

©Mohammed Abduljalil Mohammed Al-saeedi
2013

iii

DEDICATION

To my parents who have been my constant source of inspiration

iv

ACKNOWLEDGMENTS

Apart from the efforts of myself, the success of any project depends largely on the

encouragement and guidelines of many others. I take this opportunity to express

my gratitude to the people who have been instrumental in the successful

completion of this project. I would like to show my greatest appreciation to Dr.

Basem Al-madani. I can’t say thank you enough for his support and help.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Tarek Sheltami and Dr. Zubair Baig, for their encouragement and insightful

comments. I would also like to thank the Real-Time Infrastructure Software

company (RTI) for their support with all tools that I have used in this thesis

work. Spacial thanks are given to the Departement of Computer Engineering of

King Fahd University of Petroleum and Minerals. The guidance and support

received from all the members who contributed and who are contributing to this

project, was vital for the success of the project. I am grateful for their constant

support and help.

Last but not the least important, I owe more than thanks to my family for their

support and encouragement throughout my life

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

ABSTRACT (ENGLISH) xiv

ABSTRACT (ARABIC) xvi

CHAPTER 1 INTRODUCTION 1

1.1 Problem Description . 2

CHAPTER 2 BACKGROUND 6

2.1 Basics of Video Streaming . 6

2.2 Video CODEC . 8

2.3 IEEE 802.11 Networks . 11

2.4 Video Streaming Scalability Overview 12

2.4.1 Non-Scalable H.264/MPEG4 AVC Video Coding 13

2.4.2 Scalable H.264/SVC Video Coding 16

2.5 Real-Time Transport Protocol (RTP) 24

2.5.1 Real-Time Control Protocol (RTCP) 25

2.5.2 Real-Time Streaming Protocol (RTSP) 25

vi

2.6 Real-Time Publish Subscribe Communication Model 26

CHAPTER 3 REAL-TIME VIDEO STREAMING TECH-

NIQUES 29

3.1 Video Rate Adaptation . 30

3.2 Video Error Control Coding . 34

3.3 Channel Assignment . 36

3.4 Cross-layer Design . 38

3.5 Middleware . 40

CHAPTER 4 DESIGN & IMPLEMENTATION OF SCALABLE

RTPS-BASED VIDEO STREAMING 43

4.1 System Architecture . 43

4.1.1 Video Encoder . 44

4.1.2 Video Publisher . 45

4.1.3 Video Subscriber . 46

4.1.4 Video Decoder . 47

4.1.5 Video Streaming Quality of Service 48

4.2 System Scalability and Behaviour 55

CHAPTER 5 EXPERMINTAL SETUP & PERFORMANCE

EVALUATION 63

5.1 Experimental Setup . 63

5.1.1 Source video sample . 65

5.1.2 Evaluation Framework . 65

5.1.3 Performance evaluation metrics 69

5.2 Performance Evaluation . 73

CHAPTER 6 CONCLUSION & FUTURE WORK 89

Appendices 91

Appendix CHAPTER A DATA COLLECTION APPROACH 92

vii

Appendix CHAPTER B CONFIGURED USER DATA QUALITY

OF SERVICE 107

REFERENCES 123

VITAE 135

viii

LIST OF TABLES

4.1 Scalable RTPS-based Video Streaming QoS. 49

5.1 Source video samples. 65

5.2 PSNR to MOS conversion [1]. 73

5.3 Example of supported Temporal Scalability Layers for single-layer

coding. 74

5.4 Mean Openion Score. 78

A.1 Video encoding output files. 101

A.2 Video transmission/publishing output files. 103

A.3 Video receiving/subscribing output files. 104

A.4 Video reconstruction and evaluation output files. 106

ix

LIST OF FIGURES

2.1 Example of the prediction dependencies between frames. 10

2.2 Structure of H.264/AVC video encoder [2]. 14

2.3 The principle of scalable video coding [3]. 16

2.4 Types of scalability in video coding. 18

2.5 Hierarchical prediction structures for temporal scalability [4]. . . . 19

2.6 Multi-layer structure with additional inter-layer prediction [4]. . . 21

2.7 Various concepts for trading off enhancement layer coding efficiency

and drift for packet-based quality scalable coding [4]. 24

2.8 Overview of publish-subscribe using DDS. [5]. 28

4.1 Scalable RTPS-Based Video Streaming Architecture. 44

4.2 Time Based Filter QoS [6]. 54

4.3 RTPS-based video streaming of single-layer video stream with tem-

poral scalability of H.264/AVC. 58

4.4 Single-layer video stream partitioning example. 58

4.5 RTPS-based video streaming of multi-layer video stream with com-

bined scalability of H.264/SVC. 59

4.6 Multi-layer video stream partitioning example. 60

4.7 Publication activity diagram. 61

4.8 Subscription activity diagram. 62

5.1 Experimental setup topology. 64

5.2 EvalVid evaluation framework structure for streaming H.264/AVC

bitstream [1]. 66

x

5.3 EvalSVC evaluation framework structure for streaming H.264/SVC

bitstream [7]. 67

5.4 PSNR (1 to 1). 76

5.5 PSNR (1 to 6). 76

5.6 PSNR (1 to 12). 77

5.7 PSNR (1 to 18). 77

5.8 Video snapshots with different background traffic throughput. . . 78

5.9 Frame End-to-End delay (1 to 1). 79

5.10 Cumulative jitter (1 to 1). 80

5.11 Frame End-to-End delay (1 to 6). 80

5.12 Cumulative jitter (1 to 6). 81

5.13 Frame End-to-End delay (1 to 12). 81

5.14 Cumulative jitter (1 to 12). 82

5.15 Frame End-to-End delay (1 to 18). 82

5.16 Cumulative jitter (1 to 18). 83

5.17 Sent Bitrate (1 to 1). 84

5.18 Received Bitrate (1 to 1). 85

5.19 Sent Bitrate (1 to 6). 85

5.20 Received Bitrate (1 to 6). 86

5.21 Sent Bitrate (1 to 12). 86

5.22 Received Bitrate (1 to 12). 87

5.23 Sent Bitrate (1 to 18). 87

5.24 Received Bitrate (1 to 18). 88

5.25 Received average throughput. 88

A.1 Main Encoding Configuration file for temporal scalability. 98

A.2 Layer Encoding Configuration file for temporal scalability. 99

A.3 Encoding Summary for temporal scalability. 100

A.4 List of the Encoded frames for temporal scalability. 100

xi

LIST OF ABBREVIATIONS

RTPS Real-Time Publish Subscribe

RTP Real-Time Protocol

DDS Data Distribution Service

CORBA Common Object Request Broker Architecture

OMG Object Management Group

DCPS Data-Centric Publish-Subscribe

GDS Globle Data Space

QoS Quality of Service

AVC Advance Video Codec

SVC Scalable Video Codec

NAL Network Abstract Layer

VCL Video Coding Layer

GOP Group of Pictures

SNR Signal to Noise Ratio

PSNR Peak-to-Peak Signal-to-Noise Ratio

TFRC TCP-Friendly Rate Control

xii

FEC Forward Error Correction

VBR Variable Bit Rate

ARQ Automatic Repeat Request

VoD Video on-Demand

CODEC COder-DECoder or COmpressor-DECompressor

ME Motion Estimation

MCP Motion-Compensated Prediction

MPEG Moving Pictures Expert Group

UEP Unequal Error Protection

ULP Unequal Layer Protection

IDR Instantaneous Decoding Refresh

MIMO Multi-Input Multi-Output

MCMI Multi-Channel Multi-Interface

MAD Mean Absolute Difference

SSIM Structural SIMilarity index

MSE mean Squared Error

MOS Mean Opinion Score

xiii

THESIS ABSTRACT

NAME: Mohammed Abduljalil Mohammed Al-saeedi

TITLE OF STUDY: SCALABLE WIRELESS VIDEO STREAMING OVER

REAL-TIME PUBLISH SUBSCRIBE MIDDLEWARE

MAJOR FIELD: COMPUTER NETWORKS

DATE OF DEGREE: Oct 2013

Enabling Real-Time video streaming over wireless networks is a challenging task

due to the time-varying channel conditions and the limited network resources. The

instability of wireless networks leads to problems such as limited and time-varying

bandwidth, and unexpected traffic congestion when transmitting a burst of video

streams. As a result, the transmitted video packets are exposed to be delayed or

dropped. However, in Real-Time video streaming, each frame must be delivered and

decoded by its playback time. In other words, any frame that is retransmitted due

to loss in transmission or late arriving is considered a useless frame if its decod-

ing and display deadline is too late to be displayed. Therefore, efficient Real-Time

video streaming requires an efficient video quality of service (QoS) transmission

control mechanism to adapt to the time-varying network changes. Traditional ap-

xiv

proaches of Real-Time video streaming focused on adapting the video encoder bit

rate to the available network resources. Other approaches focused at the level of

network protocols and link layer adaptation to the source video streaming rate. Re-

cently, layer coding (LC) has enabled Real-Time and scalable video streaming to

clients of heterogeneous capabilities by dropping upper enhancement layers without

the need of re-encoding. However, layer coding still facing unfair layer protection

problem in which packets from the base or lower layers might be dropped while there

is a chance to drop packets from the upper enhancement layers. Moreover, the re-

ception of the base layer bitstream is always required for at least decoding the base

quality. Thus, loosing packets from the base layer can significantly affect the deliv-

ered video quality and sometimes lead to an interruption especially in error-prone

networks such as wireless networks. Architectural solutions at the middleware

level introduce higher flexibility, more efficiency in development time and more

QoS control. In this research, I investigate the behaviour of video streaming over

Real-Time publish-subscribe based middleware. I propose and develop an unequal

layer protection mechanism for Real-Time video streaming based on the Data Dis-

tribution Service (DDS) middleware, and show the performance of my approach

over IEEE 802.11g WLAN networks. My approach shows a graceful degradation

of video quality while maintaining a robust video streaming free of visible error or

interruptions.

xv

ARABIC ABSTRACT

T�AFr�� P�l�

©dy`s�� dm�� �yl���db� dm�� :�F¯�

¨qyq��� �w�� ¨� AyklF¯ ���tm�� w§dyf�� ��d� :T�AFr�� �wn�

��rtJ¯�¤ rKn�� XyF¤ ��d�tFA�

¨�µ� 	FA��� �AkbJ :PO�t��

2013 r�wt�� :�§r�t�� �§CA�

Tb`} Tmh� ¨¡ TyklF®�� �AkbK�� rb� ¨qyq��� �w�� ¨� w§df�� ��d� �ykm�

TkbK�� C�w� ��@�¤ �w�� �®� T�¤Aftm�� �AFC¯� An� �¤r\\� �r\\�

�AWn�� |r� ��� ��AK� Y�� © ¥§ TyklF®�� �AkbK�� C�rqtF� �d� . ¤d�m��

�t§ A�dn� ��wt� ry��� �A� E¯� ¤ ,�w�� �®� �¤Aft� ¤ ¤d�� wk§ © rt��

T�wqnm�� w§dyf�� �z� |r`t� , ��@� T�yt�¤ .��dtm�� w§dyf�� �� ®��¤ �AFC�

,¨qyq��� �w�� ¨� w§df�� ��d� ��� �� A� , ��Ð ��¤ . �dqf��¤� ry��tl�

PO�m�� �w�� �®� AhRr�¤ A¡zy�r� ��¤ £Cw} �� �y}w� �t§ � 	�§

Ah��dq� 	bs� Ah�AFC� A�� �� £Cw} ©� , «r�� CAb`�¤ . �bqtsm�� dn� AhRr`�

d�wm�� A� �Ð� d¶Af�� Tm§d� rbt`� r�At� �kK� Ah�w}¤ ¤� �AFC¯� �®�

ºAf� A� ,��@� . �¤±� ��w� d`� Ah� QA��� |r`�� ¤ ryfKt�� �f� ¨¶Ahn��

w§df�� �AFC¯ T�A`� T�d� Ty�w� w�¤ 	lWt§ ¨qyq��� �w�� ¨� w§dyf�� ��d�

�®� TkbK�� ¨� T�¤Aftm�� ��ry�t�� �� �yktl� �k�� Ty�� w�¤ 	lWt§ Am�

�yyk� Yl� ¨qyq��� �w�� ¨� w§dyf�� ��dt� T§dylqt�� �rW�� �z�C .�w��

«r�±� �rW�� �z�C Am� . r�wtm�� TkbK�� C�w� Y�� w§dyfl� � �d`� zy�r�

xvi

�� w§df�� ��d� �d`� �� �yktt� Ahl§d`� ¤ TkbK�� �¯w�w�¤r� «wts� Yl�

��d� �km� � �AWtF� (¨F ��\) zy�rt�� �AqbV , ry�±� T�¤µ� ¨� . CdOm��

�®� �� Ts�A�tm�� ry� �Ay�Ak�¯� ©¤Ð �ylbqtsml� ¨qyq��� �w�� ¨� w§df��

��Ð ��¤ .zy�r� A�� Y�� T�A��� ¤ �� Ayl`�� z§z`t�� �AqbV {`� ªAqF�

�y� Tym¡� r��¯� �AqbW�� T§Am� �d� TlkK� ¢��w� ��z� ¯ zy�rt�� �AqbV Af,

T}r� �An¡ � �y� ¨� Ylfs�� �AqbW�� ¤� d�Aq�� �� �z� ªAqF� �km§ ¢��

�An¡ , ��Ð Yl� ¤®�¤ .Tym¡� ��¯� Ayl`�� z§z`t�� �AqbV �� �z� ªAqF³

��A� w§d� zy�r� �f� ��±� Yl� TyFAF¯� d�Aq�� TqbV �AbqtF¯ Tm¶� T�A�

�ryb� �ry��� r�¥§ � �km§ TyFAF±� TqbW�� �� �z��� �dq� , ¨�At�A�¤ . w�

T}A�¤ w§df�� �AWq�� Y�� Ay�±� {`� ¨� © ¥§ d� ¤ �Frm�� w§dyf�� w� Yl�

«wts� Yl� �wl��� . TyklF®�� �AkbK�� ��� ºAW�®� TRr`tm�� �AkbK�� ¨�

¤ r§wWtl� �E®�� �w�� �y� �� ºAf� r���¤ , T�¤r� Yl�� r�w� XyFw��

�wlF �� �yq�t�� �t§ , ��b�� �@¡ ¨� . T�d��� w�� �k�t�� �� d§z� r�w§

�y�. ��rtJ¯�¤ rKn�� XyF¤ ��d�tF� rb� ¨qyq��� �w�� ¨� w§dyf�� ��d�

¨� w§df�� ��dt� w§dyf�� �AqbW� T·�Akt� ry� T§Am� Ty�� r§wW�¤ ��rt�� ��

TWyFw�� (x� © ©) �A�Ayb�� �§Ew� T�d� ��d�tF� xAF� Yl� ¨qyq��� �w��

. ¨� 802.11 �w� �� ©A� ©�w�� �AkbJ rb� T�rtqm�� Tq§rW�� º� � CAbt��¤ ,

rmts� ��d� Yl� _Af��� �� w§dyf�� w� ¨� �yJC CAs��� �¶Atn�� ny� d�¤

.�AWq�¯� ¤� Ty¶rm�� ºAW�¯� �� ¨�A� w§dyfl�

xvii

CHAPTER 1

INTRODUCTION

The flexibility and low infrastructure requirements that wireless networks offer

to customers increase its popularity among users. More demands have been

recently turned into delivering Real-Time video over wireless networks. However,

Real-Time video streaming over wireless networks has been addressed with data

delivery and communication challenges.

The time-varying changes in the wireless channel that can occur due to in-

terference, fading, and mobility make video streaming over such networks a

challenging task [8]. Therefore, provisioning of video streaming end-to-end

Quality of Service (QoS) is required for maintaining a continuous video playback

in Real-Time multimedia applications, e.g., video conferencing. Video streaming

is often described as bursty since video is basically a collection of frames sequence

transmitted in a particular frame rate. The video frame cannot be decoded or

played out at the receiver side until all or most of its transmitted packets are

received on time [9]. Although, several schemes have been proposed to adapt

1

video encoder bit rate to the available wireless network resources, or to adapt

the wireless network architecture and protocols to the generated video encoder

bit rate, the ability of these schemes to deliver a continuous Real-Time video

streaming is limited.

1.1 Problem Description

In Real-Time video streaming, each frame must be delivered and decoded by its

playback time. Therefore, any data that is retransmitted due to loss in transmis-

sion or late arriving is considered as useless if its decoding and display deadline

is too late to be displayed. Real-Time video streaming over wireless networks is

difficult because the transmitted packets are exposed to the time-varying band-

width, delay jitter, or high packet loss rate. Reliable delivery of high-quality video

over wireless networks which are dealing with unknown and dynamic bandwidth,

delay jitter and loss rate is a wide research area in Real-Time video streaming.

The bandwidth available between two points in a wireless network is generally

unknown and time-varying. If the sender transmits faster than the available band-

width, this will result in congestion that may lead to a severe drop in video quality

due to packets loss. If the sender transmits slower than the available bandwidth

then the receiver produces sub-optimal video quality.

The end-to-end delay that a packet experiences may fluctuate from packet to

packet leading to a delay jitter problem. However, the receiver must receive, de-

2

code, and display frames at a constant rate, and any late frames resulting from

the delay jitter can produce problems in the reconstructed video, e.g. jerks. This

problem is typically addressed by including a playout buffer at the receiver but

with additional delay which is not appropriate for Real-Time applications.

In addition to the delay jitter, packet loss is considered as a fundamental problem

in Real-Time video streaming over error-prone networks. Wireless channels are

typically afflicted by bit errors or burst errors. The packet-loss problem may lead

to serious video quality degradation, which affects not only the quality of current

frame, but also leads to error propagation to subsequent frames due to the use

of the Motion Compensation Prediction (MCP) mechanism [10, 11]. Moreover,

a single bit error in a video bitstream with a variable-length coding (VLC) may

cause the decoder to loss the synchronization, and consequently the successive

correctly received bits become useless [11].

