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1 Introduction

Video streaming over the Internet is pervasive and constitutes a huge mar-
ket. It embraces providers of contents, streaming solutions, and telecommuni-
cations. Content providers typically o�er quality productions of live events or
on-demand videos, such as movies, documentaries, sports events, television pro-
grams, or advertisements. While, in the past, such content was only watched in
movie theaters or on television, videos can now also be consumed on other Inter-
net devices with screens, such as personal computers and smartphones. More-
over, the ubiquity of Internet access and the increased functionality of Internet
devices allow end users to record, upload, and distribute video content them-
selves, e.g., via specialized web portals for user-generated content. This enables
also the implementation of live video conferencing, which features real time cre-
ation, transmission, and consumption of video content. Despite the wide avail-
ability, frequent usage, and plentiful possible applications of video streaming,
the major challenge is to understand and improve the quality of video stream-
ing, which is tackled in this thesis.

The goal of video streaming services and Internet Service Providers (ISPs)
is to achieve a high Quality of Experience (QoE), which is a concept used to
describe the subjectively perceived quality of end users with an Internet ser-
vice [82]. A high QoE results in customer satisfaction and a reduced churn rate
of the service. Therefore, the most popular video streaming services, includ-
ing Net�ix1, YouTube2, Amazon Video3, and many Internet Protocol Television

1https://www.netflix.com [Online] – Accessed: 24.08.2017
2https://www.youtube.com [Online] – Accessed: 24.08.2017
3https://www.amazon.com/Amazon-Video/b?&node=2858778011 [Online] –

Accessed: 24.08.2017

1

https://www.netflix.com
https://www.youtube.com
https://www.amazon.com/Amazon-Video/b?&node=2858778011




management to e�ciently deliver video content through their networks. They
can, for example, in�uence the routing or bandwidth allocation of streaming
�ows or cache popular videos on own servers in their networks, to avoid load
and transit tra�c, i.e., charged downstream tra�c from other ASs, and ensure a
high QoE of end users.

While CDNs and core networks have high capacities, the bottleneck of video
tra�c is often the last mile in the access network of the end users, i.e., the last
link that reaches the end user’s household or the base station. Especially oper-
ators of cellular access networks face huge loads and costly data transmissions,
and thus, promote o�oading of tra�c �ows to �xed networks. O�oading is
mostly implemented via Wi-Fi, which is a term coined by the Wi-Fi Alliance4

that comprises technology for Wireless Local Area Networks (WLANs) based on
the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards56.
Complementary Wi-Fi access is provided by public Wi-Fi hotspots with a high
capacity �xed network backhaul link. However, Wi-Fi networks also prevail in
home environments to connect the mobile devices of end users to the Internet.
Thus, there is a growing Wi-Fi infrastructure, which can be utilized to relieve
cellular networks, and deliver video tra�c more e�ciently. But although cellu-
lar operators take advantages, it is not clear if also end users can bene�t from
Wi-Fi o�oading of video sessions.

To overcome the last mile problem, also the new edge and fog computing
paradigms are considered, i.e., the instantiation of services and placement of
data at the network edge close to end users, or even directly on end user de-
vices. This attracts notice to the utilization of always-on and always-connected
devices in home environments, such as residential gateways, Network-attached
Storages (NASs), or Set-top Boxes (STBs). Virtualization technologies can be
used to migrate service instances and run them on edge or fog devices. It also
allows to move service instances and data, e.g., video content, according to the

4http://www.wi-fi.org/ [Online] – Accessed: 24.08.2017
5http://standards.ieee.org/about/get/802/802.11.html [Online] – Ac-

cessed: 24.08.2017
6http://grouper.ieee.org/groups/802/11/ [Online] – Accessed: 24.08.2017

3

http://www.wi-fi.org/
http://standards.ieee.org/about/get/802/802.11.html
http://grouper.ieee.org/groups/802/11/


1 Introduction

mobility of the users. Thus, personalized service instances can always be run
close to end users and can be accessed with short delays and high bandwidths.
Still, mechanisms are needed, which incentivize and leverage the provision and
sharing of end user resources to improve the QoE.

New tra�c management solutions are designed to improve the QoE for Inter-
net services, such as HAS. Cross-layer tra�c management utilizes information
from di�erent layers, e.g., it considers network and application layer to both
align the network management to the application needs, and adjust the appli-
cation demands to the network conditions. Collaborative tra�c management is
based on information exchange and coordinated actions among di�erent stake-
holders. Additionally, social information, like user location, usage preferences,
or content interests, can be gathered and exploited to enhance tra�c manage-
ment. This results in Socially-aware Tra�c Management (SATM), which can be
used to customize the service and its delivery to the individual needs of an end
user to reach a high satisfaction with the service. However, it is not yet widely
understood how SATM can be implemented and what performance gains can
be expected.

Thus, there are several open challenges with respect to the QoE of video
streaming. This monograph contributes to solving these challenges by present-
ing research on QoE, QoE-aware tra�c management, and socially-aware tra�c
management for HAS. In the following, the scienti�c contribution is highlighted
and the outline of this thesis is presented.

1.1 Scientific Contribution

This thesis focuses on understanding and improving the QoE of HAS. After
identifying the most important QoE factors, possibilities for tra�c management
are considered to improve the subjectively perceived quality of video stream-
ing in access networks. Therefore, an accurate QoE monitoring is required to
notice quality degradations of the customers and appropriate tra�c manage-
ment actions have to be applied. As this vast research �eld cannot be covered
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1.1 Scienti�c Contribution

completely in a single monograph, only selected topics are studied. This thesis
investigates di�erent QoE monitoring approaches on network and application
layer, and also evaluates the performance of selected QoE-aware and socially-
aware tra�c management approaches for HAS in access networks. Thereby,
the focus is on general concepts and methodologies, and the presented research
abstracts from speci�c technologies, if possible, to not limit the �ndings to sys-
tems, which could soon be outdated in today’s fast-paced networking world.
This means, streaming or networking technologies will not be investigated from
a technology-centric perspective, for example, focusing on the performance of
current video codecs or transmission protocols, but rather from a conceptual
perspective. Thereby, the obtained results are more general and apply to all HAS
systems.

Figure 1.2 visualizes the research activities, identi�es the selected topics of
this thesis, and embeds them into the research �elds. Thereby, the cartography
is split vertically into di�erent layers, which loosely resembles the Open Sys-
tems Interconnection (OSI) model of telecommunication systems. However, the
layers up to transport layer have been combined into the network layer, and,
typical for the Internet model (TCP/IP model), the higher layers have been com-
bined into the application layer. Today’s highly interactive Internet services re-
quire the addition of a user layer, and the ubiquitous social networking and
interactions among di�erent users are re�ected in the social layer. Horizon-
tally, the cartography is divided into the three main research goals, which are
monitoring, tra�c management, and performance evaluation. Note that some of
the publications might �t to more than one category. In this case, the publica-
tions are listed in the category, which yields the largest overlap. The works have
been conducted within the European Union (EU) Framework Programme 7 (FP7)
project Socially-aware Management of New Overlay Application Tra�c combined
with Energy E�ciency in the Internet (EU FP7 SmartenIT), the EU Horizon 2020
(H2020) project In-network Programmability for Next-generation Personal Cloud
Service Support (EU H2020 INPUT), the sub-project Monitoring and Analysis of
Quality of Experience in Mobile Broadband Networks (EU H2020 MONROE/Mobi-
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1 Introduction

QoE) of the project Measuring Mobile Broadband Networks in Europe (EU H2020
MONROE), the Deutsche Forschungsgemeinschaft (DFG) projects Entwurf und
Bewertung neuer Mechanismen für das Internet der Zukunft - Neue Paradigmen
und ökonomische Aspekte (DFG ÖkoNet), Analyse und Optimierung des Trade-o�s
zwischen QoE und Energiee�zienz in Datenzentren (DFG QoE-DZ), and Design
und Bewertung neuer Mechanismen für Crowdsourcing als neue Form der Arbeits-
organisation im Internet (DFG Crowdsourcing), the European Cooperation in Sci-
ence and Technology (COST) action European Network on Quality of Experience
in Multimedia Systems and Services (COST Qualinet), the project Service Quality
De�nition and Measurement (NGMN P-SERQU) of the Next Generation Mobile
Networks (NGMN) Alliance, and several industry funded projects.

SOCIAL

USER

APPLICATION

NETWORK

[1]4[42]4[51]
[53][56]4[57]
[65][74]

[6][11][55] [2][10]4[37]
[43][58][76]
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[59][77]

[9][34]3[48]3
[66][67][72]
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[20][33][35]
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[27][60][61]3
[80]3

[29]4[44]4[47]4
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QoE-Aware Traffic Management

Analytical 
Modeling

Edge Computing

Figure 1.2: Cartography of the conducted research. The notation [x]y indicates that
the scienti�c publication [x] is discussed in Chapter y of this thesis.

The research activities can be roughly integrated into six �elds. First, the QoE
of Internet applications was investigated to �nd the most important factors that
a�ect the subjectively perceived quality of such services. A special attention
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1.1 Scienti�c Contribution

was given to video streaming services, which are very popular and have high
network demands. In Figure 1.2, these studies are highlighted in blue, and can
be attributed to performance evaluation on user level. In this thesis, the results
of the QoE research of [13–15, 39, 52] are presented. Based on the �ndings of
previous QoE studies, the impact of adaptation-related parameters on the QoE
of HAS is investigated. The impact of quality and time on each layer is identi-
�ed and quanti�ed, which allows to formulate and solve an optimization prob-
lem for HAS adaptation. It can be used to benchmark HAS adaptation logics
with respect to QoE-optimal adaptation for given network conditions and video
characteristics. A frequently used methodology for QoE research is crowdtest-
ing, i.e., conducting subjective QoE studies via crowdsourcing. To obtain reliable
results from a large, diverse, remote, unsupervised crowd of micro job workers
is not trivial. Thus, appropriate methodology for crowdtesting had to be devel-
oped. The �eld of crowdtesting is categorized as monitoring on the user level
and the corresponding publications are highlighted in violet, but crowdtesting
methodology will not be detailed in this thesis.

After the QoE factors of Internet services, such as HAS, are known, tra�c
management can be applied to improve the perceived service quality. Thereby,
the concepts of application-aware networks and network-aware applications
were investigated and exploited. This �eld of QoE-aware tra�c management
is highlighted in green, and covers all research goals, i.e., monitoring, tra�c
management, and performance evaluation. This thesis studies QoE-aware traf-
�c management for HAS in access networks, which does not require to operate
on tra�c aggregates, but allows to identify and manage single video �ows. In
this context, QoE monitoring approaches on application and network layer are
presented following the publications [34, 45, 48, 61, 80]. Moreover, an analytical
and simulative performance evaluation is conducted, which compares the QoE
gain of di�erent tra�c management algorithms for a scenario, in which video
streaming and web browsing �ows share a bottleneck link [12], e.g., on a the
backhaul link of a shared Wi-Fi home network or a mobile base station. Some
other studies applied analytical methods to obtain accurate and scalable perfor-

7



1 Introduction

mance evaluation results on abstract system models, and are highlighted in red
but are not included in this thesis. Dedicated performance evaluation studies
were also conducted on edge computing, which is a new paradigm that extends
cloud computing by additionally utilizing computing resources at the network
edge, e.g., servers at mobile base stations or even devices within the homes of
end users. Personalized services can be instantiated or migrated at the network
edge close to end users to support user mobility and achieve a high QoE. As
edge computing goes beyond access network tra�c management, these results
are not included in this thesis.

QoE-aware tra�c management was extended by additionally considering the
end user, his shared resources, as well as social information, e.g., about his pref-
erences, his interests, or his interactions with other users. This constitutes the
new research �eld of Socially-aware Tra�c Management (SATM), which is high-
lighted in orange. Similar to QoE-aware tra�c management, SATM not only
considers tra�c management decisions and actions but also the monitoring of
social information. The basic concept of SATM is introduced based on [1]. After-
wards, the focus is on Wi-Fi o�oading as a SATM mechanism, which is not only
widely considered by ISPs to reduce the load on stressed mobile access networks,
but is also well suited in the home environment due to the prevalence of resi-
dential Wi-Fi networks. This thesis presents a hotspot location model for pub-
lic Wi-Fi o�oading [10], a SATM system for private Wi-Fi o�oading in home
environments [42, 56], and a performance evaluation on the QoE end energy
e�ciency of public and private Wi-Fi o�oading of HAS �ows [29, 44, 47].

In summary, this thesis is focused on the following research questions:

• How to model the impact of adaptation on the QoE of HAS?
• How to monitor the QoE of HAS on network and application layer?
• How to improve the QoE of HAS by resource allocation on bottleneck links?
• How to consider the end user, his shared resources, and social information for

tra�c management?
• How to utilize existing Wi-Fi infrastructure for improving the QoE of HAS?
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1.2 Outline of the Thesis

The structure of this thesis is illustrated in Figure 1.3. After this introductory
chapter, the three selected topics, which were presented above, are tackled in
separate chapters. The studies within each chapter form sections and are visu-
alized as boxes. The arrows between the boxes represent the relations between
the sections, i.e., an arrow indicates that background or �ndings are utilized in
the later section. Sections, which are visualized as blue boxes, start each chapter
and introduce the background and related work of each research �eld. Green
boxes represent result sections. In the end of each chapter, the lessons learned
are summarized, which is indicated by orange boxes. In the following, the orga-
nization of this monograph is described.

