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Abstract

This research addresses a gait generation approach for the biped robot which is

based on considering that a gait pattern generation is an optimization problem with

constraints where to build up it, Response Surface Model (RSM) is used to approxi-

mate objective and constraint function, afterwards, Improved Self-Adaptive Differ-

ential Evolution Algorithm (ISADE) is applied to find out the optimal gait pattern

for the robot. In addition, to enhance stability of walking behavior, I apply a foot

structure with toe mechanism. This is to enable the robot to overcome the challenge

on uneven terrain. Arm swinging mechanism is also considered to restrict rotation

of the robot during locomotion. Finally, to evaluate the achievement of this research,

the result is validated through dynamic simulation on a commercially available soft-

ware called Adams (MSC software, USA) with the model which is designed by refer-

ring to KHR-3HV robot, belongings to Kondo Kagaku company. The robot posture is

comparable to the human in a cycle of the walking process. As a result, I confirmed

that the approximated optimization method by applying ISADE algorithm and RSM

is an effective approach to generate a gait pattern for the robot. With generated gait,

the robot can walk steadily on flat ground and overcomes obstacle on rough road.

Toe mechanism enhances ability of the robot while climbing up uneven segment of

rough terrain and arm swing mechanism reduces angle of rotation in motion.
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Chapter 1

Introduction and Objectives

This chapter starts out by introduction to humanoid robot and a survey of related

research. Then, challenges and objective of this dissertation are discussed. The end

of this chapter presents the outline of its organization.

1.1 Introduction to Biped Robot

The word “robot” comes from “robota” in Czech language. This word, which from

“Rossum’s Universal Robots” (R.U.R.) produced by Kalvel Capek in 1920, means

work as slave or forced worker. This plot is renowned and the word “robot” is

very popular all over the world. The performance is related to human’s imagination

that tries to find something for serving responsibilities. The robot manufacturing

originates from this idea.

A biped or humanoid robot is a robot with its body shape built to resemble the

human body. The design may be for functional purposes, such as interacting with

human tools and environments, for experimental purposes, such as the study of

bipedal locomotion, or for other purposes. In general, humanoid robots have a torso,

a head, two arms, and two legs, though some forms of humanoid robots may model

only part of the body, for example, from the waist up. Some humanoid robots also

have heads designed to replicate human facial features such as eyes and mouths.
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Purpose: Humanoid robots are now used as research tools in several scientific ar-

eas. Researchers study the human body structure and behavior to build humanoid

robots. On the other side, the attempt to simulate the human body leads to a better

understanding of it. Human cognition is a field of study which is focused on how

humans learn from sensory information in order to acquire perceptual and motor

skills. This knowledge is used to develop computational models of human behavior

and it has been improving over time.

It has been suggested that very advanced robotics will facilitate the enhancement

of ordinary humans.

Although the initial aim of humanoid research was to build better orthosis and

prosthesis for human beings, knowledge has been transferred between both disci-

plines. A few examples are powered leg prosthesis for neuromuscularly impaired,

ankle-foot orthosis, biological realistic leg prosthesis and forearm prosthesis.

Besides the research, humanoid robots are being developed to perform human

tasks like personal assistance, through which they should be able to assist the sick

and elderly, and dirty or dangerous jobs. Humanoids are also suitable for some

procedurally-based vocations, such as reception-desk administrators and automo-

tive manufacturing line workers. In essence, since they can use tools and operate

equipment and vehicles designed for the human form, humanoids could theoreti-

cally perform any task a human being can, so long as they have the proper software.

However, the complexity of doing so is immense.

They are also becoming increasingly popular as entertainers. For example, Ur-

sula, a female robot, sings, plays music, dances and speaks to her audiences at Uni-

versal Studios. Several Disney theme park shows utilize animatronic robots that

look, move and speak much like human beings. Although these robots look real-

istic, they have no cognition or physical autonomy. Various humanoid robots and

their possible applications in daily life are featured in an independent documentary

film called Plug & Pray, which was released in 2010.
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Humanoid robots, especially those with artificial intelligence algorithms, could

be useful for future dangerous and/or distant space exploration missions, without

having the need to turn back around again and return to Earth once the mission is

completed [1].

1.2 Theories of Walking

1.2.1 Gait cycle

A gait cycle is the time period or sequence of events or movements during locomo-

tion in which one foot contacts the ground to when that same foot again contacts the

ground, and involves forward propulsion of the centre of gravity. A single gait cycle

is also known as a stride [2]. The walking process has cycle or gait cycle that can be

presented as Fig. 1.1.

FIGURE 1.1: Phases of the nomal gait cycle [3].

Each gait cycle or stride has two phases as below [4]:

Stance Phase: The stance phase is that part of a gait cycle during which the foot

remains in contact with the ground. For analysing gait cycle one foot is taken as
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reference and the movements of the reference foot are studied. It constitutes of 60%

of the gait cycle. In stance phase the reference foot undergoes five movements:

• Initial Contact (Heel Strike ): In initial contact, the heel is the first bone of the

reference foot to touch the ground.

• Loading Response (Foot Flat): In loading response phase, the weight is trans-

ferred onto the referenced leg. It is important for weight-bearing, shock-absorption

and forward progression.

• Mid Stance: It involves alignment and balancing of body weight on the refer-

ence foot.

• Terminal Stance: In this phase the heel of reference foot rises while the its toe

is still in contact with the ground.

• Toe Off (Pre Swing): In this phase, the toe of reference foot rises and swings in

air. This is the beginning of the swing phase of the gait cycle.

Swing Phase: The swing phase is that part of the gait cycle during which the

reference foot is not in contact with the ground and swings in the air. It constitutes

about 40% of gait cycle. It has three parts:

• Initial Swing: This first phase is approximately one-third of the swing period.

It begins with lift of the foot from the floor and ends when the swinging foot is

opposite the stance foot.

• Mid Swing: The second phase of the swing period begins as the swinging limb

is opposite the stance limb. The phase ends when the swinging limb is forward

and the tibia is vertical

• Terminal Swing: This final phase of swing begins with a vertical tibia and ends

when the foot strikes the floor. Limb advancement is completed as the leg

moves ahead of thigh
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1.2.2 ZMP and support polygon

Definition of ZMP In 1972, Vukobratović and Stepanenko defined the Zero-Moment

Point (ZMP) at the beginning of the paper on control of humanoid robots. Every-

thing of the argument regarding the ZMP starts from here.

FIGURE 1.2: Definition of Zero-Moment Point (ZMP) [5].

In Fig. 1.2 an example of force distribution across the foot is given. As the load

has the same sign all over the surface, it can be reduced to the resultant force R, the

point of attack of which will be in the boundaries of the foot. Let the point on the

surface of the foot, where the resultant R passed, be denoted as the zero-moment

point, or ZMP in short.

ZMP and support polygon the support polygon which is another important con-

cept related to the ZMP. As shown in Fig. 1.3, let us consider the region formed by

enclosing all the contact points between the robot and the ground by using an elastic

cord braid. We call this region as the support polygon. Mathematically the support

polygon is defined as a convex hull, which is the smallest convex set including all

contact points. Definitions of the convex set and the convex hull are explained in the

appendix of this chapter. Rather than detailed discussions, I first show a simple and



Chapter 1. Introduction and Objectives 6

FIGURE 1.3: Support polygon [6].

important relationship between the ZMP and the support polygon. The ZMP always

exists inside of the support polygon.

FIGURE 1.4: CoG, ZMP, and support polygon [6].

Figure 1.4 illustrates the relationship among the center of mass (CoM), ZMP and

the support polygon while a human stands on the ground. When a human stands on

the ground, the ZMP coincides with the ground projection of CoM. In such a case, a

human can keep balance if the ground projection of CoM is included strictly inside

of the support polygon. On the other hand, when a human moves dynamically, the

ground projection of CoM may exist outside the support polygon. However, the
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ZMP never exists outside the support polygon.

1.3 Human foot

1.3.1 Anatomy

In the walking process of human, toes which help the contact between feet and

ground smoothly, have an important role in walking stability. The foot is a very

complicated structure as described in Fig. 1.5, which is best thought of as being in

three parts [7]:

• The hindfoot , which consists of two bones, one on top of the other.

• The midfoot, which consists of five bones, packed closely together.

• The forefoot, which consists of the five metatarsals and the toes.

The talus or astragalus is the upper of the two bones in the hindfoot. Its superior

surface forms the ankle joint, articulating above and medially with the tibia and

laterally with the fibula. Below, the talus articulates with the calcaneus through

the subtalar joint. It articulates anteriorly with the most medial and superior of the

midfoot bones - the navicular.

The calcaneus or os calcis lies below the talus and articulates with it through the

subtalar joint. Its lower surface transmits the body weight to the ground through

a thick layer of fat, fibrous tissue and skin - the heelpad. The anterior surface ar-

ticulates with the most lateral and inferior of the midfoot bones - the cuboid. The

midfoot consists of five bones: The five metatarsals lie roughly parallel to each other,

the lateral two articulating with the cuboid and the medial three with the three

cuneiform bones. The phalanges are the bones of the toes; there are two in the big

toe and three in each of the other toes. The big toe is also called the great toe or hal-

lux. A joint occurs where one bone is in contact with another. From a practical point
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FIGURE 1.5: Human right foot structure [7].

of view, they can be divided into synovial joints, in which significant movement can

take place, and the various other types of joint in which only small movements can

occur. Since gait analysis is normally only concerned with fairly large movements,

the description which follows deals only with synovial joints. In a synovial joint, the

bone ends are covered in cartilage and the joint is surrounded by a synovial capsule,

which secretes the lubricant synovial fluid. Most joints are stabilized by ligaments,

which are bands of relatively inelastic fibrous tissue connecting one bone to another.

Fascia is a special type of ligament, being a continuous sheet of fibrous tissue.

1.3.2 Relationship between Gait Phases and Foot Pressure Patterns

In normal barefoot walking, the heel was the first portion of the foot to receive body

weight followed by midfoot and forefoot, finally the load shifted to the toe for lift

off as shown in Fig. 1.6
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FIGURE 1.6: Foot pressure pattern [8].

Figure 1.6 represents the expected pressure patterns in each stance subphase (LR,

MSt, TSt, PSw). The black area is the position where supports forces areas. Where-

with, LR is heel only in loading response, MSt is foot flat in mid stance, TSt is forefoot

and toes in terminal stance, and PSw is medial forefoot in pre-swing. When the load

from body sends to the foot, the force will goes through plantar tissues. The force

has the stability related to the intensity of the loading force and the area of the foot

in contact with the floor [4].

• Heel pressure shows two patterns. Initial loading occurs on a small posterior

lateral area, and body weight is dropped rapidly. All total force, ranging be-

tween 70% and 100% of body weight.
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• Advancement of body weight onto the center of the heel reduces the pressures

to a third (33% of body weight)

• Lateral mid foot contact with the floor is moderately common but of low in-

tensity. The pressure in this area averages 10% of body weight.

• Metatarsal head pressure differs among the individual bones. Generally the

highest pressures are registered under the second and third metatarsal heads.

Whether the forces are equal or one is slightly greater than the other is highly

variable among individuals. Compared to the posterior heel value, the metatarsal

head pressures varied between 60% and 100% of body weight.

• Toe pressures differ markedly. The hallux (bigtoe) has the greatest pressure.

It ranged between 30% and 55% of that at the heel. The fifth metatarsal head

always registered the least pressure within the forefoot.

1.4 Previous highlight research on Biped Robot

The researches of humanoid robot and biped robot have a long history and contin-

uation in two decades. In order that the robot has capable of gestures, expressions,

replicates, and decisions human-like. The researches of biped robot have spread ex-

tensively and have been extremely favorite topic. On account of, all of these respond

to human needs in industries, services and entertainments. Because of these reasons,

the studies of robot are popular. One of the important researches and very basic mo-

bility is walking. This is proved by the medical research about the human gait that

has been continuously as with the gait of biped robot.

For two decades, the studies of walking biped robot are incessant research topic

such as ASIMO, WABIAN-2, WABIAN-2R, HRP2, HRP3, HRP4C, H6 and H7 etc.

Let me divide these robot into two groups.
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Universities and Research Institutes In Japan, professor Takanishi’s group in Waseda

University has been actively developing many biped robots such as WABIAN-2,

WABIAN-2R [10, 11] following professor Kato who built world’s fist humanoid

robot WABOT-1. The WABIAN-2 has been designed according to a development

of robot having capability of walking like humans walking. WABIAN-2 can obtain

data needed for developing medical and rehabilitation instruments by measuring

the robot’s motions instead of a human, which are difficult to measure quantitatively.

WABIAN-2 has capable of walking without the bent knee posture that different from

among common bipedal humanoid robots because it has added degrees of freedom

in its rocking waist, swiveling knees, and pivoting ankles. In 2006, WABIAN-2R

was developed for two purposes. The first one is to develop a robot that would

be a human’s partner. The second one is to develop a human motion simulator.

WABIAN-2R has been designed mimic human movements, the robot has 41 DOFs

and the movable range of the joints is designed reference from human. WABIAN-

2R used a photo sensor to detect the basing angle. Also, each ankle has a 6-axis

force/torque sensor, which is used for measuring Ground Reaction Force (GRF) and

Zero Moment Point (ZMP). In the feet part, WABIAN-2R’s foot is designed to be

similar to human foot. A Foot with a passive toe joint is applied with WABIAN-2R,

this application based on the results of gait analysis with motion capture system.

Researchers focus on a walking steady, they offer these main advantages because it

lightweight and don’t need a necessity complex control structure. In addition, one

of the human walk characteristics is heel-contact and toe-off motions in steady walk-

ing. From the reasons, the researchers have developed the principle of the pattern

generation for stretched knee, heel-contact and toe-off motions. This development

based on the ZMP criterion applied with WABIAN-2R. For the pattern generation,

some parameters of the foot trajectories of a biped robot were optimized by using

a genetic algorithm in order to generate a continuous and smooth motion of leg.