Real-Time video streaming over a time-varying bandwidth wireless channel re-

quires to accurately estimate the available bandwidth and meanwhile adapt the

transmitted encoded video bit rate to the estimated channel bandwidth. It also re-

quires to solve this problem in a multicast situation where a single sender streams

data to multiple receivers of different available bandwidth capacities. Traditional

approaches to Real-Time video streaming focused on adapting the video encoder

bit rate to the available network resources. Other approaches focused at the level

of network protocols and link layer adaptation (e.g., cross-layer approach) to the

source video streaming rate. Recently, layer coding (LC) or as formaly called

3

Scalable Video Coding (SVC) [12, 13] has enabled Real-Time and scalable video

streaming to clients of heterogeneous capabilities by dropping upper enhancement

layers without the need of re-encoding. However, layer coding still faces unfair

layer protection problem in which packets from the base or lower layers might

be dropped while there is a chance to drop packets from the upper enhancement

layers. Moreover, bitstream layers are not fully independent since a particular

layer requires the presence of all lower layers and the reception of the bit-stream’s

base layer is always required for at least decoding the base quality. Thus losing

packets from the base layer can significantly affect the delivered video quality and

sometimes lead to an interruption especially in error-prone networks. Architec-

tural solutions at the middleware level introduce higher flexibility, more efficiency

in development time and more QoS control.

In this research I investigate the behaviour of video streaming over Real-Time

publish-subscribe based middleware. I propose and develop an unequal layer pro-

tection mechanism for Real-Time video streaming based on the Data Distribution

Service (DDS) middleware [5], and show the performance of my approach over

IEEE 802.11g WLAN networks. My approach shows a graceful degradation of

video quality while maintaining a robust video streaming free of visible error or

interruptions. The rest of the research is organized as follows. Chapter 2 presents

an overview background about video streaming and publish-subscribe communi-

cation model. Chapter 3 presents the literature review. Chapter 4 presents the

design and implementation of my proposed scalable RTPS-based video streaming

4

approach. Chapter 5 demonstrates the experimental setup and evaluation results

discussion. Finally, my conclusion is given in Chapter 6.

5

CHAPTER 2

BACKGROUND

2.1 Basics of Video Streaming

Video streaming is a way of transmitting video content in a compressed form over

the network to be displayed by the viewer on-demand or as a live show. The

media is sent in a continuous stream of data to let users play the video as it

arrives instead of waiting for transmitting the entire video file. Video streaming

is classified into two types [14]:

On-demand streaming: Video streams are often saved in a permanent storage

for extended amount of time, so users can play a video at their own pace

and may seek new positions during the playback.

Live streaming: All the users play a video simultaneously with the video source

and download the video at its playback rate.

Live video streaming is restricted to the playback deadline of each packet and

therefore it requires to transmit video packets with a delivery rate as high as pos-

6

sible and within the delay constraints. The playback delay should not exceed a

few seconds for an application to be called live streaming. In live video streaming,

source video should be captured, encoded, transmitted, and decoded in Real-Time

which requires more computational processes and network resources. Interactive

applications are one example of applications that require Real-Time video stream-

ing, e.g., video conferencing, videophone, or interactive games.

On the other hand, on-demand video streaming allows users to download the video

at a rate higher or less than the video’s playback rate since it does not require

Real-Time encoding constraints. In on-demand video streaming, the video source

is pre-encoded and stored for later viewing. Therefore, it enables more efficient

encoding such as multi-pass encoding that is typically performed for DVD con-

tent. However, pre-encoded video provides limited flexibility in terms of adapting

to channels that support different bit rates or clients that support different display

capabilities than those used in the original encoding devices. Moreover, it is not

suitable for live video streaming since it requires more delay for the pre-encoding

process. Video-on-demand (VoD), and video streaming over the Internet (e.g.,

RealNetworks and Microsoft Windows Media), are two examples of on-demand

video streaming applications.

The basic purpose of video streaming is to overcome the problems associated with

file download since video generally has very large files that require long download

times and large storage spaces. The basic idea of video streaming is to split the

video into parts, transmit these parts in succession, and enable the receiver to

7

decode and playback the video as these parts are received; without having to wait

for the entire video to be delivered. Video streaming conceptually consists of three

main processes: first, partition the compressed (encoded) video into packets, then

start delivery of these packets, and finally decode and playback those partitions

at the receiver while the video is still being delivered. Video streaming provides a

number of benefits including low delay before start of video play, and low storage

requirements since only a small portion of the video is stored at the client at any

point in time [14].

2.2 Video CODEC

Video CODEC (COder-DECoder or COmpressor-DECompressor) is hardware or

software that compresses (encodes) digital data (e.g., video or audio) and uncom-

presses (decodes) the data back to its original form. Video compression is used

for reducing the size of data that is going to be transmitted in order to save net-

work bandwidth and storage space. The compression of a video is achieved by

exploiting the similarities or redundancies that exist in a typical video signal or

frames. For example, consecutive frames in a video frame sequence show some

redundancy since they typically contain the same objects, especially in less motion

videos. Moreover, video compression is used to only code video features that are

perceptually important and not to waste valuable bits for information that is not

perceptually important or irrelevant [14].

An ordinary video stream consists of a sequence of video frames or images. Each

8

frame may be coded as a separate image, for example by independently apply-

ing JPEG-like coding to each frame. However, since consecutive video frames

are typically similar, much higher compression can be achieved by exploiting the

similarity between frames. Currently, the most effective approach to exploit sim-

ilarity between frames is by coding a given frame by first predicting it based on a

previously coded frame, and then coding the error in this prediction. Consecutive

video frames typically contain the same imagery, however possibly at different

spatial locations because of motion. Therefore, to improve the predictability it is

important to estimate the motion between the frames and then to form an ap-

propriate prediction that compensates for the motion. The process of estimating

the motion between frames is known as Motion Estimation (ME), and the process

of forming a prediction while compensating for the relative motion between two

frames is referred to as Motion-Compensated Prediction (MCP).

There are three basic common types of coded frames: (1) intra-coded frames, or

I-frames, where the frames are coded independently of all other frames, (2) predic-

tively coded, or P-frames, where the frame is coded based on a previously coded

frame, and (3) bi-directionally predicted frames, or B-frames, where the frame is

coded using both previous and future coded frames. Figure 2.1 illustrates the dif-

ferent coded frames and prediction dependencies for an example MPEG Group of

Pictures (GOP). The selection of prediction dependencies between frames can have

a significant effect on video streaming performance, i.e. in terms of compression

efficiency and error resilience. Currently there are two families of video compres-

9

Figure 2.1: Example of the prediction dependencies between frames.

sion standards, performed under the sponsor of the International Telecommunica-

tion Union-Telecommunications (ITU-T) and the International Organization for

Standardization (ISO). The first video compression standard to gain widespread

acceptance was the ITU H.261 [15], which was designed for video conferencing

over the integrated services digital network (ISDN). The video compression part

of the standard is H.263 and its first phase was adopted in 1996 [16]. Continuous

enhancement on H.263 was accomplished till a completely new algorithm origi-

nally referred to as H.26L which is currently being finalized as H.264/AVC [17].

Another standard called Moving Pictures Expert Group (MPEG) was established

by the ISO to develop a standard for compression moving pictures (video) and as-

sociated audio on digital storage media (CD-ROM). Four versions of this standard

MPEG-1, MPEG-2, MPEG-3, and MPEG-4 have been published. MPEG-4 was

designed to provide improved compression efficiency and error resilience features,

as well as increased functionality, including object-based processing, integration of

both natural and synthetic (computer generated) content, and content-based in-

teractivity [18]. Currently, the video compression standards H.264/MPEG-4 Part

10

10 AVC/SVC are primarily used for video communication and video streaming

and have gained wide acceptance.

2.3 IEEE 802.11 Networks

To support communication over Wireless Local Area Networks (WLANs), the

IEEE 802.11 standard provides specifications for both the physical layer and the

Medium Access Control (MAC) sublayer [19, 20, 21, 22, 23]. Different versions

of the standard are varied in terms of their choice of modulation and frequency

bands at the physical layer. 802.11a and 802.11g use Orthogonal Frequency-

Division Modulation (OFDM) and use spectrums centered at 5 GHz and 2.4 GHz

respectively [19, 20]. On the other hand, 802.11b uses Direct Sequence Spectrum

Spreading (DSSS) and operates at the 2.4 GHz Industrial, Scientific, and Medical

(ISM) band [22].

Due to the increasing popularity of Real-Time voice and video traffic over wireless

LANs, the 802.11e protocol has been developed to address the growing need for

Quality-of-Service (QoS) support [23]. The Enhanced Distributed Channel Access

(EDCA) scheme allows traffic classification at the MAC layer, and serves differ-

ent traffic categories differently according to their priority levels by tuning their

channel access parameters: CWmin (minimum Contention Window) and AIFSN

(Adaptive Inter Frame Space Number). Despite the enhancements introduced by

802.11e, supporting QoS over 802.11 networks remains a challenging problem.

New standardization efforts for 802.11n are devoted to increasing both the date

11

rate and throughput in wireless LANs [22]. The IEEE 802.11n amendment

promises transmission rates up to 600 Mbps by applying Multiple-Input-Multiple-

Output (MIMO) technology across multiple antennas and bonding multiple fre-

quency channels for transmission. The amendment is also designed to reduce

MAC-layer overhead by aggregating transmissions of multiple consecutive pack-

ets, thereby improving throughput of payload data.

2.4 Video Streaming Scalability Overview

Scalable video streaming are classified into two streaming approaches: switch-

ing among multiple pre-encoded non-scalable bit-streams and streaming with a

single scalable bit-stream. Unlike single scalable video streaming, pre-encoded

non-scalable video streaming is not suitable for Real-Time applications since it

introduces more encoding delay. The idea of scalable video streaming has been

proposed to overcome the problems of unknown and time-varying channel band-

width, delay jitter, and packet loss that have been addressed in video streaming.

The idea of scalable video streaming aims to adjust the amount of data to be

transmitted according to the time-varying channel bandwidth [2].

According to the above scalable video streaming classification, there are two meth-

ods to compress the video signals: pre-encoded non-scalable video coding and

scalable video coding. In the pre-encoded non-scalable video coding, the video

content is encoded independent of the actual channel characteristics to a vari-

ety of bit-streams. The main problem with this method is that it is difficult to

12

adaptively stream non-scalable video contents to an unknown and time-varying

bandwidth channel with heterogeneous client terminals. On the other hand, video

in the scalable video coding needs to be encoded only once. Then simply transmit

a certain stack of layers (sub-stream) truncated from the main encoded bit-stream.

Lower qualities, spatial resolutions and/or temporal resolutions could be obtained

adaptively to the actual channel characteristics. As an ultimate goal, the scal-

able representation of video should be achieved without impact on the coding

efficiency. That is, the truncated scalable stream (at lower rate, spatial and/or

temporal resolution) should produce the same reconstructed quality as a single-

layer bit-stream in which the video was coded directly under the same conditions

and constraints, notably with the same bit-rate. However, practically all scal-

able video coders suffer loss in compression efficiency relative to state-of-the-art

non-scalable coders [2].

2.4.1 Non-Scalable H.264/MPEG4 AVC Video Coding

H.264/MPEG4 AVC is a video coding standard that was developed by the Joint

Video Team (JVT) of the ITU-T Visual Coding Experts Group (VCEG) and

the ISO/IEC Moving Pictures Experts Group (MPEG) [24]. The structure of

H.264/AVC constructs of two main layers: Video Coding Layer (VCL) which is

designed to efficiently represent the video content, and Network Abstraction Layer

(NAL) which formats the VCL representation of the video and provides header

information in a manner appropriate for mapping VCL data to a variety of trans-

13

port layers such as RTP/IP or storage media [25] (see Figure 2.2). In H.264/AVC

Figure 2.2: Structure of H.264/AVC video encoder [2].

the coded video data is organized into NAL units, which is basically a packet

of integer numbers of bytes. The first byte of each NAL unit is a header byte

that contains an indication of the type of content data, and the remaining bytes

contain payload data of the type indicated by the header. The NAL unit is used

for encapsulating the encoded video data and allows tagging each packet with

an identifier that can later be used by the delivery scheme for enforcing unequal

error protection (UEP) or preferential treatment [26]. A set of successive NAL

units with specific properties is referred to as an access unit. One access unit is

decoded exactly to one decoded picture. Thus, a set of consecutive access units

with certain properties is referred to as an encoded video frame sequence. A coded

video frame sequence represents an independently decodable part of a NAL unit

bit-stream. This bit-stream always starts with an instantaneous decoding refresh

(IDR) access unit, which signals that the IDR access unit and all following access

units can be decoded without decoding any previous pictures of the bit-stream.

14

For streaming NAL units, H.264/AVC specification defines a byte stream format

in which each NAL unit is prefixed by a specific pattern of three bytes called a

start code prefix. The start code prefix helps in identifying the boundaries of the

NAL unit. In some cases, streaming the NAL unites can be done without using

the start code prefix and instead they can be carried in data packets framed by

the system transport protocol as in RTP-based systems [2].

The way pictures are partitioned into smaller coding NAL units in H.264/AVC

follows the rather traditional concept of subdivision into macroblocks and slices.

Each picture is partitioned into macroblocks that each covers a rectangular picture

area of 16X16 luma samples and, in the case of video in 4:2:0 chroma sampling

format, 8X8 samples of each of the two chroma components. The samples of a

macroblock are either spatially or temporally predicted, and the resulting predic-

tion residual signal is represented using transform coding. The macroblocks of

a picture are organized in slices, each of which can be parsed independently of

other slices in a picture. Depending on the degree of freedom for generating the

prediction signal, H.264/AVC supports three basic slice coding type: I slice, where

intra-picture predictive coding using spatial prediction from neighboring regions,

P slice, where intra-picture predictive coding and inter-picture predictive coding

with one prediction signal for each predicted region, B slice, where intra-picture

predictive coding, inter-picture predictive coding, and inter-picture bi-predictive

coding with two prediction signals that are combined with weighted average to

form the region prediction [4].

15

2.4.2 Scalable H.264/SVC Video Coding

The Scalable Video Coding (SVC) is an extension of H.264/AVC standard. Unlike

single-layer H.264/AVC, SVC provides network-friendly scalability at a bit-stream

level with a little bit increase in decoding delay. Scalability in video streaming is

supposed to provide functionalities such as bit rate, format, and power adaptation

to the varying terminal capabilities or network conditions as shown in Figure 2.3.

In H.264/SVC scalability refers to the removal of parts of the video bit-stream in

order to adapt it to the various preferences of end users as well as to heterogeneous

terminal capabilities or network conditions [4].

Figure 2.3: The principle of scalable video coding [3].

SVC has achieved a significant improvement in coding efficiency and scalability

in comparison to the relative scalable profiles of prior video coding standards.

It enables on-the-fly adaptation to certain application requirements and network

16

time-varying transmission conditions. Due to this reason and the continuous evo-

lution of receiving devices and the increasing usage of transmission systems that

are characterized by a widely varying connection quality, the desire for scalable

video coding has been rapidly increased. Video transmission over the Internet

or wireless networks is exposed to variable transmission conditions, which can

severely affect the pre-configured video streaming features and might lead to in-

terrupt the video transmission session. Furthermore, video content is delivered to

a variety of decoding devices with heterogeneous display and computational capa-

bilities. In such heterogeneous environments, flexible adaptation of once-encoded

content is desirable to avoid the overhead of re-transmitting a new encoded con-

tent especially for Real-Time applications. Meanwhile, it enables interoperability

of encoder and decoder products from different manufacturers [4].

In H.264/SVC, video bit-stream is called scalable when parts of the stream can be

removed in a way that the resulting sub-stream forms another valid bit-stream for

some target decoder. The remains sub-stream represents the new source content

for reconstructing a video with a less quality than that of the complete original

bit-stream but with a high quality when comparing to the lower sub-stream. Video

stream scalability is classified to three main types: temporal, spatial, and quality

scalability (combination of those types can also be used). In spatial scalability,

the subsets of the bit-stream have a reduced picture size (spatial resolution) while

in temporal scalability they have a reduced frame rate (temporal resolution), see

Figure 2.4. However, in quality scalability, the sub-stream provides the same

17

spatio-termporal resolution as the complete bit-stream, but with a lower fidelity

or as informally referred to as signal-to-noise ratio (SNR) [3].

Figure 2.4: Types of scalability in video coding.

A bit-stream provides temporal scalability when the set of consecutive NAL units

with specific properties (access units) can be partitioned into a temporal base

layer and one or more temporal enhancement layers with the following property.

Let the temporal layers be identified by a temporal layer identifier T starting from

0 for the base temporal layer and is increased by 1 for every added temporal layer.

Then for each natural number n, the bit-stream that is obtained by replacing all

access units of all temporal layers with a temporal layer identifier T greater than

n forms another valid bit-stream for the given decoder.

For hybrid video codecs, temporal scalability can generally be enabled by restrict-

ing motion-compensated prediction to reference pictures with a temporal layer

identifier less than or equal to the temporal layer identifier of the picture to be pre-

18

dicted. The prior video coding standards MPEG-1, H.262/MPEG-2 Video, H.263,

and MPEG-4 visual all support temporal scalability to some degree. H.264/AVC

provides a significantly increased flexibility for temporal scalability because of

its reference picture memory control. It allows the coding of picture sequences

with arbitrary temporal dependencies, which are only restricted by the maximum

usable Decoded Picture Buffer (DPB) size. Hence, for supporting temporal scal-

ability with a reasonable number of temporal layers, no changes to the design of

H.264/AVC were required. The only related change in H.264/SVC refers to the

signaling of temporal layers.

Figure 2.5: Hierarchical prediction structures for temporal scalability [4].

