58 research outputs found

    Superimposed training-based channel estimation for miso optical-OFDM vlc

    Get PDF
    In this paper, we investigate a novel channel estimation (CE)method for multiple-input and single-output (MISO) systems in visible lightcommunication (VLC). Direct current biased optical orthogonal frequencydivision multiplexing (DCO-OFDM) is commonly used in VLC where halfof the available subcarriers are spent to guarantee a real-valued outputafter the inverse fast Fourier transform operation. Besides, dedicated subcarriers are typically used for CE, thus, many resources are wasted andthe spectral efficiency is degraded. We propose a superimposed trainingapproach for CE in MISO DCO-OFDM VLC scenarios. Analytical expressions of mean squared error (MSE) and spectral efficiency are derived whenthe least squares estimator is considered. This analysis is valid for outdoorand indoor scenarios. For the CE error, simulation results of MSE showa perfect match with analytical expressions. Moreover, results prove thatthis technique guarantees a larger spectral efficiency than previous schemeswhere dedicated pilots were used. Finally, the optimal data power allocationfactor is also analytically derived.This work was supported in part by the National Secretary of Higher Education, Science, Technology, and Innovation (SENESCYT) in Ecuador and in part by the Spanish National Project TERESA-ADA (TEC2017-90093-C3-2-R) (MINECO/AEI/FEDER, UE). The work of B. G. Guzmán was supported by the Spanish MECD FPU Fellowship Program

    Optical wireless MIMO communication

    Get PDF
    This thesis provides an in-depth investigation and evaluation of infrared optical wireless MIMO communication systems to be applied in both indoor and outdoor environment. The principle objective of the research is to demonstrate both the advantages and disadvantages of the optical wireless MIMO systems using different modulation types. The first part provided analyses of important OW configurations using APD receivers using WMC model and SISO, MISO, SIMO and MIMO configuration. Thus, an analytical expression for 2-1 MISO, 1-2 SIMO and MIMO was successfully developed. This part also illustrates the coding gains possible using diversity schemes for APD OW systems. In the presence of strong fading, the SISO approach is rendered virtually useless, whereas diversity offers acceptable BER values. The results underpin the approach of this thesis, where indoor PIN diode based experimental measurements confirm the gains offered by diversity. In the second part of the work, several optical wireless MIMO systems applicable for the indoor environment are developed for three different modulation types, OOK modulation, PPM modulation and SIR-RZI modulation. These modulations are used in optical MIMO systems are studied for which, mathematical models that evaluate the BER performance of the MIMO system for different axis displacement and for different distances between transmitters and receivers. Based on the results, the PPM system has been shown to present the best BER performance, including high interference-resistance capability. A group of new mathematical models have been evaluated, which demonstrates a high level of correlation with the results derived from empirical models at 93%. Thus, the mathematical models developed and used for the specified evaluation appear to correspond reasonably well, and can be applied in future research on these aspects

    Introduction to free space optical (FSO) communications

    Get PDF
    The demand for high bandwidth and secure communication is increasing. Free space optical (FSO) wireless communications technology could be one possible alternative option to the RF technologies that can be adopted in certain applications to unlock the bandwidth bottleneck issue, specifically in the last mile access networks, between mobile base stations in RF cellular wireless networks, and for radio over fiber; and over the last decade, we have seen growing research and development activities in FSO communications in the field of high data rate wireless technology applications as well as the emergence of commercial systems

    Trace-Orthogonal PPM-Space Time Block Coding Under Rate Constraints for Visible Light Communication

    Get PDF
    Visible light communications (VLC) represents a new frontier of communications allowing high data-rate Internet access, specially in indoor environments, where the use of light emitting diodes (LEDs) is growing as a viable alternative to traditional illumination. As a result, LED output intensity can be varied faster than human eye can perceive, thus guaranteeing simultaneous wireless communications and illumination. One of the key challenges is the limited modulation bandwidth of sources that is typically around several MHz. The use of multiple input and multiple output (MIMO) techniques in optical wireless system helps to increase the capacity of the system and thus improve the system performance. In this paper, we investigate the use of an optical MIMO technique jointly with pulse position modulation (PPM) in order to improve the data rates without reducing the reliability of the link. PPM is known to be signal-to-noise ratio efficient modulation format, while it is bandwidth inefficient so the use of MIMO can compensate that drawback with reasonable complexity. Furthermore, an offline tool for VLC system planning, including error probability and transmission rate, has been proposed in order to solve the tradeoff between transmission rate and error rate. Finally, several numerical results and performance comparisons are reported