The results obtained from WABIAN- 2R have the ability to realize more human-like
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walking styles. The development of the robot’s feet is continuous study. In 2009, foot

with human-like arch structure was presented. The researchers described a new foot

mechanism composed of mimicking the human’s foot arch structure and the func-

tion of the arch structure. The developed foot mimics the elastic properties of the

arch of human’s foot and the change of arch height during walking. The foot mech-

anism consists of a passive joint in the internal toe, a passive joint in the external toe,

and joint in the foot arch. The result of arch elasticity shown that it could absorb

a foot-landing force at the plantar contact phase and the change of the arch height

contributed to a strong trust at the push-off phase. In 2010, WABIAN-2R is capa-

ble of two walking styles, one is knee-stretched walking like a human, another one

is knee-bend walking. Knee-stretched walking enables fast walking. In contrast,

kneebend walking enables stable walking on uneven terrain. In the real environ-

ment, it is preferable that WABIAN-2R change the walking style depending on the

ground condition. WABIAN-2R researchers developed a new inverse kinematics

method to generate walking motions of robot legs regardless of the walking style

and an online walking parameter generation to bend its knees depending on the

ground condition. By using the methods and the online pattern generation method

above, an adaptive walking process was realized. Design and development capabil-

ities as mention above, these are some of the WABIAN-2R researches.

ATR Computational Neuroscience Laboratories is studying humanoid robots from

a viewpoint of brain science. Using the humanoid robot CB-i developed by SARCOS

Inc., their biologically feasible balance controller has been tested [12].

Needless to say, biped humanoid research is not limited in Japan. As remark-

able examples, we can see LOLA by Technische Universität of München (TUM) [13],

HUBO2 by Korea Advanced Institute of Science and Technology (KAIST) [14], BHR-

2 by Beijing Institute of Technology [15], iCub by Italian Institute of Technology (IIT),

the University of Genoa [16], CHARLI by Virginia Polytechnic Institute and State

University [17], and TORO by the German Aerospace Center (DLR) [18, 19].
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FIGURE 1.7: WABIAN-2R humanoid robot.

Companies ASIMO of HONDA [9] is undeniable that the launch of ASIMO cause

excitement and increase in the study of biped robot’s popularity. ASIMO has been

developed from Honda P-series bipedal robot (P1, P2, and P3) until it has small and

lightweight. ASIMO has many abilities such as to run, walk smoothly, climb stairs,

and communicate human-like. The controller that controls ASIMO’s movement is

housed in the robot’s waist area and can be controlled by a PC or wireless controller.

The fact that human has toes for helping our body balance was also taken into con-

sideration. The ASIMO’s posture actually has soft projections on its feet that play a

similar role to the one of human toes play when human walk. This soft material also

absorbs impact on the joints, just as our soft tissues do when human walk. ASIMO

has 34 degrees of freedom totally including six on each leg spread over different

points of its body in order to allow it to move freely. The number of degrees of free-

dom was necessary variable for ASIMO’s legs and they were designed by measuring

human joint movement while walking on flat ground, climbing stairs and running.
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ASIMO’s engineers had to find a way to work with the inertial forces created while

walking. This is called the "zero moment point" (ZMP). ZMP is defined as the point

on the ground at which the net moment of the inertial forces and the gravity forces

has no component along the horizontal axes. To control ASIMO’s posture, engineers

worked on three areas of control: First, floor reaction control means regulation the

soles of the feet absorb floor unevenness while still maintaining a firm stance. Sec-

ond, target ZMP control means the control state that ASIMO can’t stand firmly and

its body begins to fall forward, the controller maintains position by moving its upper

body in the opposite direction to the impending fall. At the same time, it increases

walking speeds quickly to counterbalance the fall. Third, Foot-planting location con-

trol is used when the target ZMP control has been activated. The controller adjusts

the length of the step to regain the right relationship between the position and speed

of the body. The success of the control system is that the ASIMO’s posture is widely

studied and applied to the walking robot field.

FIGURE 1.8: ASIMO humanoid robot.
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The QRIO was a bipedal humanoid entertainment robot developed and man-

ufactured by Sony Intelligence Dynamics Laboratory, Inc [20]. QRIO is capable of

voice and face recognition, making it able to remember people as well as their likes

and dislikes. A video on QRIO’s website shows it speaking with several children.

QRIO stood approximately 0.6 m tall and weighed 7.3 kg. It can run at 23 cm/s.

FIGURE 1.9: QRIO humanoid robot.

Kawada Industries Inc. launched on the development of humanoid robots in-

volved in H6 and H7 [21, 22] projects of the University of Tokyo. H6 has 1370 mm

height, and its mass is 55 kg including 4 kg of batteries. H6 is designed as a research

platform of the humanoid robot that can interact to the complex environment by

coupling sensor and behavior. H7 is designed to be a human-sized robot capable

of operating autonomously in indoor environments for humans. H7 has 1470 mm

height, and the mass is 58 kg. It has 35 DOF totally. Researchers have developed

an efficient walking trajectory generation method that follows a given input ZMP

trajectory for H7. The key to our method is the modification of the torso horizontal

trajectory from a given initial trajectory, by using dynamic trajectory generation and
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motion planning control software. Therefore, H7 can walk up and down 25 cm high

steps.

FIGURE 1.10: H6 (left) and H7 (right) humanoid robots.

(A) (B) (C)

FIGURE 1.11: Humanoid robot: (a) HRP-2; (b) HRP-3; and, (c) HRP-4.

In addition, Kawada Industries has attended the Humanoid Robotics Project

(HRP) of the Ministry of Economy, Trade and Industries of the Japanese Government

(METI). They had developed HRP-2 [23], HRP-3 [24], HRP-4 [25] and HRP-4C [26].

The objective of this project is to develop a safe, reliable, and human-friendly robot
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FIGURE 1.12: HRP-4C humanoid robots.

system. The developed robot has an ability to carry out complicated tasks and sup-

porting humans within human living and working environments. HRP-2 is the final

robotic platform for the HRP together with the Humanoid Research Group of Na-

tional Institute of Advanced Industrial Science and Technology (AIST), and Yaskawa

Electric Corporation. HRP-2 has an ability to walk on narrow paths, to cope with un-

even surface, to walk at two third level of human speed, to lie down, and to get up

by a humanoid robot own self. It has a body similar to human’s body by eliminating

a backpack for electronics installation. HRP-3, which is developed subsequently, is

a model with strong focus on operating under severe outdoor environments. HRP-3

is capable not only of operating in rain, but also of walking on a slippery floor sur-

face. To control of legged locomotion, HRP-3 researchers used ZMP concept, which

can be utilized for calculating the stability criterion even if contact points between

a humanoid robot and environment doesn’t exist in the same plane. HRP-4 is pre-

sented in 2011 with expectation that it will accelerate the R&D of next-generation

robot systems necessary for the robot industry of the future, which is expected to be

human-cooperative and capable of operating under various environments. HRP-4C
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announced in 2009, it is a female humanoid robot with an appearance exactly like a

human. She has been named "Miim". This robot has 158 cm height and 46 kg weight.

HRP-4C is being developed for the entertainment industry. For characteristics of the

legs, HRP-4C’s knees are stretched by up/down motion of the waist, she mimics the

swing motion of human legs, and the single-toe supporting realizes longer strides.

The foot of HRP-4C used active toe joint for realizing human-like walking motion.

In addition, the hand was redesigned to realize a human-size with realistic skin, also

the eye with camera provides visible and useful image for operation and color recog-

nition without deviation from human appearance. HRP-4C became a global focus

of interest immediately after its announcement.

In 2009, Boston Dynamics unveiled the Protection Ensemble Test Mannequin

(PETMAN) which is a humanoid robot being developed for the US Army to test

the special clothing used by soldiers for protection against chemical warfare agents.

This bipedal robot weighs about 80kg and is 140(cm) tall at the shoulder. PETMAN,

starting from a stand, was able to walk at varying speeds as high as 7.2(km/h).

Twenty nine joints, with integrated sensors for measuring position and force, are

actuated with either low-fiction hydraulic cylinders, or compact hydraulic rotary

actuators [27]. In addition, Boston Dynamics has developed Atlas robot which is

based on PETMAN, and has four hydraulically-actuated limbs. It is intended to aid

emergency services in search and rescue operations, performing tasks such as shut-

ting off valves, opening doors and operating powered equipment in environments

where humans could not survive. Constructed of aluminum and titanium, it stands

approximately 1.8 (m) tall, weighs 150(kg). Atlas includes 28 hydraulically actuated

degrees of freedom, two hands, arms, legs, feet, and a torso. On February 23, 2016,

Boston Dynamics introduced a new version of Atlas which is designed to operate

both outdoors and inside buildings. It is specialized for mobile manipulation and is

very adept at walking over a wide range of terrain, including snow. This version of

Atlas is about 175(cm)tall and weighs 82(kg) [28, 29, 30].
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(A) (B)

FIGURE 1.13: Humanoid robot: (a) Petman; and, (b) Atlas.

Currently, there are many small humanoid robots for research and hobby use.

For example, we can choose NAO by Aldebaran Robotics [31], DARwIn- OP by

ROBOTIS [32], PALRO by FujitSoft [33], or KHR series by Kondo Kagaku Co. Ltd.

[34].

Above mentioned researches mainly focused on the locomotion of the robot on

flat road, climbing up stairs or walking on slope surface in the indoor environment,

except Boston Dynamics. The robots of Boston Dynamics have outstanding perfor-

mance when moving on rough road in the outdoor environment. However,these

robots are both electrically powered and hydraulically actuated. They consumes a

lot of energy, meanwhile, for a small robot, it is a big challenge. Thus, my research

is focusing on the locomotion of the small robot on rough road considering stability

and saving energy.
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1.5 Challenges and objective

Achieving movements in human environments is one of the most important goals in

humanoid robot research. However, walking on uneven terrains is highly challeng-

ing because the robot’s feet may have different orientations at every step. In such

cases, maintaining the robot’s stability is much more difficult than on a flat hori-

zontal terrain. Therefore, related works are relatively less fruitful while abundant

researches have been made for walking on even terrains. This research proposed a

novel gait generation approach for biped robot on rough road which considers gait

generation as an optimization problem with constraints, where constraint function

is to ensure the stability of the robot during locomotion.

In addition, in my research, to enhance stability of the robot while walking, I

applied toe and arm swing mechanism to protect the robot from the affect of external

factors. To be specific, when studying on human foot structure, J. Hughes realize

that the toes are in contact for about three-quarters of the walking cycle and exert

pressures similar to those from the metatarsal heads. The implication means that

the toes play an important part in increasing the weight-bearing area during walking

when the heel is raised [35].

Through consideration of current research and development results, I consider

some foot structures with toe when investigating locomotion of the robot on flat and

rough ground. In toe mechanism, the passive joint using torsion spring is selected as

a toe joint. This mechanism is expected to enable the robot to overcome the challenge

on uneven terrain by stabilizing walking behavior as depicted in Figure 1.14.

Figure 1.14 describes a working mechanism of robot’s toe in motion. During

walking, reaction force Fr is exerted by the ground on a foot in contact with it, this

force produces an external moment acting on a robot and it makes robot unstable.

By adding a toe mechanism using torsion spring, an internal moment Mlx is exerted

to oppose the external one. Thus, stability of walking behavior is enhanced.
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FIGURE 1.14: Reaction moment of toe mechanism.

Besides, on the course of human walking, the leg swing results in an angular

momentum that is balanced by the ground reaction moments on the stance foot.

Swinging arms create an angular momentum which arises due to the inertial effects

of arm swing motion about the vertical axis of the torso in the opposing direction

of lower limb rotation, reducing the total angular momentum of the body as shown

in Figure 1.15. As can be seen that for moving from pose A to pose B, clockwise

moment Ml is required. Simultaneously, the external counter-clockwise moment is

also exerted by the ground to counter the motion of leg swing. Meanwhile, because

the arms rotate in opposing directions about the lateral axis (axis passing through the

shoulders). Thus, the reaction moment from the arms to the trunk precludes ground

reaction torque [36]. With mentioned advantage, F. Naoki’s research has proposed

and modeled physical arm swing model using Adams [37], my research focuses on

optimizing this model for walking on rough road.

Finally, I confirmed the success of this approach through the dynamic simula-

tion of the robot walking process by Adams software. In summary, my strategy for

achieving the objective of this research is described in Figure 1.16.
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FIGURE 1.15: Arm swing moment opposes to ground reaction mo-
ment.

1.6 Simulation Model and Design Tool

1.6.1 Overview of Robot Model

In this research, I used a small biped robot for creating a model for simulation study

of walking robot. Currently, a study in the field of robot is widespread and very

popular. Therefore, the product of tool kit set was produced in many types such

as humanoid robot, biped robot, robot arm, quadruped robot, and hexapod robot.

These robots have been produced to meet human requirements both education and

entertainment. The small biped robot used in the simulation responds more rapidly

and it is popular. As a result, there is a great demand for these devices in the market,

but their cost will be reduced every year. Meanwhile, their capabilities and perfor-

mance are increased. Consequently, I used the small biped robot for making simple

simulation models. The model KHR-3HV of Kondo Kagaku Company were used in

this study.

The KHR-3HV is the third generation of humanoid robots developed by KONDO

KAGAKU Co. Ltd. This is possibly made by up to 22 degrees of freedom with

17 actual servos and 5 dummy servos. The new micro controller board RCB-4 can
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FIGURE 1.16: Strategy for reaching the research’s objective.

control up to 35 serial servos. It is compatible with ICS3.0 (serial) servo protocol

and a wide range of options parts. The board also includes several extension ports

(10xA/D and 10xPIO) which can be applied to a wide range of sensors and extension

options [34].

