38 research outputs found

    Development of a Quality of Service Framework for Multimedia Streaming Applications

    Get PDF
    By the year 2012, it is expected that the majority of all Internet traffic will be video content. Coupled with this is the increasing availability of Wireless Local Area Networks (WLANs) due to their ease of deployment, flexibility and reducing roll out costs. Unfortunately the contention based access mechanism utilised by IEEE 802.11 WLANs does not suit the non-uniform or bursty bandwidth profile of a video stream which can lead to a reduced quality of service (QoS) being experienced by the end-user. In 2005, the IEEE 802.11e protocol was ratified in an attempt to solve this emerging problem. It provides for an access prioritization mechanism based upon four separate traffic classes or access categories (ACs). Each AC is characterised by a set of access parameters that determine its level of access priority which is turn determines the amount of bandwidth available to it. Computer simulation studies have shown that AC prioritisation can yield significant improvements in the QoS delivered over a WLAN. However, these studies have been based upon the use of static access parameters for the ACs. In practice, this is not a viable solution owing to the dynamic and unpredictable nature of the operating conditions on WLANs. In this thesis, an experimental study of AC prioritisation based upon adaptive tuning of the access parameters is presented. This new approach to bandwidth provisioning for video streaming is shown to yield significant improvements in the QoS under a wide range of different operating conditions. For example, it is shown that by adaptively tuning the access control parameters in response to the network conditions, the number of video frames delivered that satisfy QoS requirements is more than doubled

    Performance Modeling and Analysis of Wireless Local Area Networks with Bursty Traffic

    Get PDF
    The explosive increase in the use of mobile digital devices has posed great challenges in the design and implementation of Wireless Local Area Networks (WLANs). Ever-increasing demands for high-speed and ubiquitous digital communication have made WLANs an essential feature of everyday life. With audio and video forming the highest percentage of traffic generated by multimedia applications, a huge demand is placed for high speed WLANs that provide high Quality-of-Service (QoS) and can satisfy end user’s needs at a relatively low cost. Providing video and audio contents to end users at a satisfactory level with various channel quality and current battery capacities requires thorough studies on the properties of such traffic. In this regard, Medium Access Control (MAC) protocol of the 802.11 standard plays a vital role in the management and coordination of shared channel access and data transmission. Therefore, this research focuses on developing new efficient analytical models that evaluate the performance of WLANs and the MAC protocol in the presence of bursty, correlated and heterogeneous multimedia traffic using Batch Markovian Arrival Process (BMAP). BMAP can model the correlation between different packet size distributions and traffic rates while accurately modelling aggregated traffic which often possesses negative statistical properties. The research starts with developing an accurate traffic generator using BMAP to capture the existing correlations in multimedia traffics. For validation, the developed traffic generator is used as an arrival process to a queueing model and is analyzed based on average queue length and mean waiting time. The performance of BMAP/M/1 queue is studied under various number of states and maximum batch sizes of BMAP. The results clearly indicate that any increase in the number of states of the underlying Markov Chain of BMAP or maximum batch size, lead to higher burstiness and correlation of the arrival process, prompting the speed of the queue towards saturation. The developed traffic generator is then used to model traffic sources in IEEE 802.11 WLANs, measuring important QoS metrics of throughput, end-to-end delay, frame loss probability and energy consumption. Performance comparisons are conducted on WLANs under the influence of multimedia traffics modelled as BMAP, Markov Modulated Poisson Process and Poisson Process. The results clearly indicate that bursty traffics generated by BMAP demote network performance faster than other traffic sources under moderate to high loads. The model is also used to study WLANs with unsaturated, heterogeneous and bursty traffic sources. The effects of traffic load and network size on the performance of WLANs are investigated to demonstrate the importance of burstiness and heterogeneity of traffic on accurate evaluation of MAC protocol in wireless multimedia networks. The results of the thesis highlight the importance of taking into account the true characteristics of multimedia traffics for accurate evaluation of the MAC protocol in the design and analysis of wireless multimedia networks and technologies

