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Abstract—Mobility through balancing on spherical wheels
has recently received some attention in the robotics literature.
Unlike traditional wheeled platforms, the operation of such
platforms depends heavily on understanding and working
with system dynamics, which have so far been approximated
with simple planar models and their decoupled extension to
three dimensions. Unfortunately, such models cannot capture
inherently spatial aspects of motion such as yaw motion arising
from the wheel rolling motion or coupled inertial effects for fast
maneuvers. In this paper, we describe a novel, fully-coupled
3D model for such spherical wheeled platforms and show that
it not only captures relevant spatial aspects of motion, but
also provides a basis for controllers better informed by system
dynamics. We focus our evaluations to simulations with this
model and use circular paths to reveal advantages of this model
in dynamically rich situations.

I. INTRODUCTION

Robust, efficient and controllable land-based mobility is

one of the important but difficult challenges faced by the

robotics community. Morphologically, there are many op-

tions that can be considered including wheeled [1], tracked

[2], legged [3, 4] and even leaping [5] designs, some inspired

from examples in biology and others based on purely en-

gineered solutions. A recent addition to these alternatives

has been through robot platforms that actively balance on

“spherical wheels” [6, 7], also known as Ballbot platforms.

Such robots potentially combine advantages of wheeled

systems through their continuous contact with the ground

with desirable features of bipedal morphologies for their

compatibility with environments designed for human use.

However, their complexity is far greater than that of wheeled

systems since their operation is inherently dynamic and

cannot be controlled through simpler kinematic methods.

Despite the simplicity of the principle behind this mor-

phology, partially shared by planar balancing systems such

as the Segway and others, the omnidirectional mobility

it affords is impressive. However, starting from the first

experimental instantiations of this idea that were based on

an inverse mouse ball design [6, 8] to later versions that

used omnidirectional wheel contact with the sphere for

better control affordance and reduced friction [7, 9], accurate

control of Ballbot dynamics for fast maneuvers remains to

be a challenging problem. Initial inquiries focused on motion

along linear paths, which can be reduced to a 2D model in

the saggital plane, using PI control on the ball velocity and an

LQR controller design as an outer loop around the linearized
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system to control body attitude [6, 8]. As far as mathematical

models are concerned, it has not been possible to go too far

beyond this planar approximation, with spatial extensions

relying on a decoupled combination of two planar models

in two orthogonal directions of the horizontal plane. Recent

extensions include more sophisticated control methods for

both the stabilization of body attitude degrees of freedom as

well as the design of optimal attitude trajectories to travel

along desired robot paths [10, 11]. Inertial disturbances and

loads on the robot body reveal further limitations associated

with decoupled models and their inability to deal with

dynamic situations [12]. Even though recent work extends

on these behavioral primitives used as a basis for more

complex trajectories through planning [13], there has not

been much progress in the accuracy and expressivity of

underlying mathematical models.

Unfortunately, highly dynamic and fast maneuvers that

are most likely to distinguish the capabilities of the Ball-

bot platform from more traditional modes of mobility are

precisely those for which decoupled planar models, which

we call 2.5D models in this paper, lose their accuracy.

Maneuvers with large accelerations require body orientations

that deviate substantially from the vertical, creating both

significant yaw rotation as well as coupled inertial effects.

In light of these limitations, there is a clear need for more

realistic mathematical models for Ballbot systems capable of

supporting more challenging dynamic behaviors.

In this paper, we introduce a novel, three-dimensional

model for Ballbot platforms that can capture aspects of its

motion that are beyond the capabilities of 2.5D models. We

first derive the equations of motion for our model, which

are then used as a basis for both a simulation model for

the platform, as well as novel inverse-dynamics controllers

for accurate control of body attitude. We then illustrate the

performance of these model-based controllers for tracking

circular body attitude trajectories. We also present simulation

results to establish that the new model recovers the ability

to model natural yaw dynamics arising from the rolling con-

straint between the ground and the ball, impossible to capture

with 2.5D models. Finally, we provide a characterization

of how different circular trajectories in the body attitude

space can be used to follow circular paths with the robot,

illustrating the potential utility of the 3D model for motion

planning and execution with Ballbot platforms.