Size 401.05(H) x 194.4(W) mm

Weight 1500 g

Number of servo 17 Digital servo motors

Digital servo motor KRS-2555HV Servo Specks

Maximum Operating Angle 270o

Maximum Holding Torque 14kgf.cm

Speed 0.14s/60o (11.1V, under no load)

Size 41x21x30.55 mm

Weight 41.5g

Operating Voltage 9V 12V

In this paper, the robot KHR-3HV of Kondo Kagaku Company was used to build
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a experiment model. Figure 1.17 shows the picture of the real robot and the simula-

tion model whose height is 401mm and weight is 1.5kg, has 10 Degrees of Freedom

(DoF) for the legs.

FIGURE 1.17: Real robot and simulation model.

Parameters of model is described as in Figure 1.18 and Table 1.1

FIGURE 1.18: Robot
linkage model.

FIGURE 1.19: Defini-
tion of joint angles.

The position of joints is defined as described in Figure 1.19. The hip, knee and

ankle joints are active joints which are supplied by actuators. Toe joints seldom
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TABLE 1.1: Weight of robot’s part.

No. Part Mass[Gram]

1 Torso 799.4
2 Arm 100
3 Hip 14
4 Thigh 100
5 Shin 65
6 Ankle 37.2
7 Foot 34.1

supplied by using torsion springs, is passive joint. The limited range of joint angles

is determined as in Table 1.2.

TABLE 1.2: Definition of joint angles.

Angle View plane Leg Joint Direction Value

ϕ1 Frontal Both Hip and ankle Side to Side −15o to 15o

ϕ2 Sagittal Right Hip Extension and Flexion −50o to 50o

ϕ3 Sagittal Right Knee Extension and Flexion 0o to 60o

ϕ4 Sagittal Right Ankle Extension and Flexion −50o to 50o

ϕ5 Sagittal Left Hip Extension and Flexion −50o to 50o

ϕ6 Sagittal Left Knee Extension and Flexion 0o to 60o

ϕ7 Sagittal Left Ankle Extension and Flexion −50o to 50o

ϕ8(1−5) Sagittal Right Proximal phalanx Extension and Flexion 0o to 30o

ϕ9(1−5) Sagittal Right Distal phalanx Extension and Flexion 0o to 30o

ϕ8(6−10) Sagittal Left Proximal phalanx Extension and Flexion 0o to 30o

ϕ9(6−10) Sagittal Left Distal phalanx Extension and Flexion 0o to 30o

1.6.2 Adams-MSC software

ADAMS (Automated Dynamic Analysis of Mechanical Systems) is a multi-body

dynamics simulation software equipped with Fortran and C++ numerical solvers.

ADAMS was originally developed by Mechanical Dynamics Incorporation which

then was acquired by MSC Software Corporation. Adams has been proved as very

essential to VPD (Virtual Prototype Development) through reducing product time to

market and product development costs.
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FIGURE 1.20: Adams - MSC software.

Adams helps engineers to study the dynamics of moving parts, and how loads

and forces are distributed throughout mechanical systems. Adams improves engi-

neering efficiency and reduces product development costs by enabling early system-

level design validation. Engineers can evaluate and manage the complex interac-

tions between disciplines including motion, structures, actuation, and controls to

better optimize product designs for performance, safety, and comfort. Along with

extensive analysis capabilities, Adams is optimized for large-scale problems, taking

advantage of high performance computing environments.

Utilizing multi-body dynamics solution technology, Adams runs nonlinear dy-

namics in a fraction of the time required by FEA solutions. Loads and forces com-

puted by Adams simulations improve the accuracy of FEA by providing better as-

sessment of how they vary throughout a full range of motion and operating envi-

ronments.

1.7 Structure of This Dissertation

In order to achieve the aim, a study is implemented by the following steps.



Chapter 1. Introduction and Objectives 27

• First section: This part presents basic knowledge of robotic field and objective

of my research.

• Second section: This part describes the approach to generate a gait pattern for

the biped robot on flat and rough ground.

• Third section: This research investigates the effect of two structure parameters

of robot’s foot on walking behavior: big toe’s width and ankle joint position.

Next, the performance of the robot with different toe mechanisms is observed

on flat and rough ground.

• Fourth section: In this step, I apply a foot structure based on a topology op-

timization. It enhances the walking capability of the robot on rough road and

foot’s weight is optimized by removing unnecessary areas. Next is to improve

the robot stability by applying an arm swinging mechanism and backbone

structure. Finally, I research on an effect of joint characteristic factors on walk-

ing performance by Taguchi method.

• Final section: This part includes general conclusion of my research and future

work.
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Chapter 2

A Gait Generation Method for

Biped Robot

Gait generation is very important as it directly effects on the quality of locomotion

of biped robots. In point of mathematical view, a gait generation is considered as

an optimization problem with constraints, it is readily engaged itself to Evolution-

ary Computation methods and solutions. This chapter proposes a novel approach

based on Response Surface Model and Improve Self-Adaptive Differential Evolution

Algorithm (ISADE) for a gait generation problem. This is to aim to enable the robot

to walk more naturally and more stably in locomotion.

2.1 Introduction

The first aim of researches carried out in the field of humanoid robot attempts to

solve the following problem: How can we build a humanoid prototype able to walk

as the humans are doing. This goal is motivated by several applications of the hu-

manoid robot development such assistance, entertainment, medical issues and ex-

ploration missions. Hence, they have to move in indoor or outdoor environment

and should have the same ability as humans to carry out stable and natural walking.
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To reach this target, several works have been done for the generation of the walk

of biped robot using the reinforcement learning [1, 2]. Furthermore, a big majority

of the walk pattern researches was done based on the zero moment point (ZMP) cri-

terion. Likewise, Kondo et al. [3] described an algorithm for emulations of disabled

person’s gait based on the ZMP criterion. Also, a constrained analytical trajectory

filter [4] was a part of an analytical motion filter using the zero moment point as the

stability criteria.

Some works of the walking gaits were based on developing the passive dynamics

walking and using other methods such as central pattern generator (CPG) [5]. Also,

Narukawa et. al [6] focused on the use of passive dynamics to achieve efficiently

walking with simple mechanisms by using a numerical approach.

On the other hand, several researchers consider gait generation as a multicon-

strained, multiobjective optimization problem. Gait generation, which combines to

control the robot’s gait. For instance, human motion captured data has been col-

lected to drive a humanoid robot. However, a number of papers indicate that biolog-

ical locomotion data can not be used directly for a biped robot caused by kinematic

and dynamic discrepancies between humans and the biped robot. This indicates the

need for kinematic adjustments in calculating joint angle trajectory [7].

The second strategy considers the gait generation problem of the biped robot as

an optimization problem with constraints. The optimal gait cycle is generated by

minimizing some performance indexes, for instance, the velocity of motion [8, 9],

stability criteria, energy consumption [10, 11, 12, 13], and so on. The gait gener-

ation problem of the biped robot often has several objectives and some of which

may be inconsistent to each other (for example speed and stability). Hence, it can

be said that the gait generation is a multi-constrained and multi-objective optimiza-

tion problem [14]. These two gait generation strategies may reach the same goal by

different methods since both of them actually solve the gait synthesis problem as a

multi-constrained multi-objective optimization problem.
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Such the goal requires a biped robot that is considerably similar to humans in

term of its mechanism and motion pattern, although, the robot with walking ability

is astonishing so far. However, it can not be said with certainty that biped robots de-

veloped in recent studies realize a “human-like” walk, especially walking on rough

road. Therefore, the studies on robot walking is still continuing. This research ad-

dresses to an approach to generate a gait pattern for the biped robot. It is an approx-

imated optimization method using RSM and ISADE [15]. In detail, this approach is

based on combining two above-mentioned strategies. From human motion captured

data, gait functions are interpolated. After that, the optimization problem is formu-

lated to optimize the coefficients of gait function. RSM is applied to define objective

and constraint functions.

2.2 System Description

2.2.1 Foot mechanism

During locomotion, the human feet support area continuously varies on the sole of

each foot as depicted in Fig. 2.1. The black area is the position where force areas

are supported. Wherewith, loading response (LR) is heel only in loading response,

mid stance (MSt) is foot flat in mid stance, terminal stance (TSt) is forefoot and toes

is terminal stance, and pre-swing (PSw) is medial forefoot in pre-swing. Perry and

Burnfield found that the toe contact with ground is quite variable. The onset of

toe involvement followed isolated forefoot support by 10% of the stance period. In

this period, toe pressures differ markedly with the greatest pressure of the big toe.

It ranged between 30% and 55% of that at the heel [16]. Thus, the big toe has an

important role in the human walking, especially during the toe-off period.

By this idea, Nerakae and Hasegawa have proposed the foot structure for en-

hancing the walking behavior of the biped robot [17] as depicted in Fig. 2.2. Their
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FIGURE 2.1: Sequence of foot support areas during stance [16].

study exhibited that the big toe is a significant part to support and transfer weight

from one foot to another foot.

FIGURE 2.2: Robot foot structure.

In toe mechanism, the passive joint using torsion spring was selected as a toe

joint. Stiffness coefficient of torsion spring is 1.22(N.mm/deg). Coefficient of friction

between foot and the ground is set of 0.5 for heel and 0.17 for toe contact.
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2.2.2 Gait generation method

Gait function

Based on the human walking pattern as depicted in Figure 2.3, suppose that the

robot control data was generated by the gait function as trigonometric function

shown in Eq. 2.1.

FIGURE 2.3: Waveform of human joint angles in sagittal plane [18,
19].

ϕi(t) = ai + bicos(ωt) + cisin(ωt) + dicos(2ωt). (2.1)
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Where ϕi is angle of ith joint; ai, bi, ci, di are coefficients of ith gait function; t is

the time, and ω is the angular velocity. By changing a, b, c, d coefficients, the gait

function will be created to allocate to each joint of the robot.

In this study, the biped robot is considered the locomotion on flat ground with

the total time of 4.8s. The robot is simulated in 3 cycles which spend on 3.6s, and

1.2s left is used for checking robot stability. One cycle is set up to 1.2s. As a result,

the angular velocity is determined by below simple calculation. In the simulation,

one step takes 0.02s, the total number of step is 240. In the second cycle, the biped

robot performs its motion the most natural, hence this cycle will be selected to show

the waveform of gait function. For walking on rough ground, the locomotion of the

robot is considered in 7.2s including 5 cycles (6s) and 1.2s for checking stability.

ω = 2π
1.2 = 5.236

Gait pattern on flat ground The gait functions which are assigned to all joints are

described by Eq. 2.2 - Eq. 2.8.

ϕ1 =


0; t = 0 or t ≥ 3.6

±1.5; t = 0.3 & t = 3.3

ϕ1(t); 0.3 < t < 3.3

(2.2)

ϕ2 =


0; t ≤ 0.3 or t ≥ 3.6

ϕ2(t+ 0.6); 0.3 < t < 3.3

15; t = 3.3

(2.3)

ϕ3 =


0; t ≤ 0.3 or t ≥ 3.6

ϕ3(t+ 0.6); 0.3 < t < 3.3

30; t = 3.3

(2.4)

ϕ4 =


0; t ≤ 0.3 or t ≥ 3.6

ϕ4(t+ 0.6); 0.3 < t < 3.3

15; t = 3.3

(2.5)
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ϕ5 =


0; t = 0 or t ≥ 3.3

15; t = 0.3

ϕ2(t); 0.3 < t < 3.3

(2.6)

ϕ6 =


0; t = 0 or t ≥ 3.3

30; t = 0.3

ϕ3(t); 0.3 < t < 3.3

(2.7)

ϕ7 =


0; t = 0 or t ≥ 3.3

15; t = 0.3

ϕ4(t); 0.3 < t < 3.3

(2.8)

Gait pattern on rough ground The gait functions which are assigned to all joints

are described by Eq. 2.9 - Eq. 2.15.

ϕ1 =


0; t = 0 or t ≥ 6.0

±1.5; t = 0.3 & t = 5.7

ϕ1(t); 0.3 < t < 5.7

(2.9)

ϕ2 =


0; t ≤ 0.3 or t ≥ 6.0

ϕ2(t+ 0.6); 0.3 < t < 5.7

15; t = 5.7

(2.10)

ϕ3 =


0; t ≤ 0.3 or t ≥ 6.0

ϕ3(t+ 0.6); 0.3 < t < 5.7

30; t = 5.7

(2.11)

ϕ4 =


0; t ≤ 0.3 or t ≥ 6.0

ϕ4(t+ 0.6); 0.3 < t < 5.7

15; t = 5.7

(2.12)

ϕ5 =


0; t = 0 or t ≥ 5.7

15; t = 0.3

ϕ2(t); 0.3 < t < 5.7

(2.13)

ϕ6 =


0; t = 0 or t ≥ 5.7

30; t = 0.3

ϕ3(t); 0.3 < t < 5.7

(2.14)
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ϕ7 =


0; t = 0 or t ≥ 5.7

15; t = 0.3

ϕ4(t); 0.3 < t < 5.7

(2.15)

In the toe mechanism, since the energy consumption reduction of the robot is

considered, the passive joint is selected as a toe joint. Consequently, ϕ8r and ϕ8l are

restricted in (0o-30o) range. Their values depend on the robot’s geometric posture

and the impact forces in its walking process.

Problem formulation

The concept of the optimization process is shown as in Figure 2.4. Zf and Xf denote

the distance from the initial position to final position along z-axis and x-axis in the

robot locomotion, respectively. Rf is the angle of rotation.

FIGURE 2.4: Overview of optimization.

Definition of optimal design is described as Eq. 2.16 - Eq. 2.23.