    Cross-layer optimisation of quality of experience for video traffic

    Get PDF
    Realtime video traffic is currently the dominant network traffic and is set to increase in volume for the foreseeable future. As this traffic is bursty, providing perceptually good video quality is a challenging task. Bursty traffic refers to inconsistency of the video traffic level. It is at high level sometimes while is at low level at some other times. Many video traffic measurement algorithms have been proposed for measurement-based admission control. Despite all of this effort, there is no entirely satisfactory admission algorithm for variable rate flows. Furthermore, video frames are subjected to loss and delay which cause quality degradation when sent without reacting to network congestion. The perceived Quality of Experience (QoE)-number of sessions trade-off can be optimised by exploiting the bursty nature of video traffic. This study introduces a cross-layer QoE-aware optimisation architecture for video traffic. QoE is a measure of the user's perception of the quality of a network service. The architecture addresses the problem of QoE degradation in a bottleneck network. It proposes that video sources at the application layer adapt their rate to the network environment by dynamically controlling their transmitted bit rate. Whereas the edge of the network protects the quality of active video sessions by controlling the acceptance of new sessions through a QoE-aware admission control. In particular, it seeks the most efficient way of accepting new video sessions and adapts sending rates to free up resources for more sessions whilst maintaining the QoE of the current sessions. As a pathway to the objective, the performance of the video flows that react to the network load by adapting the sending rate was investigated. Although dynamic rate adaptation enhances the video quality, accepting more sessions than a link can accommodate will degrade the QoE. The video's instantaneous aggregate rate was compared to the average aggregate rate which is a calculated rate over a measurement time window. It was found that there is no substantial difference between the two rates except for a small number of video flows, long measurement window, or fast moving contents (such as sport), in which the average is smaller than the instantaneous rate. These scenarios do not always represent the reality. The finding discussed above was the main motivation for proposing a novel video traffic measurement algorithm that is QoE-aware. The algorithm finds the upper limit of the video total rate that can exceed a specific link capacity without the QoE degradation of ongoing video sessions. When implemented in a QoE-aware admission control, the algorithm managed to maintain the QoE for a higher number of video session compared to the calculated rate-based admission controls such as the Internet Engineering Task Force (IETF) standard Pre-Congestion Notification (PCN)-based admission control. Subjective tests were conducted to involve human subjects in rating of the quality of videos delivered with the proposed measurement algorithm. Mechanisms proposed for optimising the QoE of video traffic were surveyed in detail in this dissertation and the challenges of achieving this objective were discussed. Finally, the current rate adaptation capability of video applications was combined with the proposed QoE-aware admission control in a QoE-aware cross-layer architecture. The performance of the proposed architecture was evaluated against the architecture in which video applications perform rate adaptation without being managed by the admission control component. The results showed that our architecture optimises the mean Mean Opinion Score (MOS) and number of successful decoded video sessions without compromising the delay. The algorithms proposed in this study were implemented and evaluated using Network Simulator-version 2 (NS-2), MATLAB, Evalvid and Evalvid-RA. These software tools were selected based on their use in similar studies and availability at the university. Data obtained from the simulations was analysed with analysis of variance (ANOVA) and the Cumulative Distribution Functions (CDF) for the performance metrics were calculated. The proposed architecture will contribute to the preparation for the massive growth of video traffic. The mathematical models of the proposed algorithms contribute to the research community

    Video Quality Prediction for Video over Wireless Access Networks (UMTS and WLAN)