Chapter 2 investigates the QoE of HAS. In order to understand HAS, Sec-
tion 2.1.1 describes the underlying concept and technology. Previous studies and
results on the QoE of video streaming are presented in Section 2.1.2. Section 2.2
investigates and quanti�es the impact of adaptation-related parameters and time
on layer on the QoE of HAS. These QoE �ndings from subjective crowdsourced
QoE studies are used to formulate and solve an optimization problem for quality
adaptation in Section 2.3. It can be used to benchmark HAS adaptation logics
with respect to the QoE-optimal adaptation for a given network scenario and
video characteristics. An exemplary performance evaluation of four di�erent
HAS adaptation logics is conducted. Section 2.4 summarizes this chapter.

Based on the QoE �ndings, Chapter 3 discusses QoE-aware tra�c manage-
ment for HAS for individual video sessions, e.g., in access networks. The rele-
vant background is provided in Section 3.1. QoE monitoring is followed up in
Section 3.2, which presents monitoring approaches on network and application
layer, as well as an estimation of QoE factors from network parameters, and the
corresponding results of subjective QoE studies. Section 3.3 investigates QoE-
aware tra�c management on a bottleneck link, which is shared by video stream-
ing and web browsing �ows, and presents analytic and simulative performance
evaluation results. The lessons learned are described in Section 3.4.
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1 Introduction

In Chapter 4, SATM for HAS is tackled. After de�ning the concept of SATM
in Section 4.1.1, the remainder of this chapter focuses on Wi-Fi o�oading as a
SATM mechanism, which can be well applied due to ubiquitous public Wi-Fi
infrastructures and Wi-Fi network deployments in home environments. Sec-
tion 4.2.1 presents a simple model for the locations of public Wi-Fi hotspots. In
Section 4.2.2, a SATM platform for home routers is described, which can im-
prove the QoE of HAS by o�ering Wi-Fi o�oading, caching, prefetching, and
content delivery. Section 4.3 evaluates the performance of Wi-Fi o�oading in
terms of QoE and energy e�ciency, and additionally con�rms the applicability
of the hotspot location model of Section 4.2.1. Section 4.4 presents the lessons
learned from this chapter.

Finally, Chapter 5 concludes this thesis and provides an outlook to future
research activities.
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QUALITY OF EXPERIENCE OF HTTP ADAPTIVE VIDEO STREAMING
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Figure 1.3: Organization and contribution of this monograph.
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2 �ality of Experience of HTTP

Adaptive Video Streaming

Video services on the Internet have evolved from o�ering mere downloads
of video �les to progressive downloads and streaming, which both describe
the concurrent download and play out of media �les. The currently prevailing
streaming technology is HTTP Adaptive Video Streaming (HAS), which relies
on standard web protocols (Hypertext Transfer Protocol (HTTP) and Trans-
mission Control Protocol (TCP)) to promote a simple service implementation
and high availability. The most important feature of HAS is the possibility to
adapt the video bit rate to the network conditions. It is intended to ensure a
smooth streaming when end users face throughput �uctuations, e.g., in mobile
networks.

To understand and eventually improve Internet services like video stream-
ing, application providers and Internet Service Providers (ISPs) need concepts to
quantify the experience and satisfaction of their customers. Therefore, Quality
of Service (QoS) was introduced, which is de�ned as “totality of characteristics
of a telecommunications service that bear on its ability to satisfy stated and im-
plied needs of the user of the service” [83]. In practice, it describes the service
delivery by objective network parameters, such as throughput, packet loss, de-
lay, or jitter. However, for many services, QoS is not perfectly correlated with
the customers’ perception. With video streaming, for example, the user does
not explicitly notice packet delays because they can be absorbed by the appli-
cation bu�er of the video player, but only perceives propagated network issues
on application layer, e.g., playback interruptions when the bu�er is empty (see
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Section 2.1). Thus, the application behavior, which obviously depends on the un-
derlying network, and its impact on customers’ experience cannot be captured
by pure QoS.

Thus, Quality of Experience (QoE), which is a concept of subjectively per-
ceived quality, was introduced to complement QoS. QoE is de�ned as “the de-
gree of delight or annoyance of the user of an application or service. It results
from the ful�llment of his or her expectations with respect to the utility and /
or enjoyment of the application or service in the light of the user’s personality
and current state. [...] In the context of communication services, QoE is in�u-
enced by service, content, network, device, application, and context of use” [82].
QoE is highly application-dependent and, in order to understand all in�uence
factors, extensive subjective studies have to be conducted. The results of these
studies typically express QoE in terms of Mean Opinion Score (MOS) on an or-
dinal scale ranging from 1 (bad) to 5 (excellent) (cf. Absolute Category Rating
(ACR) scale [84]), or in terms of acceptability scores.

This chapter focuses on the QoE of HAS and investigates the impact of qual-
ity adaptation on the subjectively perceived quality. Therefore, crowdsourced
QoE studies are conducted to identify and quantify the in�uence of di�erent
adaptation-related parameters. The results allow to formulate and solve an op-
timization problem to compute the QoE-optimal adaptation for a given network
scenario and video characteristics, which can be used to benchmark HAS adap-
tation logics in di�erent evaluation scenarios.

Works on the QoE of HAS are summarized in [14], from which an overview
on HAS technology and the most important QoE results will be presented in
Section 2.1. Afterwards, the impact of the quality adaptation, namely, the am-
plitude and frequency of quality switches and the time on each quality layer,
will be investigated in Section 2.2, which is based on [39, 52]. The results are
used in Section 2.3, to compute QoE-optimal adaptation for benchmarking HAS
adaptation logics on the basis of [13, 15]. Section 2.4 recaps the results of this
chapter, which are the basis for the remainder of this work.
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2.1 Background and Related Work

The �rst HAS solution was introduced by Move Networks in 20071 [85]. After-
wards, many proprietary streaming solutions were developed, the most popular
solutions being Microsoft Silverlight Smooth Streaming (MSS) [86] by Microsoft
Corporation in 2008, Apple HTTP Live Streaming (HLS)2 by Apple Inc. in 2009,
and Adobe HTTP Dynamic Streaming (HDS)3 [87] by Adobe Systems Inc. in
2010. Although these solutions shared a similar technology (see Section 2.1.1),
they were mutually incompatible. In 2009, �rst standardization approaches were
started by the Third Generation Partnership Project (3GPP) for use in Long Term
Evolution (LTE) networks [88]. This standard was continued in collaboration
with the Moving Picture Experts Group (MPEG) [89], which eventually evolved
into the Dynamic Adaptive Streaming over HTTP (DASH) standard in 2012 [90].
Based on the standard, an industry forum4 of multimedia and network compa-
nies has been formed to catalyze the adoption of DASH in various services.

Like classical video streaming, HAS is based on the concurrent download of
video data from a streaming server and playback of the downloaded video data
in a client player. The data is requested via HTTP and transmitted via TCP to
the client and stored in an application bu�er. The client starts to play out the
video after the bu�er contains a su�cient amount of data. This waiting time
between the video request and the start of playback is referred to as initial de-
lay and in�uences the QoE of HAS. Although TCP ensures the transmission
of undisturbed video data, network issues (e.g., insu�cient bandwidth, packet
loss, delay, and jitter) can decrease the throughput of the TCP transmission. If
the throughput is lower than the bit rate of the video, the application bu�er

1http://www.theguardian.com/media-network/media-network-blog/
2013/mar/01/history-streaming-future-connected-tv [Online] – Ac-
cessed: 24.08.2017

2https://developer.apple.com/library/ios/documentation/
networkinginternet/conceptual/streamingmediaguide/
Introduction/Introduction.html [Online] – Accessed: 24.08.2017

3http://www.adobe.com/products/hds-dynamic-streaming.html [Online] –
Accessed: 24.08.2017

4http://dashif.org [Online] – Accessed: 24.08.2017
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decreases. When the bu�er is depleted, the video playback stalls and can only
be resumed after su�cient data have been received. As QoE is greatly in�u-
enced by these stalling (or rebu�ering) events, streaming systems try to avoid
stalling by adaptation of the video bit rate to the current network conditions.
To change the video bit rate, the transmitted video has to be altered, e.g., in
terms of resolution, frame rate, or compression, which introduces an additional
impact on QoE. In the following, the technology behind HAS will be described
in Section 2.1.1, and Section 2.1.2 will present related works on the impact of
initial delay, stalling, and adaptation on the QoE of HAS.

2.1.1 HTTP Adaptive Video Streaming Technology

Figure 2.1 visualizes the HAS concept. To enable adaptation of the video stream-
ing to the current network conditions, the HAS server, which can be part of
a Content Delivery Network (CDN), stores the video content encoded in dif-
ferent representations, i.e., in di�erent bit rates. The representations are split
into segments (also referred to as chunks) and corresponding segments of dif-
ferent representations contain the same frames, such that the bit rate can be
seamlessly switched at each segment boundary. Typically, all segments contain
a �xed amount (i.e., 1 to 15 s) of video playback time and can either be extracted
at runtime from the single representation �le or are stored as separate �les on
the server. Apart from single-layer codecs (e.g., MPEG/Video Coding Experts
Group (VCEG)’s H.264 Advanced Video Coding (H.264/AVC) [91] or H.265 High
E�ciency Video Coding (H.265/HEVC) [92]), which encode each bit rate sepa-
rately, multi-layer codecs (e.g., H.264 Scalable Video Coding (H.264/SVC) [93])
can be used, which enable bit stream switching. For example, H.264/SVC uses
di�erence coding of the video content to predict data of higher layers (also re-
ferred to as enhancement layers) from lower representations. The quality can be
increased incrementally to a higher layer by transmitting and adding the miss-
ing di�erence data. This is an advantage over single-layer codecs, for which a
whole new segment has to be downloaded, and already transmitted data of lower
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the playback bu�er can be used to compensate for short term throughput vari-
ations. However, there is a trade-o� between the amount of bu�ered playtime
and the length of the initial delay (more bu�ered playtime results in a longer
initial delay) and the risk of stalling (more bu�ered playtime means a higher
robustness to short term throughput variations). A similar threshold is used in
case of stalling, when the playback is interrupted until the bu�er is �lled up to
the threshold. Here again, there is a trade-o� between the amount of rebu�ered
playtime and the length of the interruption (more bu�ered playtime means a
longer stalling duration) and the risk of a shortly recurring stalling event (more
bu�ered playtime means a longer playback until potential next stalling event).

The adaptation logic at the client selects from the list of available segments
in the index �le which segments to download next. These decisions mostly take
into account segment characteristics (e.g., bit rate), current playout statistics
(e.g., bu�er �ll level), and current network conditions (e.g., bandwidth measure-
ments or estimations). Several methods for bandwidth estimation are discussed
in literature, e.g., [99–102]. By adapting the video bit rate, the adaptation logic
aims at low initial delays, avoidance/minimization of stalling, and playing out
the video in a high visual quality. Consequently, it is the adaptation logic, which
predominantly in�uences the network demands of the video streaming and the
resulting QoE of the end user. Four adaptation logics were selected and will
be compared in terms of resulting QoE in Section 2.3. In the following, these
algorithms will be introduced and short descriptions of the basic concepts are
given. The comprehensive technical details can be obtained from the respective
publications.

Reference [103] proposed a �rst prototype implementation of a DASH adapta-
tion algorithm, which decides based on the estimated bandwidth for download-
ing the last segment, the current bu�er level, and the average bit rate of each rep-
resentation. The algorithm, which will be referred to as Klagenfurt University
Adaptation Logic (KLU) throughout this work, selects the representation with
the highest bit rate less or equal to the estimated bandwidth. The estimation is
based on the throughput measured during the download of the last segment,
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but is increased or decreased if the bu�er level is less than 35% or higher than
50%, respectively. The algorithm presented in [104], which will be referred to
as Technical University Berlin Adaptation Logic (TUB), aimed to maximize the
played out quality, while avoiding unnecessary quality switches, and minimize
the initial delay. It uses the same input parameters, but additionally three con-
�gurable bu�er thresholds. In contrast to KLU, it tries to adapt only one quality
level at a time when the bu�er level is below or above con�gured thresholds. For
example, if the bu�er level is below a low threshold, the algorithm will estimate
the bandwidth based on the throughput of recent segments and compare it to
the bit rate of the current representation. If the bandwidth is lower, a segment
of the next lower representation is requested. Switching up the quality is imple-
mented in a similar fashion. Additionally, segment downloads can be delayed to
avoid too large bu�ers, and a fast-start phase is used to minimize initial delay.
Reference [105] adapted the video download strategy of the peer-to-peer stream-
ing mechanism Tribler [106] for H.264/SVC-based HAS and aimed to stream a
video quality that can be supported by the network. The algorithm, which will
be called Tribler-based Adaptation Logic (TRI), uses a bu�er threshold, and will
only request the next higher quality layer if all segments of all lower layers
are available up to the bu�er threshold. This means, �rst, only the base layer
of each segment is downloaded to reach the bu�er threshold. After the thresh-
old is reached, the algorithm will additionally download enhancement layers
for the already bu�ered segments if possible. The Bandwidth Independent Ef-
�cient Bu�ering Adaptation Logic (BIEB) algorithm [107] aims to optimize the
perceived QoE factors (cf. Section 2.1.2) and was also designed for H.264/SVC,
but uses a more dynamic segment selection algorithm by relying on size ratios
between segments of di�erent representations. The desired bu�er level for each
representation consists of a base number of segments and a variable number of
segments computed from the size ratios. The algorithm loops from the lowest
to the current quality level until it encounters a representation for which the
bu�ered number of segments is less than desired. If all desired segments have
been downloaded, the algorithm increases the desired bu�er level and switches
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to the next higher quality level. Table 2.1 summarizes the di�erent characteris-
tics of the presented adaptation logics.