II. BALLBOT DYNAMICS AND CONTROL

A. The Planar Ballbot Model

Many initial attempts towards the analysis and control of

the Ballbot platform relied on a two dimensional model of

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1736-8/12/S31.00 ©2012 IEEE 5381



B

R

W

pb

l
θ

φ

Fig. 1. The 2D Ballbot model on the saggital plane

the platform constrained to the saggital plane [6, 8]. This

planar model, illustrated in Figure 1, consists of a rigid robot

body connected to the center of a rolling ball through an

actuated pin joint at a distance l from the body center of mass

(COM). Conveniently, the rolling contact constraint for this

model can be expressed as a holonomic constraint between

the horizontal position and the angle of the ball, making it

possible to use an Euler-Lagrange approach to derive the

equations of motion. Details of these derivations are easily

found in the existing literature on the Ballbot platform and

will be omitted in this paper for space considerations.

B. Decoupled 2.5D Ballbot Model

The main difference of the Ballbot platform from planar

balancing systems such as the Segway or other similar

systems is its ability to freely move in all directions on the

horizontal plane. A 2D model on the saggital plane would not

be sufficient to capture all of its distinguishing capabilities.

For this reason, most existing literature on the analysis and

control of this platform adopts a “2.5D” model wherein two

decoupled 2D models in two orthogonal saggital planes in

the ambient space are assumed to accurately represent the

motions of the 3D platform. However, this approach has a

number of problems that effect its accuracy and utility for

dynamic maneuvers with the Ballbot platform:

1) The use of such a 2.5D model is incapable of modeling

natural yaw dynamics for the Ballbot. This becomes

particularly relevant when the upright Ballbot posture

needs to be abandoned towards fast and dynamic

maneuvers. Since such maneuvers are among the most

interesting potential capabilities of this morphology,

the 2.5D model is likely to be limiting and insufficient

in the long run.

2) Without the ability to model any yaw dynamics, the

2.5D model cannot predict the orientation of the actua-

tion mechanism with respect to the ball, or the ball with

respect to the ground. This makes it difficult to model

interactions between these components, which were

found to be important components in understanding

Ballbot behavior. A mathematical model that is capable

of easily and naturally incorporating their effects would

have substantial utility in the design of sufficiently

accurate behavioral controllers.

3) Any extensions of the system, such as the addition

of arms [12], or asymmetric loads, would make the

2.5D model even less accurate. Consequently, a fully

coupled 3D model is necessary if accurate behavioral

control is desired with such external loads and inertial

changes in the robot structure.

These observations constitute the basis of our motivation

towards the construction of a coupled, 3D model for the Ball-

bot that can accurately capture all aspects of its dynamics.

C. The Fully Coupled 3D Ballbot Model
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Fig. 2. The fully coupled 3D Ballbot model

1) Basic Structure and Parameters: Our new 3D Ballbot

model is shown in Figure 2 and consists of a rigid body with

mass mb and inertia matrix Ib “attached” to the center of a

spherical ball with radius rr, mass mr and inertia matrix

Ir through a spherical joint actuated with torque vector τ .
Three coordinate frames are defined: an inertial world frame

W , a “ball frame” R located at the center of the rolling ball

and a “body frame” B located at the COM of the robot body.

Based on the inverse mouse-ball drive Ballbot design of [11],

we assume that only two components of the actuation torque

τ in B are directly controlled, and the Z component τbz is a

constraint torque to eliminate relative yaw rotation between

the body and the ball. We assume that ground frictional

forces and the vertical torque τrz on the ball prevent it from

slipping horizontally and in the yaw direction, implementing

a pure rolling constraint. Viscous damping on the ball is

implemented through separate horizontal torques on the ball.