    Mehrdimensionale Kanalschätzung für MIMO-OFDM

    Get PDF
    DIGITAL wireless communication started in the 1990s with the wide-spread deployment of GSM. Since then, wireless systems evolved dramatically. Current wireless standards approach the goal of an omnipresent communication system, which fulfils the wish to communicate with anyone, anywhere at anytime. Nowadays, the acceptance of smartphones and/or tablets is huge and the mobile internet is the core application. Given the current growth, the estimated data traffic in wireless networks in 2020 might be 1000 times higher than that of 2010, exceeding 127 exabyte. Unfortunately, the available radio spectrum is scarce and hence, needs to be utilized efficiently. Key technologies, such as multiple-input multiple-output (MIMO), orthogonal frequency-division multiplexing (OFDM) as well as various MIMO precoding techniques increase the theoretically achievable channel capacity considerably and are used in the majority of wireless standards. On the one hand, MIMO-OFDM promises substantial diversity and/or capacity gains. On the other hand, the complexity of optimum maximum-likelihood detection grows exponentially and is thus, not sustainable. Additionally, the required signaling overhead increases with the number of antennas and thereby reduces the bandwidth efficiency. Iterative receivers which jointly carry out channel estimation and data detection are a potential enabler to reduce the pilot overhead and approach optimum capacity at often reduced complexity. In this thesis, a graph-based receiver is developed, which iteratively performs joint data detection and channel estimation. The proposed multi-dimensional factor graph introduces transfer nodes that exploit correlation of adjacent channel coefficients in an arbitrary number of dimensions (e.g. time, frequency, and space). This establishes a simple and flexible receiver structure that facilitates soft channel estimation and data detection in multi-dimensional dispersive channels, and supports arbitrary modulation and channel coding schemes. However, the factor graph exhibits suboptimal cycles. In order to reach the maximum performance, the message exchange schedule, the process of combining messages, and the initialization are adapted. Unlike conventional approaches, which merge nodes of the factor graph to avoid cycles, the proposed message combining methods mitigate the impairing effects of short cycles and retain a low computational complexity. Furthermore, a novel detection algorithm is presented, which combines tree-based MIMO detection with a Gaussian detector. The resulting detector, termed Gaussian tree search detection, integrates well within the factor graph framework and reduces further the overall complexity of the receiver. Additionally, particle swarm optimization (PSO) is investigated for the purpose of initial channel estimation. The bio-inspired algorithm is particularly interesting because of its fast convergence to a reasonable MSE and its versatile adaptation to a variety of optimization problems. It is especially suited for initialization since no a priori information is required. A cooperative approach to PSO is proposed for large-scale antenna implementations as well as a multi-objective PSO for time-varying frequency-selective channels. The performance of the multi-dimensional graph-based soft iterative receiver is evaluated by means of Monte Carlo simulations. The achieved results are compared to the performance of an iterative state-of-the-art receiver. It is shown that a similar or better performance is achieved at a lower complexity. An appealing feature of iterative semi-blind channel estimation is that the supported pilot spacings may exceed the limits given the by Nyquist-Shannon sampling theorem. In this thesis, a relation between pilot spacing and channel code is formulated. Depending on the chosen channel code and code rate, the maximum spacing approaches the proposed “coded sampling bound”.Die digitale drahtlose Kommunikation begann in den 1990er Jahren mit der zunehmenden Verbreitung von GSM. Seitdem haben sich Mobilfunksysteme drastisch weiterentwickelt. Aktuelle Mobilfunkstandards nähern sich dem Ziel eines omnipräsenten Kommunikationssystems an und erfüllen damit den Wunsch mit jedem Menschen zu jeder Zeit an jedem Ort kommunizieren zu können. Heutzutage ist die Akzeptanz von Smartphones und Tablets immens und das mobile Internet ist die zentrale Anwendung. Ausgehend von dem momentanen Wachstum wird das Datenaufkommen in Mobilfunk-Netzwerken im Jahr 2020, im Vergleich zum Jahr 2010, um den Faktor 1000 gestiegen sein und 100 Exabyte überschreiten. Unglücklicherweise ist die verfügbare Bandbreite beschränkt und muss daher effizient genutzt werden. Schlüsseltechnologien, wie