Temporal scalability with dyadic temporal enhancement layers can be very effi-

ciently provided with the concept of hierarchical B or P pictures as illustrated in

Figure 2.5a. The enhancement layer pictures are typically coded as B pictures;

where the reference picture lists 0 and 1 are restricted to the temporally preceding

19

and succeeding picture, respectively, with a temporal layer identifier less than the

temporal layer identifier of the predicted picture. Since backward prediction is not

necessarily coupled with the use of B slices in H.264/AVC, the temporal coding

structure of Figure 2.5a can also be realized using P slices. Each set of temporal

layers (T0,...,Tn) can be decoded independently of all layers with a temporal layer

identifier T > Tn. The set of pictures between two successive pictures of the tem-

poral base layer together with the succeeding base layer picture is referred to as

a group of pictures (GOP) [3].

Although the described prediction structure with hierarchical B or P pictures pro-

vides temporal scalability and also shows excellent coding efficiency, it represents

a special case. In general, hierarchical prediction structures for enabling temporal

scalability can always be combined with the multiple reference picture concept

of H.264/AVC. This means that the reference picture lists can be constructed by

using more than one reference picture, and they can also include pictures with

the same temporal level as the picture to be predicted. Furthermore, hierarchical

prediction structures are not restricted to the dyadic case. As an example, Figure

2.5b illustrates a non-dyadic hierarchical prediction structure, which provides two

independently decodable sub-sequences with 1/9-th and 1/3-rd of the full frame

rate. It is further possible to arbitrarily adjust the structural delay between en-

coding and decoding a picture by restricting motion-compensated prediction from

pictures that follow the picture to be predicted in display order. As an exam-

ple, Figure 2.5c shows a hierarchical prediction structure, which does not employ

20

motion-compensated prediction from pictures in the future. Although this struc-

ture provides the same degree of temporal scalability as the prediction structure

of Figure 5a, its structural delay is equal to zero compared to 7 pictures for the

prediction structure in Figure 2.5a.

For supporting spatial scalable coding, SVC follows the conventional approach

of multi-layer coding, which is also used in H.262/MPEG-2 Video, H.263, and

MPEG-4 Visual. In each spatial layer, motion-compensated prediction and in-

tra prediction are employed as for single-layer coding. In addition to these basic

coding tools of H.264/AVC, SVC provides what so-called inter-layer prediction

methods (see Figure 2.6), which allow an exploitation of the statistical dependen-

cies between different layers for improving the coding efficiency (reducing the bit

rate) of enhancement layers [3].

Figure 2.6: Multi-layer structure with additional inter-layer prediction [4].

In H.262/MPEG-2 Video, H.263, and MPEG-4 Visual, the only supported inter-

layer prediction methods employ the reconstructed samples of the lower layer

signal. The prediction signal is either formed by motion-compensated prediction

21

inside the enhancement layer, by upsampling the reconstructed lower layer signal,

or by averaging such an upsampled signal with a temporal prediction signal. Al-

though the reconstructed lower layer samples represent the complete lower layer

information, they are not necessarily the most suitable data that can be used for

inter-layer prediction. Usually, the inter-layer predictor has to compete with the

temporal predictor, and especially for sequences with slow motion and high spatial

detail, the temporal prediction signal typically represents a better approximation

of the original signal than the upsampled lower layer reconstruction. In order to

improve the coding efficiency for spatial scalable coding, two additional inter-layer

prediction concepts have been added in SVC: prediction of macroblock modes and

associated motion parameters and prediction of the residual signal. All inter-layer

prediction tools can be chosen on a macroblock or sub-macroblock basis allowing

an encoder to select the coding mode that gives the highest coding efficiency [3].

Quality scalability can be considered as a special case of spatial scalability with

identical picture sizes for base and enhancement layer. This case, which is also

referred to as coarse-grain quality scalable coding (CGS), is supported by the

general concept for spatial scalable coding as described above. The same inter-

layer prediction mechanisms are employed, but without using the corresponding

upsampling operations. When utilizing inter-layer prediction, a refinement of tex-

ture information is typically achieved by re-quantizing the residual texture signal

in the enhancement layer with a smaller quantization step size relative to that

used for the preceding CGS layer. As a specific feature of this configuration, the

22

deblocking of the reference layer intra signal for inter-layer intra prediction is omit-

ted. Furthermore, inter-layer intra and residual prediction are directly performed

in the transform coefficient domain in order to reduce the decoding complexity.

The CGS concept only allows a few selected bit rates to be supported in a scal-

able bit-stream. In general, the number of supported rate points is identical to

the number of layers. Switching between different CGS layers can only be done

at defined points in the bit-stream. Furthermore, the CGS concept becomes less

efficient, when the relative rate difference between successive CGS layers gets

smaller. Especially for increasing the flexibility of bit-stream adaptation and er-

ror robustness, but also for improving the coding efficiency for bit-streams that

have to provide a variety of bit rates, a variation of the CGS approach, which is

also referred to as medium-grain quality scalability (MGS), is included in the SVC

design. The differences to the CGS concept are a modified high-level signalling,

which allows a switching between different MGS layers in any access unit, and the

so-called key picture concept, which allows the adjustment of a suitable trade-off

between drift and enhancement layer coding efficiency for hierarchical prediction

structures [3].

Drift describes the effect that the motion-compensated prediction loops at encoder

and decoder are not synchronized, e.g., because quality refinement packets are dis-

carded from a bit-stream. Figure 2.7 illustrates different concepts for trading off

enhancement layer coding efficiency and drift for packet-based quality scalable

coding.

23

Figure 2.7: Various concepts for trading off enhancement layer coding efficiency
and drift for packet-based quality scalable coding [4].

2.5 Real-Time Transport Protocol (RTP)

The Real-Time Transport Protocol (RTP) is a transport protocol that provides

end-to-end network transport functions for transmitting Real-Time data, such as

interactive audio and video. Services that are provided by RTP include payload

type identification, sequence numbering, time stamping and delivery monitoring.

RTP time stamping service allows placing the incoming audio and video packets in

the correct time slot order. Normally RTP is placed on top of the User Datagram

Protocol (UDP) and linked to the Real-Time Control Protocol (RTCP) to provide

a mechanism for reporting feedbacks on the transmitted Real-Time data. In

addition, RTP can be used in multicast audio conferencing as well as audio and

video conferencing scenarios [2]. For more information about RTP for Real-Time

application, audio and video conferencing, and H.264 video payload format, check

RFC 3550 [27], RFC 3551 [28] and RFC 3984 [29].

24

2.5.1 Real-Time Control Protocol (RTCP)

The Real-Time Control Protocol (RTCP) is a data transport protocol used in

conjunction with RTP for transporting Real-Time media streams. It includes

functions such as supporting synchronization between different media types (e.g.,

audio and video) and providing the streaming applications with information about

network quality, number of viewers, identity of viewers, etc. RTCP gives feedback

to each participant in an RTP session which can be used to control streaming

performance. These feedbacks include reception reports, number of lost packets

and jitter statistics. The RTCP feedback messages can potentially be used by the

higher application layer to modify the transmission mechanism [2].

2.5.2 Real-Time Streaming Protocol (RTSP)

The Real-Time Streaming Protocol (RTSP) is an application-level protocol for

the control of Real-Time multimedia data. It acts as an auxiliary protocol for

controlling video, audio, and multimedia sessions (e.g. play, pause and stop).

Unlike the protocols that are responsible of the delivery of the video signals (e.g.,

RTP), RTSP allows these signals to be controlled by the user. Like a dispatcher

for a delivery service, RTSP acts like a dispatcher for a delivery service since it

does not actually deliver packages, instead it controls when and how packages

are delivered by other protocols such as RTP. Basically, RTSP acts as a remote

control for the media server [2].

25

2.6 Real-Time Publish Subscribe Communica-

tion Model

The Publish-Subscribe architecture is a data centric design permitting direct con-

trol of information exchange among different nodes in the architecture [30]. It

is a sibling of the message queue paradigm, and is typically one part of a larger

message-oriented middleware system. It generally relies on asynchronous message-

passing, as opposed to a request-response architecture. It connects anonymous

information producers with anonymous information consumers. The property of

decoupling publisher and subscriber in time (data when you want it), in loca-

tion (publisher and subscriber can be located anywhere) and in platform (connect

any set of systems) makes the publish-subscribe communication model more ap-

propriate for large scale and loosely coupled distributed Real-Time systems than

traditional models such as client-server models [31].

Client-server communication drawbacks, e.g., server bottleneck, single points of

failure and high bandwidth load in many-to-many communication are resolved by

publish-subscribe communication model [32]. Unlike client-server communication

model, data in publish-subscribe communication model is pushed by the publish-

ers to topics or named logical channels where subscribers will receive all messages

published to the topics to which they subscribe immediately after the data is

produced without the need of request, and thus subscribers can access the data

in Real-Time. In addition, publish-subscribe architecture frees the data sender

(publisher) from waiting for an acknowledgement by the receiver (subscriber). As

26

a result, the publisher can quickly move on to the next receiver within determin-

istic time without any synchronous operations which is desirable for a large scale

distributed Real-Time systems [31]. Recently, the publish-subscribe communi-

cation model has become popular in different middlewares such as Java Message

Service (JMS), Microsoft Component Object (COM+) and Data Distribution Ser-

vice (DDS).

DDS is a high performance middleware standardized by the Object Management

Group (OMG) for QoS-enabled publish-subscribe communication aimed at dis-

tributed Real-Time and embedded systems [5]. At the core of DDS is the Data-

Centric Publish-Subscribe (DCPS) layer that is targeted towards the efficient de-

livery of the proper information to the proper recipients for applications running

on heterogeneous platforms [5]. DCPS builds on a Global Data Space (GDS) by

which applications or participants running on heterogeneous platforms can share

information by publishing data under one or more topics of interest to other par-

ticipants. On the other hand, applications or participants can use the global data

space to declare their intent to become subscribers and access data of interested

topics. Each topic represents a logical channel for connecting publishers to all

interested subscribers. Figure 2.8 represents the dissemination of data from one

or more publishers to interested subscribers in the DDS middleware.

Moreover, DDS is a publish-subscribe standard with a diverse set of Quality of

service (QoS) that ensures high performance and low delay of data transmission

[5].

27

Figure 2.8: Overview of publish-subscribe using DDS. [5].

28

CHAPTER 3

REAL-TIME VIDEO

STREAMING TECHNIQUES

Due to the rapid growth of wireless communication, video streaming over wire-

less networks has gained a great amount of research. However, Real-Time video

streaming over wireless networks still suffer from the problem of time-varying

changes in wireless conditions due to changing distance between the enabled de-

vices, signal fading, noise interference, and network congestion, leading to time-

varying packet loss rate and fluctuating effective bandwidth. Therefore, the pro-

visioning of end-to-end QoS in wireless communications is a very challenging and

demanding task.

The literature of Real-Time video streaming has concentrated on the avoidance

of network congestion since it severely affects the performance of video streaming.

This is performed by adapting the source video bit rate to the network channel

bit rate. On the other hand, if frame’s packet loss occurs due to unavoidable

29

errors, many papers have proposed error concealment and resilience mechanisms

for preventing decoders from discarding the entire frame and breaking of the con-

tinuity of the video streams. In this chapter, I classify the papers that address

the Real-Time video streaming area into five major approaches; video rate adap-

tation approach, channel assignment approach, cross-layer design approach, error

resilient approach, and middleware approach.

3.1 Video Rate Adaptation

Congestion is a common phenomenon in network communications that occurs

when the offered load exceeds the designed limit, causing degradation in net-

work performance such as throughput. Useful throughput can be decreased for a

number of reasons. For example, it can be caused by collision in multiple access

networks, or by increased number of retransmissions in reliable systems. Besides

a decrease in useful throughput, the network traffic might be exposed to other

problems such as packet losses, higher delay or delay jitter. To avoid such unde-

sirable consequences of congestion, control procedures are often employed to limit

the amount of network load. Such control procedures are called rate adaptation

or congestion control.

In video streaming over wireless networks, a proposal of adapting the bit rate of

the video encoder based on verified network status (e.g., available bandwidth) has

been widely adopted. Five main approaches have been proposed under the concept

of rate adaptation: rate control, transcoding, bit-stream switching, packet pruning,

30

and scalable coding. Transcoding and bit-stream switching [33] approaches might

not be suitable for Real-Time live video streaming. Bitstream switching requires

pre-encoded video contents at different rates and quality levels which introduce

more delay and not practical for live video show. Transcoding referes to the con-

version of one encoding data to another when the receiver does not support the

format or has limited storage capacity. However, transcoding is commonly a lossy

process, introducing video quality loss. It requires some computational cost and

in some cases it may be necessary to decode the content and re-encode according

to end-user restrictions. Some literatures have proposed error resilient transcod-

ing approaches [34, 35, 36] to solve the loss problem in order to be suitable for

real-time video streaming, but still restricted to the prestored videos not a live

one.

Unlike transcoding, the idea of the rate control approach is to change the bit rate

of the video encoder without changing video formats. This change is according

to the negative feedback of the available network resources by using some QoS

indicators e.g., packet loss, packet deadline, etc., while maintaining a reasonable

video quality and avoiding any modifications to the network infrastructure. On

of the early and widely accepted rate control approach is the TCP-friendly Rate

Control (TFRC) [37]. TFRC is an equation-based congestion control for unicast

multimedia traffic based on the TCP Reno’s throughput equation. In TFRC, the

sender adjusts its sending rate as a function of the measured rate loss, where a

loss consists of one or more packets dropped within a single round-trip time. How-

31

ever, TFRC is mainly proposed for wired networks especially for the Internet and

when applied to the wireless networks, it suffers from performance degradation

[38]. This is because TFRC method assumes perfect link quality and considers

the network congestion as the only packet loss reason while most of packet loss

in wireless networks is due to error at the physical layer. As a result, literatures

such as [38, 39, 40, 41, 42, 43, 44] proposed a new optimized TFRC-based mecha-

nisms to support error-prone networks as wireless networks. In addition, authors

in [45, 46, 8, 47, 48, 49, 50] proposed different rate control schemes to adapt video

stream to the available network resources. As instance [8] proposed an algorithm

for verifying network status by using MAC-layer parameters implying PHY-layer

information and then correspondingly adjusting the target bit rate. Despite the

success of the rate control approach in Real-Time video streaming, it may fail

under the multicast video streaming scenarios over multi-rate wireless LANs. In

multicast video streaming, rate control mechanism requires to send a specific video

transmission rate for every user of different wireless network channel conditions.

This may involve the estimation of every users channel resources and the genera-

tion of multiple video transmission bit rates which introduce an overhead.

Recently, the idea of multi-layer scalable video stream start to be dominant in

the field of video streaming. Unlike the single-layer rate adaptation approaches

(e.g., rate control, transcoding, bit-stream switching), multi-layer video stream

consists of a base layer and other enhancement layers which are independent of

each other. That is, dropping an enhancement bit-stream layer will not severally

32

affect the whole quality of the decoded video. Scalable (multi-layer) video stream-

ing overwhelms non-scalable (single-layer) video streaming in heterogeneous and

error-prone networks. It allows data rate adaptation without re-encoding, just by

dropping bit-stream packets. This property eliminates the overhead of transcoding

and bit-stream switching to adapt video rate to the available network resources.

The Scalable Video Coding (SVC) is an implementation of multi-layer scalable

video stream. H.264/SVC provides network-friendly scalability at the bitstream

level with a moderate increase in decoding delay.

Scalability in video streaming is supposed to provide functionalities such as bit

rate, format, and power adaptation to the varying terminal capabilities or network

conditions. In H.264/SVC, scalability refers to the removal of parts of the video

bit stream in order to adapt it to the various preferences of end users as well as to

varying terminal capabilities or network conditions [4]. However, scalable video

coding as H.264/SVC still requires end-to-end QoS for maintaining the priority

of which frames packets of which layer are supposed to be dropped first in order

to control video traffic congestion and deliver better video quality [51]. Forward

Error Correction (FEC) mechanism also proposed for the scalable video stream-

ing by allocating different amount of FEC codes to different layers according to

their priority to achieve graceful degradation [52, 53, 54]. In [53] an unequal layer

error protection has been proposed in a DVB-H transmission of layered video on

response to packet losses. A research work as in [54] proposed an unequal error

protection for SVC base and enhancement layers while considering the transmis-

33

sion of on-demand scalable variable-bit-rate (VBR) video and the existence of

receiver playback video buffer. However, this research work is different in which

it consider the real-time video transmission.

On the other hand, a good amount of researches have been conducted in a cross-

layer schemes as a proposed solution for delivery of scalable video over multirate

wireless networks as 802.16 or IEEE 802.11 [26, 55, 56, 57, 58]. As instance in

[26], authors have proposed a cross-layer design to optimize the link adaptation

scheme that configures the PHY and MAC layers, and treat SVC enhancement

layers differently in a way that the highest possible video quality is achieved by

avoiding dropping layers and without adding to the traffic load of the WLAN.

Link adaptation optimization is used to determine the number of video layers

permitted, and the PHY transmission mode assigned to each video layer. How-

ever, such proposed approaches are complex and only exclusive for those wireless

networks which employ a variable rate PHY and a link adaptation mechanism as

in 802.11n multi-input multi-output (MIMO), 802.11a and 802.16. Some other

literatures proposed a real-time and scalable delivery of SVC-based video over

MIMO networks as in [59, 60].