Table 2.1: Characteristics of the four investigated HAS adaptation logics.

Bandwidth Bu�er Conservative Segment
estimation level up-switch size ratio

KLU x x
TUB x x x
TRI x x
BIEB x x x

Apart from these four algorithms, which will be benchmarked in Section 2.3
with respect to QoE-optimal adaptation, many other HAS adaptation logics
have been proposed in related works. Reference [108] described an algorithm
to minimize stalling. In [109], the authors proposed adaptation algorithms us-
ing feedback controllers based on the bu�ered video time as feedback. In [110],
the authors proposed a video rate adaptation algorithm considering only the
playback bu�er. Reference [111] described an adaptation logic based on feed-
back control theory, which did not generate on-o� tra�c patterns, and thus,
avoided unfairness and underutilization when many video �ows a bottleneck
link. References [112, 113] presented an adaptation logic, which tackled video
bit rate oscillation. Reference [114] used only bu�er occupancy for adaptation
decisions, while [115] additionally considered throughput in a control-theoretic
model. The algorithm presented in [116] considered the measured throughput,
bu�er occupancy, and the variation in segment sizes to better manage the users’
QoE. Finally, [117] modeled adaptation control systems to gain design insights.

2.1.2 Previous QoE Results for HAS

The subjectively perceived quality of a HAS session depends on many technical
and perceptual in�uence factors [14]. Based on the results of previous studies,
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the research community agrees that initial delay, stalling, and quality adaptation
have the biggest impact on the QoE. In the following, the most important QoE
results for these impact factors will be presented.

Initial Delay

As the impact of initial waiting times on QoE strongly depends on the applica-
tion [118], the results for other services cannot be directly transferred to HAS.
However, works on web page load times [119], Internet Protocol Television
(IPTV) channel zapping times [120], or Universal Mobile Telecommunications
System (UMTS) connection setup times [121] suggested a logarithmic relation-
ship between waiting times and QoE. For video streaming, initial delay is an
expected waiting time well known from the everyday usage of video applica-
tions. References [118, 122] found that initial delay was fundamentally di�erent
from stalling, which is a sudden unexpected interruption within the service. 90%
of the users in the study of [118] preferred initial delays over stalling. It was con-
�rmed by [123] that initial delays were also considered less important for mobile
video users and less critical for having a high QoE. Reference [124] con�rmed
the low impact of initial delays for high resolutions. Reference [118] quanti�ed
the in�uence of initial delay on QoE and found that initial delays up to 16 s only
marginally reduced the MOS. Moreover, the results suggested that the impact
of initial delay on QoE depended only on the length of the initial delay, but not
on the length of the video.

When considering not only single videos, but rather sessions of videos, initial
delays could become more relevant. References [125, 126] noted that users often
did not intend to watch a speci�c video, but instead browsed through videos
in order to �nd some content they were interested in. Thereby, they started
many videos, but often watched only the �rst seconds. Reference [127] found a
positive correlation of abandoned views and initial delay. Especially, if the initial
delay exceeded 2 s, viewers started to abandon the video completely. They also
found that the abandonment rate depending on initial delay was higher for short
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videos than for long videos, and higher for �xed access users (�ber, cable, DSL)
than for mobile users.

To sum up, for HAS, initial delays are not a major performance issue, es-
pecially if the users intend to watch the video. However, like for all services,
initial delays should be kept short to decrease the probability that a user aborts
the video and to increase the QoE of the users.

Stalling

In contrast to initial delay, stalling is perceived much worse because it is pro-
cessed di�erently by the human sensory system [128]. Reference [129] showed
that an increased duration of stalling deteriorated the QoE, but the position of
stalling was not important. In contrast, [130] reported an impact of the posi-
tion. Reference [129] also found that a single long stalling event was preferred
to multiple short stalling events. Reference [131] showed that stalling at irregu-
lar intervals was perceived worse than periodic stalling. Moreover, the authors
compared stalling to frame rate reduction and found that stalling was worse.
Reference [132] presented a random neural network model to predict QoE based
on stalling and the quantization parameter of the video encoder. In the corre-
sponding subjective studies, users were more sensitive to stalling than to in-
creased quantization, especially for less compressed videos. In [63], a model for
mapping regular stalling to MOS was obtained from subjective crowdsourcing
studies with regular stalling patterns. The results indicated an exponential rela-
tionship between stalling parameters, i.e., length and number of stalling events,
and QoE. Users rated the quality to be good, if at most one stalling event oc-
curred with a duration of a few seconds only. More stalling resulted in highly
dissatis�ed users. Reference [133] trained a more complex Hammerstein-Weiner
model to predict the QoE and achieved higher median correlations than previ-
ous models. Reference [134] found that the degradation of stalling was worse
when the presentation quality was higher and �tted a simple cubic relationship
to describe this trend.
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The results of previous studies suggest that stalling severely deteriorates the
QoE of video streaming, and thus, should be avoided to the greatest extent. This
means, HAS services need e�cient adaptation logics, which align the video bit
rate to the current network conditions. However, reducing the bit rate to avoid
stalling will result in playing out a lower quality layer, which also impacts the
end users’ QoE.

Adaptation

Video streaming was investigated under vehicular mobility in [135] and it was
found that the quality adaptation of HAS could e�ectively reduce stalling by 80%
when bandwidth decreased. Moreover, HAS better utilized the available band-
width when bandwidth increased. Thus, HAS trades o� stalling for adaptation,
which is generally expected to improve the QoE of end users. Reference [136]
compared (controlled) resolution reduction to (uncontrolled) packet loss arti-
facts and con�rmed that it was better to control the quality than to su�er from
uncontrolled e�ects (provisioning-delivery hysteresis). However, also the con-
trolled adaptation of HAS has an impact on the QoE of end users. The quality
switch is a degradation [137] and a high frequency of quality adaptation will
be annoying for end users [138]. Apart from the switch itself, the QoE changes
according to the adaptation direction, however, switching down the video qual-
ity will have a stronger impact on QoE [137]. The adaptation amplitude is the
most dominant factor and a high amplitude leads to a low acceptance, while low
amplitudes might not be detectable [138]. However, abrupt up-switching might
increase the QoE [139]. Reference [140] observed the recency e�ect, i.e., higher
quality in the end lead to a higher QoE. Con�rming the recency e�ect, [141] ad-
ditionally found that segments in the beginning had a higher impact on QoE (i.e.,
primacy e�ect). Reference [142] concluded that the temporal aspects of adapta-
tion became important. They also found that a higher base layer allowed for
longer impairments to be accepted.

Although, adaptation is a less severe degradation than stalling [108], its im-
pact on QoE must not be neglected. Additional to the general results presented
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above, each adaptation dimension (e.g., resolution, frame rate, quantization) has
a speci�c impact on the perceived quality. These QoE results for the di�erent
adaptation dimensions and their trade-o�s can be found in [14]. Furthermore,
several studies exist, which present models for time varying video quality. Ref-
erence [143] proposed linear models based on per-frame and per-segment objec-
tive metrics. The QoE is estimated based on average and standard deviation of
the objective metrics and the adaptation frequency. Reference [144] followed a
similar approach but utilized data mining. Reference [145] considered frequency,
type, and temporal location of the quality adaptation. Reference [146] used a
histogram of per-segment quality scores and the histogram of quality gradients
to model the overall QoE. Reference [147] summarized subjective studies and
discussed open research questions towards QoE models for HAS.

General QoE Models for HTTP Adaptive Video Streaming

Several models for incorporating di�erent key performance indicators into a sin-
gle QoE score have been proposed. In [108], QoE metrics from the 3GPP DASH
speci�cation TS 26.247 [89] were considered, namely, HTTP request/response
transactions, representation switch events, average throughput, initial delay,
bu�er level, play list, and information from the media presentation description.
However, the corresponding evaluation took only stalling as the most dominat-
ing impairment into account. Reference [132] considered the impact of the quan-
tization parameter and stalling on the perceptual quality. Reference [148] found
that adaptation strategy-related parameters (stalling, representation switches)
had to be considered on a large time scale of up to some minutes, while video
encoding-related parameters (resolution, frame rate, quantization parameter, bit
rate) only in�uenced in the order of a few seconds. References [149, 150] used all
impact factors, namely, initial delay, stalling, and adaptation, for their models.
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2.2 Impact of Adaptation on the QoE of HAS

The related works foreshadow that the quality level of the video and the adapta-
tion frequency may have a signi�cant impact on the perceived QoE of HAS. Still,
the results of these studies are not unanimously naming and quantifying the
most important in�uence factors, which indicates that it is not well understood
how quality adaptation a�ects the QoE. Therefore, this section investigates the
impact of adaptation-related parameters with two crowdsourced subjective QoE
studies.

Crowdsourcing is the outsourcing of small tasks to a large group of workers,
and has become increasingly popular in the context of subjective QoE assess-
ments, e.g., [63, 151]. In typical crowdsourced QoE studies, which are sometimes
referred to as crowdtesting, quality rating tasks are distributed to a group of re-
mote participants, e.g., via dedicated crowdsourcing platforms. The participants
access the rating task via the Internet and consume the test stimuli on their
own devices. After they upload their quality ratings, they receive a monetary
compensation depending on the complexity and length of the rating task. The
advantages of crowdsourcing studies over classical laboratory studies are their
speed, price, number of participants, and the more realistic setting of service
consumption in terms of context and system factors. Nevertheless, the hetero-
geneous environment and unsupervised nature of such QoE studies can intro-
duce pitfalls, which have to be avoided by proper study design and the �ltering
of unreliable results [77]. Therefore, in the �eld of crowdsourced QoE studies,
research deals with motivation and incentives of participants (e.g., [59, 152]),
methods for screening the reliability of participants (e.g., [54]), mechanisms for
asserting a high quality of results (e.g., [32, 36, 153]), and the development of
crowdsourcing frameworks and platforms (e.g., [154]). A comprehensive report
of best practices and lessons learned for crowdsourced QoE studies can be found
in [77].

To assess the impact of adaptation on the QoE of HAS, the study in Sec-
tion 2.2.1 [52] considers a HAS system with two quality layers. The results show
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that the quality switch amplitude and the playback time on high quality layer
are the most important in�uence factors. The results are generalized for video
content with more than two quality layers in the study in Section 2.2.2 [39],
indicating that also times on intermediate layers have to be taken into account.

2.2.1 Influence of Adaptation-related Parameters

First, the in�uence of switch amplitude (i.e., quality level di�erence), switching
frequency, and recency e�ects on QoE of HAS is investigated. Therefore, di�er-
ent crowdsourcing campaigns are conducted to assess the subjective quality of
di�erent adaptation-related test conditions. The results of the conducted cam-
paigns allow to quantify the in�uence of the adaptation-related parameters.

Study Description

As the duration of crowdsourced QoE evaluations should be in the order of
minutes [155], the QoE study was split in di�erent crowdsourcing campaigns.
The campaigns were published on the Microworkers.com portal5, a provider of
crowdsourcing services with international user base. Employers can create cam-
paigns with a certain number of identical tasks on the platform, and workers can
browse and accept the available tasks. The employers pay monetary compen-
sations via the platform to the workers for each satisfactorily ful�lled task. For
all campaigns of this study, the task of the workers was to access the web-based
subjective QoE study and rate the quality of di�erent HAS sequences. In total,
710 unique workers (based on the Microworkers.com account ID) reliably par-
ticipated in the campaigns and rated between 7–9 test sequences. The QoE study
was implemented with the QualityCrowd26 framework [156], which conforms
to the best practices for crowdsourced QoE studies introduced in [77].

The QoE study started with a short demographic survey and task instructions.
These instructions explained, in simple English and illustrated with pictures,

5https://microworkers.com/ [Online] – Accessed: 24.08.2017
6https://www.ldv.ei.tum.de/forschung/videolabor/qualitycrowd/

[Online] – Accessed: 24.08.2017
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how to use the framework to watch and rate the video sequences. Afterwards,
the participant had to watch the tested video sequences in random order. The
sequences were �rst downloaded to the browser cache to avoid problems re-
lated to insu�cient bandwidth (e.g., stalling). Moreover, the user had to watch
the entire sequence and rate it before continuing to the next video to prevent
deceiving behavior of the workers (e.g., fast skipping through the sequences)
and ensure a high rating quality. After the playback of the video sequence, the
participant was asked Did you notice any changes in quality during playback?
If yes, did you feel annoyed by them? and had to rate on a continuous 5-point
Degradation Category Rating (DCR) scale with the options Imperceptible (did
not notice any), Perceptible but not annoying (did notice, but did not care), Slightly
annoying, Annoying, and Very annoying.