The distance between R and B remains fixed at l. Assum-

ing that the z axis of B is aligned with the line ac connecting
the COMs of the ball and the body, the ball COM in B is

a constant vector [0, 0,−l]T . The positions and quaternion
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orientations of the body and the ball in W are denoted

with (pb,qb) and (pr,qr), respectively. The contact point

between the ball and the ground is denoted with pc.

2) Free-Body Analysis and Constraints: As noted above,

Ballbot has a no-slip constraint between the ball and the

ground. This reduces to a holonomic constraint for the planar

model, but remains as a nonholonomic constraint on the ball

angular velocity for the 3D model. Consequently, we will

find it convenient to formulate the dynamics through a free-

body analysis, which will also yield various constraint forces

between different components in the system.

We first define the unconstrained state of the system as a

combination of system poses and momenta to yield

x := [pb,Pb,qb,Lb,pr,Pr,qr,Lr]
T , (1)

where all coordinates are with respect to W unless otherwise

indicated and P and L denote linear and angular momenta,

respectively. The equations of motion can be formulated by

finding unknown accelerations and constraint forces, which

we collect in an unknown vector as

U := [Ṗb, L̇b, Ṗr, L̇r,Fb,Fr, τbz, τrz]
T , (2)

where Fb and Fr are constraint forces applied by the ball to

the body, and the ground to the ball, respectively.

Ballbot dynamics involve four different constraints:

1) The ball COM and the ball joint must coincide, with

qb ⋆ [0, 0,−l]T ⋆ q∗

b + pb = pr (3)

where ⋆ denotes quaternion multiplication and q∗

b is

the quaternion conjugate of qb.

2) The ball has pure rolling motion, with

Pr = mr [0, 0,−rr]
T × (I−1

r,WLr) (4)

where Ir,W := R(qb)IrR(qb)
T is the ball inertia in

W and R(qb) is the body rotation matrix.

3) The ball has no yaw motion in W , with

〈 [0, 0, 1], (I−1

r,WLr) 〉 = 0 , (5)

where 〈·, ·〉 denotes the vector inner product.

4) The body has no yaw motion relative to the ball, with

〈 [0, 0, 1], (RT (qb)(I
−1

b,WLb − I−1

r,WLr)) 〉 = 0 . (6)

The equations of motion derived in the next section will

incorporate these constraints into the solution of unknown

system accelerations and forces.

3) Equations of Motion: The first six equations are ob-

tained from Newton’s law on linear accelerations as

Ṗi = Fi + [0, 0,−mig]
T , (7)

where i = r for the ball and i = b for the body. Similarly,

another six equations corespond to rotational accelerations

L̇b = (qb ⋆ [0, 0,−l]T ⋆ q∗

b)× Fb + qb ⋆ τ ⋆ q∗

b (8)

L̇r = [0, 0,−rr]
T × Fr − qb ⋆ τ ⋆ q∗

b + τf . (9)

where τf denotes the viscuous frictional torque acting on

the ball proportional to its angular velocity. The ball joint

constraint of (3) yields three more equations through its

second derivative and the final five equations result from

first derivatives of the constraints (4), (5) and (6) on system

velocities. These relations yield a system of 20 equations

with the 20 unknowns in U expressed in matrix form as

MU = N , (10)

which can be solved to yield the unknown accelerations and

forces as U = M−1N, assuming that the matrix M is

invertible, which is always the case for mechanical systems

of this kind unless problematic model components such as

Coulomb friction are considered. We leave the details of

these derivations out for space considerations, noting that

matrix forms for quaternion multiplication and cross product

operations allow substantial simplifications and the resulting

equations are all linear in the unknown quantities of U.

Once the unknown accelerations and forces are found, the

equations of motion take the form

ẋ = f(x, τbx, τby) , (11)

where the derivatives of configuration variables are provided

by kinematic relations as

ṗi = Pi/mi (12)

q̇i = (I−1

i,WLi) ⋆ qi/2 , (13)

where, once again, i = r for the ball and i = b for the body.