3.2 Video Error Control Coding

Data packets may be lost or corrupted due to either traffic congestion or bit errors

due to impairment of the physical channel as in wireless networks. Retransmission

techniques as Automatic Repeat Request (ARQ) [61, 62] have been used as a so-

34

lution to such problem but with unacceptable delay for real-time applications. In

broadcast application as in real-time video streaming, retransmission techniques

are not used completely due to the playback constraints of every video packet and

the network flooding considerations. Forward error correction (FEC) techniques

could also be employed to reduce the effects of errors on the decoded video qual-

ity [63]. However, in the Scalable Video Streaming (SVC) when burst packet loss

occurs and a certain layer is lost, the received packets in the higher layers will

become useless [63]. As a result, literatures as in [52, 53, 54] comes to propose

the idea of allocating different amount of FEC codes to different layers according

to their priority to achieve graceful degradation. In [53] an unequal layer error

protection has been proposed in a DVB-H transmission of layered video on re-

sponse to packet losses. A research work as in [54] proposed an unequal error

protection for SVC base and enhancement layers while considering the transmis-

sion of on-demand scalable variable-bit-rate (VBR) video and the existence of

receiver playback video buffer. However, this research work is different in which

it consider the real-time video transmission. In fact, packet loss or corruption is

inevitable and therefore using encoding/decoding schemes that can make the com-

pressed bit-stream resilient to transmission errors is required in real-time video

applications to avoid a significant degradation in video quality [11].

Video bit-stream error resilience techniques can be categorized into three main

groups: error resilient encoding technique which make the compressed bit-stream

more resilient to potential errors; decoder error concealment technique which is

35

used at the decoder side to estimate the missing or corrupted video samples based

on the surrounding received samples, by making use of the inherent correlation

among spatially and temporally adjacent samples; and adaptive error resilient

technique in which the encoder can adapt its operation based on the loss con-

dition detected at the decoder. Unlike error resilient encoding, decoder error

concealment technique is not employing any additional bit rate, but adds compu-

tational complexity to the decoder [11]. The problem of error control approach is

that it implies adding redundancy or more bits to the encoded bit-stream. There-

fore, the encoding efficiency will decrease due to the increase size of every video

sample. Moreover, error control approach can lead to a significant delay when

a large number of video packets are corrupted, in which discarding such packets

might be a better decision for real-time video streaming.

3.3 Channel Assignment

Multi-Channel Multi-Interface (MCMI) wireless ad hoc networks have received

amount of interest, especially under the context of Real-Time video streaming

since multi-channel can provide higher performance than single channel. Unlike

single channel, multiple interfaces and multiple channel technology offers a con-

currently multiple transmissions/receptions by using multiple interfaces equipped

on each node. Moreover, neighboring links assigned to different channels can carry

traffic free of interference by exploiting multiple available channels, thereby mul-

tiplying the network throughput and reducing the link-layer delay dramatically.

36

Channel Assignment (CA) is a key technique to relieve signal interference and to

increase network capacity in MCMI networks. Streaming video over MCMI net-

works requires an efficient channel assignment strategy that guarantees an efficient

use of available channel resources for Real-Time video streaming. In this aspect,

different channel assignment mechanisms have been proposed in [64, 65, 66, 67, 68],

which can be further divided into three main categories [69], i.e., static, dynamic,

and hybrid channel assignment. A statistic link load based hybrid channel as-

signment strategy (SLL-HCA) [70], is one of the channel assignment solutions

for Real-Time video streaming that based on a representative hybrid channel as-

signment strategy (HMCP). This strategy is presented to obtain a better channel

assignment metric than in HMCP. SLL-HCA is based on the HMCP protocol

and adopts the statistical link load metric to ensure load balancing in a two-hop

neighborhood, and to prevent both the hidden node problem and the exposed

node problem. SLL-HCA and its advanced version VE-SLL-HCA are proposed

mainly for reserving lower interference of routing path for video-streaming traffic

than other non-video traffic and for improving the QoS support of video-streaming

over multi-channel ad hoc networks.

No doubt that channel assignment approach has a significant improvement in

real-time video streaming but it is specified to a certain networks that support

MCMI.

37

3.4 Cross-layer Design

The idea of cross-layer approach is to exchange information between different lay-

ers to support Real-Time video streaming over wireless networks. This approach

allows some layers to use the information from other layers to make a better

strategic decision.

A number of cross-layer design schemes aims at Real-Time video streaming have

been recently proposed [71, 72, 73, 74, 75]. A new adaptive cross-layer mechanism

(ACMRV) [71] is proposed for Real-Time video streaming over MCMI wireless

networks. It includes both an efficient channel assignment (CA) and adaptive

Foreword Error Correction (FEC) mechanism. Both packet queue length from

PHY layer and the available bandwidth calculated from MAC layer are used for

selecting a better channel for forwarding video streaming packets, and added re-

dundant packets of adaptive FEC for unavoidable packet errors.

In [73, 75], different adaptive cross layer techniques have been proposed to opti-

mally enhance the QoS of wireless video transmission in an IEEE 802.11e WLAN.

These techniques make use of two analytical models: a video distortion model and

channel throughput estimation model for predicting the video quality in term of

average PSNR of all decoded video frames and, the channel throughput and packet

loss rate of each MAC layers queue. The estimated parameters are then fed into

the analytical models in order to optimize the selection of the two IEEE 802.11e

EDCA MACs channel access parameters; CWmin and AIFSN. These mechanisms

basically aim at the selection of appropriate CWmin and AIFSN for reducing the

38

impact of MAC contention and improve the QoS transmission of video traffic.

The authors in [74] have proposed a link adaptation strategy for IEEE 802.11

WLAN that estimates the received perceptual video quality at the current and

adjacent PHY rates. The PHY rate that produces the best perceptual quality is

chosen for each Group of Pictures (GOP). A subset of codec-related parameters

and network-related parameters is chosen to be cross-layer information about the

system. This information is then input to a module that estimates a video qual-

ity metric, e.g., Peak Signal-to-Noise Ratio (PSNR), Mean Absolute Difference

(MSAD), Structural Similarity Index (SSIM), VQM, and Mean Squared Error

(MSE).

Although Cross layer design approach optimally uses the wireless channel under

different conditions for transmitting the video streams, it has some drawbacks

as follows: i) It is not a general solution for Real-Time video streaming since

it depends on the wireless network architecture, for example, cross layer design

approaches that proposed for 802.11n MCMI based networks are different from

those proposed for 802.11e EDCA based networks; ii) The exchanged information

between different layers may introduce additional overhead and thus affects the

performance of video streaming; iii) It is very complex approach since the devel-

opment of a video streaming system based on cross-layer mechanism requires deep

network understanding.

39

3.5 Middleware

Distributed system based on middleware technologies have been recently proposed

as a practical solution for the integration of distributed control systems (DCS)

[76, 77]. Middleware technology provides interoperability among heterogeneous

DCS with an acceptable Real-Time transmission QoS of huge amount of data. In-

dustrial applications have become more sophisticated. Most of these applications

requires a human assisted decision based on video processes to control their tradi-

tional physical processes. In this section I summarize the most relevant research

work on the topic of middleware based Real-Time video streaming.

Authors in [76] proposed that a CORBA middleware based implementation can

be used to offer Real-Time video streaming. They have applied a CORBA based

Real-Time video surveillance system in a non-wireless network to a country-wide

DCS integration problem in order to see the effects of their actions in remote

hydroelectric power plants. Although CORBA is a very complete technology that

introduces a big number of interfaces for almost any type of required middle-

ware functionality, it is a complex architecture that introduces implementation

overheads, in particular if compared with other lighter weight technologies such

as ICE (Internet Communications Engine) [78], DDS (Data Distribution Service

for Real-Time systems) [5], or some specific Real-Time Java based solutions [79].

Therefore, existing approaches can be improved to offer appropriate support to the

Real-Time nature of video transmission. In addition, using new standard middle-

ware introduces flexibility for video transmission in two ways. First, compared to

40

direct implementation over the network level, the utilization of a middleware is al-

ready more flexible. Second, utilizing middleware solution offers QoS management

which allows to appropriately initiate Real-Time support for video transmission.

Another work in [80] presents an architecture of a Real-Time and QoS-based video

surveillance. This work shows how the decoupled interaction paradigm of the

DDS[5] middleware can be used for the development of higher complexity surveil-

lance systems. A prototype video transmission surveillance system is presented

by sending a single-layer video stream. This video stream adapts to luminosity

conditions by using the QoS resource management component that may require

the compression factor to be altered in order to fit the stream to the new require-

ments. This way of adaptation introduces more encoding latency which is not

appropriate for Real-Time video streaming applications.

Detti et al., [81] demonstrate and evaluate a technique for streaming H.264/SVC

video over a DDS[5] middleware in an 802.11 wireless scenario. Authors in this

work developed a receiver-driven rate control mechanism to maximize the quality

of the received video based on the built-in DDS[5] functionality. This mechanism

estimates the available network transfer capacity to compute the highest video

sub-stream that the subscriber can receive. The available channel capacity is es-

timated by configuring the video publisher to send a fixed number of aggregated

NAL unit packets periodically. Then calculate the available capacity as a ratio

between the number of bits of the aggregation set and its duration. However, this

aggregated set of the NAL units adds more delay and increase the bursty of the

41

transmitted traffic which should not be considered in Real-Time video streaming

architecture.

42

CHAPTER 4

DESIGN & IMPLEMENTATION

OF SCALABLE RTPS-BASED

VIDEO STREAMING

This chapter covers the architecture and implementation of the proposed scal-

able video streaming system over Real-Time Publish Subscribe Protocol (RTPS).

The RTI Data Distribution Service (RTI-DDS) [5] is used for implementing the

proposed architecture.

4.1 System Architecture

The architecture of the proposed scalable RTPS-based video streaming as shown

in Figure 4.1 consists of five main components: the Video Encoder, Video Decoder,

Video Publisher, Video Subscriber, and Video Streaming QoS.

43

Figure 4.1: Scalable RTPS-Based Video Streaming Architecture.

4.1.1 Video Encoder

In the video encoder module, both H.264 Advance Video Coding (H.264/AVC)

and H.264 Scalable Video Coding (H.264/SVC) can be used based on the system

requirements. H.264/AVC can be used in a condition of small system partici-

pants having less scalability and complexity requirements. On the other hand,

H.264/SVC can be used in a condition of large system participants with higher

scalability requirements. For implementing H.264/AVC, X264 [82] encoder is used

while JSVM [83] library is used for implementing H.264/SVC.

Video encoder receives the captured frame data of YUV420 type from the cam-

era. And then it encodes every frame depending on the encoder configuration

and type. The results are the Abstract Network Layer data (NAL) units which

44

provide network friendliness by enabling simple and effective customization of the

use of video coding data for a broad variety of systems. Every frame might be in

one NAL unit or slices in more than one NAL unit. Every scalability layer (sub-

stream) in a video stream encoded by an SVC encoder contains a sequence of NAL

units. Each NAL unit contains the encoding bits (payload) and is encapsulated

by a header to identify the sub-stream (scalability layer) that it belongs to. The

NAL unit header identifying parameters are used in the process of assigning NAL

unit to a publishing video streaming partition track.

4.1.2 Video Publisher

Video publisher is the part where the NAL units (video payload) and other Meta

data (e.g., frame number, SVC layer number) are published. Two main topics

are configured in this proposed architecture: video configuration topic ”conf”

and video NAL units topic ”P.∗”. The video configuration topic enables video

subscribers to join the video stream session and configure the SVC decoder based

on the published encoding parameter set. The video NAL units topic are par-

titioned at run-time into a number of partitions depending on the number of

encoded scalable sub-streams. The configured video partition QoS connects pub-

lishers/subscribers to a video partitions list which might also contain wildcards,

e.g. ”P.∗”. That is, video partition of a topic ”P.n” enables the subscriber to

join the complete video bitstream with the best quality while ”P.n− 1” joins the

subscriber to a sub-stream with lower quality.

45

Every publisher has a DataWriter (DW) for the dissemination of the video data to

the middleware global data space (GDS) under a certain video topic. In order to

design the proposed architecture, the Interface Description Language (IDL) data

type that represents the packet data structure of video configurations and NAL

units video publisher DataWriters is defined to contain the following fields:

1 const long MAX NAME LEN = 32;

2 const long MAX PAYLOAD SIZE = 1024;

3

4 struct VideoStream {

5 string <MAX NAME LEN> sender; //@key

6 long frameSize; //frame size

7 long frameno; //frame number

8 char frametype; //frame type (e.g., I−frame, P−frame, B−frame)

9 octet tid; //NAL temporal layer id

10 octet did; //NAL spatial layer id

11 octet qid; //NAL quality layer id

12 char framepayload[MAX PAYLOAD SIZE]; //NAL payload};

4.1.3 Video Subscriber

Video subscriber is the part where the data sequence is received in order to be

encoded to the original video frames. A participant subscriber requires to register

its interest to receive a video data of a certain Topic from a specific video partition

in order to begin receiving the published video samples of the corresponding video

46

partition. A valid QoS contract between the video publisher’s DataWriter (DW)

and subscriber’s DataReader (DR) is also required for initiating the transmission

process. By default, every subscriber is initially configured to receive from the

publisher video partition with the highest video quality. Meanwhile, the video

subscriber can dynamically switch to read from other video partitions. The deci-

sion of switching among partitions is handled by the subscriber in response to the

feedback coming from the configured user QoS adapting the transmission data to

the network channel limitations (e.g., available bandwidth). Every video frame

that has been received by the subscriber’s DataReader is directly sent to the video

decoder module to be processed.

4.1.4 Video Decoder

Video decoder receives the ordered sequence of video frames partition from the

subscriber’s DataReader which gathers data from a buffer of Group Of Pictures

(GOP) size. It then decodes every frame based on the decoder video quality

configuration. The results are video images or frames that are immediately and

properly rendered in every playback amount of time (normally 30ms) by an im-

age processing engine. The Open Source Computer Vision (OpenCV) [84] image

processing library is used in the implementation part for capturing frames from

the camera and to playback the encoded pictures. It is necessary that the de-

coder must be initialized prior to the subscription process. This is because of the

unnecessary delay caused by initializing the decoding configuration process while

47

the publisher and the subscriber are already communicating.

4.1.5 Video Streaming Quality of Service

A set of quality of services (QoS) are configured to be suitable for Real-Time

video streaming over lossy networks as shown in Table 4.1. Two main points were

taking into account while configuring those QoS parameters. First, the delivery

of each video frame must be within the permitted playback duration so the client

is able to watch the live video. The next point is the scalability of the system

which means the ability of the system to deliver the proper video quality to the

proper receiver taking into account the time varying network channel bandwidth

and the receiver limited resources in a heterogeneous system of various resources

and capabilities. Some quality of services requires the publisher and subscriber

QoS to be matched for communication. The DDS QoS policies has request-offer

semantics: the publisher must offer a level of service (QoS) that is greater than or

equal to the level of service requested by the subscriber. However, in some QoS

levels of service, the subscriber request level of service must be matched with the

publisher offered level of service (e.g., Reliablility QoS). In Table 4.1 if R×O is

assigned to Y, it means that the actual subscription will not be established unless

publisher and subscriber QoS are matched.

4.1.5.1 Reliability

Controls the reliability between the publisher’s DataWriter and the subscriber’s

DataReader. When the reliability QoS is set to RELIABLE, the system will at-

48

Table 4.1: Scalable RTPS-based Video Streaming QoS.
Publisher Subscriber R×O

Reliability BEST EFFORT BEST EFFORT Y
History KEEP LAST KEEP LAST N

(depth = 1) (depth = GOP)
Durability VOLATILE VOLATILE Y
Partition ”P.∗” ”P.∗” N
Deadline Playback deadline Playback deadline Y

Time Based Filtering Not applicable <Playback deadline N/A
Lifespan Playback deadline Not applicable N/A

Presentation Publish order Publish order Y

tempt to repair samples that were not successfully received. Therefore, reliability

is also controlled in conjunction with other QoS policies, such as History and Re-

sourceLimits, to determine which data remains relevant and therefore eligible for

repair.

In Real-Time video streaming, frames are supposed to be delivered with mini-

mum latency, subject to their playback deadlines. Therefore, reliability between

publisher’s DataWriters and subscriber’s DataReader is not an issue in Real-Time

video streaming.

Reliability QoS of the video payload NAL contents is set to BEST EFFORT

value, which means that the system will not use any resources to guarantee that

the data sent by a DataWriter is received by a DataReader. Best effort deleivery

is the fastest, most efficient, and least resource-intensive (CPU and network band-

width) method of getting the newest/latest value for a topic from DataWriters to

DataReaders but with the cost of no guarantee to receive data. Best effort deliv-

ery is suitable for Real-Time video streaming over lossy networks such as wireless,

since it is more efficient and losing some video frames will affect the quality of

49

the encoded video but not corrupting the whole video data. On the other hand,

video configuration data publisher’s DataWriter that is responsible for initiat-

ing the decoder at the subscriber side is set to RELIABLE to gurantee that the

configuration data will be delivered to the subscriber’s DataReader successfully.

4.1.5.2 History

Controls how the system manages frames payload sent by a publisher’s DataWriter

or received by a subscriber’s DataReader. It helps tune the reliability between

publishers and subscribers.

In Real-Time video streaming reliability is not a matter, so there is no need for

keeping history of the recent published data for retransmission. The history QoS

is set to KEEP LAST value with one Group of Pictures (GOP) of depth for the

subscriber’s DataReaders. The decoder at the subscriber side requires that the

received frames should be in the same publishing order for decoding reference

frames. Moreover, this buffer helps in reducing the video delay jitter problem but

within the playback deadline.

4.1.5.3 Durability

Durability controls whether or not new subscribers get data which was published

by publisher’s DataWriters earlier, to increase system tolerance to failure con-

ditions. It is obvious that in live video streaming, the new joining participants

should follow the live show while the previous show events are useless. However,

decoding frames like P or B-frames are based on prediction compensation algo-

50

rithms. For example, P-frame can only be decoded with reference information

from previous I or P-frames. In addition, B-frame can only be decoded with ref-

erence information from the previous and successive I or P-frames [25]. Due to

this fact, durability QoS can be set to TRANSIENT value which means that the

frame which has been already sent may be relevant to late-joining subscribers and

subjected to any history depth, lifespan, and content or time-based filters defined.

Data will be cached with the DataWriter that originally produced it. Durabil-

ity QoS of video payload NAL contents is set to VOLATILE since the reliablity

QoS is defined as BEST-EFFORT unreliable connection, which means that late-

joining subscribers will not receive any previous video frames. On the other hand,

video configuration publisher’s DataWriter, which is responsible for initiating the

decoder at the subscriber side is set to TRANSIENT LOCAL to gurantee that

late-joining subscriber will be able to get the decoder initiating configuration set.