Table 2.2: Summary of tested e�ects in �rst crowdsourcing study.

E�ect Test design
Amplitude Switch amplitude high or low
Last quality level End on high or low quality level
Recency time Di�erent time after last quality

switch
Frequency Di�erent number of switches for con-

stant time on high layer
Time on high layer Di�erent time on high layer for the

same number of switches

As content plays a key role in QoE (e.g., [157–159]) and the focus of this study
is to investigate adaptation-related parameters, only one video was used. The
video sequence was taken from the open-source short movie “Tears of Steel”78

and had a length of 15 s (360 frames, starting from 0:25), which was cropped to
14 s (336 frames) in some campaigns. In this scene, which contains a low level of

7https://www.youtube.com/watch?v=41hv2tW5Lc4 [Online] – Accessed: 24.08.2017
8https://mango.blender.org/ [Online] – Accessed: 24.08.2017
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detail and motion (SI: 8.5, TI: 5.37), two persons stand on a small bridge and dis-
cuss. Each test sequence was encoded from the source video using H.264/AVC
(libx264) with Quantization Parameter (QP) 24, 24 Frames per Second (fps), and
the original audio channel. Three quality levels were created by downscaling the
video resolution to 640x360 (high), 320x180 (intermediate), and 160x90 (low),
respectively. In the QoE study, the three quality levels were all displayed in a
video player with size 640x360, thus, the sequences with lower resolution were
upscaled in the browser of the participant. The encoded videos had an average
bit rate between 0.64 Mbps and 0.75 Mbps and a size about 1.1 MB to 1.3 MB per
video. For each investigated e�ect shown in Table 2.2, multiple test sequences
with di�erent adaptation patterns were created. For example, to investigate the
switching frequency, a di�erent number of quality switches (1, 2, 3, 4, 5, 6, 8,
and 14 switches) were included in the sequence. Note that the sequences only
included adaptation between two layers, i.e., either between high and interme-
diate (low switch amplitude), or between high and low (high switch amplitude).
Detailed information on the adaptation patterns and the conducted campaigns
can be found in [78].

In crowdsourced QoE studies with little control over remote and anonymous
participants, it is necessary to design and deploy methods to counteract cheat-
ing and unreliable test participants, which want to use minimal e�orts to receive
the task payment and thereby pollute the quality of the ratings [77]. The Quali-
tyCrowd2 framework already implements some anti-cheating mechanisms, e.g.,
it prevents participants to shorten the study duration by ensuring that all video
sequences are played out. In addition to the built-in mechanisms, one simple
content question was included in the QoE study to check if participants had ac-
tually watched the video sequences. The participants were asked Where did the
protagonists stand on? with answer possibilities A building, A large �eld, A small
bridge, and Riding on an elephant. 11% of the test participants failed to correctly
answer the content questions and their ratings were discarded from the results.
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Results of the Study on Adaptation-related Parameters

As reference for the evaluation of the results, also three sequences, i.e., one for
each quality level, with no quality switches were included in the conducted cam-
paigns. The high quality layer sequence, i.e., resolution 640x360, was included in
all tasks and received a MOS of 4.14 (95% con�dence interval of 4.09 to 4.18). For
the sequence with resolution 320x180, which was not included in all campaigns,
a MOS rating of 3.52 (95% con�dence interval of 3.42 to 3.62) was observed based
on 310 user ratings. The lowest quality sequence (resolution 160x90) showed a
MOS value of 2.51 (95% con�dence interval of 2.37 to 2.66) based on 267 user
ratings. The other sequences included adaptation patterns to assess the in�u-
ence of the adaptation-related parameters. All patterns were rated by at least 82
reliable participants and they received on average 106 reliable ratings over all
campaigns. In the following, these ratings will be evaluated.

Table 2.3: Quanti�cation of main e�ects of adaptation-related parameters on MOS
based on one-way ANOVA.

(a) All sequences.

SROCC F p η2
p f2

Amplitude -0.266 63.101 < 0.001 0.013 0.011
Last quality level 0.103 5.500 0.004 0.002 0.002
Recency time 0.109 0.900 0.480 0.001 0.001
Switches -0.221 1.736 0.139 0.001 0.001
Time on high layer 0.295 17.742 < 0.001 0.043 0.037

(b) Sequences with quality switches only.

SROCC F p η2
p f2

Amplitude -0.302 66.350 < 0.001 0.017 0.015
Last quality level 0.018 2.508 0.082 0.001 0.001
Recency time 0.100 0.635 0.638 0.001 0.001
Switches -0.088 1.750 0.136 0.002 0.002
Time on high layer 0.143 7.799 < 0.001 0.022 0.020
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First, statistical analyses of e�ects of the investigated adaptation-related pa-
rameters were conducted. Table 2.3 shows the results of these analyses both for
the set of all sequences and for the subset of sequences, which contain quality
switches. Each row contains one of the investigated adaptation parameters and
its e�ect on the subjective quality ratings. The �rst column shows the Spearman
Rank Order Correlation Coe�cient (SROCC), which indicates how much the in-
�uence factor and the subjective quality ratings are associated. Showing only
absolute values smaller than 0.3, no high correlation can be observed for any
adaptation parameter. Second, a one-way Analysis of Variance (ANOVA) was
conducted to compare the MOS of di�erent test conditions for statistical signif-
icance. The second and third column present the corresponding F -test statistic,
i.e., the ratio of the mean squared errors, and p-value, i.e., the probability that
the F -test statistic can take a value greater than or equal to the computed test
statistic. The p-value is very small for both amplitude and time on high layer, in
particular smaller than typical signi�cance levels α (e.g., α = 0.05), and thus,
indicates that these parameters are signi�cant. To measure the size of the e�ect,
partial Eta-squared (η2

p) and Cohen’s f2 were computed, which are shown in the
last columns. Both amplitude and time on high layer have small e�ects accord-
ing to η2

p , and the time on high layer also has a small e�ect for f2. However, no
e�ect is visible for the in�uence of last quality level, recency time, and number
of switches.

The results of the statistical analyses contradict the �ndings of several works
(e.g., [137, 138]), which suggested an impact of switching frequency on the
QoE. This e�ect was not found in the conducted QoE study, but switching fre-
quency and time on layer can be correlated, as a quality switch typically changes
the time on each layer. Figure 2.2 shows exemplary quality switching patterns,
which are used during this study, and will be described with the corresponding
results below. Figure 2.3a and 2.3b display the MOS and 95% con�dence intervals
for the number of quality switches (a) and the corresponding time on the high
layer (b), for a campaign, in which both parameters change simultaneously be-
cause the quality switches are equidistantly spaced over the whole video length
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Figure 2.2: Exemplary quality switching patterns for investigating the e�ects of
switching frequency and time on high layer. The quality layer is de-
picted on the y-axis and the x-axis shows the video time in seconds. The
patterns in the �rst row change number of quality switches and time
on high layer simultaneously due to equidistantly spaced switches. The
patterns in the second row change only number of quality switches, the
patterns in the last row change only time on high layer.

as can be seen in the �rst row of Figure 2.2. This means, for example, for two
quality switches (cf. Figure 2.2a), the time on high layer was two third of the
video length, while for four quality switches, the time on high layer was three
�fth of the video length (cf. Figure 2.2b), etc. Figure 2.3 shows that both pa-
rameters seem to have a signi�cant e�ect on the resulting QoE. Therefore, two
campaigns of the QoE study are revisited to investigate in detail the e�ect of the
switching frequency and the corresponding time on the high layer.

Figure 2.4a shows the MOS and 95% con�dence intervals for di�erent num-
bers of switches, when the total time on the high layer was kept constant as
can be seen in the second row of Figure 2.2. This means, the quality switches
were not spaced equidistantly, but such that the time on high layer was 50%
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(b) MOS depending on time on high layer.

Figure 2.3: MOS results when frequency and time on high layer change simultane-
ously due to equal time between switches.

of the video length for all sequences with switches (cf. Figures 2.2c and 2.2d).
In this campaign, the sequence without switches shows a MOS of 3.93. For the
sequences with quality switches, the MOS ranges slightly below 3 (from 2.71
to 2.91) and the con�dence intervals overlap. Thus, no e�ect of the number of
switches is visible. The one-way ANOVA for this campaign returns a p-value
of p = 0.0129 for all sequences and p = 0.7190 for the subset of sequences
with quality switches, i.e., N > 0. Figure 2.4b depicts the result of a di�erent
campaign, in which the time on high layer is varied for two di�erent switching
frequencies, i.e., N = 2 and N = 4 switches. Such patterns can be seen in
the last row of Figure 2.2. In Figure 2.4b, the time on the high layer in percent
is plotted on the x-axis, and the y-axis displays the MOS and 95% con�dence
intervals. The sequence without switches, i.e., 100% time on high layer, reaches
a MOS of 4.05. For the other sequences, the con�dence intervals for each pair
of bars (N = 2 dark, N = 4 light) overlap, such that no impact of the num-
ber of switches can be seen. Also a two-sample t-test does not reveal signi�cant
di�erences (p = 0.1055) between the two groups with Cohens’ d = 0.1398.
However, when the time on the high layer decreases, the MOS decreases. Thus,
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Figure 2.4: Impact of switching frequency and time on high layer on MOS.

an e�ect of the time on the high layer is visible here, which is signi�cant ac-
cording to a one-way ANOVA and a p-value of p = 5.44 · 10−37.

In the following, these insights are quanti�ed in a new simpli�ed QoE model
for HAS sessions with two quality layers without initial delay or stalling. Fig-
ure 2.5 shows the proposed model, which considers the two main e�ects, am-
plitude and time on high layer. The y-axis depicts the MOS, while the time on
high layer in percent is plotted on the x-axis. The MOS is bounded by the quality
yH = f(100) of the high layer and yL = f(0) of the low layer, respectively,
whose actual values express the amplitude e�ect between both layers. The gray
boxes represent the MOS and 95% con�dence intervals of the ratings of the video
clip with constant high ([4.09;4.18]) or low ([2.37;2.66]) quality and were ob-
tained in a separate campaign. The black data points indicate the MOS and 95%
con�dence intervals of the time on high layer campaign (cf. Figure 2.4b). Follow-
ing the Exponential Interdependency of QoE and QoS (IQX) hypothesis [160],
the bounds yH and yL and the data points are �tted with an exponential func-
tion f(t) = αeβt + γ of the percentage of time on high layer t. The resulting
�tting f(t) = 0.003 · e0.064·t + 2.498 reaches a high coe�cient of determina-
tion R2 = 0.98, which indicates that the exponential model is well suited to
quantify the impact of the time on high layer.
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Figure 2.5: Simpli�ed QoE model for two layers.

In summary, this study investigated the in�uence of adaptation-related pa-
rameters on the QoE of HAS. The results show that only the time on high layer
and the switching amplitude, which relates to the quality of the other layer, are
main in�uence factors. Contradictory to the results of related works, last quality
level, recency time, and switching frequency have no signi�cant impact.

2.2.2 Impact of Time on Intermediate Layer

The results of Section 2.2.1 show that time on high layer is a main in�uence fac-
tor on QoE of HAS. As this study only investigated the in�uence of adaptation
between HAS content with two quality layers, it is still unclear if there is only
an impact of the time on highest layer or the time on each layer. Thus, the sec-
ond study will clarify this open issue by investigating a HAS system with three
quality layers.
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Study Description

The second study was also conducted as a crowdsourced QoE evaluation and
was designed similar to the �rst study. This means, again a campaign was cre-
ated on the Microworkers.com platform with tasks to rate the quality of video
sequences with the QualityCrowd2 framework. 146 workers participated in the
crowdsourcing campaign and watched nine sequences in random order. After
each sequence, the user was asked Did you notice any changes in quality dur-
ing playback? If yes, did you feel annoyed by them? and rated on a continuous
5-point DCR scale with options Imperceptible (did not notice any), Perceptible but
not annoying (did notice, but did not care), Slightly annoying, Annoying, and Very
annoying.

The content was a popular movie scene9 from the video portal YouTube,
which has a duration of 14 s (336 frames) and shows a monologue of one char-
acter in front of another in a living room. The original 720p sequence was
�rst decoded to individual uncompressed images and encoded using H.264/AVC
(libx264), 24 fps, and the original audio channel. The videos were downscaled
to resolution 640x480, i.e., the size of the player in the QoE study, and three
quality layers were created by adjusting the QP to 28 for high quality, 36 for in-
termediate quality, and 44 for low quality, respectively. The �le sizes of the �nal
sequences ranged from 444 KB for constant high quality to 266 KB for constant
low quality.

The campaign was designed to evaluate nine di�erent adaptation patterns,
which are illustrated in Figure 2.6. Three constant quality pro�les a (high), b
(intermediate), and c (low) were tested as reference pro�les. Moreover, three
pairs of patterns (d/e, f/g, and h/i) with three quality switches were created.
They di�er between pairs in the time on intermediate layer, and within pairs
in the position of the intermediate layer. Thus, they can be used to assess both
e�ects. The sequences start with 2 s of the high quality layer, then switch down
to either the intermediate (d, f, h) or the low (e, g, i) quality layer. After some

9https://www.youtube.com/watch?v=IFSAbxfLBYU [Online] – Accessed:
24.08.2017, starting from 1:05
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time, the quality is switched to the low (d, f, h) or the intermediate (e, g, i) layer,
respectively. Patterns d/e play out the intermediate layer for 8 s, patterns f/g for
5 s, and patterns h/i for 2 s. The third quality adaptation at 12 s switches back to
the high quality layer.

