219 research outputs found

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Closed-loop nonlinear optimal control design for flapping-wing flying robot (1.6 m wingspan) in indoor confined space: Prototyping, modeling, simulation, and experiment

    Get PDF
    This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).The flapping-wing technology has emerged recently in the application of unmanned aerial robotics for autonomous flight, control, inspection, monitoring, and manipulation. Despite the advances in applications and outdoor manual flights (open-loop control), closed-loop control is yet to be investigated. This work presents a nonlinear optimal closed-loop control design via the state-dependent Riccati equation (SDRE) for a flapping-wing flying robot (FWFR). Considering that the dynamic modeling of the flapping-wing robot is complex, a proper model for the implementation of nonlinear control methods is demanded. This work proposes an alternative approach to deliver an equivalent dynamic for the translation of the system and a simplified model for orientation, to find equivalent dynamics for the whole system. The objective is to see the effect of flapping (periodic oscillation) on behavior through a simple model in simulation. Then the SDRE controller is applied to the derived model and implemented in simulations and experiments. The robot bird is a 1.6 m wingspan flapping-wing system (six-degree-of-freedom robot) with four actuators, three in the tail, and one as the flapping input. The underactuated system has been controlled successfully in position and orientation. The control loop is closed by the motion capture system in the indoor test bed where the experiments of flight have been successfully done

    Optimization of non-linear control aerodynamic systems using metaheuristic algorithm Optimisation des commandes non linéaires des systèmes aérodynamiques par les méthodes méta-heuristiques

    Get PDF
    This thesis is part of the project "modelisation and control dynamic systems" carried by the laboratory of LMSE. This project aims to develop and optimize new control approaches for the UAV quadrotor tracking control. This thesis consisted of the modelling of the quadrotor, and then analysing, designing and implementing new optimal control strategies based on the model-free concept. In this context, the aim of the thesis is to propose new control strategies based on the model-free concept. The proposed strategies help to compensate the disturbances and model uncertainties. Regarding our work, we have proposed different control techniques for quadrotor control. First, an optimal model-free backstepping control law applied to a quadrotor UAV has been proposed. In addition to this work, the dynamic system has been estimated through a new proposed fuzzy strategy and merged with the BC under the model-free concept. Finally, an optimal fuzzy model-free control has been designed based on decentralized fuzzy control. The objective of these control strategies is to achieve the best tracking with unknown nonlinear dynamics and external disturbances. These proposed approaches are validated through analytical and experimental procedures and the effectiveness checked and compared with regard to the related controllers in the presence of disturbances and model uncertainties

    Robust Control of Vectored Thrust Aerial Vehicles via Variable Structure Control Methods

    Full text link
    The popularity of Unmanned Aerial Vehicles (UAVs) has grown rapidly in many civil and military applications in the last few decades. Recent UAV applications include crop monitoring, terrain mapping and aerial photography, where one or several image sensors attached to the UAV provide important terrain information. A thrust vectoring aerial vehicle, a vehicle with the ability to change the direction of thrust generated while keeping the UAV body at a zero roll and pitch orientation, can serve well in such applications by allowing the sensors to capture stable image data without additional gimbals, reducing the payload and cost while increasing the flight endurance. Furthermore, thrust vectoring UAVs can perform fast forward flight as well as hover operations with non-zero pitch: features which can serve well in military applications. The first part of this research focuses on developing a comprehensive dynamic model and a low level attitude and position control structure for a tri-rotor UAV with thrust vectoring capability, namely the Vectored Thrust Aerial Vehicle. Nonlinear dynamics of UAVs require robust control methods to realize stable flight. Special attention needs to be given to wind gust disturbances, and parametric uncertainties. Sliding Mode Control , a type of Variable Structure Controller, has served well over the years in controlling UAVs and other dynamic systems. However, conventional Sliding Mode Control results in a high frequency switching behavior of the control signal. Furthermore, Sliding Mode Control does not focus on fast set-point regulation or tracking, which can be advantageous for UAVs and many other robotic systems. Taking these research gaps into account, this work presents an Adaptive Variable Structure Control method, which can acquire fast set-point regulation while maintaining robustness against external disturbances and uncertainties. The adaptive algorithm developed in this work is fundamentally different from current Adaptive Sliding Mode Control and other Variable Structure methods. Simulation and experimental results are provided to demonstrate the superiority of the proposed approach compared to Sliding Mode Control. The novel adaptive algorithm is applicable to many nonlinear dynamic systems including UAVs, robot arm manipulators and space robots. The same adaptive concept is then utilized to develop an Adaptive Second Order Sliding Mode Controller. Compared to existing Second Order Sliding Mode Control methods, the proposed methodology is able to produce reduced sliding manifold reach times and consume less amount of control resources: features which are particularly advantageous for systems with limited control resources. Simulations are conducted to evaluate the performance of the proposed Adaptive Second Order Sliding Mode Control algorithm