The design variables (DVs) are

x = [ai, bi, ci, di], i = 1÷ 4. (2.16)

Where ai, bi, ci, di (i=1, 2, 3, 4) are the coefficients of the gait function. Range of

design variables is predefined as in Table 2.1.
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TABLE 2.1: Range for design variables.

Design variables Lower boundary Upper boundary

a1 0 0.006
b1 0 0.1
c1 0 0.002
d1 -0.01 0
a2 0 0.08
b2 0 0.4
c2 0 0.001
d2 0 0.02
a3 0 0.8
b3 0 0.08
c3 -0.4 0
d3 -0.2 0
a4 -0.4 0
b4 0 0.3
c4 0 0.2
d4 0 0.1

The constraint functions are

g1(x) = 20− |Xf | ≥ 0. (2.17)

g2(x) = 5− |Rf | ≥ 0. (2.18)

h1(x) = 243.53− Yf = 0. (2.19)

h2(x) = N − 240 = 0. (2.20)

To find out design variables, it should have 4 constraint functions. In which, the

restrictions ofXf distance andRf angle as shown in Eq. 2.17, Eq. 2.18 guarantee that

the biped robot can walk straight and stably. In Eq. 2.19, Yf is the distance from the

center of mass (CoM) to the ground along y axis, Yf must be equal to 243.53mm to

ensure the robot not to slip and fall at the final framework. However, in simulation,

Yf at beginning position always differs from it at final position (It is changed a little

bit by about 10−2 to 10−1 due to calculation error). Thus, I set 243mm < Yf <244mm

in optimization. In Eq. 2.20, N is the number of simulation step. N is equal to 240

for flat ground (360 for rough ground) to check the success of the simulation. I
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realize that if Eq. 2.19 is satisfied, Eq. 2.20 is also achieved, so, I don’t use Eq. 2.20

in optimization but setting it in simulation. Equation 2.17 - 2.20 will be also checked

again when the simulation finishes.

The objectice function is

f(x) = −Zf → min. (2.21)

The penalty function is

p(x) = Σ2
i=1min[gi(x), 0]2 + [h1(x)]2. (2.22)

The modified objective function is

F (x) = −Zf + γ.p(x)→ min. (2.23)

Where γ is a penalty coefficient set to 1000.

Improved self-adaptive differential evolution

Differential evolution (DE) is an optimization technique originally proposed by Storn

and Price [20]. It is categorized into evolution algorithm group, which is charac-

terized by operators of mutation and crossover. In DE, two important coefficients,

which play key roles to decide the correction and speed of convergence, are scaling

factor F and crossover rate Cr. Another important parameter in DE, population

size NP remains a user-assigned value to cope with problem complexity. ISADE not

only adaptively changes those three coefficients but also integrate different mutation

schemes to take advantages of them.

Adaptive learning strategies selection In [15], Tam Bui et al. randomly chose three

mutation schemes, which are DE/best/1/bin, DE/best/2/bin, and DE/rand best/1/bin.
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Among DE’s schemes, DE/best/1/bin and DE/best/2/bin are known for good conver-

gence property and DE/rand best/1/bin is known for good diversity. The probability

of applying those strategies are equally assigned at with values p1 = p2 = p3 = 1/3.

Equation 2.24 - Equation 2.26 show the formula of chosen schemes.

DE/best/1: V G
i,j = XG

best,j + F ∗ (XG
r1,j −X

G
r2,j) (2.24)

DE/best/2: V G
i,j = XG

best,j + F ∗ (XG
r1,j −X

G
r2,j) + F ∗ (XG

r3,j −X
G
r4,j) (2.25)

DE/rand to best/1: V G
i,j = XG

r1,j + F ∗ (Xbest,j −XG
r1,j) + F ∗ (XG

r2,j −X
G
r3,j) (2.26)

where r1, r2, r3, r4, and r5 are randomly selected integers in the range [1, NP], where

NP is the population size.

In APGA/VNC approach proposed by Tooyama and Hasegawa [21] scaling fac-

tor changes according to iteration as sigmoid function as in Eq. 2.27.

Fi =
1

1 + exp

(
α ∗ i−

NP
2

NP

) (2.27)

where α, i denote the gain of the sigmoid function, particle of ith inNP , respectively.

ISADE adds a new factor to calculate F as shown in Eq. 2.28.

F iiter =
Fi + Fmeaniter

2
(2.28)

where iter = 1, . . . , itermax, i = 1, . . . , NP and Fmeaniter is calculated as Eq. 2.29.



Chapter 2. A Gait Generation Method for Biped Robot 44

Fmeaniter = Fmin + (Fmax − Fmin)

(
itermax − iter

itermax

)niter

(2.29)

where Fmax, Fmin denote the lower and upper boundary condition of F with rec-

ommended values of 1.55 and 0.15, respectively. iter, itermax and niter denote the

current, maximum generation, and nonlinear modulation index as Eq. 2.30.

niter = nmin + (nmax − nmin)

(
iter

itermax

)
(2.30)

where nmax and nmin are typically chosen in the range (0, 15]. Recommended values

for nmin and nmax are 0.2 and 6.0, respectively.

Adaptive learning strategies selection ISADE algorithm is able to detect whether

high values of Cr are useful and if a rotationally invariant crossover is required. A

minimum base for Cr around its median value is incorporated to avoid stagnation

around a single value. The control parameter Cr is assigned as Eq. 2.31.

Ci+1
r =

 rand2 if rand1 ≤ τ

Cir otherwise.
(2.31)

where: rand1 and rand2 are uniform random values ∈ [0, 1], τ represents probabili-

ties to adjust Cr, which is updated using Eq. 2.32.

Ci+1
r =

 Crmin if Crmin ≤ Ci+1
r ≤ Crmedium

Crmax if Crmedium
≤ Ci+1

r ≤ Crmax .
(2.32)

where: Crmin ,Crmedium
andCrmax denote the low value, median value and high value

of crossover parameter, respectively. As recommended in [15], this research takes

τ = 0.10, Crmin = 0.05, Crmedium
= 0.50 and Crmax = 0.95.
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Response Surface Model

Generating a gait pattern for the biped robot using RSM and evolutionary algo-

rithms (EAs) was applied by Ito and Hasegawa [18] at the first time, Nerakae and

Hasegawa [22] after. The gait generation method presented by the later work per-

forms the more powerful approach in comparison with Simulated Annealing (SA)

algorithm in the former. However, above-mentioned works were unsuccessful when

considering locomotion of the robot on rough road. Our paper introduces one more

approach which applies Improved Self-Adaptive Differential Evolution (ISADE) al-

gorithm [15] and Response Surface Model (RSM) to generate a gait pattern for Kondo

KHR-3HV robot while walking on flat and rough road. ISADE has been confirmed

to improve the calculation cost, and the stability of convergence towards the op-

timal solution has a good performance while solving the multi peak optimization

problems with multi dimensions. RSM of 3rd order is used to approximate the re-

sponse of the simulation. The 3rd order model is described by a polynomial function

as Eq. 2.33:

P̃ (x) = apo + Σn
i=1bpixi + Σn

i=1cpiix
2
ii + Σij(i<j)cpijxixj + Σn

i=1dpiix
3
ii. (2.33)

Where n is a number of variable, xpi is a set of inputs, and ap, bp, cp, dp are the

polynomial coefficients. The number of sampling for initialization equaled to the

number of the polynomial coefficients is calculated by Eq. 2.34.

Ns =
(n+ 1)(n+ 2)

2
+ n. (2.34)

Where n should be 16. Thus, the number of samples must be 169 for the calculation

of all polynomial coefficients. The approximated optimization process is depicted as

Fig. 2.5.
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FIGURE 2.5: Overview of optimization process.

Combination of ISADE and RSM

• Initial design is initialized by specifying the simple analysis.

• Samples are simulated in Adams environment.

• Making the RSM

• The design variables are optimized by ISADE algorithm based on RSM.

• The design variables from step 4 are used to check constraint functions again

through the simulation.

• The convergence is checked. If this is achieved, the optimal process will be

terminated. Oppositely, the repetition will begin from step 3.

2.2.3 Environment

Surfaces shown in Fig. 2.5 is used to perform locomotion of the robot. The first type

is perfectly flat ground. The second one is 4mm-high wave rough road consisting

of a positive and a negative wave such as normal surface in indoor and outdoor

environment in reality.
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(A) (B)

FIGURE 2.6: Environment: (a) Flat ground; and (b) 4mm-high wave
ground.

2.2.4 Simulation result

The optimal value for the design variable is presented in Table 2.2. By returning

these coefficients to the gait function described in Eq. 2.1. Four gait functions will be

generated to assign to all of joint of the robot, which follows the principle as shown

by Eq. 2.2 - Eq. 2.8.

TABLE 2.2: Value for design variables.

i
Design variables for flat

ground
ai bi ci di

1 0.003 0.021 0.001 -0.006
2 0.034 0.231 0.001 0.013
3 0.395 0.037 -0.233 -0.162
4 -0.218 0.165 0.149 0.075

i
Design variables for rough

ground
1 0.003 0.054 0.001 -0.008
2 0.032 0.180 0.001 0.011
3 0.427 0.039 -0.147 -0.144
4 -0.232 0.111 0.102 0.073

The waveform of control data for both of situations are depicted in Fig. 2.7. Re-

sult of simulation is shown in Fig. 2.8. As can be seen that the robot can walk nor-

mally on flat ground and overcome 4mm-high obstacle on rough terrain.
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(A) (B)

(C) (D)

FIGURE 2.7: Waveform of the gait function: (a) Hip and ankle roll
joint angle; (b) Hip pitch joint angle; (c) Knee pitch joint angle; and,

(d) Ankle pitch joint angle.

 

Situation 
Walking distance 

(mm) 

Lateral distance 

(mm) 

Angle of rotation 

(o) 

Flat ground 203.83 7.43 -5.10 

Rough ground 297.55 15.77 -2.95 

 

 

 

 

 

 

FIGURE 2.8: Simulation result.
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A consideration of the gait similarity between the robot and the human in loco-

motion on flat ground is depicted as in Figure 2.9. The robot gait at time 1.2s likes

an “Initial contact period” of the human gait, at time 1.5s likes “Midstance period”,

at time 1.8s likes “Terminal stance period”, at time 2.1s likes “Initial swing period”

where it can be observed the bending of toes and at time 2.4s likes “Terminal swing

period”. The differences of posture are expected to occur as a consequence of the

physical structure dissimilarity with the human’s structure. The waveform of gait

function allocated to all joints of the robot is shown in Figure 2.7. As can be seen, the

wave forms of hip and knee joint gait function are similar to that of human beings.

FIGURE 2.9: Gait behavior of the biped robot in a cycle.

2.3 Conclusion

A gait pattern generation is a very challenging task in the biped robot area. Re-

cently, the approach of using EAs, especially new methods, proved their potential of

tackling gait generation problem based on their effectiveness on searching for opti-

mal result. In this section, to generate walking gait of a small biped robot, a novel

gait pattern generation method is proposed based on ISADE and RSM. Through the

dynamic simulation of the robot in Adam environment, the result showed that this
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approach successfully produces gait pattern for KHR-3HV biped robot during loco-

motion on flat and 4mm-high wave ground.
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Chapter 3

Effect of Structure Parameter on

Biped Walking Behavior

This chapter addresses the effect of two structure parameters on the walking be-

havior of a biped robot. The applied foot structure consists of a tiptoe and a big toe

inspired by the human foot which has a crucial role in moving stability. The gait gen-

eration method finding the proper position of ankle joint is applied by varying the

ankle joint position. There are two requirements in the robot motion: go straight and

stay within setting conditions. This chapter is implemented in three stages. Firstly,

the effect of big toe’s size on the biped walking behavior is considered. In the second

stage, the simulations of all the robot models which have the different ankle joint po-

sition are implemented. The results are compared to the human ankle joint trajectory

in gait performance to observe the effect of ankle joint position on the walking be-

havior. Finally, some foot structures with toe mechanisms are investigated on flat

and ground road.

3.1 Introduction

The human body has a complicated physical structure and implements difficult

movements. During the past several decades, many researchers have concentrated
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on the field of the biped robot inspired by the human body [1, 2, 3, 4]. The first aim

of researches carried out in this field attempts to solve the following problem: “How

can the robot walk naturally and stably ?”. This goal is motivated by several appli-

cations of the biped robot development such assistance, entertainment and medical

issues. Hence, they have to move in a domestic environment and should have the

same ability as the humans to carry out stable walking.

In most previous studies, the feet of the biped robot have been designed with the

rigid flat sole structure which can not provide the best contact with the ground while

in locomotion. Sometimes, it is a point contact at the corner of the sole as depicted

in Fig. 3.1, thus, the number of the contact point reduces. Consequently, the support

polygon area and the stability of the robot also decrease.

Furthermore, one of the characteristics of the human walk is heel-contact and

toe-off motion in steady walking. Implementing adaptive walking, a foot is one

of the most important regions of the human body in bipedal locomotion because it

is the only region that has a direct physical interaction with the environment. The

human foot has a complicated structure which consists of toes and several joints. On

the human walking cycle, this structure makes the ground reaction force smoothly

change in toe-off. Thus, it helps the contact between the human foot and the ground

be smooth, has an important role in walking stability.

Overcoming this challenge, being inspired by the human foot, there have been

some papers mentioned on the flexible foot structure for the biped robot. For in-

stance, Yu Ogura et al. have proposed a new foot mechanism by implementing one

passive joint for bending toe motion of Wabian-2R. However, in this study, the num-

ber of the robot’s Degree of Freedom (DoF) is reduced due to the predetermination

is complemented by waist rolling motion [5]. Yamane and Trutoiu has investigated

feet composed of curved surfaces at toe and heel and also a flat section for a sim-

ple planar biped robot [6]. Sellaouti et al. has developed the new model of the

humanoid robot HRP-2 with passive tiptoe joints to enhance its walking speed [7].
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In [8], the humanoid robot LOLA with an actively driven toe joints has been de-

signed by Lohmeier et al. However, the papers mentioned above mainly focus on

the humanoid robot whose parameters are similar to the human ones. The human-

size robots are convenient for designing structure and integrating an actuator on the

feet.