D. Attitude Control through Inverse Dynamics

Independent of the nonholonomic contact constraints be-

tween the ball and the ground, Ballbot dynamics are under-

actuated for its motion in W . Consequently, the position and

orientation of the ball (external variables) cannot be directly

controlled through available control inputs. Control of the

Ballbot motion must regulate and use body attitude states

(shape variables) to modulate ball dynamics towards desired

behavior. A detailed account of the reasons and consequences

of these properties can be found in [13, 14].

In light of this limitation, accurate realization of desired

shape variable trajectories becomes critically important if

specific motions on external variables are to be realized. In

previous work, this was accomplished through PID control

[13], which is prone to tracking errors particularly when the

body pose deviates substantially from its vertical posture and

inertial effects become significant at high speeds. One of

our contributions in this paper is the design of an inverse-

dynamics controller based on our 3D model for controlling

Ballbot’s body attitude.

In this section, we describe how our 3D model can be

used as a basis for computed torque control, cancelling

gravitational and inertial effects on the body attitude to

yield accurate attitude control for the Ballbot. We use this

controller in subsequent sections to illustrate various features

of the 3D model with respect to its ability to capture

interesting behaviors on external variables.

The primary goal of our inverse dynamics controller is

to first cancel out accelerations on body attitude degrees

5383



BallBot

Dynamics
Inv. Dyn.

Control

PD

Control

Desired

Pitch and 

Roll

x

τ ∗xy

τ

Fig. 3. Block diagram for Inverse Dynamics and PD Controllers acting on
the Ballbot plant.

of freedom due to the Ballbot dynamics, then use a PD

controller to stabilize them around desired trajectories that

might be generated, for example, by an optimal planner as

described in [13]. Figure 3 illustrates the structure of this

control strategy.
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Desired

Pitch

Desired

Roll

Body

Roll+ −

+ −

Body
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Fig. 4. Detailed block diagram for PD controller to stabilize the attitude
dynamics within the inverse dynamics controller.

In order to accomplish this goal, we first augment the

previously defined vector of unknowns of (2) with the control

inputs to be solved, yielding

U′ := [Ṗb, L̇b, Ṗr, L̇r,Fb,Fr, τbz, τrz, τbx, τby]
T . (14)

We then introduce two new constraints to reduce attitude

dynamics to only experience the PD controller with

〈[1, 0, 0], L̇b〉 = τ∗x (15)

〈[0, 1, 0], L̇b〉 = τ∗y (16)

where τ∗x and τ∗y are the stabilizing PD torques in W com-

puted as shown in Figure 4. The solution to the augmented

constraint equation U ′ = (M ′)−1N ′ yields control torques

that effectively cancel out any dynamics on body attitude

coordinates, only leaving decoupled stabilizing torques in

place.

III. SIMULATION STUDIES AND DISCUSSION

A. Simulation Environment

Our simulation studies of subsequent sections are based

on numerical integration of the equations of motion (11),

solving for the vector of unknown accelerations and forces

through (10) for each evaluation. We use Matlab’s ode45

integrator with a relative tolerance of 10−3 and a maximum

time step of 10−1s. In order to ensure that the constraints

defined by (3), (4), (5) and (6) do not drift in time due

to numerical integration errors, we peridocially reset the

system state to the closest state that satisfies the constraints

once every 1s. Consequently, constraint errors always stay

below 10−6 in magnitude our simulations. In the absence of

these corrections, constraint drift becomes problematic for

simulations of duration larger than 100s.
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Fig. 5. An example simulation with the 3D Ballbot model, starting from
an upright posture and sprialing out to a circular attitude trajectory. Left:
Body attitude trajectory, Right: Ball trajectory in W . This example has an
attitude reference with period tcycle = 5s and amplitude Amax = 10deg.
θx and θy are attitude angles around the x and y axes, respectively.

Subsequent sections on our simulation results exclusively

consider periodic, circular trajectories in body attitude co-

ordinates (with period tcycle and amplitude Amax), hypoth-

esized to yield similarly circular paths for the ball COM.