    Visual Calibration, Identification and Control of 6-RSS Parallel Robots

    Get PDF
    Parallel robots present some outstanding advantages in high force-to-weight ratio, better stiffness and theoretical higher accuracy compared with serial manipulators. Hence parallel robots have been utilized increasingly in various applications. However, due to the manufacturing tolerances and defections in the robot structure, the positioning accuracy of parallel robots is basically equivalent with that of serial manipulators according to previous researches on the accuracy analysis of the Stewart Platform [1], which is difficult to meet the precision requirement of many potential applications. In addition, the existence of closed-chain mechanism yields difficulties in designing control system for practical applications, due to its highly coupled dynamics. Visual sensor is a good choice for providing non-contact measurement of the end-effector pose (position and orientation) with simplicity in operation and low cost compared to other measurement methods such as the coordinate measurement machine (CMM) [2] and the laser tracker [3]. In this research, a series of solutions including kinematic calibration, dynamic identification and visual servoing are proposed to improve the positioning and tracking performance of the parallel robot based on the visual sensor. The main contributions of this research include three parts. In the first part, a relative pose-based algorithm (RPBA) is proposed to solve the kinematic calibration problem of a six-revolute-spherical-spherical (6-RSS) parallel robot by using the optical CMM sensor. Based on the relative poses between the candidate and the initial configurations, a calibration algorithm is proposed to determine the optimal error parameters of the robot kinematic model and external parameters introduced by the optical sensor. The experimental results demonstrate that the proposal RPBA using optical CMM is an implementable and effective method for the parallel robot calibration. The second part focuses on the dynamic model identification of the 6-RSS parallel robots. A visual closed-loop output-error identification method based on an optical CMM sensor is proposed for the purpose of the advanced model-based visual servoing control design of parallel robots. By using an outer loop visual servoing controller to stabilize both the parallel robot and the simulated model, the visual closed-loop output-error identification method is developed and the model parameters are identified by using a nonlinear optimization technique. The effectiveness of the proposed identification algorithm is validated by experimental tests. In the last part, a dynamic sliding mode control (DSMC) scheme combined with the visual servoing method is proposed to improve the tracking performance of the 6-RSS parallel robot based on the optical CMM sensor. By employing a position-to-torque converter, the torque command generated by DSMC can be applied to the position controlled industrial robot. The stability of the proposed DSMC has been proved by using Lyapunov theorem. The real-time experiment tests on a 6-RSS parallel robot demonstrate that the developed DSMC scheme is robust to the modeling errors and uncertainties. Compared with the classical kinematic level controllers, the proposed DSMC exhibits the superiority in terms of tracking performance and robustness

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Non-linear actuators and simulation tools for rehabilitation devices

    Get PDF
    Mención Internacional en el título de doctorRehabilitation robotics is a field of research that investigates the applications of robotics in motor function therapy for recovering the motor control and motor capability. In general, this type of rehabilitation has been found effective in therapy for persons suffering motor disorders, especially due to stroke or spinal cord injuries. This type of devices generally are well tolerated by the patients also being a motivation in rehabilitation therapy. In the last years the rehabilitation robotics has become more popular, capturing the attention at various research centers. They focused on the development more effective devices in rehabilitation therapy, with a higher acceptance factor of patients tacking into account: the financial cost, weight and comfort of the device. Among the rehabilitation devices, an important category is represented by the rehabilitation exoskeletons, which in addition to the human skeletons help to protect and support the external human body. This became more popular between the rehabilitation devices due to the easily adapting with the dynamics of human body, possibility to use them such as wearable devices and low weight and dimensions which permit easy transportation. Nowadays, in the development of any robotic device the simulation tools play an important role due to their capacity to analyse the expected performance of the system designed prior to manufacture. In the development of the rehabilitation devices, the biomechanical software which is capable to simulate the behaviour interaction between the human body and the robotics devices, play an important role. This helps to choose suitable actuators for the rehabilitation device, to evaluate possible mechanical designs, and to analyse the necessary controls algorithms before being tested in real systems. This thesis presents a research proposing an alternative solution for the current systems of actuation on the exoskeletons for robotic rehabilitation. The proposed solution, has a direct impact, improving issues like device weight, noise, fabrication costs, size an patient comfort. In order to reach the desired results, a biomechanical software based on Biomechanics of Bodies (BoB) simulator where the behaviour of the human body and the rehabilitation device with his actuators can be analysed, was developed. In the context of the main objective of this research, a series of actuators have been analysed, including solutions between the non-linear actuation systems. Between these systems, two solutions have been analysed in detail: ultrasonic motors and Shape Memory Alloy material. Due to the force - weight characteristics of each device (in simulation with the human body), the Shape Memory Alloy material was chosen as principal actuator candidate for rehabilitation devices. The proposed control algorithm for the actuators based on Shape Memory Alloy, was tested over various configurations of actuators design and analysed in terms of energy eficiency, cooling deformation and movement. For the bioinspirated movements, such as the muscular group's biceps-triceps, a control algorithm capable to control two Shape Memory Alloy based actuators in antagonistic movement, has been developed. A segmented exoskeleton based on Shape Memory Alloy actuators for the upper limb evaluation and rehabilitation therapy was proposed to demosntrate the eligibility of the actuation system. This is divided in individual rehabilitation devices for the shoulder, elbow and wrist. The results of this research was tested and validated in the real elbow exoskeleton with two degrees of freedom developed during this thesis.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Eduardo Rocón de Lima.- Secretario: Concepción Alicia Monje Micharet.- Vocal: Martin Stoele

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering
    corecore