By the contrary, a small robot has difficulty in building a foot structure by limited

parameters. In this area, Nerakae and Hasegawa has presented the foot mechanism

with a big toe and a tiptoe for the 10 DoF small biped robot [9]. In motion, to perform

walking behavior like humans, rigid flat sole structure is inappropriate because it

can touch the ground by point or line contact in toe-off period as depicted in Fig.

3.1. Meanwhile, foot structure proposed by Nerakae and Hasegawa equips the robot

with a better contact: Plane contact. It enables the foot to increase the contact points

and improves the stability as described in Fig. 3.2. Nevertheless, in their research,

the trajectories of all the joints on both legs are generated by seven isolated gait

functions which makes a gait pattern generation problem be complicated. Also, the

ankle joint position based on the reference of the real robot is fixed. In my point of

view, I consider that ankle joint position has the big effect on the walking behavior

as well as the gait pattern of the biped robot. Thus, when building the novel foot

structure, the ankle joint position needs to be changed.

FIGURE 3.1: An example presenting the contact points, the support
polygon and its center of mass (CoM).
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FIGURE 3.2: An foot structure with toes.

3.2 Contributions

This study continues to develop the foot structure for the small biped robot pro-

posed by Nerakae and Hasegawa [9]. The paper implements to investigate the ef-

fect of two parameters: big toe’s size and ankle joint position on the robot walking

behavior. The investigation is to aim to determine the consistent big toe’s size for

the toe mechanism when the robot performs its locomotion on the flat ground. In

the next stage, this paper considers the effect of the ankle joint position on the robot

walking behavior and gait functions. The simulation results of all the biped robot

models are compared with the human walking behavior.

3.3 Foot Structure

To continue studying on a foot structure proposed by Nerakae as described in Fig-

ure 3.3, our work is based on the assumption that this parameter has an effect on

the walking behavior and distance, gait function. It is considered in a predefined

range as described in Table 3.1, and Table 3.2. In the first simulation, the ankle joint

position is based on the real robot with p = 52.5mm and control data are collected

from Figure 2.7 in Part II. In second simulation, gait pattern is generated by applying

ISADE and RSM.
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FIGURE 3.3: Robot foot structure.

TABLE 3.1: Big toe’s size detail.

No. m[mm] n[mm] Ratio= m/(m + n)

F1 20 58 0.26
F2 22 56 0.28
F3 24 54 0.31
F4 26 52 0.33
F5 28 50 0.36
F6 30 48 0.38
F7 32 46 0.41
F8 34 44 0.44
F9 36 42 0.46

F10 38 40 0.49

TABLE 3.2: Ankle joint position.

No. p[mm] q[mm] Ratio= p/(p + q)

N1 80 40 0.67
N2 70 50 0.58
N3 60 60 0.50
N4 50 70 0.42
N5 40 80 0.33
N6 30 90 0.25
N7 20 100 0.17
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3.4 Simulation results

First simulation. The control data of this simulation is shown in Figure 2.7. As has

been pointed out in Table 3.3 and Fig. 3.4 that the robot walking distances are almost

same between all the models, the side distance and the angle of rotation have a

small change in value. It can be said that with the new gait generation approach, the

big toe’s width has no significant effect on the robot walking behavior. This study

selected F2 structure along with the ratio of 0.28 for doing the second simulation.

TABLE 3.3: Simulation result of experiment I.

No. Walking distance (mm) Lateral distance (mm) Angle of rotation (o)

F1 204 7.72 4.89
F2 204 7.43 5.10
F3 203 8.02 4.75
F4 203 4.16 6.14
F5 202 6.53 4.65
F6 202 6.54 3.27
F7 204 9.68 2.27
F8 204 6.68 3.45
F9 201 5.96 3.41
F10 200 6.03 1.57

Second simulation. The result of the second simulation is shown in Fig. 3.5. The

robot ankle joint trajectory of all the experiments is shown in Fig. 3.6a, this data is

collected in the second cycle since the biped robot performs the most natural and

stable locomotion. By comparison, the human ankle joint trajectory is depicted in

Fig. 3.6b, the subject in this experiment was a man. He was 33 years old, 164 cm in

height, and weighed 49.5 kg. The kinematic data for the lower body while walking

was captured by a motion capture system. Data was recorded at a sampling rate of

200 Hz while the subject was walking.

As can be seen, in general, the robot ankle joint trajectory has a frequency and

a trend similar to the human one. From N1 to N7, the height of the ankle joint



Chapter 3. Effect of Structure Parameter on Biped Walking Behavior 60

-45

-35

-25

-15

-5

5

15

25

35

-5 15 35 55 75 95 115 135 155 175 195 215

L
a

te
ra

l 
d

is
ta

n
ce

[m
m

]

Walking distance[mm]

F 1

F2

F3

F4

F5

F6

F7

F8

F9

F10

(A)

240

245

250

0 1 2 3 4 5

V
er

ti
ca

l 
m

o
v

em
en

t 
o

f 
th

e 
C

o
M

[m
m

]

Time[s]

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

(B)

-30

-20

-10

0

10

20

30

0 1 2 3 4 5

A
n

g
le

 o
f 

ro
ta

ti
o

n
[d

eg
re

e]

Time[s]

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

(C)

FIGURE 3.4: Simulation result: (a) CoM trajectory on flat ground; (b)
Vertical movement of the CoM; and (c) Angle of rotation.
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N1 N2 N3 N4 N5 N6 N7

Zd(mm) 196 196 199 197 197 183 169

|Xd|(mm) 4.83 3.84 4.27 6.56 3.08 1.18 1.68

|Rd|(deg) 0.04 3.09 4.18 5.10 0.23 3.32 0.41
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FIGURE 3.5: Result of experiment II.

(A) (B)

FIGURE 3.6: Ankle trajectory in a cycle: (a) Robot; and (b) Human
subject.

trajectory changes to adapt to the new ankle joint position. N7 position is near the

robot’s heel and same as the human situation. However, the performance of this

model is not good.

Table 3.4 describes dimensions of ankle joint trajectory of all simulations in a cy-

cle, as can be seen that N4 and N5 position in the middle have the best performances

which is the most comparable to the human ankle joint trajectory. Thus, these ankle

joint positions are selected. The waveform comparison of the gait function assigned

to all joints are depicted in Fig. 3.7.
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TABLE 3.4: Simulation result of experiment II.

No. l1 (mm) l2 (mm) h (mm) L (mm) a=h/L b=l1/l2

N1 19.2 75.7 7.0 94.9 0.07376 0.25363
N2 15.7 64.3 8.1 80.0 0.10125 0.24417
N3 18.2 64.9 6.8 83.1 0.08183 0.28043
N4 19.2 62.8 8.6 82 0.10488 0.30573
N5 16.6 55.9 8.6 79.5 0.10818 0.29696
N6 15.4 53.1 5.1 68.5 0.07445 0.29002
N7 -14.1 68.9 7.6 54.8 0.13869 -0.20464

Human subject 298.85 10004.64 136.26 1303.49 0.10453 0.29747
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FIGURE 3.7: Waveform of the gait function: (a) Hip and ankle roll
joint angle; (b) Hip pitch joint angle; (c) Knee pitch joint angle; and,

(d) Ankle pitch joint angle.

When I change the ankle joint position from N1 to N7 as described in Table 3.2,

the knee joint angle has gradually declined. The other joint angles change in small

amount. Specially, the hip joint angle only has a small change at 0, 0.5, and 1 in a

cycle. The ankle pitches joint angle changes at all. Fig. 3.5 shows that model N5 with
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the ratio of 0.33 performs the best result.

3.5 Some foot structures with toe mechanism

In this section, I try to use gait pattern described in Figure 2.7 for some foot structure

with toe as shown in Figure 3.8 and I name model F7 for the foot structure simulated

in [10].

(A) (B) (C)

(D) (E) (F)

FIGURE 3.8: Foot mechanism with toe: (a) Model F1; (b) Model F2;
(c) Model F3; (d) Model F4; (e) Model F5; and, (f) Model F6.

3.5.1 Simulation result on flat ground

In all simulation, I simulate the robot motion in three cycles. One cycle was set up

to 1.2s. Thus, three cycles spent on 3.6s. Next, 1.2s was used for checking robot
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stability. In this simulation, one step took 0.02s, so the total number of steps was

240. The simulation result is shown Table 3.5. The trajectory of the CoM is depicted

TABLE 3.5: Simulation result on flat ground.

Model
Distance Rotation

Lateral (mm) Walking (mm) Angle(o)

F2 14.910 193.91 -5.867

F3 -28.187 197.76 -9.557

F4 -0.632 192.77 -2.795

F5 9.350 195.31 1.309

F6 0.384 195.19 2.998

F7 -0.007 177.94 -0.091

as in Figure 3.9.

FIGURE 3.9: CoM’s trajectory on flat ground.

Model F1 cannot walk with provided control data because this data is generated

for foot structure with toe mechanism. Whereas, model F2-F7 can walk normally.

In Table 3.5 and Figure 3.9, we see that all the trajectory of the robot’s CoG point is

approximately the waveform of the circular function which is similar to that of the

human’s CoM. Maximum walking distance is 197.76mm; side distance is -28.187mm

in the case of model F3, is quite large. Thus, consideration of walking straight and
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stability, Model F6 with Xf , Yf , Rf of 0.384mm, 195.19mm and 2.998o has best per-

formance.

3.5.2 Simulation result on rough ground

This section plans to consider the effect of the foot structures with different toe mech-

anism on the robot walking behavior with the corrugated ground. I assume that it

is normal outdoor road consisting of a positive and a negative wave with the height

of 4mm. The length of rough part is 120mm.

In all simulation, the robot motion is simulated in five cycles. One cycle is set up

to 1.2 seconds. Thus, five cycles spend on 6.0s. Next, 1.2s is used for checking robot

stability. In this simulation, one step takes 0.02 second, so the total number of steps

is 360. The simulation result is shown in Table 3.6

TABLE 3.6: Simulation result on rough ground.

Model
Distance Rotation

Lateral(mm) Walking(mm) Angle(o)

F1 -70.85 132.88 -32.22

F2 34.28 301.82 3.98

F3 2.54 298.32 -12.52

F4 -44.55 302.93 -10.66

F5 -124.31 297.81 -35.63

F6 -5.78 311.22 2.79

F7 13.60 293.84 4.29

The trajectory of the CoM point is shown as Figure 3.10.

In Table 3.6 and Figure 3.10, as can be seen that all the trajectory of the robot’s

CoM are approximately the waveform of the circular function. With the model F1

having no toe mechanism, it is encountered to climb up the obstacles due to the

rigid foot structure, thus, walking distance is shortest. By contrast, the robot with

toe mechanism can overcome the obstacles comfortably. When the number of toe
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FIGURE 3.10: CoM’s trajectory on rough ground.

increases, the foot is more flexible to enhance the number of contact point. Therefore,

the robot performs the steady walking. However, in this case, if the toe mechanism

has so many passive joints such as model F7, the number of contact point will be

excessive, foot gets stuck in concave part of terrain. As a result, the walking distance

declines.

The waveform of control data for both of situations are depicted in Fig. 3.11.

3.5.3 Arm Swing Mechanism

As explained in Item 1.5, arm swing motion can preclude ground reaction torque

caused by leg swing, thus, F. Naoki’s research [11] proposed an arm swing mecha-

nism for the biped robot as depicted in Fig. 3.12. Its principle is similar to a four-bar

linkage. The motion of the shoulder joint is provided by the actuator of the con-

tralateral hip pitch joint through two linear springs with damper. My work applies

this structure to improve stability of the best model in Item 3.5.2: F6 during walking

on rough road. I design it with transmission ratio of 1.67. The stiffness and damping

coefficient are set to 0.8 (N/mm) and 0.008 (N.s/mm), respectively. Model F6 is built

in two configurations: no arm swing and with arm swing mechanism to observe its
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(A) (B)

(C) (D)

FIGURE 3.11: Waveform of the gait function: (a) Hip and ankle roll
joint angle; (b) Hip pitch joint angle; (c) Knee pitch joint angle; and,

(d) Ankle pitch joint angle.

behavior as depicted in Figure 3.13.

FIGURE 3.12: Arm swing principle of the robot.

To be more comprehensible, I will deploy Figure 1.15 as shown in Figure 3.14

and calculate moment of inertia force exerted by leg and arm swing at time (t)=1.2s
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No arm swing

With arm swing

FIGURE 3.13: Model F6 in two configurations: no arm swing and with
arm swing mechanism.

as the following:

Moment of inertia force exerted by part swing is

M = F.d. (3.1)

Where, F is inertia force, d is distance between two parts.

F = m.a. (3.2)

Where m is weight of part, a is a horizontal part of acceleration calculated by Eq. 3.3

a = at.cos(ϕmax) + an.sin(ϕmax). (3.3)
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Where at, an are tangential and centripetal acceleration, respectively. ϕmax is maxi-

mum of angle of rotation. Back to Eq. 2.1.