Unlike linear paths, such circular trajectories exercise dy-

namically dexterous capabilities of the platform. To ensure

smooth transients and to prevent falling, we begin our

simulations at t = 0 from an upright body posture with

qb = [1, 0, 0, 0]T . We then command the body attitude to

follow a pattern spiraling out for a duration of tsetup to

react its periodic, circular pattern until a t = tfinal chosen
to be sufficiently large to ensure convergence to steady-

state. An example of this attitude profile and the resulting

robot motion in W is illustrated in Figure 5. As shown

in this figure, accurate attitude tracking is achieved, and

external variable trajectories converge to circular paths as

well. The center of these circular paths in W undergo a

slight initial drift and then converge to a single circle even

though the system is symmetric with respect to the positional

coordinates of the ball. This is due to the viscous damping

term we introduced in (9), which slowly flushes out the

average translational velocity in the system when attitude

trajectories are accurately tracked. Nevertheless, there are

cases when such convergence is not possible, particularly

when attitude tracking errors become larger.

This example run as well as all of our simulations in

subsequent sections use kinematic and dynamic parameters

shown in Table I, compatible with the experimental Ballbot

robot presented in [11].

TABLE I

KINEMATIC AND DYNAMIC PARAMETERS IN MKS UNITS FOR BALLBOT

SIMULATIONS, CHOSEN TO BE COMPATIBLE WITH [11]

mb I
xx
b

I
yy

b
I
zz
b

mr Ir l rr

51.66 12.59 12.48 0.66 2.44 0.018 0.69 0.106
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Fig. 6. Attitude angle tracking errors for 3D (left) and 2.5D (right) inverse
dynamics controllers acting on the 3D model, with the Ballbot traveling
at two different speeds. Errors due to the PD controller (KP = 10000,
Kd = 100) dominate and result in almost identical performance for both
controllers. The steady-state circular reference trajectory is reached at t =
20s for this example.

B. Accuracy of Body Attitude Control

One of our contributions in this paper is the use of inverse-

dynamics based controllers for controlling body attitude

angles, particularly body attitude degrees of freedom. To this

end, we show both the performance of the inverse dynamics

controller presented in Section II-D, as well as a similarly

derived controller for the 2.5D model both acting on the

simulation of the 3D model. Figure 6 shows a comparison

or attitude angle tracking errors for both of these controllers,

using two different reference trajectories for attitude angles

resulting in 0.69m/s and 1.35m/s linear velocity for the

ball. Interestingly, the differences between the 2.5D and 3D

inverse dynamics controllers are negligible, due to the fact

that the PD controller does not incorporate a feedforward

model of the reference trajectory, resulting in its poor per-

formance dominating the steady-state tracking errors. Even

though it would have been possible to incorporate such a

feedforward term for the attitude reference trajectory in this

simple, circular example, it might not be possible in general

particularly when task-level feedback on robot position is

used to generate the desired attitude angles with feedback.

Consequently, we have chosen not to incorporate such a feed-

forward compensation for reference trajectory accelerations

for our simulations.

It is, however, important to note that these examples

and our results in subsequent sections have speeds that

are higher than what has been studied for this platform in

existing literature, going to up to 3.5m/s. We also expect

to also have feedback policies acting on external system

variables such as the ball position, that will provide further

stabilization and eliminate the potential impact of this steady-

state attitude tracking error on the overall behavior. We leave

the application of both our model and inverse dynamics

controllers to such high level planning applications for future

work.

C. Yaw Dynamics

The most obvious difference between the 2.5D and 3D

models comes from the former’s inability to model any

natural yaw dynamics. However, due to the nonholonomic

rolling constraint between the ball and the ground, together

with the yaw constraint between the body and the ball, the

body should be expected to undergo yaw rotations when

the attitude angles deviate from the vertical. Intuitively, this

corresponds to the yaw rotation observed when a conic object

is rolling on the ground. This rotation is of course negligible

when either the Ballbot is moving very slowly, or when the

body angle is aligned with the direction of travel. The latter

has almost exclusively been the case for existing studies

focusing on traveling linearly from one waypoint to the next.