Unreliable participants were �ltered out with a simple content question (4
participants) and with the help of inter- and intra-rater reliability scores. These
scores were computed as the SROCC of a participant’s ratings and the mean of
all ratings (inter-rater) and the SROCC of a participant’s ratings and the time-
averaged quality level of the patterns (intra-rater). If the correlation coe�cients
were below 0.5, the participants were �ltered out (69 participants). 73 reliable
participants (50%) remained after the �ltering and their ratings were used for
the evaluation.
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Figure 2.6: Quality switching patterns with the quality layer on the y-axis and the
video time in seconds on the x-axis.
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Results of the Study on Time on Intermediate Layer

Figure 2.7 shows the MOS and 95% con�dence intervals of all sequences based on
the ratings of the 73 reliable users. The constant quality sequences (a-c) achieve
MOS values of 3.93 (high), 2.99 (intermediate), and 2.21 (low). The clear separa-
tion of these scores indicates that the participants are able to visibly distinguish
the selected three quality layers. Moreover, the constant high and low sequences
form the limits of the perceived quality for this study. Investigating the results
for the sequences with quality adaptation, it is obvious that the sequences within
each pair of symmetrical sequences (d/e, f/g, and h/i) achieve similar MOS val-
ues. Thus, the e�ect of the position of the intermediate layer is negligible. How-
ever, the MOS between the pairs is di�erent, which indicates that the time on
the intermediate layer in�uences the QoE of HAS systems.
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Figure 2.7: MOS and 95% con�dence intervals of overall quality. Each test condition
was rated by 73 di�erent users.
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Figure 2.8: MOS values of the tested adaptation pro�les with respect to the time on
each layer.

Figure 2.8 investigates this e�ect by plotting the MOS of each sequence de-
pending on the time on each layer in frames. The x-axes show the time on the
high layer (top plot), the time on intermediate layer (middle plot), and the time
on low layer (bottom plot). The y-axes depict the MOS values of the di�erent se-
quences. The constant sequences a-c have all frames on the same quality layer
and can be used as a reference. The top plot shows that the time on the high
layer is not the only in�uence factor. All sequences with adaptation d-i have the
same time on high layer but achieve di�erent MOS values. The other two plots
again nicely show that the qualities of the pairs of symmetric sequences are
rated similarly. Additionally, a positive correlation of the time on intermediate
layer (middle plot) and a negative correlation of the time on low layer (bottom
plot) can be observed.

To sum up, it became evident that the quality of adaptation sequences are
bounded by the MOS values of the constant high and low quality sequences.
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Furthermore, the quality of each layer and the time on each layer are the only
adaptation-related parameters, which have a signi�cant impact on the QoE of
HAS.

2.3 Towards a QoE-optimal Adaptation Logic

The previous �ndings show that the quality adaptation has a big impact on the
resulting QoE of a streaming session. As the HAS adaptation logic directly in�u-
ences the adaptation of the played out video, it is the key component of a HAS
streaming system. In order to compare and eventually improve adaptation logics
in terms of QoE, a QoE-optimal segment download strategy for given network
conditions and video characteristics is obtained by solving a two-step Mixed
Integer Linear Program (MILP). It can be used to benchmark HAS adaptation
logics with respect to the QoE-optimal adaptation in di�erent evaluation sce-
narios. After the optimization problem is formulated, an exemplary scenario is
considered to demonstrate the applicability of the benchmark. Therefore, four
di�erent adaptation strategies from literature are compared to the QoE-optimal
adaptation computed from the MILP [13, 15].

2.3.1 Optimization Problem for QoE-optimal Adaptations

The QoE-optimal adaptation can be computed for given network conditions
and video characteristics. As stalling is the worst quality degradation, the op-
timal adaptation has to avoid stalling and ensure a smooth playback. More-
over, the initial delay T0, i.e., the time after which the playback starts, is �xed.
V (t) represents the download volume at time t, i.e., the amount of data, which
a user can download during the time [0, t]. The video is split in n segments
and available in R = {1, . . . , rmax} representations. Each segment i of rep-
resentation j has a size Sij and contains τ seconds of playtime. After the ini-
tial delay T0, the ith segment has to be downloaded and played out at time
Di = T0 + iτ, i = 1, . . . , n to avoid stalling.
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According to the previous QoE results, the quality layer of each played out
segment in�uences the overall perceived quality. Therefore, the quality value
of a segment i in representation j, i.e., its contribution to the overall perceived
quality, is set to wij = j in order to optimize the average played out quality
layer. Nevertheless, di�erent options for expressing the value of a segment are
possible [13]. The Boolean target variable xij indicates whether the client down-
loads segment i of representation j (xij = 1) or not (xij = 0). The optimal
assignment xij describes the optimal segments to download in the investigated
scenario and reaches an optimal quality value Wopt. This optimal adaptation is
realizable under the given network and video characteristics, however, it does
not indicate when to download which segment.

Table 2.5: Notations and variables used for the optimization problems.

Variable Explanation
V (t) Total amount of data received by a client during the time

[0, t]

n Number of segments
τ Duration of a segment
Di Playback deadline for segment i
R Available representations, i.e. R = {1, . . . , rmax}
Sij Size of segment i from representation j
wij Weighting factor indicating the QoE value of segment i

for representation j
xij ∈ {0, 1} Target variable indicating if client downloads segment i

from representation j (xij = 1) or not (xij = 0)

Wopt Optimal quality value of Optimization Problem 1

Using the notation, which was introduced above and which is summarized
in Table 2.5, two optimization problems 1 and 2 can be formulated. The �rst
optimization problem will maximize the average played out quality layer, as
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representation quality and time on each layer have the most signi�cant impact
on the QoE of HAS. Although the number of quality switches has only little
impact on the QoE, the second optimization problem will minimize the number
of quality switches to avoid �ickering, which negatively in�uences the perceived
quality [138]. Thus, this two-step MILP will by design result in an optimal QoE
without the need for a dedicated mapping of adaptation parameters to MOS.

Optimization Problem 1 (Maximize quality value).

MaximizeW =

n∑
i=1

rmax∑
j=1

wijxij , (2.1)

subject to
rmax∑
j=1

xkj = 1 ∀k = 1, . . . , n, (2.2)

k∑
i=1

rmax∑
j=1

Sijxij ≤ V (Dk) ∀k = 1, . . . , n. (2.3)

Optimization Problem 1 maximizes the sum of the quality values wij of all
downloaded segments, which results in an optimization for the average quality
layer. The �rst constraint (2.2) ensures that for each segment one representation
is downloaded. Constraint (2.3) checks that all segments up to segment k can be
downloaded with V (Dk), i.e., the available download volume up to the playback
deadline of segment k. This ensures that all segments can be downloaded until
their respective playback deadline. The optimal quality value W resulting from
Optimization Problem 1 will be denoted by Wopt and will be used as input to
Optimization Problem 2.
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Optimization Problem 2 (Minimize switches at given target quality Wopt).

Minimize
1

2

n−1∑
i=1

rmax∑
j=1

(xij − xi+1,j)
2, (2.4)

subject to
rmax∑
j=1

xkj = 1 ∀k = 1, . . . , n, (2.5)

k∑
i=1

rmax∑
j=1

Sijxij ≤ V (Dk) ∀k = 1, . . . , n, (2.6)

n∑
i=1

rmax∑
j=1

wijxij ≥Wopt. (2.7)

Optimization Problem 2 minimizes the number of quality switches, which can
be computed as sum of layer-wise di�erences between the indicator xij of adja-
cent segments. If no switch occurs after a segment, the di�erences will be 0 for
all layers. In contrast, if a switch occurs, one layer will show a transition from
xij = 1 to xi+1,j = 0, and another layer from 0 to 1. The factor 1

2
accounts

for this double counting of each switch, and is only added here for the sake of
completeness. Constraints (2.5) and (2.6) in problem 2 resemble constraints (2.2)
and (2.3) in problem 1, and again ensure that one representation of each segment
is downloaded and that it is downloaded before its playback deadline, respec-
tively. The additional constraint (2.7) guarantees that the overall quality value
is not decreased below the optimumWopt by minimizing the number of quality
switches.

Optimization Problem 1 is a variant of a Multiple-choice Nested Knapsack
Problem (MCNKP) [161], while Problem 2 is a Quadratic MCNKP. The MCNKP
is NP-hard, but pseudo-polynomial time algorithms exist. Therefore, the opti-
mization software Gurobi10 is utilized to solve the linear program. The resulting
QoE-optimal adaptation can be used to evaluate the performance of HAS adap-

10http://www.gurobi.com/ [Online] – Accessed: 24.08.2017
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tation strategies. Therefore, evaluation scenarios have to be de�ned, in which
di�erent adaptation logics are compared for di�erent videos and network con-
ditions. The presented linear program allows to compute an optimal adaptation
strategy for each evaluation scenario, and thus, allows to quantify how good
adaptation logics are with respect to the optimal QoE.

2.3.2 Evaluation Scenario

An exemplary evaluation is conducted for the complete “Tears of Steel”78 short
movie, which was split in n = 367 segments of τ = 2 s playtime each.
The movie was transcoded to H.264/SVC using QP 24, 24 fps, and three spa-
tial quality layers, i.e., three di�erent resolutions of 320x180 (r = 1), 640x360
(r = 2), and 1280x720 (r = 3). The encoded quality layers have average bit rates
of 0.26 Mbps, 0.95 Mbps, and 2.67 Mbps and maximum bit rates of 1.28 Mbps,
3.37 Mbps, and 10.46 Mbps, respectively. Due to the usage of H.264/SVC, the seg-
ment size Sir is the sum of the segment plus all required lower layer segments
(Sir =

∑r
j=1 Sij ). Table 2.6 summarizes the properties of each representation

r. In this evaluation, no initial delay is considered, such that the video playback
begins after the �rst segment has been downloaded.

Table 2.6: Characteristics of video contents and the segment sizes Sir for the three
quality layers, i.e., 320x180 (r = 1), 640x360 (r = 2), and 1280x720
(r = 3).

Representation r = 1 r = 2 r = 3

Total volume [MB] 26.52 84.86 238.57
Mean segment size [kB] 75.77 242.47 681.64
Maximum segment size [kB] 301.17 789.66 2142.00
Minimum segment size [kB] 3.76 9.60 20.22
Standard deviation [kB] 37.14 127.09 419.74
Coe�cient of variation 0.49 0.52 0.62
Lag-1 autocorrelation 0.76 0.82 0.87
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The evaluation scenario is based on a realistic UMTS throughput pattern,
which was recorded while driving on a highway around Klagenfurt, Aus-
tria [103]. The mean measured bandwidth was 2.81 Mbps. The throughput pat-
tern was scaled to a mean adjusted bandwidth of 2.67 Mbps, such that after nτ
seconds (i.e., the video duration) the video can be completely downloaded in its
highest representation, i.e., V (nτ) =

∑n
i=1 Si3. For each run, a randomized

starting point is selected and the network pattern is wrapped around. In this
way, 30 di�erent realistic bandwidth patterns with the same statistical charac-
teristics were created and the optimization problem was solved for each pat-
tern. The throughput patterns of the �rst three simulation runs are shown in
Figure 2.9. It can be seen that the bandwidth �uctuates rapidly during each run
between a minimum of 4.64 kbps and a maximum of 5.31 Mbps.
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Figure 2.9: Network pattern, i.e., available bandwidth over time, of the �rst three
evaluation runs. The measured tra�c pattern was adjusted to the given
video and wrapped around with a randomized starting point for each
evaluation run.
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2.3.3 Performance Evaluation Results

In a testbed, the four HAS adaptation algorithms introduced in Section 2.1.1
were implemented, namely, KLU [103], TUB [104], TRI [105], and BIEB [107].
Their adaptation was recorded for each of the 30 di�erent bandwidth patterns.
Additionally, the optimal strategy for each bandwidth pattern was computed by
the linear program. It can be used as a reference to benchmark the di�erent HAS
adaptation logics with respect to the optimal QoE that can be achieved in the
evaluation scenario.
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Figure 2.10: Single experiment comparing BIEB algorithm with theoretical QoE-
optimal adaptation strategy for the network scenario sketched in Fig-
ure 2.9.

In Figure 2.10, the adaptation of the BIEB algorithm for the run 1 network
condition of in Figure 2.9 is shown. The upper plot shows the available cumu-
lative download volume of the network (b(t), gray), as well as the cumulative
download volume utilized by BIEB (balg(t), green) and the QoE-optimal adap-
tation (bopt(t), blue). The QoE-optimal playout strategy downloads the video
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2.3 Towards a QoE-optimal Adaptation Logic

segments over time with bandwidth bopt(t) ≤ b(t), but utilizes the available
cumulative download volume almost completely. In contrast, a concrete imple-
mentation of a HAS adaptation logic, like the BIEB algorithm in Figure 2.10,
utilizes the network less e�ective because a concrete adaptation logic does not
have perfect knowledge about the current and future network conditions. Con-
sequently, any HAS adaptation logic uses a bandwidth balg(t) ≤ bopt(t) ≤ b(t).
The lower part of Figure 2.10 depicts the quality layers of the downloaded and
played out segments. It can be seen that the QoE-optimal download strategy
(blue) would enable to play out the highest quality layer for most of the time,
while only occasionally switching to the intermediate layer for some segments.
In contrast, the BIEB algorithm spends more time on the intermediate layer, and
even uses the lowest quality layer at the start of the video, which would result
in a lower, suboptimal QoE of the user.
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Figure 2.11: Bandwidth utilization of di�erent adaptation logics.