    Get PDF
    Transmission of video content over wireless access networks (in particular, Wireless Local Area Networks (WLAN) and Third Generation Universal Mobile Telecommunication System (3G UMTS)) is growing exponentially and gaining popularity, and is predicted to expose new revenue streams for mobile network operators. However, the success of these video applications over wireless access networks very much depend on meeting the user’s Quality of Service (QoS) requirements. Thus, it is highly desirable to be able to predict and, if appropriate, to control video quality to meet user’s QoS requirements. Video quality is affected by distortions caused by the encoder and the wireless access network. The impact of these distortions is content dependent, but this feature has not been widely used in existing video quality prediction models. The main aim of the project is the development of novel and efficient models for video quality prediction in a non-intrusive way for low bitrate and resolution videos and to demonstrate their application in QoS-driven adaptation schemes for mobile video streaming applications. This led to five main contributions of the thesis as follows:(1) A thorough understanding of the relationships between video quality, wireless access network (UMTS and WLAN) parameters (e.g. packet/block loss, mean burst length and link bandwidth), encoder parameters (e.g. sender bitrate, frame rate) and content type is provided. An understanding of the relationships and interactions between them and their impact on video quality is important as it provides a basis for the development of non-intrusive video quality prediction models.(2) A new content classification method was proposed based on statistical tools as content type was found to be the most important parameter. (3) Efficient regression-based and artificial neural network-based learning models were developed for video quality prediction over WLAN and UMTS access networks. The models are light weight (can be implemented in real time monitoring), provide a measure for user perceived quality, without time consuming subjective tests. The models have potential applications in several other areas, including QoS control and optimization in network planning and content provisioning for network/service providers.(4) The applications of the proposed regression-based models were investigated in (i) optimization of content provisioning and network resource utilization and (ii) A new fuzzy sender bitrate adaptation scheme was presented at the sender side over WLAN and UMTS access networks. (5) Finally, Internet-based subjective tests that captured distortions caused by the encoder and the wireless access network for different types of contents were designed. The database of subjective results has been made available to research community as there is a lack of subjective video quality assessment databases.Partially sponsored by EU FP7 ADAMANTIUM Project (EU Contract 214751

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Quality of experience and access network traffic management of HTTP adaptive video streaming

    Get PDF
    The thesis focuses on Quality of Experience (QoE) of HTTP adaptive video streaming (HAS) and traffic management in access networks to improve the QoE of HAS. First, the QoE impact of adaptation parameters and time on layer was investigated with subjective crowdsourcing studies. The results were used to compute a QoE-optimal adaptation strategy for given video and network conditions. This allows video service providers to develop and benchmark improved adaptation logics for HAS. Furthermore, the thesis investigated concepts to monitor video QoE on application and network layer, which can be used by network providers in the QoE-aware traffic management cycle. Moreover, an analytic and simulative performance evaluation of QoE-aware traffic management on a bottleneck link was conducted. Finally, the thesis investigated socially-aware traffic management for HAS via Wi-Fi offloading of mobile HAS flows. A model for the distribution of public Wi-Fi hotspots and a platform for socially-aware traffic management on private home routers was presented. A simulative performance evaluation investigated the impact of Wi-Fi offloading on the QoE and energy consumption of mobile HAS.Die Doktorarbeit beschĂ€ftigt sich mit Quality of Experience (QoE) – der subjektiv empfundenen DienstgĂŒte – von adaptivem HTTP Videostreaming (HAS) und mit Verkehrsmanagement, das in Zugangsnetzwerken eingesetzt werden kann, um die QoE des adaptiven Videostreamings zu verbessern. Zuerst wurde der Einfluss von Adaptionsparameters und der Zeit pro QualitĂ€tsstufe auf die QoE von adaptivem Videostreaming mittels subjektiver Crowdsourcingstudien untersucht. Die Ergebnisse wurden benutzt, um die QoE-optimale Adaptionsstrategie fĂŒr gegebene Videos und Netzwerkbedingungen zu berechnen. Dies ermöglicht Dienstanbietern von Videostreaming verbesserte Adaptionsstrategien fĂŒr adaptives Videostreaming zu entwerfen und zu benchmarken. Weiterhin untersuchte die Arbeit Konzepte zum Überwachen von QoE von Videostreaming in der Applikation und im Netzwerk, die von Netzwerkbetreibern im Kreislauf des QoE-bewussten Verkehrsmanagements eingesetzt werden können. Außerdem wurde eine analytische und simulative Leistungsbewertung von QoE-bewusstem Verkehrsmanagement auf einer Engpassverbindung durchgefĂŒhrt. Schließlich untersuchte diese Arbeit sozialbewusstes Verkehrsmanagement fĂŒr adaptives Videostreaming mittels WLAN Offloading, also dem Auslagern von mobilen VideoflĂŒssen ĂŒber WLAN Netzwerke. Es wurde ein Modell fĂŒr die Verteilung von öffentlichen WLAN Zugangspunkte und eine Plattform fĂŒr sozialbewusstes Verkehrsmanagement auf privaten, hĂ€uslichen WLAN Routern vorgestellt. Abschließend untersuchte eine simulative Leistungsbewertung den Einfluss von WLAN Offloading auf die QoE und den Energieverbrauch von mobilem adaptivem Videostreaming
    corecore