496 research outputs found

    Gait generation via intrinsically stable MPC for a multi-mass humanoid model

    Get PDF
    We consider the problem of generating a gait with no a priori assigned footsteps while taking into account the contribution of the swinging leg to the total Zero Moment Point (ZMP). This is achieved by considering a multi-mass model of the humanoid and distinguishing between secondary masses with known pre-defined motion and the remaining, primary, masses. In the case of a single primary mass with constant height, it is possible to transform the original gait generation problem for the multi-mass system into a single LIP-like problem. We can then take full advantage of an intrinsically stable MPC framework to generate a gait that takes into account the swinging leg motion

    Trajectory generation for multi-contact momentum-control

    Full text link
    Simplified models of the dynamics such as the linear inverted pendulum model (LIPM) have proven to perform well for biped walking on flat ground. However, for more complex tasks the assumptions of these models can become limiting. For example, the LIPM does not allow for the control of contact forces independently, is limited to co-planar contacts and assumes that the angular momentum is zero. In this paper, we propose to use the full momentum equations of a humanoid robot in a trajectory optimization framework to plan its center of mass, linear and angular momentum trajectories. The model also allows for planning desired contact forces for each end-effector in arbitrary contact locations. We extend our previous results on LQR design for momentum control by computing the (linearized) optimal momentum feedback law in a receding horizon fashion. The resulting desired momentum and the associated feedback law are then used in a hierarchical whole body control approach. Simulation experiments show that the approach is computationally fast and is able to generate plans for locomotion on complex terrains while demonstrating good tracking performance for the full humanoid control

    Development of behaviors for a simulated humanoid robot

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaControlar um robô bípede com vários graus de liberdade é um desafio que recebe a atenção de vários investigadores nas áreas da biologia, física, electrotecnia, ciências de computadores e mecânica. Para que um humanóide possa agir em ambientes complexos, são necessários comportamentos rápidos, estáveis e adaptáveis. Esta dissertação está centrada no desenvolvimento de comportamentos robustos para um robô humanóide simulado, no contexto das competições de futebol robótico simulado 3D do RoboCup, para a equipa FCPortugal3D. Desenvolver tais comportamentos exige o desenvolvimento de métodos de planeamento de trajectórias de juntas e controlo de baixo nível. Controladores PID foram implementados para o controlo de baixo nível. Para o planeamento de trajectórias, quatro métodos foram estudados. O primeiro método apresentado foi implementado antes desta dissertação e consiste numa sequência de funções degrau que definem o ângulo desejado para cada junta durante o movimento. Um novo método baseado na interpolação de um seno foi desenvolvido e consiste em gerar uma trajectória sinusoidal durante um determinado tempo, o que resulta em transições suaves entre o ângulo efectivo e o ângulo desejado para cada junta. Um outro método que foi desenvolvido, baseado em séries parciais de Fourier, gera um padrão cíclico para cada junta, podendo ter múltiplas frequências. Com base no trabalho desenvolvido por Sven Behnke, um CPG para locomoção omnidireccional foi estudado em detalhe e implementado. Uma linguagem de definição de comportamentos é também parte deste estudo e tem como objectivo simplificar a definição de comportamentos utilizando os vários métodos propostos. Integrando o controlo de baixo nível e os métodos de planeamento de trajectórias, vários comportamentos foram criados para permitir a uma versão simulada do humanóide NAO andar em diferentes direcções, rodar, chutar a bola, apanhar a bola (guarda-redes) e levantar do chão. Adicionalmente, a optimização e geração automática de comportamentos foi também estudada, utilizado algoritmos de optimização como o Hill Climbing e Algoritmos Genéticos. No final, os resultados são comparados com as equipas de simulação 3D que reflectem o estado da arte. Os resultados obtidos são bons e foram capazes de ultrapassar uma das três melhores equipas simuladas do RoboCup em diversos aspectos como a velocidade a andar, a velocidade de rotação, a distância da bola depois de chutada, o tempo para apanhar a bola e o tempo para levantar do chão. ABSTRACT: Controlling a biped robot with several degrees of freedom is a challenging task that takes the attention of several researchers in the fields of biology, physics, electronics, computer science and mechanics. For a humanoid robot to perform in complex environments, fast, stable and adaptable behaviors are required. This thesis is concerned with the development of robust behaviors for a simulated humanoid robot, in the scope of the RoboCup 3D Simulated Soccer Competitions, for FCPortugal3D team. Developing such robust behaviors requires the development of methods for joint trajectory planning and low-level control. PID control were implemented to achieve low-level joint control. For trajectory planning, four methods were studied. The first presented method was implemented before this thesis and consists of a sequence of step functions that define the target angle of each joint during the movement. A new method based on the interpolation of a sine function was developed and consists of generating a sinusoidal shape during some amount of time, leading to smooth transitions between the current angle and the target angle of each joint. Another method developed, based on partial Fourier Series, generates a multi-frequency cyclic pattern for each joint. This method is very flexible and allows to completely control the angular positions and velocities of the joints. Based on the work of developed by Sven Behnke, a CPG for omnidirectional locomotion was studied in detail and implemented. A behavior definition language is also part of this study and aims at simplifying the definition of behaviors using the several proposed methods. By integrating the low-level control and the trajectory planning methods, several behaviors were created to allow a simulated version of the humanoid NAO to walk in different directions, turn, kick the ball, catch the ball (goal keeper) and get up from the ground. Furthermore, the automatic generation of gaits, through the use of optimization algorithms such as hill climbing and genetic algorithms, was also studied and tested. In the end, the results are compared with the state of the art teams of the RoboCup 3D simulation league. The achieved results are good and were able to overcome one of the state of the art simulated teams of RoboCup in several aspects such as walking velocity, turning velocity, distance of the ball when kicked, time to catch the ball and the time to get up from the ground
    corecore