ϕ(t) = a+ b.cos(ωt) + c.sin(ωt) + d.cos(2ωt). (3.4)

Thus, angular velocity and acceleration of leg are

ωp = ϕ̇l(t) = −b.ω.sin(ωt) + c.ω.cos(ωt)− 2.d.ω.sin(2ωt). (3.5)

γ = ϕ̈(t) = −b.ω2.cos(ωt)− c.ω2.sin(ωt)− 4.d.ω2.cos(2ωt). (3.6)

Tangential and centripetal acceleration are

at = l.γ (3.7)

an = ω2
p.l (3.8)

Where l is distance from center of mass of part to joint, respectively. Replace Eq. 3.5-

3.6 to Eq. 3.7- 3.8.

at = l.ϕ̈l(t) = (−b.ω2.cos(ωt)− c.ω2.sin(ωt)− 4.d.ω2.cos(2ωt)).l. (3.9)

an = (−b.ω.sin(ωt) + c.ω.cos(ωt)− 2.d.ω.sin(2ωt))2.l (3.10)

Replace Eq. 3.9- 3.10 to Eq. 3.3- 3.2, horizontal part of acceleration and inertia force

are

a = (−b.ω2.cos(ωt)− c.ω2.sin(ωt)− 4.d.ω2.cos(2ωt))).l.cos(ϕmax)+

(−b.ω.sin(ωt) + c.ω.cos(ωt)− 2.d.ω.sin(2ωt))2.l.sin(ϕmax).

(3.11)
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F = m.l.[(−b.ω2.cos(ωt)− c.ω2.sin(ωt)− 4.d.ω2.cos(2ωt)).cos(ϕmax)+

(−b.ω.sin(ωt) + c.ω.cos(ωt)− 2.d.ω.sin(2ωt))2.sin(ϕmax)].

(3.12)

Finally, moment of inertia force is

M = m.d1.l.ω.[−b.ω.cos(ωt)− c.ω.sin(ωt)− 4.d.ω.cos(2ωt)).cos(ϕmax)+

(−b.sin(ωt) + c.cos(ωt)− 2.d.sin(2ωt))2.sin(ϕmax)].

(3.13)

For the leg,mthigh=0.1(kg),mshin=0.065(kg), dl=56(mm), lthigh=33(mm), lshin=31(mm),

ω=5.236(1/s), t=1.2(s), ϕmax1=12.63o, ϕmax2=21.53o, a2= 0.043, b2= 0.164, c2= 0.001,

d2= 0.014, a3= 0.332, b3= 0.030, c3= -0.166, d3= -0.098. Thus, moment of inertia force

exerted by leg swing Ml= 1112.36 + 995.66 = 2108.02 (N.mm).

For the arm, because of transmission ratio of 1.67, the angular velocity of rota-

tion of the arm is faster than the leg by 1.67 of times, marm=0.1(kg), da=91(mm),

larm=40(mm), ω=5.236(1/s), t=1.2(s), ϕmax=25.05o, a= 0.043, b= 0.164, c= 0.001, d=

0.014. Thus, moment of inertia force exerted by arm swing Mh= 2187.94 (N.mm).

This moment have an inverse direction with the one exerted by leg swing. Thus, it

precludes an effect of moment of inertia force on the robot, Me=Ml - Mh= 2108.02 -

2187.94= -79.92 (N.mm)
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FIGURE 3.14: Moment of inertia force exerted by leg and arm swing.
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The simulation result is shown as Figure 3.15. As can be seen that angle of rota-

tion witnesses a significant decrease from 2.79o to 0.12o with about 95.7%. Besides,

its amplitude of fluctuation goes down from 21.65o to 20.43o with around 6%.

 

Situation 
Walking distance 

(mm) 

Lateral distance 

(mm) 

Angle of rotation 

(o) 

No arm swing 311.22 -5.78 2.79 

With arm swing 311.53 -3.60 0.12 
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FIGURE 3.15: Simulation result: (a) CoM trajectory on 4mm wave
ground; and (b) Angle of rotation.
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3.6 Conclusion

In this chapter, the effects of two robot foot structure parameters are considered.

The first experiment result shows that with the novel gait generation method, the

big toe’s width has no the significant effect on the biped robot walking behavior.

Through the second experiment, all the models with changing the ankle joint po-

sition can walk straight and stay within the constraint conditions. The robot ankle

joint trajectory is compared with that of the human to observe the effect of the ankle

joint position on its walking behavior and discover the best one for the ankle joint.

Finally, the locomotion of the robot with different toe mechanisms is compared on

both types of terrains: flat and rough ground. The simulation shows that foot struc-

ture consisting of big and baby toe can overcome 4mm-high wave obstacle and the

model having a big toe and 4 baby toes reveals the best performance.
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Chapter 4

Walking Behavior of Biped Robot

on Rough Road

This chapter addresses a behavior of the biped robot while walking on ground road

with an optimal foot structure. It is based on the consideration of four cases where

the ground reaction force is set up in different conditions and the optimal foot struc-

ture is a combination of topology optimization result of these situations.

4.1 Introduction

With the development of science and technology, the robots are ensuring its indis-

pensable role in human society. In this field, we are not able to omit the humanoid

robots which are employed in various applications such as support tasks, entertain-

ment, replacing humans in dangerous tasks, etc.[1]. In this area, the human-like

walking has always been the major concern. Until now, the walking problem is still

one of the most challenging issues even for a locomotion on a perfectly flat surface

where the robot walking is required to be stable and natural like the human beings.

This demand comes from the safety and the confidence of the robot in human daily

life.
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By investigating the papers in the same area, we can mention some highlight re-

searches. For instance, conventional approach which generates the robot motion is

based on the zero moment point (ZMP) and foot trajectories is predefined [2, 3, 4].

Simultaneously, a controller is integrated to conserve the balance under internal er-

rors and external disturbances. In these papers, the sole of the feet is used to parallel

the ground to make balance easier. However, the human walking is a complicated

process which includes two main phases called “stance phase" and “swing phase"

[5] as described in Fig. 4.1. When starting a new gait cycle, a foot strikes the ground

with its heel and the toe of the stance foot lifts off the ground at the end of the stance

phase. These behaviors are named “heel-contact" and “toe-off", respectively, which

have an important effect on walking performance since there is a status change of

phase in this period.

FIGURE 4.1: Human walking behavior in a gait cycle.

From the above-mentioned point of view, a number of the foot structures have

been built by analyzing the characteristics of the human foot recently. This approach

is a promising way to improve the robot walking behavior. As a result, these re-

searchers achieved the primary success to enhance the robot walking gait toward

the human locomotion while focusing on heel strike and toe-off period. In partic-

ular, Kouchaki and Sadigh considered the effect of toe-joint bending on biped gait

performance [6]. Sadedel et al. added low-cost passive toe joints to the feet struc-

ture of SURENA III humanoid robot, using passive toe joints reduced energy con-

sumption of ankle and knee joints in comparison with a similar toe-less robot [7]. In
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addition, a human-like ankle-foot complex proposed by Narioka et al. is to imitate

a truss mechanism and a windlass mechanism of human beings [8]. Hasegawa and

Nerakae proposed a foot structure consist of a big toe and a tiptoe [9]. It enables the

foot to increase the contact points and improves the stability.

4.2 Contributions

My research implements to optimize gait behavior of a biped robot while walking on

ground road where foot structure proposed by K. Daichi [10] is used. The foot geom-

etry of the robot is built by topology optimization algorithm in which four specific

situations are considered. The optimal structure is the combination of four above

results. This structure not only reduces the weight of the robot but also ensures its

stable walk. In addition, while considering the human walk, I discover that the hu-

mans tend to swing their arms. Although the arms play no obvious role in bipedal

gait, Hof AL proved that the arm motion aids in recovery of the gait pattern after a

perturbation in human normal walking [11]. Thus, in the second part, I applied a

mechanism mentioned in [12] to imitate arm swinging motion of the humans for the

robot. It can be said that with two applied mechanisms, the robot motion is primar-

ily comparable to the human one. My result is validated by dynamic simulation in

Adams environment.

4.3 Structure Description

4.3.1 Introduction to topology optimization

Topology optimization is a computational material distribution method for synthe-

sizing structures without any preconceived shape. This freedom provides topology
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optimization with the ability to find innovative, high-performance structural lay-

outs, which has attracted the interest of applied mathematicians and engineering

designers.

The conventional topology optimization formulation uses a finite element method

[FEM] to evaluate the design performance. The design is optimized using either

gradient-based mathematical programming techniques such as the optimality crite-

ria algorithm and the method of moving asymptotes or non gradient-based algo-

rithms such as genetic algorithms.

A topology optimization problem can be written in the general form of an opti-

mization problem as:

Find:

x = [x1, x2, ..., xe, ..., xn]T

Minimize:

F = F (u(ρ), ρ) =

∫
Ω

f(u(ρ), ρ) dV

Subject to:

Go(ρ) =

∫
Ω

ρ dV − V0 ≤ 0

Gj(u(ρ), ρ) ≤ 0 with j = 1, 2, ...,m

The problem statement includes the following:

• An objective function F(u(ρ),ρ). This function represents the quantity that is

being minimized for best performance. The most common objective function

is compliance, where minimizing compliance leads to maximizing the stiffness

of a structure.

• The material distribution as a problem variable. This is described by the den-

sity of the material at each location ρ(u). Material is either present, indicated

by a 1, or absent, indicated by a 0.
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• The design space (Ω). This indicates the allowable volume within which the

design can exist.

• m constraints Gj(u(ρ ),ρ)≤ 0 a characteristic that the solution must satisfy. Ex-

amples are the maximum amount of material to be distributed (volume con-

straint) or maximum stress values.

Evaluating u(ρ) often includes solving a differential equation. Thus, the finite ele-

ment method is commonly used to do it.

4.3.2 Topology-Based Foot Structure

This study applies the result of K. Daichi’s research [10] by considering some situ-

ations with different forces as described in Fig. 4.2 and Table 4.1, where the point

related to the ankle position of the robot is fixed and the ground reaction forces only

act on the supporting point 1, 2 and 3. Since the weight of the robot is 1.5kg, the

maximum ground reaction force set to each supporting point is 15N such as case 1, 3

and 4. In case 2, the ground reaction force is equally distributed in three supporting

points. To solve this topology optimization problem, the algorithm proposed by Liu

and Tovar [13] is applied.

TABLE 4.1: Force distribution.

Case Force 1[N] Force 2[N] Force 3[N]

1 15 0 0
2 5 5 5
3 0 15 0
4 0 0 15

However, in order to reduce the complexity of foot structure since the subject is

a small humanoid robot, linear springs are replaced by torsion springs as shown in

Fig. 4.3. Optimal foot structure in detail is described in Fig. 4.4. With this topology

foot structure, the unnecessary areas are removed, and thus, the weight of the feet is

reduced.
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FIGURE 4.2: Design space for topology problem [10].

FIGURE 4.3: Optimal foot structure.

FIGURE 4.4: Design of optimal foot structure.
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The walking performance of the robot with the optimal foot structure is illus-

trated in a cycle described in Fig. 4.5.

FIGURE 4.5: Adaptive walking behavior.

4.3.3 Backbone structure

The humans’ backbone is a complex and functionally significant segment of the hu-

man body. Providing the mechanical linkage between the upper and lower extrem-

ities, the spine enables motion in all three planes. In humans’ walking, the verte-

brae flexibly move to maintain the CoM to drop into the support polygon, specially

while walking on the rough environment. Thus, the spine has an important role in

preserving the humans from falling down.

By above mentioned advantage, F. Naoki [12] introduced a backbone structure

using 8 linear springs to constrain the segments of the spine. Based on this idea, I

design a simple one consisting of a passive 3-DoF joint and 4 linear springs. When

overcoming the obstacles in corrugated ground, the robot’s CoM have a trend to

move out the polygon support. The spinal motion of the robot keeps CoM point

inside the polygon support by moving forward as described in Fig. 4.6a. Backbone

structure combining with arm swinging mechanism described in Item 3.5.3 performs

upper-body moving behavior as depicted in Fig. 4.6b. It is expected to have a posi-

tive effect on locomotion of this robot while walking on high rough level ground.

The stiffness and damping coefficient of all four linear springs are 3.5N/mm and

0.05 N.s/mm, respectively. This mechanism is applied for the robot performance on

ground with 10mm-high waves only.
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(A) (B)

FIGURE 4.6: Backbone mechanism: (a) Backbone structure; and (b)
Upper-body moving behavior.

4.4 Gait function

The joint angles are defined as described in Fig. 4.7, and the range of the angle is

based on the human motion data as in Table 4.2.

TABLE 4.2: Range of joint angle.

Angle View plane Leg Joint Direction Value

ϕ1 Frontal Both Hip and ankle Side to Side −15o to 15o

ϕ2 Sagittal Right Hip Extension and Flexion −50o to 50o

ϕ3 Sagittal Right Knee Extension and Flexion 0o to 60o

ϕ4 Sagittal Right Ankle Extension and Flexion −50o to 50o

ϕ5 Sagittal Left Hip Extension and Flexion −50o to 50o

ϕ6 Sagittal Left Knee Extension and Flexion 0o to 60o

ϕ7 Sagittal Left Ankle Extension and Flexion −50o to 50o

ϕ8r Sagittal Right Proximal phalanx Extension and Flexion 0o to 30o

ϕ8l Sagittal Left Proximal phalanx Extension and Flexion 0o to 30o

In the toe mechanism, since the energy consumption reduction of the robot is

considered, the passive joint is selected as a toe joint. Consequently, ϕ8r and ϕ8l are
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FIGURE 4.7: Robot linkage model.

restricted in (0o-30o) range. Their values depend on the robot’s geometric posture

and the impact forces in its walking process.

4.4.1 Procedure for flat ground

This part is referred to Item 2.2.2 in Chapter 2 with range of design variables is

predefined as in Table 4.3.

4.4.2 Procedure for rough ground

The gait functions which are assigned to all joints are described by Eq. 4.1 - Eq. 4.7.

Table 4.3 is also used to set a range of design variables for this situation.

ϕ1 =


0; t = 0 or t ≥ 8.4

±1.5; t = 0.3 & t = 8.1

ϕ1(t); 0.3 < t < 8.1

(4.1) ϕ2 =


0; t ≤ 0.3 or t ≥ 8.4

ϕ2(t+ 0.6); 0.3 < t < 8.1

15; t = 8.1

(4.2)
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TABLE 4.3: Range for design variables.

