34,724 research outputs found

    Object-Oriented Programming Language Facilities for Concurrency Control

    Get PDF
    Concurrent object-oriented programming systems require support for concurrency control, to enforce consistent commitment of changes and to support program-initiated rollback after application-specific failures. We have explored three different concurrency control models -- atomic blocks, serializable transactions, and commit-serializable transactions -- as part of the MELD programming language. We present our designs, discuss certain programming problems and implementation issues, and compare our work on MELD to other concurrent object-based systems

    An Object-Oriented Model for Extensible Concurrent Systems: the Composition-Filters Approach

    Get PDF
    Applying the object-oriented paradigm for the development of large and complex software systems offers several advantages, of which increased extensibility and reusability are the most prominent ones. The object-oriented model is also quite suitable for modeling concurrent systems. However, it appears that extensibility and reusability of concurrent applications is far from trivial. The problems that arise, the so-called inheritance anomalies are analyzed and presented in this paper. A set of requirements for extensible concurrent languages is formulated. As a solution to the identified problems, an extension to the object-oriented model is presented; composition filters. Composition filters capture messages and can express certain constraints and operations on these messages, for example buffering. In this paper we explain the composition filters approach, demonstrate its expressive power through a number of examples and show that composition filters do not suffer from the inheritance anomalies and fulfill the requirements that were established

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability

    Implementing atomic actions in Ada 95

    Get PDF
    Atomic actions are an important dynamic structuring technique that aid the construction of fault-tolerant concurrent systems. Although they were developed some years ago, none of the well-known commercially-available programming languages directly support their use. This paper summarizes software fault tolerance techniques for concurrent systems, evaluates the Ada 95 programming language from the perspective of its support for software fault tolerance, and shows how Ada 95 can be used to implement software fault tolerance techniques. In particular, it shows how packages, protected objects, requeue, exceptions, asynchronous transfer of control, tagged types, and controlled types can be used as building blocks from which to construct atomic actions with forward and backward error recovery, which are resilient to deserter tasks and task abortion

    Automating Fine Concurrency Control in Object-Oriented Databases

    Get PDF
    Several propositions were done to provide adapted concurrency control to object-oriented databases. However, most of these proposals miss the fact that considering solely read and write access modes on instances may lead to less parallelism than in relational databases! This paper cope with that issue, and advantages are numerous: (1) commutativity of methods is determined a priori and automatically by the compiler, without measurable overhead, (2) run-time checking of commutativity is as efficient as for compatibility, (3) inverse operations need not be specified for recovery, (4) this scheme does not preclude more sophisticated approaches, and, last but not least, (5) relational and object-oriented concurrency control schemes with read and write access modes are subsumed under this proposition
    corecore