z.B. Mehrantennensysteme (multiple-input multiple-output, MIMO), orthogonale Frequenzmultiplexverfahren (orthogonal frequency-division multiplexing, OFDM) sowie weitere MIMO Codierverfahren, vergrößern die theoretisch erreichbare Kanalkapazität und kommen bereits in der Mehrheit der Mobil-funkstandards zum Einsatz. Auf der einen Seite verspricht MIMO-OFDM erhebliche Diversitäts- und/oder Kapazitätsgewinne. Auf der anderen Seite steigt die Komplexität der optimalen Maximum-Likelihood Detektion exponientiell und ist infolgedessen nicht haltbar. Zusätzlich wächst der benötigte Mehraufwand für die Kanalschätzung mit der Anzahl der verwendeten Antennen und reduziert dadurch die Bandbreiteneffizienz. Iterative Empfänger, die Datendetektion und Kanalschätzung im Verbund ausführen, sind potentielle Wegbereiter um den Mehraufwand des Trainings zu reduzieren und sich gleichzeitig der maximalen Kapazität mit geringerem Aufwand anzunähern. Im Rahmen dieser Arbeit wird ein graphenbasierter Empfänger für iterative Datendetektion und Kanalschätzung entwickelt. Der vorgeschlagene multidimensionale Faktor Graph führt sogenannte Transferknoten ein, die die Korrelation benachbarter Kanalkoeffizienten in beliebigen Dimensionen, z.B. Zeit, Frequenz und Raum, ausnutzen. Hierdurch wird eine einfache und flexible Empfängerstruktur realisiert mit deren Hilfe weiche Kanalschätzung und Datendetektion in mehrdimensionalen, dispersiven Kanälen mit beliebiger Modulation und Codierung durchgeführt werden kann. Allerdings weist der Faktorgraph suboptimale Schleifen auf. Um die maximale Performance zu erreichen, wurde neben dem Ablauf des Nachrichtenaustausches und des Vorgangs zur Kombination von Nachrichten auch die Initialisierung speziell angepasst. Im Gegensatz zu herkömmlichen Methoden, bei denen mehrere Knoten zur Vermeidung von Schleifen zusammengefasst werden, verringern die vorgeschlagenen Methoden die leistungsmindernde Effekte von Schleifen, erhalten aber zugleich die geringe Komplexität des Empfängers. Zusätzlich wird ein neuartiger Detektionsalgorithmus vorgestellt, der baumbasierte Detektionsalgorithmen mit dem sogenannten Gauss-Detektor verknüpft. Der resultierende baumbasierte Gauss-Detektor (Gaussian tree search detector) lässt sich ideal in das graphenbasierte Framework einbinden und verringert weiter die Gesamtkomplexität des Empfängers. Zusätzlich wird Particle Swarm Optimization (PSO) zum Zweck der initialen Kanalschätzung untersucht. Der biologisch inspirierte Algorithmus ist insbesonders wegen seiner schnellen Konvergenz zu einem akzeptablen MSE und seiner vielseitigen Abstimmungsmöglichkeiten auf eine Vielzahl von Optimierungsproblemen interessant. Da PSO keine a priori Informationen benötigt, ist er speziell für die Initialisierung geeignet. Sowohl ein kooperativer Ansatz für PSO für Antennensysteme mit extrem vielen Antennen als auch ein multi-objective PSO für Kanäle, die in Zeit und Frequenz dispersiv sind, werden evaluiert. Die Leistungsfähigkeit des multidimensionalen graphenbasierten iterativen Empfängers wird mit Hilfe von Monte Carlo Simulationen untersucht. Die Simulationsergebnisse werden mit denen eines dem Stand der Technik entsprechenden Empfängers verglichen. Es wird gezeigt, dass ähnliche oder bessere Ergebnisse mit geringerem Aufwand erreicht werden. Eine weitere ansprechende Eigenschaft von iterativen semi-blinden Kanalschätzern ist, dass der mögliche Abstand von Trainingssymbolen die Grenzen des Nyquist-Shannon Abtasttheorem überschreiten kann. Im Rahmen dieser Arbeit wird eine Beziehung zwischen dem Trainingsabstand und dem Kanalcode formuliert. In Abhängigkeit des gewählten Kanalcodes und der Coderate folgt der maximale Trainingsabstand der vorgeschlagenen “coded sampling bound”

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    D6.3 Intermediate system evaluation results

    Full text link
    The overall purpose of METIS is to develop a 5G system concept that fulfil s the requirements of the beyond-2020 connected information society and to extend today’s wireless communication systems for new usage cases. First, in this deliverable an updated view on the overall METIS 5G system concept is presented. Thereafter, simulation results for the most promising technology components supporting the METIS 5G system concept are reported. Finally, s imulation results are presented for one relevant aspect of each Horizontal Topic: Direct Device - to - Device Communication, Massive Machine Communication, Moving Networks, Ultra - Dense Networks, and Ultra - Reliable Communication.Popovski, P.; Mange, G.; Fertl, P.; Gozálvez - Serrano, D.; Droste, H.; Bayer, N.; Roos, A.... (2014). D6.3 Intermediate system evaluation results. http://hdl.handle.net/10251/7676

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics
    corecore