113 research outputs found

    A 3D dynamic model of a spherical wheeled self-balancing robot

    Get PDF
    Mobility through balancing on spherical wheels has recently received some attention in the robotics literature. Unlike traditional wheeled platforms, the operation of such platforms depends heavily on understanding and working with system dynamics, which have so far been approximated with simple planar models and their decoupled extension to three dimensions. Unfortunately, such models cannot capture inherently spatial aspects of motion such as yaw motion arising from the wheel rolling motion or coupled inertial effects for fast maneuvers. In this paper, we describe a novel, fully-coupled 3D model for such spherical wheeled platforms and show that it not only captures relevant spatial aspects of motion, but also provides a basis for controllers better informed by system dynamics. We focus our evaluations to simulations with this model and use circular paths to reveal advantages of this model in dynamically rich situations. © 2012 IEEE

    3D dynamic modeling of spherical wheeled self-balancing mobile robot

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012.Thesis (Master's) -- Bilkent University, 2012.Includes bibliographical references.In recent years, dynamically stable platforms that move on spherical wheels, also known as BallBots, gained popularity in the robotics literature as an alternative locomotion method to statically stable wheeled mobile robots. In contrast to wheeled platforms which do not have to explicitly be concerned about their balance, BallBot platforms must be informed about their dynamics and actively try to maintain balance. Up until now, such platforms have been approximated by simple planar models, with extensions to three dimensions through the combination of decoupled models in orthogonal sagittal planes. However, even though capturing certain aspects of the robot’s motion is possible with such decoupled models, they cannot represent inherently spatial aspects of motion such as yaw rotation or coupled inertial effects due to the motion of the rigid body. In this thesis, we introduce a novel, fully-coupled 3D model for such spherical wheeled balancing platforms. We show that our novel model captures important spatial aspects of motion that have previously not been captured by planar models. Moreover, our new model provides a better basis for controllers that are informed by more expressive system dynamics. In order to establish the expressivity and accuracy of this new model, we present simulation studies in dynamically rich situations. We use circular paths to reveal the advantages of the new model for fast maneuvers. Additionally, we introduce new inverse-dynamics controllers for a better attitude control and investigate within simulations the capability of sustaining dynamic behaviors. We study the relation between circular motions in attitude angles and associated motions in positional variables for BallBot locomotion.İnal, Ali NailM.S

    Robust balancing and position control of a single spherical wheeled mobile platform

    Get PDF
    Self-balancing mobile platforms with single spherical wheel, generally called ballbots, are suitable example of underactuated systems. Balancing control of a ballbot platform, which aims to maintain the upright orientation by rejecting external disturbances, is important during station keeping or trajectory tracking. In this paper, acceleration based balancing and position control of a single spherical wheeled mobile platform that has three single-row omniwheel drive mechanism is examined. Robustness of the balancing controller is achieved by employing cascaded position, velocity and current control loops enhanced with acceleration feedback (AFB) to provide higher stiffness to the platform. The effectiveness of the proposed balancing controller is compared with commonly used optimal state feedback method. Additionally, the position controller is designed by utilizing the dynamic conversion of desired torques on the ball that are calculated from virtual control inputs generated in the inertial coordinates. Dynamical model of a ballbot platform is investigated by considering highly nonlinear couplings. Performance of the controllers are presented via simulation results where the external torques were applied on the body in order to test disturbance rejection capabilities

    Dynamic Mobile Manipulation via Whole-Body Bilateral Teleoperation of a Wheeled Humanoid

    Full text link
    Humanoid robots have the potential to help human workers by realizing physically demanding manipulation tasks such as moving large boxes within warehouses. We define such tasks as Dynamic Mobile Manipulation (DMM). This paper presents a framework for DMM via whole-body teleoperation, built upon three key contributions: Firstly, a teleoperation framework employing a Human Machine Interface (HMI) and a bi-wheeled humanoid, SATYRR, is proposed. Secondly, the study introduces a dynamic locomotion mapping, utilizing human-robot reduced order models, and a kinematic retargeting strategy for manipulation tasks. Additionally, the paper discusses the role of whole-body haptic feedback for wheeled humanoid control. Finally, the system's effectiveness and mappings for DMM are validated through locomanipulation experiments and heavy box pushing tasks. Here we show two forms of DMM: grasping a target moving at an average speed of 0.4 m/s, and pushing boxes weighing up to 105\% of the robot's weight. By simultaneously adjusting their pitch and using their arms, the pilot adjusts the robot pose to apply larger contact forces and move a heavy box at a constant velocity of 0.2 m/s

    Planning Framework for Robotic Pizza Dough Stretching with a Rolling Pin

    Get PDF
    Stretching a pizza dough with a rolling pin is a nonprehensile manipulation. Since the object is deformable, force closure cannot be established, and the manipulation is carried out in a nonprehensile way. The framework of this pizza dough stretching application that is explained in this chapter consists of four sub-procedures: (i) recognition of the pizza dough on a plate, (ii) planning the necessary steps to shape the pizza dough to the desired form, (iii) path generation for a rolling pin to execute the output of the pizza dough planner, and (iv) inverse kinematics for the bi-manual robot to grasp and control the rolling pin properly. Using the deformable object model described in Chap. 3, each sub-procedure of the proposed framework is explained sequentially

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    Development of robust control scheme for wheeled mobile robot in restricted environment

    Get PDF
    This research is aimed to develop a wheeled mobile robot (WMR) that is able to track reliably and robustly a certain trajectory in a constrained environments. The control of MWR in the restricted areas during path execution still a complicated problem in robot researches, since it needs to maintain the tracking errors at the zero level and the wheel mobile robot must follow robustly the pre-defined path using a suitable control system; otherwise it can cause to crash robot with other objects. A novel algorithm so called laser simulator logic (LSL) has been develo ped to estimate the inertia moment when the environment is noisy and cannot use fuzzy logic algorithm. This algorithm gives the possibility to calculate the membership function with highly overlapped linguistic variables and thus remove the noise. The proposed LSL is then integrated with existing Active Force Control (AFC) and PD to ensure good closed loop performance and reject the noise and disturbances. A simulation study of WMR control in pre-planned paths in two environments namely, zigzag and highly curved terrains, has been conducted to verify the proposed algorithm and compare it with other existed algorithms. Thus, a new WMR prototype with four wheels, two differential and two castor wheels has been designed, fabricated and inspected in the laboratory. The WMR is equipped with two sensors, encoders and current sensor, and direct current (DC) motor to perform the required path in the constrained environments. An embedded controller has been used to integrate the platform components such electronics co mponents, mechanical components and computer programs with appropriate interfacing structure. PD-AFC controller system employing the use of three feedback control loops, namely, internal, external and quick compensation loops, have been used to compensate the disturbance in constrained environments. The external loop is used to control the kinematics parameters of the control system via PD controller, However, the internal loop is used to control the dynamic of robot and disturbance rejection via AFC controller. On the other hand, a quick compensation loop has been introduced to compensate the difference between the reference and actual acceleration via PD controller. The results of simulation show that the proposed algorithm has the best performance among a ll controllers either in zigzag or circular environments, especially when the disturbances are applied. To confirm the results of simulation for the proposed algorithm, a real-time experiments in circular path has been conducted to show that the proposed controller scheme is robust enough in the real -time control and able to track the robot effectively on its reference path. The experimental results work show the capability of the proposed algorithms and the new controller to robustly move the WMR in the constrained environments, thereby it verifys the simulation counterpart
    corecore