2
4

6
8

10

5

10

15

0.5

1

1.5

2

2.5

t
cycle

 (s)A
max

 (deg)

w
b
z
 (

ra
d
/s

)
Fig. 7. Dependence of the yaw rate to the period and amplitude of attitude
angle reference trajectories.

This intuitive hypothesis is supported by our 3D model.

Figure 7 illustrates the dependence of Ballbot’s yaw angular

velocity to the period and amplitude of the attitude angle

reference trajectory. As expected, there is significant yaw

rotation associated with the circular motion of Ballbot in

the workspace, increasing in magnitude as either the period

or the amplitude of attitude angle trajectories increase. Our

3D model is the first model capable of incorporating this

behavior into the dynamics. Even though one would be

able to measure this change through inertial sensing and

use feedback controllers to compensate, the inability of the

underlying dynamics to model this behavior would inevitably

manifest itself as inaccuracies in motion planning and exe-

cution.

D. Characterizing External Variable Trajectories

As we noted before, one of the interesting but challenging

features of the Ballbot morphology is its underactuated

nature, which leads to task variables of interest (i.e. the robot

position in W) being only indirectly controllable through

the control of attitude angles. As shown in the example

of Figure 5, our assumption that circular trajectories in the

space of attitude angles would lead to circular trajectories

is indeed observed in all of our simulations. In order to pin

down the relation between trajectories in shape variables and

trajectories in external variables, we ran simulations across

a range of different attitude angle trajectories, varying the

period tcycle and the maximum attitude angle Amax that

corresponds to the radius of the circular reference trajectory

in attitude angle space. The reference trajectories for body
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attitude degrees of freedom hence become

θx = Amax sin(2πt/tcycle) (17)

θy = Amax cos(2πt/tcycle) . (18)
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Fig. 8. Dependence of the circular external variable trajectory parameters
to the period and amplitude of the attitude reference trajectory. Left: radius
of the circular path, Right: linear ball velocity along the circular path.

We ran simulations across the ranges Amax ∈ [5, 15]deg
and tcycle ∈ [2, 10]s. We used the radii and linear veloc-

ities of the steady-state external variable trajectories as a

parameterization of the ball path in W . Figure 8 shows our

results, with the radius and velocity shown as a function of

the reference trajectory period and amplitude on the left and

right, respectively. It is also important to note that both the

radius and velocity associated with these external variable

trajectories are independent of the startup time and initial

system states.

IV. CONCLUSION

In this paper, we proposed a new, three dimensional

model of the Ballbot platform, which instantiates the recently

introduced idea of mobility by rolling on spherical wheels.

Our model captures interactions between the ground and

the ball, as well as those between the ball and the robot

body in such systems through several constraint equations

corresponding to physical properties of such systems. In

contrast to earlier attempts at modeling such systems that

rely on decoupled planar approximations, our model has been

able to capture important aspects of robot motion such as

significant yaw rotations.

We have also proposed two different inverse-dynamics

controllers, one for earlier, 2.5D models based on planar

approximations, and one based on our novel 3D controller.

We have shown that these controllers are capable of sus-

taining dynamic behaviors such as circular trajectories in the

workspace in a robust and stable fashion. In the context of

such behaviors, we have shown that the controllers yield

acceptable tracking performance for shape variables. We

have also investigated the relation between circular motions

in shape variables and characterized associated motions in

external variables.

These results are the first steps towards dynamically dex-

terous behavioral controllers and motion planners for the

Ballbot platform. Unlike much of the previous work on

Ballbot platforms, our work aims to fully exploit dynamic

properties of this system rather than restricting motion to

states for which planar approximations remain accurate. A

necessary next step in this direction is the experimental

validation of this model and its possible extensions with

more realistic friction models to increase its accuracy. Nev-

ertheless, in the long run, we foresee that this 3D model

and controllers based on this model will be valuable in the

creation of accurate motion models for external variables of

this system which are otherwise only indirectly controllable.
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