Figure 2.11 shows the Cumulative Distribution Function (CDF) of the band-
width utilization of each adaptation logic over all 30 bandwidth patterns. Note
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that the bandwidth is adjusted, such that in order to download each segment of
the video in the highest representation the whole available bandwidth has to be
utilized, i.e., a bandwidth utilization of 100%. It can be seen that the QoE-optimal
download strategy, as expected, almost always utilizes the entire available band-
width. BIEB and TRI can utilize at least 82% and 78% of the available bandwidth,
whereas KLU and TUB only utilize down to 58% and 40%, respectively. Also the
maximum utilization of TUB (56%) and KLU (62%) is low compared to TRI and
BIEB, which can come close to 90% bandwidth utilization.
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Figure 2.12: Scatter plot for 30 trial runs: average quality level vs. number of qual-
ity switches for the di�erent adaptation algorithms and the optimal
solution.

Still, the bandwidth utilization does not fully re�ect the perceived quality of
the algorithm. According to the QoE results above, the quality of a layer and
the time on each quality layer have to be considered. Figure 2.12 depicts the
achieved average quality level on the x-axis and the corresponding number of
quality switches on the y-axis. Thus, the optimal combinations are located in
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the bottom right corner of the plot. Each adaptation logic forms an own cluster,
which indicates that the performance results presented in this evaluation are
consistent over all runs. It can be seen that BIEB and TRI achieve the highest
average quality levels with means of 2.67 and 2.61, which is close to the mean
value of the QoE-optimal adaptation (2.90). TUB and KLU result in lower mean
values of 2.07 and 2.22, respectively. Considering the number of quality switches,
TUB and BIEB need few switches and adapt on average only every 92.00 s and
61.33 s, respectively. In contrast, KLU and TRI are more aggressive adaptation
logics, which need much more quality switches and adapt the quality to the
current network conditions more frequently every 5.15 s and 6.81 s, respectively.

The results of this exemplary benchmarking show that, in the given scenario,
the BIEB adaptation logic has the best performance in terms of QoE. It reaches a
high average quality level with a low number of quality switches, which brings
it close to the QoE-optimal adaptation. TRI performed second in terms of play-
back quality, but the QoE might su�er from the high switching frequency. KLU
achieved worse results both considering playback quality and switching fre-
quency. TUB has the advantage of few quality switches, but reaches only an
intermediate playback quality.

In summary, the presented linear program can be used to �nd the QoE-
optimal adaptation for given network conditions and video characteristics.
Therefore, it is a valuable tool for the performance evaluation of any HAS adap-
tation logic in di�erent evaluation scenarios and allows for a more comprehen-
sive assessment and benchmarking with respect to QoE.

2.4 Lessons Learned

In this chapter the impact of adaptation-related parameters on the Quality of
Experience of HTTP Adaptive Video Streaming was investigated. This allowed
to identify the most important QoE factors and quantify their impact on subjec-
tively perceived quality of HAS services. These insights allow to improve HAS
adaptation logics to mitigate the impact of adaptation on the QoE.
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The investigation of the QoE of HAS started with a review of �ndings from
previous studies. These works had concluded that initial delay, stalling, and
quality adaptation had the biggest impact on the QoE. Nevertheless, the detailed
results on the impact of adaptation on QoE were partly contradicting. There-
fore, two crowdsourcing studies were conducted to collect subjective ratings for
di�erent adaptation patterns in order to investigate the impact of adaptation-
related parameters.

The results of the study on adaptation-related parameters in Section 2.2.1
showed that only time on high layer and switching amplitude were main in-
�uence factors. In contrast, last quality level, recency time, and switching fre-
quency had no signi�cant impact. The results of related works on switching fre-
quency might not be contradictory, when quality switches are correlated to time
on each layer. The quality switches only call the user’s attention to a perceivable
degradation/improvement, for which again the duration matters. Similar �nd-
ings were indicated in [142], which found that long low quality segments after
high quality segments were perceived strongly negatively. Moreover, multiple
quality switches were preferred over fewer switches, if the subject could watch
a higher quality for a longer time. Thus, the impact of adaptation frequency is
inferior to the impact of time on each layer. However, if the switching frequency
is too high, such that the user perceives only �ickering, the switching itself is
the worst degradation, and the QoE might be even worse than for low video
quality [138].

The results of the study on time on intermediate layer in Section 2.2.2 sup-
ported the �ndings of Section 2.2.1. It could be observed in both studies that
the MOS values of the adaptation sequences were bounded by the MOS values
of the constant high and low quality sequences. Moreover, it became evident
that the quality of each layer (cf. switch amplitude in Section 2.2.1) and the time
on each layer were the only adaptation-related parameters, which had a sig-
ni�cant impact on the QoE of HAS. Based on these �ndings, QoE-based tra�c
management decisions could be taken in the network by monitoring the re-
quested quality layers (e.g., by deep packet inspection or machine learning on
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statistical packet features) and pooling the obtained metrics over time into QoE
estimators. However, in order reach a high accuracy of estimation and to cre-
ate a holistic QoE model for HAS systems, the results have to be extended and
consolidated for di�erent HAS systems (e.g., more quality layers, streaming on
mobile devices) and di�erent video contents (e.g., high motion sequences, longer
sequence duration).

As it directly in�uences the adaptation of the played out video, the imple-
mentation of the HAS adaptation logic has the most impact on the QoE in a
HAS system. The results showed that it should aim to maximize the played out
video quality �rst before reducing the number of quality switches, for which no
signi�cant QoE degradation was found. In a step towards improved HAS adap-
tation logics on the client side, these QoE �ndings were incorporated in a linear
program, which can be used to compute the QoE-optimal adaptation for given
network conditions and video characteristics. This allows for a more compre-
hensive assessment and benchmarking of HAS adaptation logics with respect
to QoE. The applicability of the benchmark was demonstrated in an exemplary
performance evaluation of four adaptation strategies. Thus, the linear program
is a valuable tool for the performance evaluation of existing and design of future
HAS adaptation logics, which use an improved segment download strategy to
maximize the played out video quality and reach a higher QoE for HAS systems.
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3 QoE-aware Tra�ic Management

for HTTP Adaptive Video

Streaming

Tra�c management is employed by network operators to meet Service-level
Agreements (SLAs) for data transmissions and to reduce their costs by sophis-
ticated utilization of the network resources. In early stages, pure network traf-
�c management mainly focused on the e�cient transmission of packets and
�ows. Nowadays, QoE-aware tra�c management additionally aims to improve
the QoE of networked services to reach a high end user satisfaction. This in-
cludes cross-layer tra�c management, which utilizes information from di�erent
layers (e.g., application-layer information) for the tra�c management process,
and collaborative tra�c management, which is based on the communication and
information exchange between di�erent stakeholders (e.g., exposure of client-
side information to network) to manage the interplay of services and network.

The tra�c management process can typically be described by a management
cycle as depicted in Figure 3.1. It shows a networked service (orange) and the
corresponding QoE-aware tra�c management (blue) seen from di�erent layers
(vertical separation) and stakeholders (horizontal separation). The solid lines
indicate classical network tra�c management and the dashed lines show pos-
sible extensions by cross-layer and collaborative tra�c management. First, the
current situation in the network is monitored, e.g., in terms of QoS parameters
measured on the network nodes or QoE parameters signaled by the client. The
monitored data are collected, processed, and aggregated to performance met-
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rics, and compared to target values. These target values can be prede�ned by
the network operators, derived from the SLAs, or (dynamically) speci�ed by
the services. If the performance metrics and the targets diverge, a tra�c man-
agement action has to be decided. Such actions include network mechanisms
(e.g., routing, prioritization, bandwidth shaping, o�oading, caching), but can
also include sending requests to services to change their network demands. The
network actions are put into e�ect by changing the settings of network nodes
specifying how to handle the respective �ows. Afterwards, the cycle restarts
and the monitoring of the performance metrics continues. The extensions of
the classical network tra�c management cycle by cross-layer and collaborative
approaches allow to also monitor QoE on application layer, e.g., within the client
application, and user layer, e.g., through quality feedback within or after a ses-
sion. Moreover, service characteristics can be considered for tra�c management
decisions or even altered by tra�c management actions.
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Figure 3.1: QoE-aware tra�c management cycle.

54



3.1 Background and Related Work

Based on the identi�ed major QoE in�uence factors of HAS, this chapter will
investigate approaches to monitor the QoE of HAS on di�erent layers. In par-
ticular, in-network measurements of objective per-frame and per-segment video
quality metrics, which indicate the quality of each layer, are temporally pooled
with di�erent methods to account for the impact of the time on each layer. An
Android app is presented, which not only allows to monitor application-layer
QoE parameters, but also network and context parameters, and subjective feed-
back of end users. Due to the huge amount of monitored data on di�erent layers,
the app is well suited to further research the QoE of HAS on mobile devices.
Moreover, the utilization of monitored network parameters to directly estimate
QoE without considering application-layer QoE factors is investigated. As the
QoE monitoring enables QoE-aware tra�c management of HAS �ows, a perfor-
mance evaluation of di�erent bandwidth allocation strategies for video �ows on
a shared bottleneck link is conducted. Thereby, the bene�ts of di�erent levels of
monitoring information, i.e., from �ow type to video characteristics to real-time
bu�er �ll information, are investigated.

Section 3.1 outlines the background and related work on QoE monitoring and
QoE-aware tra�c management for HAS. New approaches for monitoring QoE
parameters for HAS are presented in Section 3.2. These include both monitoring
methods in the network, which are based on [61, 80], and on application layer,
which are based on [34, 45, 48]. On the basis of [12], Section 3.3 conducts an
analytical and simulative performance evaluation of di�erent QoE-aware tra�c
management approaches, which utilize bandwidth shaping and prioritization of
video �ows on a bottleneck link. This is a common situation in access networks
where multiple users and applications often share a single access link. The �nd-
ings of this chapter are summarized in Section 3.4.

3.1 Background and Related Work

This section presents background and related work on QoE-aware tra�c man-
agement for HAS. The section is divided into two subsections. The �rst sub-
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section focuses on QoE monitoring of HAS, and thus, corresponds directly to
the monitoring component of the QoE-aware tra�c management cycle depicted
in Figure 3.1. It includes monitoring approaches, which estimate QoE or QoE
factors from network parameters, and trending machine learning approaches.
Other works monitor QoE factors directly in the application, which might
then be mapped to a QoE prediction using QoE models. The second subsec-
tion presents tra�c management mechanisms for improving the QoE of video
streaming sessions. These include pure network tra�c management mecha-
nisms as well as cross-layer and collaborative tra�c management approaches.
Depending on the speci�c mechanism, they can be classi�ed as standalone com-
ponents or complete solutions, which comprise all the components of the tra�c
management cycle. The structure of this section is summarized in Table 3.1.

Table 3.1: Overview of related works for QoE-aware tra�c management for HAS.

QoE monitoring
Surveys [162–167]
Monitoring in the network

QoE estimation [168–173]
QoE factor estimation [16, 27, 63, 174–182]
Machine learning [183–189]

Monitoring in the application
QoE factors [176, 190–196]
QoE models [132, 148, 197–199]

QoE-aware tra�c management mechanisms
Surveys [200, 201]
Network tra�c management [202–211]
Cross-layer and collaborative [17, 176, 212–239]
tra�c management
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3.1.1 QoE Monitoring of Video Streaming

Network providers rely on QoE monitoring to assess the satisfaction of end users
and use the monitored information for tra�c management decisions. Typically,
they distribute hardware middleboxes in their networks, which investigate the
tra�c, extract relevant features, and estimate the QoE. Moreover, following the
recent trend towards virtualization (Software-de�ned Networking (SDN), Net-
work Function Virtualization (NFV)), also Virtual Network Functions (VNFs) for
QoE monitoring are deployed in the network (e.g., virtual Deep Packet Inspec-
tion (DPI) functions [240, 241]).

Many approaches can be taken to monitor the QoE of HAS, which have di�er-
ent levels of complexity and accuracy. Most related works are already covered
in recent survey works, which will be shortly outlined: [162] reviews method-
ologies to evaluate the QoE of video streaming. Similarly, [163] gives a tutorial
on popular QoE assessment approaches for video streaming. Reference [164]
surveys metrics, tools, and measurement methodologies to predict the QoE of
video streaming, and [165, 166] not only focus on QoE factors and assessment,
but also take QoE management into account. The current standardized quality
assessment models are described in [167] di�erentiated by the level of informa-
tion obtained from the media stream. In the following, details on some relevant
monitoring approaches are given for both monitoring in the network and mon-
itoring in the application.