4.1.5.4 Partition

The partition QoS provides another way to control which DataWriters will match

and communicate with which DataReaders. Normally, DataWriters are matched

to DataReaders of the same Topic. However, by using the partition QoS policy,

additional criteria can be used to decide if a DataWriters data is allowed to be

sent to a DataReader of the same topic. One or more strings can be added to

the DataWriters publisher or DataReaders subscriber parent topic. In such a case

the DataWriter is only matched to a DataReader for the same topic only if their

publisher and subscriber have a common partition.

51

Partition QoS has some key fesures that play a main role in this proposed scal-

able RTPS-based Real-Time video streaming architecture. First, subscription to

a certain video partition can be dynamically changed at runtime. This is used in

the proposed scalable architecture to quickly control the subscribers DataReader

to begin receiving lower video quality from another DataWriter when a network

degradation is introduced. Second, partition QoS policy can dynamically config-

ure the connection topology without stopping/starting or destroying/re-creating

publishers, subscribers or even a participant. As a result, there is no spawning and

killing of threads or allocation and deallocation of memory when publishers and

subscribers add or remove themselves from partitions. This property is appropri-

ate to Real-Time applications since keeping a low latency is a critical issue. In

this proposed scalable architecture, every video sub-stream is assigned to a certain

video partition. By default, the video subscriber subscribes to the highest video

partition, so it reads video stream from the matched DataWriter of the highest

video quality. It adaptively subscribes to a lower video partition (lower video

quality) when network degradation is notised (e.g., low bandwidth, congestion,

etc). Thus, subscriber’s DataReader immediately receives video frames from the

matched and proper publisher’s DataWriter.

4.1.5.5 Deadline

Deadline period is set to a specific value that estimates when the frame pack-

ets should be received at the subscriber side. It is also used as an indicator

of network performance degradation. When frames packets fail to reach within

52

the estimated deadline period, it means that the system is performing improp-

erly and the subscriber should switch to begin receiving videos of lower quality

from another publisher DataWriter’s partition. Partition QoS is configured to the

maximum frame playback deadline; normally 150ms.

4.1.5.6 Time Based Filtering

Time based filtering QoS policy controls the rate of data samples that should be

delivered to a DataReader within the permitted deadline. Data samples for a

DataReader can be filtered out using the TIME BASED FILTER QoS by setting

the minimum separation time. Once a data sample for an instance has been re-

ceived, the middleware will accept but drop any new data samples for the same

instance that arrives within the time specified by “minimum separation”. Mini-

mum separation time should be less than the deadline time. Simply, time based

filter QoS allows receiving the data samples within a period of time (deadline)

but after the time specified by minimum separation, as shown in Figure 4.2.

In this proposed video streaming architecture, time-based filter QoS is used to op-

timize resource usage (CPU and possibly network bandwidth) by only delivering

the required amount of video samples (NALs) to different DataReaders, and fil-

tering out samples that arrive faster than a specified rate (period of time between

video samples arrival).

53

Figure 4.2: Time Based Filter QoS [6].

4.1.5.7 Lifespan

Lifespan QoS Specifies how long the system should consider data sent by a pub-

lisher to be valid. It is used to timestamp all data sent and received. In this

proposed video streaming system, lifespan QoS is set to a period equal to the

maximum frame playback time. The DataReaders receiving queue is continu-

ously checked out to see how long the frames packets have been stored before

playout by comparing their timestamp to the current time. Video sample that

has exceeded its lifespan duration will be removed from the DataReaders receive

queue. Therefore, ensure that the system doesnt receive or act on video data that

are too old and have expired.

4.1.5.8 Presentation

Presentation QoS policy controls the order of data received by DataReaders.

Usually DataReaders will receive data in the order that they were sent by a

DataWriter. In some conditions data might arrive out of order, for instance when

using a reliable connection. In such conditions, data will be buffered until all

previous samples arrive and presentation QoS will play a role in how to present

those samples to the DataReader. Moreover, a set of data for the same topic

54

sometimes is needed to be presented to the receiving DataReader only after all of

the elements of the set have been received, but not before, or in a different order

than what was received. Thus, presentation QoS policy allows the user to specify

different scopes of presentation, within a topic, across instances of a topic, and

across different topics of a publisher.

In video streaming applications, frames or video samples should be retrieved in

the same order as were originally sent. The Presentation QoS is used in this pro-

posed RTPS-based Real-Time video streaming architecture to guarantee that the

video NAL units are retrieved by the subscriber’s DataReader as were originally

sent by the publisher’s DataWriter.

4.2 System Scalability and Behaviour

Scalability in my proposed approach means the ability of the system to adaptively

serve different video subscribers (clients) with the appropriate video quality that

is proportional to the time-varying wireless channel conditions (e.g., time-varying

bandwidth), or limited computational resources. The approach uses the Data

Distribution Service (DDS) [5] middleware which contains a built-in Real-Time

Publish Subscribe Protocol (RTPS) in order to stream Real-Time video. My scal-

ability technique adopted the passive or non-intrusive technique for estimating the

available bandwidth and user’s capabilities. Based on the existence traffic in the

network, DDS data QoS is used to estimate the potential congestion and packet

loss occurrence and thus control the transmitted video NAL unit packets. Two

55

scalability architectures are proposed in this research work: one for the single-

layer video streaming H.264 AVC and the other for multi-layer video streaming

H.264 SVC. Re-encoding, retransmission, pre-encoded bit-stream switching and

transcoding are not considered because the aims and scope of this research is the

scalable streaming of live video through an error-prone lossy networks such as

IEEE 802.11.

The proposed scalability mechanism is based on unequal layer protection to pro-

tect the most important video NAL’s packets with the cost of dropping the less

important video NAL’s packets. The parameter set (e.g., frame type, sub-stream

layer in SVC, etc) in every NAL unit header are used to assign every NAL unit

packet to a specific video partition track. Single-layer encoded video stream as

in H.264/AVC can be treated as a temporal scalable video stream, if the encoded

bit-stream has the correct properties. For example, have a correct temporal scal-

able video picture sequence. That is, reference pictures as I and P-frames both are

considered as the base layer while the subsequence of the hierarchical B-frames

are considered as the next enhancement layers. Figure 4.3 shows my proposed

temporal scalability for single-layer video stream using the DDS middleware over

wireless networks.

Every encoded frame is assigned in the publisher side to one partition P or more

depending on the temporal layer it belongs to. By default the subscriber side sub-

scribes to the maximum video stream quality which are assigned to the highest

partition Pn of topic Vn; where Vn refers to the topic string “P.n” as shown in

56

Figure 4.3. Every partition in the publisher side has a DataWriter (DW) with

a certain QoS. All DWs have the same Best-Effort reliability QoS to maintain

a fast transmission for Real-Time video streaming. In the subscriber side, only

one built-in DataReader is considered and using the partitioning QoS to switch

among different temporal streams. When the subscriber side DR’s deadline Qos

detects NAL’s packets exceeding their playout deadline in a history buffer of GOP

size, it directly updates its subscription to another partition P = Pn−1 just by

simply altering the subscribtion topic string wildcard from the default “P.n” to

“P.n − 1” and without the need to send a feedback traffic. As a result, the only

partition traffic that is supposed to be transmitted is the one that the subscriber

is subscribed to.

Figure 4.4 shows an example of encoded single-layer video with a temporal scal-

ability property. A source video of a CIF resolution (352×288) is encoded to

AVC stream of (IBBBPBBBI...) GOP sequence. In this example, the group

of picture size is 8 and the bit-stream consists of hierarchial B-pictures. The

lowest temporal T0 which only contains I-frames (II...) can be considered as the

temporal base layer and assigned to the lowest partition P0. The lowest tempo-

ral plus the next enhancement layer of p-frames which contain I and P-frames

(IPI...) are considered as the next temporal layer with better video quality and

assigned to partition P0+1. The highest partition P3 which contains the whole

frames (IBBBPBBBI...) is considered as the highest temporal layer with the

maximum video quality. The result will be four partitions for streaming four

57

different temporal streams.

Figure 4.3: RTPS-based video streaming of single-layer video stream with tempo-

ral scalability of H.264/AVC.

Figure 4.4: Single-layer video stream partitioning example.

58

The same idea for scalable (multi-layer) video stream H.264 SVC but with

supporting various scalabilities, i.e., temporal, spatial, and quality scalabilities.

Beside the scalability nature of the SVC video stream, the proposed RTPS-based

video streaming scalability enables more control on which layer should be dropped

first by using the DDS rich QoS without the need for relay node or dropping

packets at the receiver side. As shown in Figure 4.5, all encoded SVC sub-layers are

assigned to a certain partition. Figure 4.6 shows an example of multi-layer encoded

video with a combined (temporal, spatial and quality) scalability property. In this

example, the lowest two sublayer are both with the same temporal and spatial

(352×288) properties while the quality is changed from Q0 to Q1. Also, the next

two sub-layers are both with the same temporal and spatial (176×144) properties

but differ than those of the first two sub-layers, and with different qualities Q0 to

Q1 same as those of the first two sublayers.

Figure 4.5: RTPS-based video streaming of multi-layer video stream with com-

bined scalability of H.264/SVC.

59

Figure 4.6: Multi-layer video stream partitioning example.

The activity diagrams of both video stream publication and subscription mod-

ules in my proposed scalable RTPS-based Real-Time video streaming architecture

are shown in Figures 4.7 and 4.8 respectively.

60

Figure 4.7: Publication activity diagram.

61

Figure 4.8: Subscription activity diagram.

62

CHAPTER 5

EXPERMINTAL SETUP &

PERFORMANCE

EVALUATION

This chapter presents the performance and scalability results obtained from trans-

mitting a Real-Time video stream over the Data Distribution Service (DDS)[5]

middleware by using the proposed scalable RTPS-based Real-Time video stream-

ing system architecture through IEEE 802.11g WLAN.

5.1 Experimental Setup

The experimental setup involves a test-bed framework of five nodes A to E with a

wireless adapter of 54Mbps in each one connected by an access point at 54Mbps

as shown in Figure 5.1. The experiment setup is performed indoor to study the

63

effects of transmitting live video in simple conditions. A source video sample

is encoded by H.264/SVC encoder into a temporal scalability stream compatible

with AVC decoders and transmitted over the proposed scalable RTPS/UDP based

video streaming implementation. For comparison purposes, the same source video

sample is transmitted over an RTP/UDP based Real-Time video streaming ap-

plication. The video participant node (A) acts as the video streaming publisher

to the other wireless subscriber’s participant nodes (B, C, D, and E). Both the

publisher and subscriber participants are configured with the packet monitoring

tools, Tcpdump and wireshark, in addition to the RTPS and RTP based video

streaming applications.

Figure 5.1: Experimental setup topology.

64

5.1.1 Source video sample

The commonly used foreman video test sequence in the 4:2:0 YUV format is

used to evaluate the proposed scalable RTPS-based video streaming system. Two

foreman video sequences of different Common Intermediate Format (CIF) and

frame size are used as shown in Table 5.1.

Table 5.1: Source video samples.

Video sample name Format Number of frames

foreman CIF (352× 288) 300

foreman QCIF (176× 144) 300

5.1.2 Evaluation Framework

The Evaluation Video (EvalVid) tool-set [1] is used for evaluating the proposed

scalable RTPS-based video streaming architecture. EvalVid enables networking

operatives to evaluate the effects of real video streams on proposed network proto-

cols. It basically evaluates the received quality of the transmitted video in a real or

simulated network environment. One of the drawbacks of EvalVid is that it only

supports single layer video codec like H.264/AVC. That is, a scalable video codec

like H.264/SVC is not supported. Fortunately, EvalSVC [7] comes to fill this gap

and enabling the evaluation of a scalable video coding. It is capable of evaluating

the enhanced features such as: spatial, temporal, SNR, and combined scalability

of SVC bitstreams transmited over real or simulated networks. Thus, both eval-

uation tool sets can be used to evaluate the proposed scalable RTPS-based video

65

streaming system. EvalVid and EvalSVC framework structures for evaluating

the transmited AVC and SVC bitstreams over the proposed scalable RTPS-based

video streaming system are depicted in Figures 5.2 and 5.3 respectively.

Figure 5.2: EvalVid evaluation framework structure for streaming H.264/AVC

bitstream [1].

66

Figure 5.3: EvalSVC evaluation framework structure for streaming H.264/SVC

bitstream [7].

In order to evaluate the proposed approach, the following procedures have

been conducted in each experimental test:

• An input source video of YUV format is used. YUV video format is accept-

able by H.264 AVC and SVC encoders as well as common video capturing

devices.

• The source video is encoded by H.264/AVC encoder using X264 [82] and

H.264/SVC encoder using JSVM [83].

• The encoded bitstream is encapsulated into MP4 container by using the

mp4box tool of the GPAC library [85]. Both H.264 AVC and SVC bitstreams

format are supported by mp4box.

• Use the mp4trace tool of EvalVid[1]/EvalSVC[7] for transmitting the en-

67

coded and encapsulated H.264 AVC/SVC bitstream over RTP/UDP and

using the RTPS-based video publisher to publish the same bitstream over

RTPS/UDP protocol out to the network. The output of this step is the

sending trace file that contains each frame number, frame size in bytes, and

transmission timestamp.

• The Tcpdump network monitoring tool is used to trace the real network

traffic at both ends and to form the sender’s and receiver’s dumping files.

• Rebuilding the transmitted encoded video bitstream from the sender’s and

receiver’s dumping files, video transmission trace file and hinted file. In

EvalVid, etmp4 tool is used to rebuild the H.264 AVC bitstream while in

EvalSVC, etmp4 SVC is used to rebuild the H.264 SVC bitstream. The

video reconstructor is taking into account the missing packets or frames,

and have to option for rebuilding such corrupted bitstream. It can truncate

the H.264 AVC/SVC video frame or fill that frame with zero (default value).

Other QoS measurements of the network such as frame end-to-end delay,

frame jitter, frame/packet loss, sender’s and receiver’s bit-rate will also be

generated by etmp4/etmp4 SVC tools.

• Decoding the received and reconstructed H.264 AVC/SVC by the appropri-

ate decoder. For H.264 AVC bitstream, ffmpeg [86] decoder is used to decode

such non-scalable single-layer video coding. On the other hand, Joint Scal-

able Video Model (JSVM) [83] is used to decode the scalable video bitstream

of multi-layer video encoding.

68

• After decoding the received H.264 AVC/SVC video bitstream, both EvalVid

and EvalSVC use two video quality evaluation tools: the objective and sub-

jective quality evaluation Peak Signal-to-Noise Ratio (PSNR) and Mean

Opinion Score (MOS). Both quality evaluation tools are used to calculate

the quality of the decoded H.264 AVC/SVC bitstream by comparing it to

the original decoded bitstream.

5.1.3 Performance evaluation metrics

Different QoS measurement metrics of the network such as end-to-end delay, jitter,

loss rate, sender’s and receiver’s bit-rate are going to be measured in order to

see the performance of the proposed approach for streaming video over 802.11g

WLAN networks. In addition, the video quality measurement metrics such as

Peak Signal-to-Noise Ratio (PSNR) and Mean Opinion Score (MOS) are going to

be measured.

5.1.3.1 End-to-End delay

Frame end-to-end delay involves the one-way delay at the source encoder, chan-

nel transmission and propagation delay, and source decoder delay at the receiver

endpoint. The encoding and decoding delay (processing delay) have been ex-

cluded since they are out of this research work scope. Encoding and decoding

processes are performed separately and in non-real time. Therefore, the measured

end-to-end delay is only for the channel transmission and propagation delay of

every successive transmitted frame within its playback time constraint from the

69

publisher (sender) endpoint to the subscriber (receiver) endpoint.

5.1.3.2 Jitter

Frame jitter refers to the one-way frame delay variation measurements over time

of a series of transmitted frames across the network. Frame jitter is caused by net-

work congestion, time varying network bandwidth, interferences, etc. It severely

affects the quality of streaming video. A network with constant latency has no

variation (jitter). Packet jitter is expressed as an average of the deviation from

the network mean latency.

Based on RFC3550-RTP[87], the cumulative frame jitter is calculated. The cu-

mulative jitter measurement helps to clearly represent the increase in frames jitter

over the transmission period. As shown in the equation below, jitter J for frame i

is calculated by estimating the difference D for that frame and the previous frame

i − 1 in order of arrival (not necessarily in sequence), according to the following

equations:

Di,j = (Rj −Ri)− (Sj − Si) = (Rj − Sj)− (Ri − Si) (5.1)

Ji = Ji−1 + (|Di−1,i| − Ji−1) /16 (5.2)

Where Si is the frame sending timestamp of frame i, and Ri is the time of arrival

in timestamp units for frame i. Sj and Rj refere to the next frame sending and

receiving timestamps respectively.

These equations are the optimal first-order estimator and the gain parameter

70

1/16 gives a good noise reduction ratio while maintaining a reasonable rate of

convergence.

5.1.3.3 Frame loss rate

Packet loss can be caused by a number of factors including signal degradation over

the network channel due to multi-path fading or packet drop because of channel

congestion. Frame loss rate refers to the percentage loss of frames that are dropped

by such factors or intentionally by the proposed solution for scalability purpose.

5.1.3.4 PSNR

PSNR stands for Peak Signal-to-Noise Ratio. It computes the peak signal-to-noise

ratio, in decibels, between two images. This ratio is often used as a quality mea-

surement between the original and a compressed image. The higher the PSNR,

the better the quality of the compressed, or reconstructed image.

The Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR) are

the two error metrics used to compare image compression quality. The MSE

represents the cumulative squared error between the compressed and the original

image, whereas PSNR represents a measure of the peak error. The lower the value

of MSE, the lower the error.