Design variables Lower boundary Upper boundary

a1 0 0.006
b1 0 0.1
c1 0 0.002
d1 -0.01 0
a2 0 0.08
b2 0 0.4
c2 0 0.001
d2 0 0.02
a3 0 0.8
b3 0 0.08
c3 -0.4 0
d3 -0.2 0
a4 -0.4 0
b4 0 0.3
c4 0 0.2
d4 0 0.1

ϕ3 =


0; t ≤ 0.3 or t ≥ 8.4

ϕ3(t+ 0.6); 0.3 < t < 8.1

30; t = 8.1

(4.3)

ϕ4 =


0; t ≤ 0.3 or t ≥ 8.4

ϕ4(t+ 0.6); 0.3 < t < 8.1

15; t = 8.1

(4.4)

ϕ5 =


0; t = 0 or t ≥ 8.1

15; t = 0.3

ϕ2(t); 0.3 < t < 8.1

(4.5)

ϕ6 =


0; t = 0 or t ≥ 8.1

30; t = 0.3

ϕ3(t); 0.3 < t < 8.1

(4.6)

ϕ7 =


0; t = 0 or t ≥ 8.1

15; t = 0.3

ϕ4(t); 0.3 < t < 8.1

(4.7)
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4.5 Simulation Results

4.5.1 Flat ground

To apply arm swing mechanism described in Section 3.5.3, I build the simulation

model in Adams environment as shown in Fig. 4.8. As can be seen that the robot

is considered in two configurations: At first, joint of shoulder is locked or in other

words it has no joint. With second configuration, 1-DoF joint is designed for the

shoulder.The robot locomotion is simulated on a perfectly flat ground as depicted in

Fig. 4.9.

Configuration 1

Configuration 2

FIGURE 4.8: Real robot and proposed robot.

The optimal value for the design variable is presented in Table 4.4. By returning

these coefficients to the gait function described in Eq. 2.1. Four gait functions will be

generated to assign to all of joint of the robot, which follows the principle as shown

by Eq. 2.2 - Eq. 2.8.

The simulation result shows thatXf lateral distance, Zf walking distance andRf

angle of rotation are 6.17mm, 172.11mm, and 9.19o, respectively for configuration 1;

9.99mm, 187.66mm, and 4.18o, respectively for configuration 2. To be specific, Fig-

ure. 4.10a shows that the trajectory of the robot’s CoM, which is a periodical wave,
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FIGURE 4.9: Flat environment.

TABLE 4.4: Optimal value for design variables on flat ground.

i
Design variables for

flat ground
ai bi ci di

1 0.003 0.045 0.001 -0.007
2 0.041 0.210 0.001 0.013
3 0.414 0.039 -0.189 -0.111
4 -0.245 0.146 0.103 0.049

is comparable to the humans as described in [14]. Figure. 4.10b illustrates the angle

of the right foot rotation along the time axis in the walking process. We can see that

this angle experiences a fluctuation about from −25o to 25o around zero line, which

means the feet rotate with a significant amplitude in the locomotion. However, from

3.0s to 3.3s, while the robot prepares to change into a stand, the angle of rotation

quickly decreases and this angle is constant in stability checking period. To compare

performance of two configuration, we can see that the model having arm swing be-

havior has better performance. In detail, walking distance experiences an increase

of about 9%. In addition, the model having no shoulder joint adopts a little larger

fluctuation of angle of rotation and account for 5%, this angle at the final position is

decreased by around 55%.

This discussion is to consider walking behavior of the robot in comparison with

the human walking process. In Fig. 4.11, the robot walking behavior is depicted
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FIGURE 4.10: Simulation result: (a) CoM trajectory on flat ground; (b)
Angle of rotation; and (c) Vertical movement of the CoM.

on the flat ground. A glance at this figure shows that the robot gait which looks

like an “Initial contact period” at 1.2s, “Mid-stance period” at 1.5s, “Terminal stance

period” at 1.8s, “Initial swing period” at 2.1s, “Terminal swing period” at 2.4s and

starting a new cycle. At 1.5s and 2.1s, the bending of toes can be observed clearly, it

is toe-off characteristic of the robot which is similar to the human one. This behavior

may result in a smooth contact between the robot foot and the ground and play

an important role in walking stability. Nevertheless, the heel-strike characteristic

is unclear and needed to be improved in the future. Moreover, by inspecting the

arm motion, for configuration 1, no arm movement is observed. On the other hand,

arms of configuration 2 swing in a pendulum-like motion which is opposite to the

contralateral leg motion and therefore precludes the angular momentum of the legs.

This leads to improve the stability of the robot in the locomotion.
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Configuration 1

Configuration 2

FIGURE 4.11: Robot’s CoM trajectory.

The waveform of the gait functions assigned to all joints are depicted in Fig. 4.12.

In comparison with the gait pattern of the humans shown in Figure 2.3, it can be seen

from Fig. 4.12b and Fig. 4.12c that the hip and the knee gait patterns resemble the

gait pattern of the human beings. In Fig. 4.12d, the ankle gait pattern of the robot is
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different from the ankle gait pattern of the humans.This difference occurs as result of

the physical structure dissimilarity between the robot and the human in ankle joint

structure.

(A) (B)

(C) (D)

FIGURE 4.12: Waveform of the gait function: (a) Hip and ankle roll
joint angle; (b) Hip pitch joint angle; (c) Knee pitch joint angle; and

(d) Ankle pitch joint angle.

4.5.2 Rough ground

The ground surface designed for the robot walking performance consists of two

parts: Flat and rough surface, the length of the corrugated segment is 120mm and it

combines a positive with a negative wave with the height of 6 and 10mm for each

situation as presented in Fig. 4.13.

In these simulations, robot motion is simulated in seven cycles. One cycle is set

up to 1.2s. Thus, seven cycles spend on 8.4s. Next, 1.2s is used for checking robot

stability. One step will take 0.02s, so total number of steps is 480. Coefficients of
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FIGURE 4.13: Rough environment.

the RSM for the first situation are shown in Appendix 1. With 10mm-high wave

ground, the RSM and optimization process are not applied because I can not col-

lect enough number of samples for making RSM. The values of design variables on

rough ground for both situations are presented in Table 4.5 and the result of simula-

tion is shown in Fig. 4.14.

TABLE 4.5: Value for design variables on rough ground.

i
Design variables for

6mm-high wave ground
ai bi ci di

1 0.003 0.043 0.001 -0.007
2 0.043 0.204 0.001 0.012
3 0.313 0.032 -0.164 -0.129
4 -0.206 0.129 0.106 0.069

i
Design variables for

10mm-high wave ground
1 0.003 0.045 0.001 -0.007
2 0.041 0.210 0.001 0.013
3 0.414 0.039 -0.189 -0.111
4 -0.245 0.146 0.103 0.049

In the first configuration, arm wing mechanism is applied only and optimization

procedure is implemented to find out the optimal value for design variables. The
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Situation 
Walking distance 

(mm) 

Lateral distance 

(mm) 

Angle of rotation 

(o) 

6mm-high wave 346.31 7.77 6.47 

10mm-high wave 429.92 184.7 8.46 

 

 

 

 

 

 

FIGURE 4.14: Simulation result.

robot walks well and has a good performance on ground with 6mm-high waves.

However, when I increase the height of wave, robot can not overcome obstacles and

fall down.

In the second configuration, both arm wing mechanism and backbone structure

is applied but optimization process has not done because I can not collect enough

number of samples. The initial result show that the robot can overcome the 10mm-

high waves, however, it still has some limitations. The lateral distance is unexpected

big which means the robot does not walk in straight line and the angle of rotation is

big as well.

The walking behavior of the robot in the first situation is depicted in Fig. 4.15.

As can be seen that, for overcoming the obstacles on the terrain, the robot performs

the bending motion of the toe which enhances the contacting points and enable the

robot to walk steadily.

The waveforms of the gait functions are depicted in Fig. 4.16.
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FIGURE 4.15: Robot walking behavior on corrugated ground.

(A) (B)

(C) (D)

FIGURE 4.16: Waveform of the gait function for walking on rough
ground: (a) Hip and ankle roll joint angle; (b) Hip pitch joint angle;

(c) Knee pitch joint angle; and, (d) Ankle pitch joint angle.

4.6 Effect of characteristic factors on locomotion on rough

road

4.6.1 To introduce Taguchi method

Robust Design method, also called the Taguchi Method, pioneered by Dr. Genichi

Taguchi, greatly improves engineering productivity. Taguchi’s designs provide a
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powerful and efficient method for designing processes that operate consistently and

optimally over a variety of conditions. To determine the best design, it requires the

use of a strategically designed experiment, which exposes the process to various

levels of design parameters.

The design of experiment (DOE) is one of the most powerful tools for experi-

mental planning. It can be used as a great advantage to reduce experimental design

changes and cost, as well as to increase design process speed by using statistical

methods. The Taguchi method applies an orthogonal array DOEs and selects a large

number of control factors with a reduced number of experiments. In this array, the

control factor matrix ensures a balanced contrast between the level and independent

distribution among parameters. DOE can play an effective role in identifying im-

pacts of many individual parameters on the system performance. The study of the

effect of individual parameter can determine the most influential parameters for the

performance measure. For more details, the Taguchi concepts and methodologies

can be found in [15].

4.6.2 To consider an effect of characteristic factors

In this section, the Taguchi method is applied to consider the effect of four charac-

teristic factors on walking performance of robot while moving on 6mm-high wave

ground. These factors are investigated in three levels as described in Table 4.6.

TABLE 4.6: characteristic factors.

Factor
Design variables

1 2 3

Torsion
spring

Stiffness 1(newton.mm/rad) (A) 1.5 2.0 2.5
Damping 2(newton-mm-sec/rad) (B) 10 20 30

Linear
spring

Stiffness 3(newton/mm) (C) 0.6 0.8 1.0
Damping 4(newton-sec/mm) (D) 0.004 0.008 0.012
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Output:

� Lateral distance: X (mm)

� Angle of rotation: R (degree)

Design of the orthogonal array I selected L9 as shown in Table 4.7

TABLE 4.7: Design of experiment.

Orthogonal Array Result
No. A B C D X (mm) R (degree)

1 1.5 10 0.6 0.004 -220.77 31.31
2 1.5 20 0.8 0.008 1.61 15.03
3 1.5 30 1.0 0.012 -202.36 -42.93
4 2.0 10 0.8 0.012 28.37 53.79
5 2.0 20 1.0 0.004 -208.73 -20.08
6 2.0 30 0.6 0.008 130.18 52.74
7 2.5 10 1.0 0.008 -184.83 -26.15
8 2.5 20 0.6 0.012 294.58 80.66
9 2.5 30 0.8 0.004 -22.96 29.06

DOF of the entire experiment: DOF = 9 - 1= 8. MSD denotes mean squared

deviation calculated by Eq. 4.8. The smaller is better quality characteristic:

MSD = (Y 2
1 + Y 2

2 + ...+ Y 2
n )/N (4.8)

Where Yi denotes output value, N is a number of run for each experiment. The result

of analysis of variance (ANOVA) as shown in Table 4.8- 4.9.

With definitions as below: Where S, S’, V, P are functions of Yi and f.

As can be seen that in case of X output, C has the most significant effect on lateral

distance accounting for 45.23%, followed by D with 22.48% and A with 18.01%. B

reveals the lowest number with 14.27%. Table 4.9 show that in case of R output,

C also has the most significant effect on angle of rotation accounting for 83.54%,
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TABLE 4.8: ANOVA with X output.

Factor f S V S’ P

A 2 46114.80 23057.40 46114.80 18.01
B 2 36539.37 18269.68 36539.37 14.27
C 2 115798.87 57899.44 115798.87 45.23
D 2 57563.34 28781.67 57563.34 22.48

Total 8 256016.38 100.00

TABLE 4.9: ANOVA with R output.

Factor f S V S’ P

A 2 1481.06 740.53 1481.06 10.72
B 2 225.62 112.81 225.62 1.63
C 2 11544.47 5772.23 11544.47 83.54
D 2 568.48 284.24 568.48 4.11

Total 8 13819.63 100.00

S: Sum of squares S’: Pure sum of squares
V: Mean squares (variance) P: Percentage by contribution
f: Degrees of freedom

followed by A with 10.72%, D with 4.11%. B reveals the lowest number with make

up only 1.63%. The Fig. 4.17- 4.18 describe the relationship between output and four

considered characteristic factors.

FIGURE 4.17: Relationship between X output and characteristic fac-
tors.
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FIGURE 4.18: Relationship between R output and characteristic fac-
tors.

4.7 Conclusion

This section is to study on walking behavior of the small biped robot on rough road

considering a topology-based foot structure. This structure is a combination of the

optimal results when solving four topology problems in which the impact forces is

considered in different situations. The optimal design helps reduce the weight of

the robot by removing the unnecessary areas of the foot during walking. In addi-

tion, the authors also applies the arm swing mechanism to enable the robot to walk

naturally and steadily. A gait control data is automatically generated by solving the

optimization problem in which ISADE algorithm is applied to the objective func-

tion approximated by RSM. The result is validated through dynamic simulation in

Adams environment. I confirmed that with the optimal foot structure, the robot

walks stably and steadily on the 6mm-high wave ground. In next stage, the Taguchi

method is applied to evaluate the effect of four characteristic factors of spring on the

walking performance of the robot. The analysis results show that stiffness of linear

spring has the most significant effect on straight walk.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

This research studied on the gait generation method for the biped robot while con-

sidering a foot structure having toe mechanism. The main objective is to generate

a gait pattern which enables the Kondo KHR-3HV robot to walk naturally on flat

and rough road. In addition, this work applies an arm swing mechanism to improve

stability of the robot in locomotion.

