23 research outputs found

    State-of-the-art and gaps for deep learning on limited training data in remote sensing

    Full text link
    Deep learning usually requires big data, with respect to both volume and variety. However, most remote sensing applications only have limited training data, of which a small subset is labeled. Herein, we review three state-of-the-art approaches in deep learning to combat this challenge. The first topic is transfer learning, in which some aspects of one domain, e.g., features, are transferred to another domain. The next is unsupervised learning, e.g., autoencoders, which operate on unlabeled data. The last is generative adversarial networks, which can generate realistic looking data that can fool the likes of both a deep learning network and human. The aim of this article is to raise awareness of this dilemma, to direct the reader to existing work and to highlight current gaps that need solving.Comment: arXiv admin note: text overlap with arXiv:1709.0030

    Training of Convolutional Neural Network using Transfer Learning for Aedes Aegypti Larvae

    Get PDF
    The flavivirus epidemiology has reached an alarming rate which haunts the world population including Malaysia. World Health Organization has proposed and practised various methods of vector control through environmental management, chemical and biological orientations. However, from the listed control vectors, the most crucial part to be heeded are non-accessible places like water storage and artificial container. The objective of the study was to acquire and compare various accuracies and cross-entropy errors of the training sets within different learning rates in water storage tank environment which was essential for detection. This experiment performed transfer learning where Inception-V3 was implemented. About 534 images were trained to classify between Aedes Aegypti larvae and float valve within 3 different learning rates. For training accuracy and validation accuracy, learning rates were 0.1; 99.98%, 99.90% and 0.01; 99.91%, 99.77% and 0.001; 99.10%, 99.93%. Cross-entropy errors for training and validation for 0.1 were 0.0021, 0.0184 whereas for 0.01 were 0.0091, 0.0121 and 0.001; 0.0513, 0.0330. Various accuracies and cross-entropy errors of the training sets within the different learning rates were successfully acquired and compared

    Enabling Explainable Fusion in Deep Learning with Fuzzy Integral Neural Networks

    Full text link
    Information fusion is an essential part of numerous engineering systems and biological functions, e.g., human cognition. Fusion occurs at many levels, ranging from the low-level combination of signals to the high-level aggregation of heterogeneous decision-making processes. While the last decade has witnessed an explosion of research in deep learning, fusion in neural networks has not observed the same revolution. Specifically, most neural fusion approaches are ad hoc, are not understood, are distributed versus localized, and/or explainability is low (if present at all). Herein, we prove that the fuzzy Choquet integral (ChI), a powerful nonlinear aggregation function, can be represented as a multi-layer network, referred to hereafter as ChIMP. We also put forth an improved ChIMP (iChIMP) that leads to a stochastic gradient descent-based optimization in light of the exponential number of ChI inequality constraints. An additional benefit of ChIMP/iChIMP is that it enables eXplainable AI (XAI). Synthetic validation experiments are provided and iChIMP is applied to the fusion of a set of heterogeneous architecture deep models in remote sensing. We show an improvement in model accuracy and our previously established XAI indices shed light on the quality of our data, model, and its decisions.Comment: IEEE Transactions on Fuzzy System

    DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images

    Full text link
    We present the DeepGlobe 2018 Satellite Image Understanding Challenge, which includes three public competitions for segmentation, detection, and classification tasks on satellite images. Similar to other challenges in computer vision domain such as DAVIS and COCO, DeepGlobe proposes three datasets and corresponding evaluation methodologies, coherently bundled in three competitions with a dedicated workshop co-located with CVPR 2018. We observed that satellite imagery is a rich and structured source of information, yet it is less investigated than everyday images by computer vision researchers. However, bridging modern computer vision with remote sensing data analysis could have critical impact to the way we understand our environment and lead to major breakthroughs in global urban planning or climate change research. Keeping such bridging objective in mind, DeepGlobe aims to bring together researchers from different domains to raise awareness of remote sensing in the computer vision community and vice-versa. We aim to improve and evaluate state-of-the-art satellite image understanding approaches, which can hopefully serve as reference benchmarks for future research in the same topic. In this paper, we analyze characteristics of each dataset, define the evaluation criteria of the competitions, and provide baselines for each task.Comment: Dataset description for DeepGlobe 2018 Challenge at CVPR 201
    corecore