To compute the PSNR, it first calculates the mean-squared error using the fol-

lowing equation:

MSE =

N∑
j=1

(
M∑
i=1

(Xi,j − Yi,j)
2

)
MN

(5.3)

71

In the previous equation, M and N are the number of rows and columns in the

input images, respectively. Then the block computes the PSNR using the following

equation:

Peak Signal-to-Noise Ratio (PSNR):

PSNR = 10 log
R2

MSE
(5.4)

In the previous equation, R is the maximum signal value that exists in the original

“known to be good” image. For example, if the input image has a double-precision

floating-point data type, then R is 1. If it has an 8-bit unsigned integer data type,

R is 255, etc.. Prior to transmission, it is possible to compute a reference PSNR

value sequence on the reconstruction of the encoded video as compared to the

original raw video. After transmission, the PSNR is computed at the receiver for

the reconstructed video of the possibly corrupted video sequence received. The

individual PSNR values at the source or receiver do not mean much, but the

difference between the quality of the encoded video at the source and the received

one can be used as an objective QoS metric to assess the transmission impact on

video quality at the application level [1].

5.1.3.5 MOS

Mean Opinion Score (MOS) is a subjective metric to measure digital video quality

at the application level. This metric estimates the human quality impression on

a scale that ranges from worst to best. The PSNR evaluation results can be used

72

to estimate the approximated MOS scale using the mapping shown in 5.2.

Table 5.2: PSNR to MOS conversion [1].

PSNR[dB] MOS

>37 5 (Excellent)

31 37 4 (Good)

25 31 3 (Fair)

20 25 2 (Poor)

<20 1 (Bad)

5.2 Performance Evaluation

For evaluating the proposed scalable RTPS-based video streaming system over

error-prone wireless networks, the H.264/SVC encoder is used for producing a

temporal scalable video bitstream and then transmits this stream by both RT-

P/UDP and RTPS/UDP protocols separately in Real-Time. The source video file

(foreman) of YUV format in CIF resolution (352×288) and 300 frames is encoded

by using JSVM [83] encoder into 30 frames per second and a GOP size of 8 frames.

The first frame is intra-coded IDR frame and represents a special GOP while every

other GOP consists of a key frame followed by a hierarchically predicted B-frames.

The number of temporal scalability levels that can be generated is dependent on

the specified GOP size. In this experiment, the generated bitstream provides 4

temporal scalability levels as shown in Table 5.3. The encoded video bitstream

is hinted by MP4 container using MP4Box tool of GPAC [85] framework in order

73

to packetize the frames for the transport with RTP and enable the encoded video

playout at the receiver side. The maximum transmission packet unit (MTU) is

assigned to 1KB.

Table 5.3: Example of supported Temporal Scalability Layers for single-layer cod-

ing.

Layer Resolution Frame Rate (fps) Bit Rate DTQ In Partition

0 352× 288 3.7500 182.4971 (0,0,0) P0,P1,P2,P3

1 352× 288 7.5000 230.3008 (0,1,0) P1,P2,P3

2 352× 288 15.0000 276.8912 (0,2,0) P2,P3

3 352× 288 30.0000 327.0816 (0,3,0) P3

For transmitting the encoded video bitstream over RTP/UDP, the mp4trace

tool from EvalSVC[7] is used to send the hinted mp4 file to a unicast and mul-

ticast destination IP in four different scenarios; one publisher to one subscriber,

6 subscribers, 12 subscribers and 18 subscribers. On the other hand, the pro-

posed RTPS-based video streaming implementation is used to transmit the same

encoded and hinted video sample over RTPS/UDP protocol using the same sce-

narios.

In each scenario, the tcpdump network monitoring tool is used to trace the IP

packets at the sender and receiver during the transmission process. The result are

sender and receiver trace files to be used later by EvalSVC[7]. In every experimen-

tal scenario five main files are used for the evaluation purpose; the YUV source

file before and after the encoding, the encoded and encapsulated mp4 video file,

74

the sender and receiver UDP packets trace file, and the transmission sender trace

file which contains information about the frame type, packet size, packet space

(segmentation), and transmission timestamp in milliseconds.

To obtain the PSNR values I compare the encoded video at the sender side with

PSNR values of the receiver side. The results show that RTP and RTPS have

nearly the same performance in 1 to 1 unicast scenario as well as in 1 to 6 mul-

ticast scenario as shown in Figures 5.4 and 5.5. However, when the numbers of

receivers (subscribers in RTPS) increased as shown in Figures 5.6 and 5.7, RTP

shows a continuous degradation in video quality, while RTPS was able to maintain

a stable level of video quality with no interruptions. This is because subscribers in

the proposed scalable RTPS-based video streaming approach are adaptively sub-

scribing to lower video partition when network degradation is detected and vise

versa. Thus, RTPS-based approach intentionally drops some upper enhancement

layer packets to protect video stream from a severe packet loss for maintaining a

continuous video stream. Figure 5.8 shows video snapshot of the received video

in every video transmission session over both RTP/UDP and RTPS/UDP pro-

tocols, while Table 5.4 shows the Mean Openion Score (MOS) for every video

transmission session.

75

Figure 5.4: PSNR (1 to 1).

Figure 5.5: PSNR (1 to 6).

76

Figure 5.6: PSNR (1 to 12).

Figure 5.7: PSNR (1 to 18).

77

Figure 5.8: Video snapshots with different background traffic throughput.

Table 5.4: Mean Openion Score.

Type Pub/Sub PSNR[dB] Average MOS (5-1)

RTP 1-to-1 36.85 4 (Good)

1-to-6 36.85 4 (Good)

1-to-12 23.22 2 (Poor)

1-to-18 19.87 1 (Bad)

RTPS 1-to-1 36.85 4 (Good)

1-to-6 36.85 4 (Good)

1-to-12 31.07 3 (Fair)

1-to-18 26.34 3 (Fair)

End-to-end delay for both RTP-based/RTPS-based 1 to 1 and 6 scenarios

show a low video frame latency as shown in Figures 5.9 and 5.11. However, RTP-

78

based video streaming records a little bit latency increase in some video frames

which reflects an increase in the accumulative jitter as demonstrated in Figures

5.10 and 5.12. This increase in frames latency became worse when the number of

subscribers increased to 12 and 18 subscribers as represented in both Figures 5.13

and 5.15. Consequently, RTP-based video streaming shows a highly increase in its

cumulative jitter due to the burst packet loss from the upper and lower temporal

enhancement layers as shown in Figures 5.14 and 5.16. Unlike RTP-based video

streaming, the scalable RTPS-based video streaming reconstructed video is almost

clear of significant jerks. It is worth here to mention that for any dropped frame

the latency value is filled out by zero for representing the droped/lost packets in

the plotted charts.

Figure 5.9: Frame End-to-End delay (1 to 1).

79

Figure 5.10: Cumulative jitter (1 to 1).

Figure 5.11: Frame End-to-End delay (1 to 6).

80

Figure 5.12: Cumulative jitter (1 to 6).

Figure 5.13: Frame End-to-End delay (1 to 12).

81

Figure 5.14: Cumulative jitter (1 to 12).

Figure 5.15: Frame End-to-End delay (1 to 18).

82

Figure 5.16: Cumulative jitter (1 to 18).

It is clear that RTP-based video streaming wasn’t able to protect packets of

the lower enhancement layers from burst packet loss when the number of receiver-

s/subscribers increased. On the other hand, the proposed scalable RTPS-based

video streaming approach was able to keep up a continuous but with a low qual-

ity video flow by intentionally dropping some enhancement packets to protect the

lower and/or base temporal layer.

Figures from 5.17 to 5.24 show the sent and received video frames bit-rate (in

kbps) in both RTP-based and RTPS-based video streaming scenarios. The re-

sults show that the proposed scalable RTPS-based Real-Time video streaming

approach maintains a low bit-rate due to its adaptive and scalable video streaming

QoS-based control mechanism. Moreover, the average throughput for all received

packets shows that RTP-based video streaming severely loss its throughput when

the number of video receivers increased to 12. This is because RTP wasn’t able to

83

tolerate the congestion and time-varying channel bandwidth, which consequently

leads to excessive packet loss. On the other hand, the proposed scalable RTPS-

based Real-Time video streaming approach keep up with a high throughput and

only began to loss throughput gradually when the number of subscribers increased

to 18 due to the intentionaly dropped packets as shown in Figure 5.25.

Figure 5.17: Sent Bitrate (1 to 1).

84

Figure 5.18: Received Bitrate (1 to 1).

Figure 5.19: Sent Bitrate (1 to 6).

85

Figure 5.20: Received Bitrate (1 to 6).

Figure 5.21: Sent Bitrate (1 to 12).

86

Figure 5.22: Received Bitrate (1 to 12).

Figure 5.23: Sent Bitrate (1 to 18).

87

Figure 5.24: Received Bitrate (1 to 18).

Figure 5.25: Received average throughput.

88

CHAPTER 6

CONCLUSION & FUTURE

WORK

Real-Time video streaming over wireless networks faces challenges of time-varying

packet loss rate and fluctuating bandwidth. Frames must be delivered and de-

coded by its playback time. Recently, layer coding (LC) enables Real-Time and

scalable video streaming to clients of heterogeneous capabilities by dropping up-

per enhancement layers without the need of re-encoding. However, layer coding

still facing unfair layer protection problem in which packets from the base or lower

layers might be dropped while there is a chance to drop packets from the upper

enhancement layers. Loosing packets from the base layer can significantly affect

the delivered video quality and sometimes lead to an interruption especially in

error-prone networks as wireless networks. In this thesis, I investigate the be-

haviour of video streaming over Real-Time publish-subscribe based middleware. I

propose and develop an unequal layer protection mechanism for Real-Time video

89

streaming based on the Data Distribution Service (DDS) middleware, and show

the performance of my approach over IEEE 802.11g WLAN networks. my ap-

proach shows a graceful degradation of video quality while maintaining a robust

video streaming free of visible error or interruptions.

For future work, the proposed approach needs to be evaluated under more effi-

cent video scalabilities (spatial, SNR, or Combined) than temporal scalability and

with larger frame resolution than (352×288). In addition, the proposed approach

requires to be evaluated in multi-hob wireless networks such as ad hoc networks,

sensor networks and mesh networks. An efficient partition switching mechanism is

also required to decrease the number of dropped frames due to frequent switching

among partitions at the subscriber side.

90

Appendices

91

APPENDIX A

DATA COLLECTION

APPROACH

Study of Real-Time video streaming over wireless has been associated with ob-

stacles and challenges. Limited and inefficient utilization of network resources,

or inadaptability to network changes severely affect the streaming of video over

wireless networks. Therefore, the provisioning of end-to-end QoS while transmit-

ting video stream packets is required to keep video playback within its deadline

constraints.

In this research, video streaming over Real-Time publish-subscribe based middle-

ware has been investigated. A development of Real-Time video streaming im-

plementation based on publish-subscribe middleware is a key point on this thesis

work. An empirical study has been conducted in order to study the performance

of publish-subscribe based video streaming over WLAN. The scalable RTPS-based

video streaming implementation that has been developed in this thesis work is used

92

for transmitting a live video show over IEEE 802.11g for a period of time from one

publisher to one or more subscribers. The number of subscribers are increased

over the time to study the scalability and performance of publish-subscribe based

video streaming under a normal video conferencing sessions. Moreover, video

streaming performance and quality have been measured under different quality of

services (e.g., persistence, durability, reliability, etc) in order to estimate the best

practice combination of QoSs for 802.11 WLAN scenarios. A comparison of the

proposed approach to other solutions has also been conducted.

A.0.1 Implementation Components & Libraries

For implementing the scalable RTPS-based video streaming application, the fol-

lowing open source components and libraries have been used:

A.0.1.1 X264 Encoder

X264[82] is a free software library and application for encoding video streams

into the H.264/MPEG-4 AVC format. It is released under the terms of GNU

General Public License. X264 library is used in the implementaion for encoding

the captured video show and convert this video into a single-layer video stream

of an H.264/AVC format.

A.0.1.2 JSVM Encoder/Decoder

The JSVM[83] (Joint Scalable Video Model) software is the reference software

for the Scalable Video Coding (SVC) project of the Joint Video Team (JVT)

93

of the ISO/IEC Moving Pictures Experts Group (MPEG) and the ITU-T Video

Coding Experts Group (VCEG). JSVM library is used in the experimental work

for encoding the source video to multi-layer scalable video stream of H.264/SVC

format.

A.0.1.3 ffmpeg Libavcodec

FFmpeg[86] is a complete, cross-platform solution to record, convert and stream

audio and video. It includes libavcodec; the leading audio/video codec library.

Libavcodec library of ffmpeg is used in the experimental work for decoding the

transmitted video of H.264/AVC format to the decoded YUV format in order to

be used for the PSNR video quality estimation.

A.0.1.4 OpenCV

OpenCV[84] (Open Source Computer Vision Library) is an open source computer

vision and machine learning software library. OpenCV was built to provide a

common infrastructure for computer vision applications and to accelerate the use

of machine perception in the commercial products. Being a BSD-licensed product,

OpenCV makes it easy for businesses to utilize and modify the code. OpenCV

library is used in the implementation for capturing video frames of YUV format

directly from the camera device in order to be used by the video encoder module.

94

A.0.1.5 GPAC MP4Box

GPAC[85] is an Open Source multimedia framework. It provides three sets of

tools based on a core library called libgpac: a multimedia player, called Osmo4

/ MP4Client, a multimedia packager, called MP4Box, and some server tools in-

cluded in MP4Box and MP42TS applications. MP4Box can be used for manipu-

lating ISO files like MP4, 3GP: adding, removing, multiplexing audio, video and

presentation data (including subtitles) from different sources and in different for-

mats. MP4Box library backage is used in the expermintal work for creating ISO

MP4 files containing the video samples (frames) and a hint track which describes

how to packetize the frames for the transport with RTP.

A.0.1.6 EvalVid and EvalSVC

EvalVid[1] is a framework and tool-set for evaluation of the quality of video trans-

mitted over a real or simulated communication network. It is targeted for re-

searchers who want to evaluate their network designs or setups in terms of user

perceived video quality. Besides measuring QoS parameters of the underlying

network, like loss rates, delays, and jitter, standard video quality metrics like

PSNR and SSIM and a subjective video quality evaluation metric of the received

video are provided. Evalvid now supports standard MPEG4-H.264/AVC. How-

ever, it does not support the H.264 SVC. Fortunately, EvalSVC[7] comes to fill

this gap and enabling the evaluation of a scalable video coding. It is capable of

evaluating the enhanced features such as: spatial, temporal, SNR, and combined

95

scalability of H.264 SVC bitstreams transmitting over real or simulated networks.

Both EvalVid and EvalSVC are used in the experimental work for evaluating the

performance and quality of the proposed scalable RTPS-based video streaming

approach.

A.0.1.7 RTI-DDS Middleware

RTI Data Distribution Service is communications middleware for distributed Real-

Time applications. It is the most reliable, flexible and highest performing imple-

mentation of the Object Management Groups (OMG) Data Distribution Service

for Real-Time Systems (DDS)[5] standard available today. RTI Data Distribution

Service (formerly NDDS) is fielding proven and is used in many time-critical and

data-critical applications such as: National railways, Air traffic control, Traffic

monitoring, Mission-critical combat systems, financial transaction processing and

Industrial automation.

RTI Data Distribution Service is operating system and programming language

agnostic, allowing heterogeneous systems to communicate easily with each other.

System designers can connect multiple different physical connection points us-

ing a pluggable transport framework. Transports can include Ethernet network

interfaces, shared memory, back-plane interfaces and various other connection

mediums. Many Quality of Service (QoS) parameters are available in RTI-DDS.

This rich set of the supported QoS allows designers to tune their application for

the best combination of performance and resource usage.

RTI Data Distribution Service is a layer of software that sits on top of a network-

96

ing stack. It simplifies the underlying low-level network code with a common,

standards-based Application Programming Interface (API) that provides an eas-

ily understood publish-subscribe model of communication. This model defines two

fundamental actors: Publishers, which create data, give the data a name (called

a topic) and make that data available to interested subscribers, and Subscribers,

which register interest in a topic to receive the data whenever it is available. Any

node can be a publisher, a subscriber, or both simultaneously, of many different

topics. RTI Data Distribution Service handles all the network I/O and man-

agement needed for reliable and transparent transfers: message addressing, data

marshalling, and unmarshalling, flow control, retries, etc. No application inter-

vention is needed.

RTI-DDS middleware is selected to implement the proposed scalable RTPS-based

video streaming architecture due to three main reasons: (1) the use of publish

subscribe communication model in its architecture, (2) its outstanding reputation

in Real-Time and critical mission systems, and (3) the rich amount of QoS it uses

and its flexibility in using these QoS to control data. The RTI-DDS APIs have

been used for implementing the proposed scalable RTPS-based video streaming

tool. Moreover, C/C++ programming language is used due to its portability and

high performance.

97

A.0.2 Data Collection

In order to collect the data for performance evaluation, the following step by step

procedures have been carefully performed:

A.0.2.1 Video Encoding

For evaluation purpose the encoded video sample has been encoded in non-Real

Time, this is because the encoding and decoding latency measurements are out

of this thesis research scope. In this step JSVM[83] encoder has been used for

generating a temporal scalable video sample. The source video file (foreman) of

YUV formate and CIF resolution (352×288) with a frame rate of 30 Hz and a

total of 300 frames has been encoded into a 30 frames per second and a GOP

length of 8 frames. The main layer configuration files is depicted in Figure A.1.

Figure A.1: Main Encoding Configuration file for temporal scalability.

The most important parameters that need to be specified in the main config-

uration file are the OutputFile, the frame rate FrameRate, the number of frames

to be encoded FramesToBeEncoded, the GOP size GOPSize, and the base layer

mode BaseLayerMode. The parameter BaseLayerMode has been set to 2 hence

98

an H.264 AVC compatible bitstream with additional sub-sequence SEI messages

is written to be used for the extraction of a temporal sub-stream in an non-SVC

encoders like X264[82] and can be set to 0 or 1 for single-layer coding and support-

ing AVC decoding only. In the layer configuration file, the filename of the input

sequence InputFile has been specified to main source file foreman of (352×288)

resolution with frame rate of 30 Hz as shown in Figure A.2.

