent continua, es pot veure afectada durant una falta a la xarxa d'alterna degut a la reduïda inèrcia dels sistemes multi terminal, només formada pels condensadors dels convertidors i els cables. Així la potència que no pot injectar a la xarxa ha de ser reduïda de forma ràpida i eficient. Per això, en aquesta tesis es presenta un sistema coordinat de reducció de potència que utilitza la resistència de frenat dels convertidors de connexió a la xarxa i els mètodes de reducció de potència dels parcs eòlics. Des del punt de vista de la integració de les xarxes en continua i en alterna, el punt d'interconnexió pot estar localitzat llunys dels grans centres de generació, la qual cosa implica tenir una potència de curtcircuit molt reduïda. En la bibliografia científica s'han descrit diverses problemàtiques a l'hora de connectar un convertidor de commutació forçada a les xarxes dèbils. Per tal de pal.liar aquests inconvenients, en aquesta tesis es presenta un algorisme avançat de connexió de convertidors a xarxes dèbils basat en control vectorial. Des del punt de vista de les interaccions i interoperabilitat dels sistemes en corrent alterna i continua, no n'hi ha suficient en garantir l'estabilitat, ja que el propòsit finals dels operadors de xarxa és fer fluir una potencia a traves de la xarxa per tal de satisfer la demanda. Per aquest propòsit en aquesta tesis es presenta un control jeràrquic de control del flux de potència que fixa el flux de potència a traves d'una xarxa multi terminal canviant les consignes del control primari, tot assegurant l'estabilitat del sistema. Per tancar la tesis, es presenta un nou controlador per parcs eòlics basats en aerogeneradors de gàbia d'esquirol controlats per un sol convertidor
    corecore