Monitoring in the Network

A prerequisite to in-network monitoring of video �ows is the detection and clas-
si�cation of such �ows. Related works on this aspect (e.g., [168, 169]) will not be
tackled in this section, but all presented related works require that video �ows
were already identi�ed. Reference [170] used QoS parameters, namely, packet
loss, packet loss burstiness, and jitter, as input for a fuzzy expert system to pre-
dict the MOS of video �ows. Reference [171] monitored network parameters of
an UMTS network (block error rate, mean burst length). For the prediction of
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the MOS, additional application-layer information (content type, sender bit rate)
were utilized. Reference [172] described a QoE measurement architecture us-
ing mobile Android devices. The authors created a QoE model for non-adaptive
YouTube streaming of very low bit rate videos. Therefore, linear regression mod-
els were used to map objective network parameters to subjective QoE factors,
whose weighted average predicted the overall QoE score. Recently, a paramet-
ric bit stream-based quality assessment model for HAS was standardized [173],
which predicted the MOS from stream inspection and supported four di�erent
modes of input information.

Other works focused on estimating application-layer parameters, which can
be mapped to QoE. Reference [16, 174, 175] transferred the approach of [176] and
proposed an in-network system based on DPI to extract downloaded playtimes.
They could be used to estimate the bu�ered playtime at the client, and thus, the
corresponding stalling events. The mapping to QoE is done with the model pre-
sented in [63]. Reference [177] followed a similar approach but supported more
video encodings and container formats. Also [178] followed a similar approach
to predict stalling in LTE networks. Reference [179] not only monitored stalling
but also the quality level from an intermediate network element. Reference [180]
used a decision tree to detect stalling events from HTTP segment requests in the
network. Reference [181] estimated stalling events based on the ratio of play-
back time and download time, but needed the total size of the video for real time
estimation of stalling. Reference [27] studied the accuracy of a VNF-based bu�er
and stalling estimation. [182] used tra�c pro�ling to estimate the video bit rate
and streaming phase.

Due to the trend towards end-to-end encryption, the DPI-based approaches
cannot be applied anymore. Therefore, machine learning methods are utilized to
estimate the QoE based on statistical features of the video tra�c. In [183], pas-
sive in-network measurements were collected and machine learning techniques
were applied to obtain mappings between QoS and QoE of mobile video ap-
plications. Reference [184] predicted video abandonment from radio network
statistics and �ow records with a decision tree. Reference [185] used packet
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level measurements to estimate the video bit rate based on decision trees. Ref-
erence [186] analyzed the predictive power of both network and application
QoE features. Reference [187] classi�ed the video quality of segments with a K-
means++ algorithm using the download bit rate as feature. Reference [188] used
random forests to detect stalling, average video quality, and quality variations
from network features, such as round-trip time, packet loss, and segment size.
Reference [189] directly classi�ed the QoE from network parameters with dif-
ferent machine learning approaches. Again, random forest resulted in the best
prediction accuracy.

Monitoring in the Application

The monitoring of QoE can also be directly integrated into the application. The
advantage of application monitoring is that most QoE information can be ac-
cessed directly and accurately, and does not need to be estimated. However, in
order to share the QoE information with network providers and use it for tra�c
management, additional signaling is required.

Reference [176] conducted a client-side DPI to detect video �ows and extract
video playtimes contained in the downloaded packets. Together with a browser
plug-in, which monitored the current state of the player, an accurate calculation
of the bu�er and detection of stalling events was possible. Reference [190] used
a customized �ash player to monitor initial delay, stalling frequency, and mean
stalling duration from the client. These parameters are then mapped to QoE with
a linear function. In [191], the explanatory power of the model of [190] could be
increased by adding user-viewing activities. Based on [190], [192] implemented
an evaluation tool for YouTube QoE in Android mobile devices. However, this
application did not take adaptive video streaming into account. In [193], a mobile
application was presented to actively measure and analyze mobile app QoE on
network and application layer. Reference [194–196] proposed a browser plug-in
that passively monitors initial delay, stalling, and adaptation, and predicted the
abandonment rate.
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In case the QoE parameters are extracted from the client player, all QoE mod-
els from Section 2.1 can be utilized to estimate the QoE. For example, [132] input
the quantization parameter, number of stalling events, and average and maxi-
mum duration of stalling events to a random neural network in order to estimate
the QoE. Reference [197] predicted user engagement based on application-level
QoE parameters. Reference [198] continued this work and applied di�erent de-
cision trees for the prediction of user engagement based on confounding factors,
like device or video content. Reference [199] used only 15 s of stream state data,
namely, number of stalling events, frame rate, bandwidth, and received pack-
ets per second, to predict the QoE using a K-nearest-neighbor algorithm with a
dynamic time warping metric. Another automated QoE evaluation based on a
non-linear function was described in [148] using metrics for objective content
quality, stalling, and adaptation.

3.1.2 QoE-aware Tra�ic Management Mechanisms for
Video Streaming

The goals of QoE-aware tra�c management are to e�ciently utilize the available
network resources and to improve the QoE of end users, which typically includes
to establish QoE fairness [242] between di�erent applications and users. Refer-
ence [200] surveyed various approaches to QoE-aware tra�c management ap-
proaches in wireless networks, whereas [201] only focused on mechanisms for
improving the QoE of video streaming. Selected tra�c management approaches
are presented in chronological order and separated into pure network tra�c
management solutions, and mechanisms, which use information from applica-
tions and/or signal applications to change their network demands.

Network Tra�ic Management

Reference [202] proposed to limit the TCP congestion window on the streaming
server to control the burstiness of adaptive video tra�c, which resulted in re-
duced retransmissions and round trip times. Reference [203] used DPI to detect
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video �ows and redirected them to less congested links using SDN to maintain
a high level of QoE. A similar approach is presented in [204], in which di�erent
layers of H.264/SVC video stream can be routed over di�erent paths to reduce
the stalling. References [205, 206] proposed to rewrite segment requests and to
shape the TCP throughput of each client in an LTE network with a proxy server
according to QoE parameters extracted from the index �le and the streamed con-
tent. Reference [207] estimated the bu�ered playtime of video streams and used
it to assign resources in LTE networks such that stalling could be avoided. Refer-
ence [208] considered dynamic o�oading to improve the QoE of YouTube videos
when multiple access networks were available. Reference [209] used a network
proxy to guarantee the video delivery of H.264/SVC-based live streaming using
Di�erentiated Services (Di�Serv). Reference [210] detected and monitored the
bu�er of video �ows on home gateways. Stalling of all �ows could be minimized
by assigning �ows to di�erent priority queues. Reference [211] proposed a sys-
tem that uses a neural network to detect and estimate the QoE of video streams
from �ow parameters. The tra�c management is done by bandwidth shaping,
considering also premium users of HAS services.

Cross-layer and Collaborative Tra�ic Management

First cross-layer tra�c management solutions for mobile video streaming were
proposed in [212–215], which used information about the packet content (e.g.,
type of frame) to prioritize the most important frames (e.g., I-frames of MPEG-
compliant video encodings) or transmit them over channels with the best trans-
mission capabilities in order to reach a high video quality. References [17, 216]
used the tool presented in [176] to detect and monitor video �ows, and priori-
tized or routed them based on both network and application information.

Reference [217] proposed to utilize a proxy server to monitor the streaming
and assign quality levels to clients in order to manage the QoE. Reference [218]
used a measurement proxy server to detect the highest quality level currently
supported by the network and accordingly instruct the client. Reference [219]
used a cloud-based framework to transcode the video according to network re-
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quirements. Reference [220] considered a collaborative tra�c management for
HAS including caching of segments on a proxy server. Reference [221] proposed
an OpenFlow-based framework that monitored the status of all HAS applica-
tions and dynamically allocated network resources to each devices. Moreover,
the system instructed clients which quality levels to request in order to achieve
a high fairness among all users. Reference [222] used a proxy to share monitored
information of all streaming sessions with the clients, such that a fair distribu-
tion of network resources was achieved.

Quality information about the layered content is used in [223] to adapt videos
in order to improve the average QoE for a given total bandwidth, and in [224] to
prioritize H.264/SVC layers in mobile networks according to their QoE contribu-
tion. Reference [225] used network and application information of multiple ap-
plications for resource allocation in LTE based on particle swarm optimization.
References [226, 227] proposed server-side tra�c shaping to improve the QoE
of HAS sessions. Reference [228] described an SDN-based framework, which
changes streaming servers and routing paths based on QoE feedback from the
client. A similar approach using ant colony optimization to compute the best
paths is presented in [229]. Reference [230] used an OpenFlow controller for pri-
oritized delivery of HAS segments to avoid imminent stalling. Reference [231]
estimated the QoE based on encoding, stalling, and video duration, and recom-
mended quality adaptations. Reference [232] presented an SDN-based architec-
ture, which dynamically allocated the network resources for each client based
on its expected QoE. Reference [233] leveraged the edge computing paradigm
to improve the QoE of HAS by modifying the HAS index �les in the network.
Reference [234] proposed bandwidth reservation for HAS �ows and signaled
clients which quality levels to request. Reference [235] proposed a system that
recommends video adaptations to mobile video streaming clients based on video
characteristics and not only based on the bit rate. Reference [236] described an
adaptation logic, which used information about network conditions to achieve
a fair QoE for multiple clients. [237] presented a collaborative tra�c manage-
ment system, which considered QoE fairness in case of encrypted HAS. Recently
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Server and Network Assisted DASH (SAND) standardization e�orts were started
to exchange information measured at servers and network elements (parame-
ters enhancing delivery) and also signal quality-related assisting information to
clients (parameters enhancing reception) [238, 239].

3.2 QoE Monitoring of HAS

According to the QoE studies presented in Section 2.2, not only initial delay and
stalling, but also adaptation and the corresponding time on each quality layer
have a major impact on the QoE of HAS. Thus, these factors have to be con-
sidered for QoE monitoring. This section presents two approaches for estimat-
ing the application-layer QoE factors of HAS. The �rst implements in-network
monitoring and is based on [61, 80], the other implements monitoring in the ap-
plication based on the works in [45, 48]. Finally, an approach to estimating the
QoE from simple network parameters is described [34], whose results encourage
the usage of application-layer parameters for QoE monitoring.

3.2.1 Monitoring of QoE Parameters in the Network

Network operators favor QoE monitoring in the network as an input to their
tra�c management decisions. Having their own monitoring, they do not have
to base the tra�c management on information provided by other stakeholders,
in which they might have limited trust. The monitoring is typically implemented
on middleboxes or VNFs, which analyze the tra�c and output QoE estimates on
a per session base. For the estimation of stalling, several methods were already
proposed in related work (cf. Section 3.1), and even deployed in operational mo-
bile networks [16]. With the increasing popularity of HAS, for which also adap-
tation parameters in�uence the QoE, additional methods are required.

The following method complements the approach in [16], and is also based on
video information, which can be obtained via DPI. More speci�cally, this method
is based on objective video quality metrics, which indicate the image quality of
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individual frames or segments. When the adaptation logic changes the quality
of a HAS stream, the bit rate of the video, and thus, the image quality changes,
which can be measured by these objective video quality metrics. As also the time
on each quality level is an in�uence factor of the QoE of HAS, temporal pooling
will be used to aggregate these periodical measures of the video sequence over
time into one measure for the whole sequence.

The quality level of the segment can be obtained by monitoring the segment
requests of the client. The network operator can intercept the index �le, which
contains the URLs of each segment and the corresponding segment quality (e.g.,
bit rate). As the client requests segments individually, the network operator can
inspect the HTTP request, extract the URL, and thus, obtain the quality level of
the requested segment. Moreover, the network operator can inspect all downlink
packets and extract and decode the actual video �le, which is streamed to the
client. This allows to compute objective per-frame metrics. Note that additional
information might be needed, e.g., in case of full reference image quality metrics,
the reference video �le in highest quality has to be additionally requested by the
monitoring function. In this case, an in-band signaling of this additional infor-
mation, e.g., in the index �le, could be bene�cial to reduce the (computational)
overhead of QoE monitoring. The recent trend towards end-to-end encryption
of HAS sessions will prevent DPI-based approaches. Still, end-to-end encrypted
�ows can be terminated by a man-in-the-middle proxy, which could be imple-
mented, for example, by the home router in a residential environment, or the
needed quality information can be estimated by or signaled to the monitoring
function, which is out of scope of this work.

Instead, the accuracy of ten di�erent temporal pooling methods for estimat-
ing the QoE of HAS will be studied. Therefore, three objective video quality
metrics will be considered, namely, the ordinal quality layer of the segment and
the segment bit rate, which both can be estimated from encrypted tra�c [182,
185, 187, 188], and the per-frame full reference Structural Similarity (SSIM) met-
ric [243], which was calculated for the luma component of the two considered
video clips, and represents the situation when more information (unencrypted
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Table 3.2: Quality layers and target bit rate settings.

Quality layer 1 2 3 4 5 6
Target bit rate [kbps] 128 210 350 545 876 1410

�ow and additional reference video clips) is available. Further results for other
objective metrics are given in [61, 80].