Figure A.2: Layer Encoding Configuration file for temporal scalability.

Given the configuration files in Figure A.1 and Figure A.2, the following

JSVM[83] command has been used to encode the main sourece video sample:

> H264AVCEncoderLibTestStatic -pf temporal_main.cfg -lqp 0 30

The final summary of the encoded output video sample is shown in Figure A.3.

Encoding summary shows that in this encoding scenario, only a single spatial res-

olution of 352×288 samples is supported. But the bit-stream provides 4 different

temporal resolutions with frame rates of 3.75, 7.5, 15, and 30 Hz. A printout of

some encoded frames is shown in Figure A.4. The encoded video samples (frames)

have been encapsolated in an MP4 container format with a packetize hint track

for supporting the transport with RTP by using MP4Box of GPAC[85] as shown

in the following command:

99

> MP4Box -hint -mtu 1024 -fps 30 -add temporal.264 temporal.mp4

Figure A.3: Encoding Summary for temporal scalability.

Figure A.4: List of the Encoded frames for temporal scalability.

A reference decoded YUV file of the encoded video sample has been created in

order to assess the video quality (e.g., PSNR) of the transmitted video over the

network by comparing it to the reference encoded YUV file. The following com-

mand is used for creating the reference decoded YUV file and the reference PSNR

evaluation result respectively:

100

> H264AVCDecoderLibTestStatic temporal.264 temporal_ref.yuv

> psnr 352 288 420 foreman_cif.yuv temporal_ref.yuv > temporal_psnr_ref.txt

The output files of this step for every video streaming session are shown in Table

A.1.

Table A.1: Video encoding output files.

foreman cif.yuv raw source video file

temporal.264 temporal scalablitiy encoded video sample

temporal.mp4 encoded, encapsulated and hinted video file

temporal ref.yuv reference YUV file before decoding

temporal psnr ref.txt reference PSNR evaluation result

A.0.2.2 Video Transmission/Publishing

In this step, the encoded video sample is transmitted by using the proposed scal-

able RTPS/UDP based video streaming implementation and the RTP/UDP based

mp4trace implementation of EvalSVC[7] in two different video streaming sessions.

In the scalable RTPS-based video streaming session, the publisher side has pub-

lished four different temporal sub-streams using the DDS[5] partition QoS. Only

one of those partitions (sub-streams) are supposed to be delivered to the sub-

scriber side. The proposed architecture is able to switch among those partitions

adaptively in accordance with the network bandwidth limitation and network con-

gestion. In the publisher side, the following terminal command has been used to

publish the encoded, encapsulated and hinted video sample in each unicast or

101

multicast session:

> ./DDS_VideoStream_publisher

Four different video publishing sessions have been performed. In every session, the

number of subscribers have been increased in order to study the scalabality of the

proposed scalable video streaming architecture. Meanwhile, a static background

traffic of 2mbps has been sent in every session using the follwoing command:

> iperf -c <ip> -u -p <port> -b 2m -t 60s -i 1 -f m

The network Tcpdump monitoring tool has been also used to trace the publisher

wireless outgoing IP traffic of every video streaming session using the follwoing

command:

> sudo tcpdump -i wlan0 -w alls.cap

This tcpdump command records all the outgoing traffic regardless of how many

receivers/subscribers in the receiver node. Therefore, the outgoing traffic of every

receiver/subscriber by their traffic port number needs to be extracted as follows:

> tcpdump -r alls.cap -n -tt -v udp port <port> > temporal_sd

In the RTP-based video streaming session, the sender side has sent the encoded,

encapsulated, and hinted video sample by the mp4trace tool of EvalSVC[7] using

the following command:

> mp4trace -f -s <ip> <port> temporal.mp4 > temporal_st

For the unicast scenario of 1 sender to 1 receiver, the receiver specific IP address

has been used while in the multicast sencarios of 1 sender to 6, 12, and 18 re-

102

ceiver, the multicast IP address (224.0.0.1) has been used. Moreover, The same

background and traffic monitoring command mentioned befored are used in this

RTP-based video streaming sessions.

The output files of this step for every video streaming session are shown in Table

A.2.

Table A.2: Video transmission/publishing output files.

temporal st sender trace file (frame types, packet segmentation, ..)

alls.cap sender tcpdump trace file

temporal sd sender tcpdump filtered trace file

A.0.2.3 Video Receiving/Subscribing

In the scalable RTPS-based video streaming session, the number of subscribers

have been increased in order to study the scalablity of the proposed scalable

architecture in a time-varying and limited wireless network resources (e.g., time-

varying bandwidth and the traffic congestion). The test began with a unicast

scenario of 1 publisher to 1 subscriber and increase the number of subscribers to

be 1 publisher to 6, 12 and 18 subscribers respectively in multicast scenarios. The

following command has been used to subscribe to the published video stream:

> ./DDS_VideoStream_subscriber

The network Tcpdump monitoring tool have been also used to trace the subscriber

wireless incoming IP traffic of every video streaming session using the follwoing

command:

103

> sudo tcpdump -i wlan0 -w allr.cap

This tcpdump command records all the incoming traffic regardless of how many

receivers/subscribers in the same node. Therefore, the incoming traffic of every

receiver/subscriber by their traffic port number needs to be extracted as follows:

> tcpdump -r allr.cap -n -tt -v udp port <port> > temporal_rd

In the RTP-based video streaming session, the transmitted video stream has been

received by listining to the target UDP port using the following command:

> nc -l -u <port>

Moreover, the same traffic monitoring commands have been used in every RTP-

based video streaming session.

The output files of this step for ever video streaming session is shown in Table

A.3.

Table A.3: Video receiving/subscribing output files.

allr.cap receiver tcpdump trace file

temporal rd receiver tcpdump filtered trace file

A.0.2.4 Video Reconstruction and Evaluation

In this step, the video reconstruction tool (etmp4) of EvalSVC[7] is used to recon-

struct the transmitted video as it is seen by the receiver. The video and trace files

which are generated by the previous steps are processed by etmp4 (Evaluation

Traces of MP4-file transmission) as follows:

104

> etmp4 -f -x temporal_sd temporal_rd temporal_st temporal.mp4 rtemporal

This generates a (possibly corrupted) MP4 video file, where all frames that got

lost or were corrupted are removed from the original video track. Two files are

saved, a MP4-file containing the damaged video track (rtemporal.mp4), and raw

video file containing only the undamaged frames (rtemporal.264). These files are

decoded by H264/SVC decoder as JSVM[83] to produce the YUV file as seen at

the receiver using the following command:

> H264AVCDecoderLibTestStatic rtemporal.264 rtemporal.yuv

The resulting YUV file is used to calculate the PSNR of the received video using

the following command:

> psnr 352 288 420 foreman_cif.yuv rtemporal.yuv > psnr_rtemporal.txt

Etmp4 also generates some more files as shown in Table A.4. Those output files in-

clude some important performance related results such as video end-to-end delay,

sent and received bit rate, and frame loss ratio.

105

Table A.4: Video reconstruction and evaluation output files.

rtemporal.mp4 received MP4 video file

rtemporal.264 received raw video file

loss rtemporal.txt contains I, P, B and overall frame loss in %

delay rtemporal.txt containes end-to-end delay and jitter in seconds

rate s rtemporal.txt contains the measured bit rate at the sender in bytes per second

rate r rtemporal.txt contains the measured bit rate at the receiver in bytes per second

psnr rtemporal.txt contains the PSNR of the received video

106

APPENDIX B

CONFIGURED USER DATA

QUALITY OF SERVICE

B.0.3 Publisher QoS

<?xml version="1.0"?>

<!-- Description

XML QoS Profile for DDS_VideoStream

The QoS configuration of the DDS entities in the generated example is

loaded from this file.

This file is used only when it is in the current working directory

or when the enviroment variable

NDDS_QOS_PROFILES is defined and points to this file.

For more information about XML QoS Profiles see Chapter 15 in the

RTI Connext user manual.-->

107

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="/home/pc6/RTI/ndds.5.0.0/scripts/..

/resource/rtiddsgen/../qos_profiles_5.0.0/schema/rti_dds_qos_profiles.xsd"

version="5.0.0">

<!-- QoS Library containing the QoS profile used in the generated example.

A QoS library is a named set of QoS profiles.

-->

<qos_library name="DDS_VideoStream_Library">

<!-- QoS profile used to configure reliable communication between the DataWriter

and DataReader created in the example code.

A QoS profile groups a set of related QoS.

-->

<qos_profile name="Reliable">

<datareader_qos>

<reliability>

<kind>BEST_EFFORT_RELIABILITY_QOS</kind>

</reliability>

<history>

<kind>KEEP_LAST_HISTORY_QOS</kind>

<depth>30</depth>

</history>

<protocol>

108

<rtps_reliable_reader>

<min_heartbeat_response_delay>

<sec>0</sec>

<nanosec>0</nanosec>

</min_heartbeat_response_delay>

<max_heartbeat_response_delay>

<sec>0</sec>

<nanosec>0</nanosec>

</max_heartbeat_response_delay>

</rtps_reliable_reader>

</protocol>

</datareader_qos>

<datawriter_qos>

<reliability>

<kind>BEST_EFFORT_RELIABILITY_QOS</kind>

<max_blocking_time>

<sec>5</sec>

<nanosec>0</nanosec>

</max_blocking_time>

</reliability>

<history>

<kind>KEEP_LAST_HISTORY_QOS</kind>

109

<depth>30</depth>

</history>

<resource_limits>

<max_samples>30</max_samples>

</resource_limits>

<protocol>

<rtps_reliable_writer>

<low_watermark>5</low_watermark>

<high_watermark>15</high_watermark>

<heartbeat_period>

<sec>0</sec>

<nanosec>100000000</nanosec>

</heartbeat_period>

<fast_heartbeat_period>

<sec>0</sec>

<nanosec>10000000</nanosec>

</fast_heartbeat_period>

<late_joiner_heartbeat_period>

<sec>0</sec>

<nanosec>10000000</nanosec>

</late_joiner_heartbeat_period>

<max_heartbeat_retries>500</max_heartbeat_retries>

110

<min_nack_response_delay>

<sec>0</sec>

<nanosec>0</nanosec>

</min_nack_response_delay>

<max_nack_response_delay>

<sec>0</sec>

<nanosec>0</nanosec>

</max_nack_response_delay>

<min_send_window_size>32</min_send_window_size>

<max_send_window_size>32</max_send_window_size>

</rtps_reliable_writer>

</protocol>

</datawriter_qos>

</qos_profile>

<qos_profile name="DDS_VideoStream_Profile" base_name="Reliable" is_default_qos="true">

<!-- QoS used to configure the data writer created in the example code -->

<datareader_qos>

<resource_limits>

<max_samples>100</max_samples>

<initial_samples>100</initial_samples>

</resource_limits>

<protocol>

111

<rtps_reliable_reader>

<heartbeat_suppression_duration>

<sec>0</sec>

<nanosec>0</nanosec>

</heartbeat_suppression_duration>

</rtps_reliable_reader>

</protocol>

</datareader_qos>

<datawriter_qos>

<resource_limits>

<max_samples>LENGTH_UNLIMITED</max_samples>

<initial_samples>100</initial_samples>

</resource_limits>

<protocol>

<rtps_reliable_writer>

<low_watermark>10</low_watermark>

<high_watermark>100</high_watermark>

<heartbeats_per_max_samples>

1000

</heartbeats_per_max_samples>

<!--

Speed up the heartbeat rate. See reliable.xml for

112

more information about this parameter.

-->

<heartbeat_period>

<!-- 10 milliseconds: -->

<sec>0</sec>

<nanosec>10000000</nanosec>

</heartbeat_period>

<!--

Speed up the heartbeat rate. See reliable.xml for

more information about this parameter.

-->

<fast_heartbeat_period>

<!-- 1 millisecond: -->

<sec>0</sec>

<nanosec>1000000</nanosec>

</fast_heartbeat_period>

</rtps_reliable_writer>

</protocol>

</datawriter_qos>

<participant_qos>

<!--

The participant name, if it is set, will be displayed in the

113

RTI Analyzer tool, making it easier for you to tell one

application from another when you’re debugging.

-->

<participant_name>

<name>RTI Example (Low Latency)</name>

</participant_name>

<discovery>

<initial_peers>

<element>239.255.0.1</element>

<element>builtin.shmem://</element>

<element>builtin.udpv4://127.0.0.1</element>

<element>builtin.udpv4://192.168.1.101</element>

<element>builtin.udpv4://192.168.1.102</element>

<element>builtin.udpv4://192.168.1.103</element>

<element>builtin.udpv4://192.168.1.104</element>

</initial_peers>

<multicast_receive_addresses>

<element>293.255.0.1</element>

</multicast_receive_addresses>

</discovery>

</participant_qos>

</qos_profile>

114

</qos_library>

</dds>

B.0.4 Subscriber QoS

<?xml version="1.0"?>

<!--

Description

XML QoS Profile for DDS_VideoStream

The QoS configuration of the DDS entities in the generated example is

loaded from this file.

This file is used only when it is in the current working directory

or when the enviroment variable

NDDS_QOS_PROFILES is defined and points to this file.

For more information about XML QoS Profiles see Chapter 15 in the

RTI Connext user manual.

-->

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="/home/pc6/RTI/ndds.5.0.0/scripts/..

/resource/rtiddsgen/../qos_profiles_5.0.0/schema/rti_dds_qos_profiles.xsd"

version="5.0.0">

<!-- QoS Library containing the QoS profile used in the generated example.

A QoS library is a named set of QoS profiles.

115

-->

<qos_library name="DDS_VideoStream_Library">

<!-- QoS profile used to configure reliable communication between the DataWriter

and DataReader created in the example code.

A QoS profile groups a set of related QoS.

-->

<qos_profile name="Reliable">

<datareader_qos>

<reliability>

<kind>BEST_EFFORT_RELIABILITY_QOS</kind>

</reliability>

<history>

<kind>KEEP_LAST_HISTORY_QOS</kind>

<depth>30</depth>

</history>

<protocol>

<rtps_reliable_reader>

<min_heartbeat_response_delay>

<sec>0</sec>

<nanosec>0</nanosec>

</min_heartbeat_response_delay>

116

<max_heartbeat_response_delay>

<sec>0</sec>

<nanosec>0</nanosec>

</max_heartbeat_response_delay>

</rtps_reliable_reader>

</protocol>

</datareader_qos>

<datawriter_qos>

<reliability>

<kind>BEST_EFFORT_RELIABILITY_QOS</kind>

<max_blocking_time>

<sec>5</sec>

<nanosec>0</nanosec>

</max_blocking_time>

</reliability>

<history>

<kind>KEEP_LAST_HISTORY_QOS</kind>

<depth>30</depth>

</history>

<resource_limits>

<max_samples>30</max_samples>

</resource_limits>

117

<protocol>

<rtps_reliable_writer>

<low_watermark>5</low_watermark>

<high_watermark>15</high_watermark>

<heartbeat_period>

<sec>0</sec>

<nanosec>100000000</nanosec>

</heartbeat_period>

<fast_heartbeat_period>

<sec>0</sec>

<nanosec>10000000</nanosec>

</fast_heartbeat_period>

<late_joiner_heartbeat_period>

<sec>0</sec>

<nanosec>10000000</nanosec>

</late_joiner_heartbeat_period>

<max_heartbeat_retries>500</max_heartbeat_retries>

<min_nack_response_delay>

<sec>0</sec>

<nanosec>0</nanosec>

</min_nack_response_delay>

<max_nack_response_delay>

118

<sec>0</sec>

<nanosec>0</nanosec>

</max_nack_response_delay>

<min_send_window_size>32</min_send_window_size>

<max_send_window_size>32</max_send_window_size>

</rtps_reliable_writer>

</protocol>

</datawriter_qos>

</qos_profile>

<qos_profile name="DDS_VideoStream_Profile" base_name="Reliable" is_default_qos="true">

<!-- QoS used to configure the data writer created in the example code -->

<datareader_qos>

<resource_limits>

<max_samples>100</max_samples>

<initial_samples>100</initial_samples>

</resource_limits>

<protocol>

<rtps_reliable_reader>

<heartbeat_suppression_duration>

<sec>0</sec>

<nanosec>0</nanosec>

</heartbeat_suppression_duration>

119

</rtps_reliable_reader>

</protocol>

</datareader_qos>

<datawriter_qos>

<resource_limits>

<max_samples>LENGTH_UNLIMITED</max_samples>

<initial_samples>100</initial_samples>

</resource_limits>

<protocol>

<rtps_reliable_writer>

<low_watermark>10</low_watermark>

<high_watermark>100</high_watermark>

<heartbeats_per_max_samples>

1000

</heartbeats_per_max_samples>

<!--

Speed up the heartbeat rate. See reliable.xml for

more information about this parameter.

-->

<heartbeat_period>

<!-- 10 milliseconds: -->

120

<sec>0</sec>

<nanosec>10000000</nanosec>

</heartbeat_period>

<!--

Speed up the heartbeat rate. See reliable.xml for

more information about this parameter.

-->

<fast_heartbeat_period>

<!-- 1 millisecond: -->

<sec>0</sec>

<nanosec>1000000</nanosec>

</fast_heartbeat_period>

</rtps_reliable_writer>

</protocol>

</datawriter_qos>

<participant_qos>

<!--

The participant name, if it is set, will be displayed in the RTI Analyzer tool, making it easier for you to tell one application from another when you’re debugging.

