20 research outputs found

    Mixed-precision deep learning based on computational memory

    Full text link
    Deep neural networks (DNNs) have revolutionized the field of artificial intelligence and have achieved unprecedented success in cognitive tasks such as image and speech recognition. Training of large DNNs, however, is computationally intensive and this has motivated the search for novel computing architectures targeting this application. A computational memory unit with nanoscale resistive memory devices organized in crossbar arrays could store the synaptic weights in their conductance states and perform the expensive weighted summations in place in a non-von Neumann manner. However, updating the conductance states in a reliable manner during the weight update process is a fundamental challenge that limits the training accuracy of such an implementation. Here, we propose a mixed-precision architecture that combines a computational memory unit performing the weighted summations and imprecise conductance updates with a digital processing unit that accumulates the weight updates in high precision. A combined hardware/software training experiment of a multilayer perceptron based on the proposed architecture using a phase-change memory (PCM) array achieves 97.73% test accuracy on the task of classifying handwritten digits (based on the MNIST dataset), within 0.6% of the software baseline. The architecture is further evaluated using accurate behavioral models of PCM on a wide class of networks, namely convolutional neural networks, long-short-term-memory networks, and generative-adversarial networks. Accuracies comparable to those of floating-point implementations are achieved without being constrained by the non-idealities associated with the PCM devices. A system-level study demonstrates 173x improvement in energy efficiency of the architecture when used for training a multilayer perceptron compared with a dedicated fully digital 32-bit implementation

    Energy Efficient Neocortex-Inspired Systems with On-Device Learning

    Get PDF
    Shifting the compute workloads from cloud toward edge devices can significantly improve the overall latency for inference and learning. On the contrary this paradigm shift exacerbates the resource constraints on the edge devices. Neuromorphic computing architectures, inspired by the neural processes, are natural substrates for edge devices. They offer co-located memory, in-situ training, energy efficiency, high memory density, and compute capacity in a small form factor. Owing to these features, in the recent past, there has been a rapid proliferation of hybrid CMOS/Memristor neuromorphic computing systems. However, most of these systems offer limited plasticity, target either spatial or temporal input streams, and are not demonstrated on large scale heterogeneous tasks. There is a critical knowledge gap in designing scalable neuromorphic systems that can support hybrid plasticity for spatio-temporal input streams on edge devices. This research proposes Pyragrid, a low latency and energy efficient neuromorphic computing system for processing spatio-temporal information natively on the edge. Pyragrid is a full-scale custom hybrid CMOS/Memristor architecture with analog computational modules and an underlying digital communication scheme. Pyragrid is designed for hierarchical temporal memory, a biomimetic sequence memory algorithm inspired by the neocortex. It features a novel synthetic synapses representation that enables dynamic synaptic pathways with reduced memory usage and interconnects. The dynamic growth in the synaptic pathways is emulated in the memristor device physical behavior, while the synaptic modulation is enabled through a custom training scheme optimized for area and power. Pyragrid features data reuse, in-memory computing, and event-driven sparse local computing to reduce data movement by ~44x and maximize system throughput and power efficiency by ~3x and ~161x over custom CMOS digital design. The innate sparsity in Pyragrid results in overall robustness to noise and device failure, particularly when processing visual input and predicting time series sequences. Porting the proposed system on edge devices can enhance their computational capability, response time, and battery life

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Simulation and programming strategies to mitigate device non-idealities in memristor based neuromorphic systems

    Get PDF
    Since its inception, resistive random access memory (RRAM) has widely been regarded as a promising technology, not only for its potential to revolutionize non-volatile data storage by bridging the speed gap between traditional solid state drives (SSD) and dynamic random access memory (DRAM), but also for the promise it brings to in-memory and neuromorphic computing. Despite the potential, the design process of RRAM neuromorphic arrays still finds itself in its infancy, as reliability (retention, endurance, programming linearity) and variability (read-to-read, cycle-to-cycle and device-to-device) issues remain major hurdles for the mainstream implementation of these systems. One of the fundamental stages of neuromorphic design is the simulation stage. In this thesis, a simulation framework for evaluating the impact of RRAM non-idealities on NNs, that emphasizes flexibility and experimentation in NN topology and RRAM programming conditions is coded in MATLAB, making full use of its various toolboxes. Using these tools as the groundwork, various RRAM non-idealities are comprehensively measured and their impact on both inference and training accuracy of a pattern recognition system based on the MNIST handwritten digits dataset are simulated. In the inference front, variability originated from different sources (read-to-read and programming-to-programming) are statistically evaluated and modelled for two different device types: filamentary and non-filamentary. Based on these results, the impact of various variability sources on inference are simulated and compared, showing much more pronounced variability in the filamentary device compared to its non-filamentary counterpart. The staged programming scheme is introduced as a method to improve linearity and reduce programming variability, leading to negligible accuracy loss in non-filamentary devices. Random telegraph noise (RTN) remains the major source of read variability in both devices. These results can be explained by the difference in switching mechanisms of both devices. In training, non-idealities such as conductance stepping and cycle-to-cycle variability are characterized and their impact on the training of NNs based on backpropagation are independently evaluated. Analysing the change of weight distributions during training reveals the different impacts on the SET and RESET processes. Based on these findings, a new selective programming strategy is introduced for the suppression of non-idealities impact on accuracy. Furthermore, the impact of these methods are analysed between different NN topologies, including traditional multi-layer perceptron (MLP) and convolutional neural network (CNN) configurations. Finally, the new dynamic weight range rescaling methodology is introduced as a way of not only alleviating the constraints imposed in hardware due to the limited conductance range of RRAM in training, but also as way of increasing the flexibility of RRAM based deep synaptic layers to different sets of data

    SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence

    Full text link
    Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency by introducing neural dynamics and spike properties. As the emerging spiking deep learning paradigm attracts increasing interest, traditional programming frameworks cannot meet the demands of the automatic differentiation, parallel computation acceleration, and high integration of processing neuromorphic datasets and deployment. In this work, we present the SpikingJelly framework to address the aforementioned dilemma. We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips. Compared to existing methods, the training of deep SNNs can be accelerated 11×11\times, and the superior extensibility and flexibility of SpikingJelly enable users to accelerate custom models at low costs through multilevel inheritance and semiautomatic code generation. SpikingJelly paves the way for synthesizing truly energy-efficient SNN-based machine intelligence systems, which will enrich the ecology of neuromorphic computing.Comment: Accepted in Science Advances (https://www.science.org/doi/10.1126/sciadv.adi1480

    Harnessing Evolution in-Materio as an Unconventional Computing Resource

    Get PDF
    This thesis illustrates the use and development of physical conductive analogue systems for unconventional computing using the Evolution in-Materio (EiM) paradigm. EiM uses an Evolutionary Algorithm to configure and exploit a physical material (or medium) for computation. While EiM processors show promise, fundamental questions and scaling issues remain. Additionally, their development is hindered by slow manufacturing and physical experimentation. This work addressed these issues by implementing simulated models to speed up research efforts, followed by investigations of physically implemented novel in-materio devices. Initial work leveraged simulated conductive networks as single substrate ‘monolithic’ EiM processors, performing classification by formulating the system as an optimisation problem, solved using Differential Evolution. Different material properties and algorithm parameters were isolated and investigated; which explained the capabilities of configurable parameters and showed ideal nanomaterial choice depended upon problem complexity. Subsequently, drawing from concepts in the wider Machine Learning field, several enhancements to monolithic EiM processors were proposed and investigated. These ensured more efficient use of training data, better classification decision boundary placement, an independently optimised readout layer, and a smoother search space. Finally, scalability and performance issues were addressed by constructing in-Materio Neural Networks (iM-NNs), where several EiM processors were stacked in parallel and operated as physical realisations of Hidden Layer neurons. Greater flexibility in system implementation was achieved by re-using a single physical substrate recursively as several virtual neurons, but this sacrificed faster parallelised execution. These novel iM-NNs were first implemented using Simulated in-Materio neurons, and trained for classification as Extreme Learning Machines, which were found to outperform artificial networks of a similar size. Physical iM-NN were then implemented using a Raspberry Pi, custom Hardware Interface and Lambda Diode based Physical in-Materio neurons, which were trained successfully with neuroevolution. A more complex AutoEncoder structure was then proposed and implemented physically to perform dimensionality reduction on a handwritten digits dataset, outperforming both Principal Component Analysis and artificial AutoEncoders. This work presents an approach to exploit systems with interesting physical dynamics, and leverage them as a computational resource. Such systems could become low power, high speed, unconventional computing assets in the future

    High-Density Solid-State Memory Devices and Technologies

    Get PDF
    This Special Issue aims to examine high-density solid-state memory devices and technologies from various standpoints in an attempt to foster their continuous success in the future. Considering that broadening of the range of applications will likely offer different types of solid-state memories their chance in the spotlight, the Special Issue is not focused on a specific storage solution but rather embraces all the most relevant solid-state memory devices and technologies currently on stage. Even the subjects dealt with in this Special Issue are widespread, ranging from process and design issues/innovations to the experimental and theoretical analysis of the operation and from the performance and reliability of memory devices and arrays to the exploitation of solid-state memories to pursue new computing paradigms

    COMPUTE-IN-MEMORY WITH EMERGING NON-VOLATILE MEMORIES FOR ACCELERATING DEEP NEURAL NETWORKS

    Get PDF
    The objective of this research is to accelerate deep neural networks (DNNs) with emerging non-volatile memories (eNVMs) based compute-in-memory (CIM) architecture. The research first focuses on the inference acceleration and proposes a resistive random access memory (RRAM) based CIM architecture. Two generations of RRAM testchips which monolithically integrate the RRAM memory array and CMOS peripheral circuits are designed and fabricated using Winbond 90 nm and TSMC 40 nm commercial embedded RRAM process respectively. The first generation of testchip named XNOR-RRAM is dedicated for binary neural networks (BNNs) and the second generation named Flex-RRAM features 1bit-to-8bit run-time configurable precision and leverages the input sparsity of the DNN model to improve the throughput and energy efficiency. However, the non-ideal characteristics of eNVM devices, especially when utilized as multi-level analog synaptic weights, may incur a notable accuracy degradation for both training and inference. This research develops a PyTorch based framework that incorporates the device characteristics into the DNN model to evaluate the impact of the eNVM nonidealities on training/inference accuracy. The results suggest that it is challenging to directly use eNVMs for in-situ training and resistance drift remains as a critical challenge to maintain a high inference accuracy. Furthermore, to overcome the challenges posed by the asymmetric conductance tuning behavior of typical eNVMs, which is found to be the most critical nonideality that prevents the model from achieving software equivalent training accuracy, this research proposes a novel 2-transistor-1-FeFET (ferroelectric field effect transistor) based synaptic weight cell that exploits hybrid precision for in situ training and inference, which achieves near-software classification accuracy on MNIST and CIFAR-10 dataset.Ph.D
    corecore