In my research, there are four simulations to achieve the objective.

In the first simulation, the walking behavior of robot with big toe and tiptoe was

investigated by changing the big toe’s width. Gait pattern for left leg are generated

by four gait functions which are defined by solving constrained optimization prob-

lem using ISADE and RSM. For right leg, the gait pattern derives from the data of

left one at delayed time of 0.6s. From the result of simulation in Adams environ-

ment, I confirm that it can generate successfully a gait pattern for walking process of

the robot. Besides, the result show that with a new gait generation method, big toe’s

width have no significant effect on walking behavior of the robot on flat ground.

In the next simulation, I have investigated some ankle joint positions to deter-

mine the best position with the objective of going straight and maximum distance.

The result shows that with designed configuration of the robot, ankle joint position
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is one third of foot.

Continuously, with selected big toe’s width and ankle position, I consider walk-

ing behavior of the robot with different foot structures on flat and rough road. As a

result, the model having only tiptoe is unable to walk on 4mm-high wave ground.

Meanwhile, the model consisting of big and baby toes overcomes this challenge. The

foot consisting of one big toe and four baby toes has the best performance. Next, arm

swing mechanism is applied to enhance walking behavior on road rough.

The final section considers a foot design based on topology optimization to im-

prove robot walking behavior on 6mm and 10mm-high rough road. The result

shows that the robot walk on 6mm-high wave ground comfortably. However, for

motion on 10mm-high wave terrain, the applied foot structure still have a limitation.

In this section, effect of spring characteristic factors on locomotion is also evaluated

by Taguchi method, the result shows that stiffness of linear spring has the most sig-

nificant effect on straight walk and angle of rotation.

All the simulations are implemented in Adams environment.

5.2 Future works

5.2.1 Flexible foot structure

The human foot has an arch-type skeletal structure which connects heel, toe, and

ankle, where the large bone at the heel called calcaneus support about one third of

the load and the metatarsal bones connected to the toes absorb the other impact force

from the ground [1]. Based on this analysis, I propose a flexible foot structure for the

robot as Figure 5.1. This structure consists of 4 wheels and torsion springs to well

adapt to an uneven terrain. Four wheels is to reduce the fiction force between sole

of the foot and the ground while walking.
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Torsion Spring

Ankle

Wheel 4

Wheel 3

Wheel 2

Wheel 1

Front view

Top view

Human foot structure

3D design

FIGURE 5.1: Flexible foot structure.

5.2.2 Rotation of pelvic

During each stride the pelvis moves asynchronously in all three directions. The site

of action is the supporting hip joint. All the motion arcs are small. Researches on

human gait’s analysis show that the pelvis motion plots in the steady walking phase

and plays a significant role in human’s gait [2, 3]. Taking into account the results of

these researches, I am planning to develop a 1-DOF pelvic for my model as shown



Chapter 5. Conclusions and Future Works 102

in Fig. 5.2

(A) (B)

FIGURE 5.2: Proposed pelvic structure: (a) Human; and (b) 1-DOF
pelvic model of robot.
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Appendix 1

TABLE 5.1: Polynomial coefficients of RSMs for situation of 6mm-
high-wave ground

i Term
Polynomial Coefficients

RSMZ/1011 RSMX/1010 RSMR/109

1 a0 70.54 -45.63 -3.27

2 b1 56.27 -21.10 -1.78

3 b2 -22.39 7.69 0.67

4 b3 -26.75 19.76 1.37

5 b4 62.96 -31.50 -2.41

6 b5 67.12 -43.56 -3.11

7 b6 -139.50 78.05 5.81

8 b7 -58.98 37.55 2.69

9 b8 -16.04 7.28 0.57

10 b9 40.25 -22.29 -1.65

11 b10 -55.09 23.99 1.93

12 b11 22.08 -12.75 -0.94

13 b12 -43.43 27.35 1.96

14 b13 13.58 4.34 0.07

15 b14 -11.12 12.26 0.78

16 b15 42.33 -25.84 -1.87

* To be continued *
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TABLE 5.1: (continued)

i Term
Polynomial Coefficients

RSMZ/1011 RSMX/1010 RSMR/109

17 b16 -22.43 9.93 0.78

18 c11 -7.36 0.01 0.07

19 c22 -1.03 1.28 0.08

20 c33 38.40 -15.97 -1.30

21 c44 0.69 3.66 0.18

22 c55 -39.66 16.67 1.39

23 c66 -10.99 0.24 0.14

24 c77 -35.88 15.59 1.24

25 c88 -75.25 43.37 3.19

26 c99 10.63 -13.77 -0.86

27 c1010 92.14 -53.99 -3.96

28 c1111 12.65 -2.86 -0.30

29 c1212 33.94 -27.56 -1.87

30 c1313 -1.84 6.61 0.38

31 c1414 -23.69 9.03 0.76

32 c1515 31.28 -14.27 -1.12

33 c1615 6.09 -5.20 -0.35

34 c12 21.41 -8.12 -0.68

35 c13 76.60 -42.49 -3.18

36 c14 124.36 -59.96 -4.66

37 c15 70.96 -43.87 -3.17

38 c16 5.06 -5.16 -0.33

39 c17 -33.09 17.85 1.33

* To be continued *
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TABLE 5.1: (continued)

i Term
Polynomial Coefficients

RSMZ/1011 RSMX/1010 RSMR/109

40 c18 -34.70 18.57 1.40

41 c19 -72.76 33.24 2.62

42 c110 -57.48 29.70 2.26

43 c111 -25.11 13.38 1.01

44 c112 -2.22 -0.17 0.01

45 c113 -9.17 6.06 0.43

46 c114 14.58 -2.83 -0.32

47 c115 -3.20 1.03 0.09

48 c116 -52.88 32.30 2.34

49 c23 -47.59 26.21 1.96

50 c24 -6.27 3.55 0.26

51 c25 102.20 -57.69 -4.28

52 c26 22.42 -11.42 -0.88

53 c27 -14.55 7.90 0.59

54 c28 -32.20 19.71 1.43

55 c29 -4.79 5.82 0.36

56 c210 -16.55 7.17 0.58

57 c211 8.50 -10.99 -0.69

58 c212 -21.65 13.51 0.97

59 c213 44.91 -28.64 -2.06

60 c214 110.73 -68.44 -4.95

61 c215 21.38 -7.00 -0.63

62 c216 -83.27 42.13 3.22

* To be continued *
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TABLE 5.1: (continued)

i Term
Polynomial Coefficients

RSMZ/1011 RSMX/1010 RSMR/109

63 c34 30.37 -9.64 -0.86

64 c35 11.54 -8.12 -0.58

65 c36 -41.51 20.66 1.59

66 c37 -45.84 22.52 1.73

67 c38 -82.93 45.19 3.38

68 c39 -57.89 34.78 2.53

69 c310 15.88 -7.29 -0.57

70 c311 36.73 -22.18 -1.61

71 c312 -2.84 -2.93 -0.12

72 c313 -61.59 37.79 2.73

73 c314 12.70 -5.96 -0.46

74 c315 95.52 -52.91 -3.96

75 c316 90.83 -50.12 -3.75

76 c45 -40.27 25.00 1.81

77 c46 -15.56 9.56 0.69

78 c47 -63.80 32.67 2.49

79 c48 -43.40 26.21 1.91

80 c49 1.20 5.59 0.29

81 c419 -51.18 27.42 2.08

82 c411 139.38 -81.97 -6.00

83 c412 34.67 -28.08 -1.93

84 c413 29.55 -15.36 -1.16

85 c414 26.26 -8.76 -0.77

* To be continued *
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TABLE 5.1: (continued)

i Term
Polynomial Coefficients

RSMZ/1011 RSMX/1010 RSMR/109

86 c415 42.77 -22.77 -1.71

87 c416 -30.74 19.93 1.42

88 c56 5.55 -5.27 -0.35

89 c57 -8.44 6.31 0.44

90 c58 -31.41 13.26 1.07

91 c59 -23.00 6.62 0.62

92 c510 11.56 -7.01 -0.51

93 c511 15.42 -9.62 -0.70

94 c512 37.77 -18.51 -1.43

95 c513 -8.39 3.57 0.29

96 c514 -12.51 5.85 0.46

97 c515 -19.51 19.56 1.29

98 c516 1.94 -0.84 -0.07

99 c67 38.60 -16.64 -1.34

100 c68 28.24 -19.09 -1.35

101 c69 0.40 -2.09 -0.12

102 c610 63.34 -33.79 -2.55

103 c611 11.39 -4.89 -0.40

104 c612 -61.86 37.22 2.72

105 c612 7.62 -7.68 -0.49

106 c614 46.65 -14.64 -1.33

107 c615 -22.43 9.15 0.76

108 c616 -77.97 37.53 2.92

* To be continued *
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TABLE 5.1: (continued)

i Term
Polynomial Coefficients

RSMZ/1011 RSMX/1010 RSMR/109

109 c78 -46.77 27.55 2.02

110 c79 1.33 2.35 0.11

111 c710 -4.60 2.26 0.18

112 c711 -32.09 25.87 1.76

113 c712 -8.38 10.67 0.65

114 c713 3.57 -10.36 -0.59

115 c714 85.93 -55.00 -3.94

116 c715 -46.71 32.17 2.27

117 c716 -15.93 12.72 0.86

118 c89 -96.89 56.30 4.15

119 c810 61.61 -34.69 -2.57

120 c811 80.81 -44.76 -3.33

121 c812 -19.81 13.47 0.95

122 c813 -55.54 27.41 2.12

123 c814 59.10 -35.84 -2.60

124 c815 -10.98 6.07 0.45

125 c816 51.73 -28.89 -2.15

126 c910 -18.44 2.51 0.35

127 c911 38.12 -24.12 -1.73

128 c912 -58.11 31.17 2.35

129 c913 -18.94 8.19 0.66

130 c914 4.43 -1.31 -0.13

131 c915 6.35 -5.24 -0.35

* To be continued *
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TABLE 5.1: (continued)

i Term
Polynomial Coefficients

RSMZ/1011 RSMX/1010 RSMR/109

132 c916 40.35 -24.23 -1.78

133 c1011 6.25 0.94 -0.02

134 c1012 -32.20 17.05 1.29

135 c1013 44.91 -23.08 -1.76

136 c1014 16.04 -9.50 -0.70

137 c1015 -15.13 6.17 0.50

138 c1016 -26.04 13.20 1.02

139 c1112 41.13 -21.52 -1.63

140 c1113 38.49 -13.15 -1.15

141 c1114 5.20 -1.30 -0.13

142 c1115 -4.35 5.22 0.33

143 c1116 23.46 -11.81 -0.90

144 c1213 40.19 -23.64 -1.74

145 c1214 -32.49 31.43 2.06

146 c1215 -60.18 31.99 2.41

147 c1216 5.42 -3.65 -0.26

148 c1314 -25.02 15.51 1.12

149 c1315 22.90 -13.02 -0.97

150 c1316 -84.23 49.39 3.62

151 c1415 -1.34 -0.49 0.00

152 c1416 -36.51 16.02 1.28

153 c1516 -40.56 20.14 1.55

154 d11 7.94 -3.63 -0.28

* To be continued *
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TABLE 5.1: (continued)

i Term
Polynomial Coefficients

RSMZ/1011 RSMX/1010 RSMR/109

155 d22 -60.09 30.60 2.33

156 d33 -18.80 5.49 0.50

157 d44 -2.84 1.93 0.14

158 d55 -2.77 3.51 0.22

159 d66 -98.33 57.67 4.23

160 d77 38.00 -16.45 -1.32

161 d88 -2.82 -2.87 -0.13

162 d99 108.96 -61.83 -4.57

163 d1010 -181.90 94.06 7.13

164 d1111 144.26 -76.36 -5.76

165 d1212 -38.02 19.02 1.46

166 d1313 1.21 0.03 -0.01

167 d1414 73.76 -38.61 -2.92

168 d1515 -45.76 20.64 1.64

169 d1616 43.23 -23.28 -1.76
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Appendix 2

TABLE 5.2: Design variables for N1-N7

i
N1 model N2 model

ai bi ci di ai bi ci di
1 0.0028 0.0484 0.0010 -0.0062 0.0024 0.0544 0.0010 -0.0063
2 0.0380 0.1929 0.0008 0.0103 0.0336 0.1783 0.0008 0.0083
3 0.4851 0.0341 -0.1614 -0.1155 0.4782 0.0491 -0.1972 -0.0914
4 -0.2552 0.1150 0.1298 0.0712 -0.2535 0.1248 0.1390 0.0521

i
N3 model N4 model

ai bi ci di ai bi ci di
1 0.0023 0.0383 0.0011 -0.0052 0.0023 0.0601 0.0008 -0.0064
2 0.0435 0.1775 0.0007 0.0122 0.0331 0.2163 0.0008 0.0129
3 0.4694 0.0457 -0.1638 -0.1477 0.3515 0.0424 -0.2046 -0.1132
4 -0.2565 0.1076 0.1218 0.0604 -0.2038 0.1424 0.1435 0.0588

i
N5 model N6 model

ai bi ci di ai bi ci di
1 0.0023 0.0601 0.0008 -0.0064 0.0031 0.0440 0.0010 -0.0060
2 0.0331 0.2163 0.0008 0.0129 0.0310 0.1842 0.0006 0.0121
3 0.3515 0.0424 -0.2046 -0.1132 0.3923 0.0436 -0.1546 -0.1140
4 -0.2038 0.1424 0.1435 0.0588 -0.2374 0.1583 0.1382 0.0575

i
N7 model

ai bi ci di
1 0.0025 0.0450 0.0010 -0.0051
2 0.0414 0.1969 0.0007 0.0118
3 0.3010 0.0410 -0.1502 -0.1104
4 -0.2486 0.1076 0.1485 0.0509
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