-->

<participant_name>

<name>RTI Example (Low Latency)</name>

</participant_name>

121

<discovery>

<initial_peers>

<element>239.255.0.1</element>

<element>builtin.shmem://</element>

<element>builtin.udpv4://127.0.0.1</element>

<element>builtin.udpv4://192.168.1.101</element>

<element>builtin.udpv4://192.168.1.102</element>

<element>builtin.udpv4://192.168.1.103</element>

<element>builtin.udpv4://192.168.1.104</element>

</initial_peers>

<multicast_receive_addresses>

<element>293.255.0.1</element>

</multicast_receive_addresses>

</discovery>

</participant_qos>

</qos_profile>

</qos_library>

</dds>

122

REFERENCES

[1] C.-H. Ke, C.-K. Shieh, W.-S. Hwang, and A. Ziviani, “An Evaluation Frame-

work for More Realistic Simulations of MPEG Video Transmission,” J. Inf.

Sci. Eng., pp. 425–440, 2008.

[2] H. Sun, A. Vetro, J. Xin, H. Sun, A. Vetro, and J. Xin, “An overview of

scalable video streaming,” Wireless Communications and Mobile Computing,

vol. 7, pp. 159–172, 2007.

[3] “Fraunhofer Heinrich Hertz Institute.” [Online]. Available:

http://www.hhi.fraunhofer.de/

[4] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video

Coding Extension of the H.264/AVC Standard,” Circuits and Systems for

Video Technology, IEEE Transactions on, vol. 17, no. 9, pp. 1103–1120, 2007.

[5] OMG, “Data Distribution Service for Real-Time systems,” Object Manage-

ment Group, 1.2 formal/07-01-01 edition, 2007.

[6] R. Connext, “Core Library and Utilities User’s Manual,” Real-Time Innova-

tions, Inc., 2012.

123

[7] T. A. Le, H. Nguyen, and H. Zhang, “EvalSVC x2014; An evaluation platform

for scalable video coding transmission,” pp. 1–6, 2010.

[8] C. Lee, K. Song, Y. Joo, and Y. Kim, “Adaptive rate control for real-time

video streaming over the mobile WiMAX,” pp. 1454–1457, 2008.

[9] N. Cranley and M. Davis, “Study of the Behaviour of Video Streaming over

IEEE 802.11b WLAN Networks,” pp. 349–355, 2006.

[10] Y. Wang and Q.-F. Zhu, “Error control and concealment for video commu-

nication: a review,” Proceedings of the IEEE, vol. 86, no. 5, pp. 974–997,

1998.

[11] Y. Wang, S. Wenger, J. Wen, and K. K. Aggelos, “Error Resilient Video

Coding Techniques,” no. July, 2000.

[12] T.Wiegand, G. Sullivan, J. Reichel, H. Schwarz, and M. W. (Editors), “Joint

draft 9 of SVC amendment (revision 2),” Document JVT- V201, Marrakech,

Morocco, January 13-19, 2007, 2007.

[13] H.-C. Huang, W.-H. Peng, T. Chiang, and H.-M. Hang, “Advances in the scal-

able amendment of H.264/AVC,” Communications Magazine, IEEE, vol. 45,

no. 1, pp. 68–76, 2007.

[14] J. G. Apostolopoulos, W. tian Tan, and S. J. Wee, “Video Streaming: Con-

cepts, Algorithms, and Systems,” 2002.

124

[15] I.-T. R. H.261., “Video codec for audiovisual services at px64 kbits/s,”

Telecommunication Union, version 1, 1996; version 2, 1997., 1997.

[16] I. ITU-T Rec. H.263, “Video coding for low bit rate communication,” Inter.

Telecommunication Union, 1993., 1993.

[17] “Advanced Video Coding for Generic Audiovisual Services,” Version 3, ITU

Rec. H264/ISO IEC 14996-10 AVC, 2005.

[18] I. 14496., “Coding of audio-visual objects.” International Organization for

Standardization (ISO), 1999, 1999.

[19] I. 802.11a 1999., “High-speed Physical Layer in the 5 GHz band,” 1999.

[20] I. 802.11g 2003., “Further Higher Data Rate Extension in the 2.4 GHz Band,”

2003.

[21] I. 802.11b 1999., “Higher Speed Physical Layer Extension in the 2.4 GHz

band,” 1999.

[22] I. 802.11n 2009Amendment 5., “Enhancements for Higher Throughput,”

IEEE-SA. 29 October 2009., 2009.

[23] I. S. 802.11e Amendment., “Medium Access Control (MAC) Enhancements

for Quality of Service (Qos),” 2005.

[24] T.Wiegand, “Draft ITU-T recommendation and final draft international stan-

dard of joint video specification (ITU-T Rec. H.264ISO/IEC 14496-10 AVC),”

125

in Joint Video Team (JVT) of ISO/ICE MPEG and ITU-T VCEG, VT-

G050, Pattaya, Thailand, 2003.

[25] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the

H.264/AVC video coding standard,” Circuits and Systems for Video Tech-

nology, IEEE Transactions on, vol. 13, no. 7, pp. 560–576, 2003.

[26] Y. Fallah, H. Mansour, S. Khan, P. Nasiopoulos, and H. Alnuweiri, “A link

adaptation scheme for efficient transmission of H. 264 scalable video over

multirate WLANs,” . . . Systems for Video . . . , vol. 18, no. 7, pp. 875–887,

2008.

[27] S. . RFC 3550, “RTP: A Transport Protocol for Real-Time Applications.”

[28] S. . RFC 3551, “RTP Profile for Audio and Video Conferences with Minimal

Control.”

[29] O. RFC 3984, “RTP Payload Format for H.264 Video.”

[30] R. Joshi, “Building effective Real-Time distributed publish-subscribe frame-

work part 1,” Real-Time Innovations.,2006, 2006.

[31] S. Oh, J. hoon Kim, and G. Fox, “Real-Time Performance Analysis for Pub-

lish/Subscribe Systems,” 2009.

[32] M. AnisMastouri and S. Hasnaoui, “Performance of a Publish/Subscribe Mid-

dleware for the Real-Time Distributed Control systems Summary,” 2007.

126

[33] O. Karimi and M. Fathy, “Adaptive end-to-end QoS for multimedia over

heterogeneous wireless networks,” Computers & electrical engineering, vol. i,

pp. 160–167, 2010.

[34] C.-M. Chen, C.-W. Lin, H.-C. Wei, and Y.-C. Chen, “Robust video streaming

over wireless LANs using multiple description transcoding and prioritized re-

transmission,” Journal of Visual Communication and Image Representation,

vol. 18, no. 3, pp. 191–206, Jun. 2007.

[35] Z. Lei and N. D. Georganas, “Adaptive video transcoding and streaming

over wireless channels,” Journal of Systems and Software, vol. 75, no. 3, pp.

253–270, Mar. 2005.

[36] X. Zhang and M. Huang, “Error Resilient Transcoding for Wireless Video

Transmission,” 2009 International Conference on Wireless Networks and In-

formation Systems, pp. 286–289, Dec. 2009.

[37] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based con-

gestion control for unicast applications,” Proceedings of the conference on

Applications, Technologies, Architectures, and Protocols for Computer Com-

munication - SIGCOMM ’00, pp. 43–56, 2000.

[38] X. Tong, W. Gao, and Q. Huang, “A Novel Rate Control Scheme for Video

Streaming over Wireless Networks,” Third International Conference on Image

and Graphics (ICIG’04), pp. 369–372, 2004.

127

[39] M. Chen and A. Zakhor, “Rate Control for Streaming Video over Wireless,”

vol. 00, no. C, 2004.

[40] G. a. Al-Suhail, N. Wakamiya, and R. S. Fyath, “Error-Resilience of TCP-

Friendly Video Transmission over Wireless Channel,” 2006 9th International

Conference on Control, Automation, Robotics and Vision, pp. 1–6, 2006.

[41] J.-Y. Pyun and H.-J. Choi, “TCP-Friendly Congestion Control for Streaming

Video Service over Wireless Overlay Network,” ICC Workshops - 2008 IEEE

International Conference on Communications Workshops, pp. 47–51, May

2008.

[42] H. Luo, D. Wu, S. Ci, A. Argyriou, and H. Wang, “Quality-Driven TCP

Friendly Rate Control for Real-Time Video Streaming,” IEEE GLOBECOM

2008 - 2008 IEEE Global Telecommunications Conference, pp. 1–5, 2008.

[43] H. Luo, D. Wu, S. Ci, H. Sharif, and H. Tang, “TFRC-Based Rate Control for

Real-Time Video Streaming over Wireless Multi-Hop Mesh Networks,” 2009

IEEE International Conference on Communications, pp. 1–5, Jun. 2009.

[44] H. Luo, S. Ci, D. Wu, and H. Tang, “End-to-end optimized TCP-friendly

rate control for real-time video streaming over wireless multi-hop networks,”

Journal of Visual Communication and Image Representation, vol. 21, no. 2,

pp. 98–106, Feb. 2010.

128

[45] A. Markopoulou, E. Setton, M. Kalman, and J. Apostolopoulos, “WiSE

video: using in-band wireless loss notification to improve rate-controlled video

streaming,” vol. 1, pp. 249–252 Vol.1, 2004.

[46] M. Chen and A. Zakhor, “Rate control for streaming video over wireless,”

Wireless Communications, IEEE, vol. 12, no. 4, pp. 32–41, 2005.

[47] Y.-S. Hong, H.-S. Lim, and J.-S. Hong, “A Cost Effective Rate Control for

Streaming Video Dedicated to Wireless Handheld Devices,” pp. 537–542,

2008.

[48] Y. Huang, S. Mao, and S. Midkiff, “A Control-Theoretic Approach to Rate

Control for Streaming Videos,” Multimedia, IEEE Transactions on, vol. 11,

no. 6, pp. 1072–1081, 2009.

[49] G. Maione and D. Striccoli, “Transmission control of Variable-Bit-Rate video

streaming in UMTS networks,” Control Engineering Practice, vol. 20, no. 12,

pp. 1366–1373, Dec. 2012.

[50] L. Atzori, G. Ginesu, A. Floris, and D. Giusto, “Rate control based on

reduced-reference image quality estimation for streaming video over wireless

channels,” pp. 2021–2025, 2012.

[51] Y. Xiaogang, L. Jiqiang, and L. Ning, “Congestion Control Based on Priority

Drop for H.264/SVC,” 2007 International Conference on Multimedia and

Ubiquitous Engineering (MUE’07), pp. 585–589, 2007.

129

[52] T. Schierl, H. Schwarz, D. Marpe, and T. Wiegand, “Wireless Broadcast-

ing Using the Scalable Extension of H. 264/AVC,” 2005 IEEE International

Conference on Multimedia and Expo, pp. 884–887, 2005.

[53] T. Schierl, C. Hellge, S. Mirta, K. Grüneberg, and T. Wiegand, “Using H .

264 / AVC-based Scalable Video Coding (SVC) for Real Time Streaming

in Wireless IP Networks,” pp. 3455–3458, 2007.

[54] G. Ji and B. Liang, “Stochastic Rate Control for Scalable VBR Video

Streaming over Wireless Networks,” GLOBECOM 2009 - 2009 IEEE Global

Telecommunications Conference, pp. 1–6, Nov. 2009.

[55] H.-L. Chen, P.-C. Lee, and S.-H. Hu, “Improving Scalable Video Transmission

over IEEE 802.11e through a Cross-Layer Architecture,” 2008 The Fourth

International Conference on Wireless and Mobile Communications, pp. 241–

246, 2008.

[56] H. Mansour, Y. Fallah, P. Nasiopoulos, and V. Krishnamurthy, “Dynamic re-

source allocation for MGS H. 264/AVC video transmission over link-adaptive

networks,” Multimedia, IEEE . . . , vol. 11, no. 8, pp. 1478–1491, 2009.

[57] H. Zhang, Y. Zheng, M. Khojastepour, and S. Rangarajan, “Cross-layer op-

timization for streaming scalable video over fading wireless networks,” IEEE

Journal on Selected Areas in Communications, vol. 28, no. 3, pp. 344–353,

Apr. 2010.

130

[58] M. Li, Z. Chen, and Y.-P. Tan, “Cross-layer optimization for SVC video

delivery over the IEEE 802.11e wireless networks,” Journal of Visual Com-

munication and Image Representation, vol. 22, no. 3, pp. 284–296, Apr. 2011.

[59] D. Song and C. W. Chen, “Maximum-throughput delivery of SVC-based

video over MIMO systems with time-varying channel capacity,” Journal of

Visual Communication and Image Representation, vol. 19, no. 8, pp. 520–528,

Dec. 2008.

[60] D. Radakovic and R. Ansari, “Priority-aware transfer of SVC encoded video

over MIMO communications system,” . . . , 2009. PCS 2009, 2009.

[61] C.-h. Wang, R.-i. Chang, J.-m. Ho, and S.-c. Hsu, “Rate-sensitive ARQ for

real-time video streaming,” GLOBECOM ’03. IEEE Global Telecommunica-

tions Conference (IEEE Cat. No.03CH37489), pp. 3361–3365, 2003.

[62] H.-B. Yu, S. Yu, and C. Wang, “A highly efficient, low delay architecture for

transporting H.264 video over wireless channel,” Signal Processing: Image

Communication, vol. 19, no. 4, pp. 369–385, Apr. 2004.

[63] Y. Wang, L.-P. Chau, and K.-H. Yap, “Bit-Rate Allocation for Broadcasting

of Scalable Video Over Wireless Networks,” IEEE Transactions on Broad-

casting, vol. 56, no. 3, pp. 288–295, Sep. 2010.

[64] A. Nasipuri and S. Das, “Multichannel CSMA with signal power-based chan-

nel selection for multihop wireless networks,” vol. 1, pp. 211–218 vol.1, 2000.

131

[65] T.-T. Luong, B.-S. Lee, and C. Yeo, “Channel Allocation for Multiple Chan-

nels Multiple Interfaces Communication in Wireless Ad Hoc Networks,” vol.

4982, pp. 87–98, 2008.

[66] H. S. Chiu, K. Yeung, and K.-S. Lui, “WSN15-2: J-CAR: an Efficient Chan-

nel Assignment and Routing Protocol for Multi-channel Multi-interface Mo-

bile Ad Hoc Networks,” pp. 1–5, 2006.

[67] H. Cheng, G. Chen, N. Xiong, and X. Zhuang, “Static channel assignment

algorithm in multi-channel wireless mesh networks,” pp. 49–55, 2009.

[68] P. Kyasanur, “Routing and Link-layer Protocols for Multi-Channel Multi-

Interface Ad hoc Wireless Networks,” Sigmobile Mobile Computing and Com-

munications Review, vol. 10, pp. 31–43, 2006.

[69] H. Skalli, S. Ghosh, S. Das, L. Lenzini, and M. Conti, Channel Assign-

ment Strategies for Multiradio Wireless Mesh Networks: Issues and Solutions,

2007, vol. 45, no. 11.

[70] A hybrid channel assignment strategy to QoS support of video-streaming over

multi-channel ad hoc networks, 2012, vol. 85, no. 2.

[71] J. Liu, F. Li, F. Dou, X. He, Z. Luo, and H. Xiong, “An Adaptive Cross-Layer

Mechanism of Multi-channel Multi-interface Wireless Networks for Real-Time

Video Streaming,” pp. 165–170, 2010.

[72] S. Lee and K. Chung, Combining the rate adaptation and quality adaptation

schemes for wireless video streaming, 2008, vol. 19, no. 8.

132

[73] W. Saesue, C. T. Chou, and J. Zhang, “CROSS-layer QoS-optimized EDCA

adaptation for wireless video streaming,” pp. 2925–2928, 2010.

[74] M. Loiacono, J. Johnson, J. Rosca, and W. Trappe, “Cross-Layer Link Adap-

tation for Wireless Video,” pp. 1–6, 2010.

[75] D. Kumar, R. Sudarson, and R. Sivasankari, “A QoS aware cross-layer opti-

misation for wireless video streaming,” pp. 1–6, 2011.

[76] J. Clavijo, M. Segarra, C. Baeza, C. Moreno, R. Sanz, A. Jimnez, R. Vzquez,

F. Daz, and A. Dez, “Real-Time Video for Distributed Control Systems,”

Engineering Practice, vol. Vol. 9. No. . pp.459-466., 2001.

[77] V. Rostami, S. Ebrahimijam, and O. Sojodishijani, “Real-time distributed

control system for navigating omnidirectional soccer robot,” pp. 1–4, 2007.

[78] D. Kaff, C. Rodrigues, Y. Krishnamurthy, I. Pyarali, and D. Schmidt, “Ap-

plication of the QuO quality-of-service framework to a distributed video ap-

plication,” pp. 299–308, 2001.

[79] Z. C., “Distributed Programming with ICE,” Zero Company, vol. version

3.3.1., 2009.

[80] M. Garcia-Valls, P. Basanta-Val, and I. Estevez-Ayres, “Adaptive real-time

video transmission over DDS,” pp. 130–135, 2010.

[81] A. Detti, P. Loreti, N. Blefari-Melazzi, and F. Fedi, “Streaming H.264 scalable

video over data distribution service in a wireless environment,” pp. 1–3, 2010.

133

[82] “x264.” [Online]. Available: http://www.videolan.org/developers/x264.html

[83] “Joint Scalable Video Model JSVM-6,” Geneva, Switzerland: Joint Video

Team, Doc. JVT-S202, 2006.

[84] “opencv.” [Online]. Available: http://opencv.org/

[85] J. Le Feuvre, C. Concolato, and J.-C. Moissinac, “GPAC: open source mul-

timedia framework,” pp. 1009–1012, 2007.

[86] “ffmpeg.” [Online]. Available: http://www.videolan.org/developers/x264.html

[87] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RFC 3550: RTP:

A Transport Protocol for Real-Time Applications,” 2003.

134

Vitae

• Name: Mohammed Abduljalil Mohammed Al-saeedi

• Nationality: Yemen

• Date of Birth: Feb. 5 1983

• Email: modstarr@gmail.com

• Permenant Address: King Fahd University of Petroleum and Minerals

Dhahran, 31261, Saudi Arabia

135