Study Description

The study was conducted within the project Service Quality De�nition and Mea-
surement (NGMN P-SERQU) of the Next Generation Mobile Networks (NGMN)
Alliance [80] and used two 100 s videos from the open source Sintel1 project,
which had animated content with a high motion intensity and high degree of
detail. Only one content class was used in order to focus on the relationship
between di�erent quality levels and QoE, and not di�erent contents. The clips
consisted of 20 segments of 5 s each, which were encoded with di�erent QP to
reach six target bit rates as described in Table 3.2. These bit rates were spread be-
low 1.5 Mbps, which is the maximum bit rate supported by all generations of the
considered end user devices, i.e., iPhone and iPod. Moreover, it was checked that
the di�erent quality layers could be visually distinguished. An HLS-based HAS
system was set up in a wireless testbed, which emulated mobile LTE conditions
(fading, interference/noise, latency, jitter, competing tra�c), and the resulting
adaptation patterns were recorded. Too similar patterns were removed and sev-
eral arti�cial patterns were added, i.e., patterns, which were not recorded while
using the HLS client, but could occur with other HAS adaptation logics. The 90
resulting patterns contained up to 20 quality changes but no stalling.

To collect a su�ciently high number of subjective ratings from diverse partic-
ipants, a crowdsourcing study was designed. To overcome the reliability prob-
lems of an anonymous crowd, only voluntary participants were recruited from

1https://durian.blender.org/ [Online] – Accessed: 24.08.2017
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the NGMN P-SERQU partners. The tested patterns were prepared o�ine and
o�ered as Podcasts consisting of �ve di�erent video patterns each. The partici-
pants downloaded a Podcast on their iPhone or iPad, and accessed a study ques-
tionnaire with their browser. After downloading the Podcast and completing a
personal data questionnaire, which included consistency questions to check the
reliability, the users sequentially watched all �ve video clips. After each video,
the participants accessed the study web page and rated their experience on a
5-point ACR scale. The study was completed by 494 users during the �ve month
test phase. The following results are based on the subjective ratings of those 297
users, who watched the videos on an iPad.

Temporal Pooling

The basis of the temporal pooling analysis is formed by periodic values of an
objective metricOM . In this work, the pooling is done on a per-frame base, i.e.,
for each frame t, t = 1, . . . , T , an objective video metric OM(t) is considered.
Note that for segment metrics (i.e., number of quality layer, bit rate), each frame
of the segment will have the same value, and the pooling on a per-segment base
would give the same results because of the �xed segment length.

A literature review found several di�erent temporal pooling methods, which
are investigated in this study. The most intuitive approaches described in [244]
are mean pooling (Mean, 1

T
·
∑T
t=1 OM(t)) and last frames mean pooling (Mean-

LastFrames, 1
F
·
∑T
t=T−F OM(t)). These methods simply average the objective

metrics over all frames, or the F most recent frames, respectively. In contrast,
the in�uence of highest quality frames is emphasized in Minkowski summation
(Minkowski, [ 1

T
·
∑T
t=1 OM

p(t)]1/p) and exponentially-weighted Minkowski
summation (ExpMinkowski, [ 1

T
·
∑T
t=1 exp( t−T

τ
) ·OMp(t)]1/p) by tuning the

parameter p. The additional parameter τ in ExpMinkowski controls the expo-
nential weighting, and thus, the recency e�ect. Moreover, [244] described the
histogram pooling (Histogram), which is computed as the k-th percentile of the
cumulative histogram values. Thus, a low k value can take the impact of lowest
quality frames on viewers into account. The local minimum of mean values ofN
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successive frames (LocalMinimum, min[ 1
N

∑N
i=1 OM(t+ i)]) also accounts for

the poorest quality section. A related method, which was not described in [244],
computes the mean of the p percent of overall frames with lowest quality (Per-
centile).

Reference [245] described the hysteresis e�ect, which combined an element
that indicates the quality of the current frame with the minimum of quality
scores over the last τ seconds. The �nal score was computed as the mean of
these values over all frames (Hysteresis, see detailed description in [245]). Ref-
erence [246] divided the frames of lower and higher quality according to a per-
centile. When combining the scores, a scaling factor was multiplied to the scores
of the lower quality frames (SequenceLevel, see detailed description in [246]). Fi-
nally, in [247] the mean of objective metrics and the di�erences between succes-
sive frames were considered. The score emphasized quality degradations down
to a saturation threshold (VQA, see detailed description in [247] but slightly
modi�ed).

Some of the presented temporal pooling methods can be tuned by adjusting
the parameters, e.g., to emphasize low or high quality frames or to account for
recency e�ects. Thus, the optimal parameter values for each method have to be
found, which maximize the correlation of the temporal pooling output with the
MOS values of each pattern. Due to the limited data set, a cross-validation ap-
proach was implemented using the leave-one-out algorithm in order to achieve
a good performance independent of the training and test sets. For every pattern,
the leave-one-out algorithm computes the output of the pooling method after
training on all remaining patterns. Eventually, there will be one cross-validated
output for each sample in the data set. To evaluate the overall performance of the
temporal pooling methods, the cross-validated outputs are correlated with the
MOS values of the crowdsourcing study in terms of Pearson Linear Correlation
Coe�cient (PLCC) and SROCC.
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Results

The results of the di�erent temporal pooling methods after cross-validation are
shown in Table 3.3. Note that some special cases exist, in which a parametriza-
tion of a temporal pooling method was identical to another method, i.e.,
Minkowski can be identical to Mean for p = 1, and LocalMinimum can be identi-
cal to MeanLastFrames when the minimum of the mean of all successive frames
is the mean of the last frames. To keep the characteristics of the methods vis-
ible, the best result, which is not a special case is shown in the corresponding
row. The three considered objective metrics are the ordinal quality layer, i.e., the
number of the quality layer from 1 (lowest) to 6 (highest), the actual bit rate of
each segment after encoding, which might di�er from the target bit rate, and
the per-frame SSIM computed with the highest quality representation of each
video as reference.

Table 3.3: PLCC and SROCC between the pooled objective metrics (segment quality
layer, segment bit rate, per-frame SSIM) and subjective MOS after cross-
validation (sorted by PLCC of quality layer pooling).

Pooling method Quality layer Bit rate SSIM
PLCC SROCC PLCC SROCC PLCC SROCC

VQA 0.867 0.860 0.751 0.750 0.820 0.767
SequenceLevel 0.861 0.851 0.797 0.829 0.790 0.815
Mean 0.856 0.837 0.751 0.730 0.870 0.866
LocalMinimum 0.831 0.803 0.671 0.615 0.506 0.511
MeanLastFrames 0.829 0.805 0.721 0.693 0.437 0.445
Percentile 0.824 0.806 0.715 0.781 0.854 0.864
ExpMinkowski 0.822 0.802 0.730 0.711 0.572 0.513
Minkowski 0.820 0.800 0.718 0.678 0.815 0.842
Histogram 0.785 0.789 0.666 0.683 -0.004 -0.150
Hysteresis 0.766 0.726 0.664 0.662 0.867 0.859

The best performing methods for the segment quality layer metric, both in
terms of PLCC and SROCC, are VQA, SequenceLevel, andMean. The top results of
VQA are a PLCC of 0.867 and SROCC of 0.860, which indicate a high correlation
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to the MOS values. Nevertheless, most pooling methods reach high correlations
above 0.8. For the sequence bit rate metric, the same pooling methods perform
best. Additionally, Percentile reaches the second highest SROCC. However, the
performance of this metric is generally lower than the segment quality layer,
resulting in lower correlations for every pooling method. Mean pooling of the
per-frame SSIM metric, gives the highest correlations (PLCC = 0.870, SROCC =
0.866). Also Hysteresis and Percentile perform well on the SSIM metric. Never-
theless, several pooling methods perform bad and only reach correlations below
0.6.

The results show that temporal pooling is generally well suited to account for
the temporal dimension of quality adaptation in a HAS scenario. High correla-
tions can be achieved for all levels of information taking into account that the
methods were intentionally not developed for longer video sequences as used
within this analysis. The most sophisticated metric, which takes the quality of
every frame into account, reaches the top correlation, but does not outperform
the other metrics. In contrast, for several pooling methods, the results were
much worse. Surprisingly, the most trivial metric, considering only the num-
ber of the quality layer, gives a decent performance for most pooling methods.
It reached higher correlations than the segment bit rate, which might be due
to the complex relationship between video content, compression, and resulting
video quality.

This means that a very low complexity algorithm, such as the mean of seg-
ment quality layer, gives already a decent prediction performance for the QoE
of HAS, although it includes almost no information about the underlying con-
tent. Thus, this approach might be also applied in a scenario with end-to-end
encryption, for which several works already tried to estimate the quality layer
from network tra�c features, e.g., [187, 188].

69



3 QoE-aware Tra�c Management for HTTP Adaptive Video Streaming

3.2.2 Monitoring of QoE Parameters on Application Layer

A di�erent approach is monitoring QoE information on application layer. The
advantage is that the QoE factors, which are perceived by the end user, can be
directly obtained within the application without the need for network-layer DPI
and/or estimation. This means, application-layer monitoring will always give
accurate information, also in case of end-to-end encryption. The disadvantages,
however, are that the monitoring has to be implemented at the client side, and
that the monitored information has to be signaled to the network operator in
order to utilize it for tra�c management.

This section presents a methodology for monitoring application-layer QoE
factors of YouTube on mobile devices with an Android app, which is called
YoMoApp2 (YouTube Monitoring App) [48]. As the main QoE in�uence param-
eters of HAS are initial delay, stalling, and adaptation, the app unobtrusively
monitors the state and bu�er of the video player, and the resolution of the played
out videos.

In the following, the functionality of the app is described. The app uses an
Android WebView3 browser element to access the mobile YouTube website4.
The mobile YouTube website includes Hypertext Markup Language Version 5
(HTML5) video playback using DASH technology. Similar to the browser plugin
of YoMo [176], JavaScript functions are injected to the website, which detect the
video element in the Hypertext Markup Language (HTML) Document Object
Model (DOM) tree and ultimately perform the monitoring of the video play-
back. These functions add event listeners to the HTML5 video element to mon-
itor changes of the player state (e.g., playing, paused, bu�ering, ended), and the
height and width of the video element, which indicate the video resolution. The
current playback time and the bu�ered playtime are polled periodically every
1 s. Some of the monitored parameters are visualized in Figure 3.2. Moreover,

2https://play.google.com/store/apps/details?id=de.yomoapp [Online] –
Accessed: 24.08.2017

3https://developer.android.com/reference/android/webkit/WebView.
html [Online] – Accessed: 24.08.2017

4https://m.youtube.com/ [Online] – Accessed: 24.08.2017
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the YouTube ID, title, duration of the watched video, and statistics about the
precedent advertisement clip are retrieved. The monitored data are sent to the
Android app, where they are processed and logged. Postprocessing is required
because the usage of JavaScript can introduce inconsistencies and errors, e.g.,
missing/incorrect values or non-equidistant data queries.
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Figure 3.2: Illustration of some of the monitored application-layer parameters for
two streaming sessions: current video playtime (orange) and bu�ered
video playtime (black). Stalling events are displayed as yellow boxes.

In addition to the monitoring of the playback, the native Android part of
YoMoApp also logs network and context parameters. It logs several device char-
acteristics and listens to their changes, namely, screen size, screen orientation,
volume, player size, and player mode (normal/full screen). The app monitors its
network usage (both mobile and Wi-Fi networks) as shown in Figure 3.3, and
thus, periodically logs the download and upload volume, as well as changes of
operator, Radio Access Technology (RAT), cell ID, signal strength, and Global
Positioning System (GPS) position. For each video session, i.e., the playback of
a new video, separate log �les are created. After each session (minimum session
length: 20 s), the user is asked to rate the QoE of the session on a continuous
5-point ACR MOS scale ranging from 1 (bad) to 5 (excellent) [248]. Note that
the user is not required to rate but can also close the rating dialogue. The log
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�les are locally cached and transmitted to an external database when closing
the app, triggered manually by the user, or at �xed time intervals. Note that the
most recent version of YoMoApp features a discrete 5-point ACR MOS scale for
rating the video liking, video quality, streaming quality, and acceptability of the
streaming. However, the results presented in the following were gathered with
the previous version of YoMoApp.
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(b) Network usage of an exemplary LTE session.

Figure 3.3: Illustration of some of the monitored parameters on network layer:
download throughput (black) and cumulative download volume (or-
ange). The depicted sessions correspond to the sessions of Figure 3.2.

To provide incentives for using the app, the user can access several aggregate
statistics for each session as well as a visualization of the streaming similar to
Figures 3.2 and 3.3. Moreover, a map view is included, which displays all sub-
jective ratings and the corresponding network operators. The users can �lter by
operators, and thus, can compare with a simple heat map which operator per-
forms best in which locations. Finally, users, especially researchers, which use
YoMoApp can access the log �les of the streaming sessions also on the YoMoApp
web portal5 for further evaluations.

Its rich functionality makes YoMoApp is not only an accurate application-
layer QoE monitor, but the app is also a valuable tool for researching the QoE of

5http://yomoapp.de/dashboard [Online] – Accessed: 24.08.2017
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HAS. Therefore, the applicability of YoMoApp is demonstrated in a subjective
lab study [45], which investigates the impact of bandwidth throttling on the
QoE. The participants of the study watched YouTube videos with YoMoApp and
rated their subjective experience.

Study Description

The study was conducted in a dedicated lab for QoE tests at Forschungszentrum
Telekommunikation Wien (FTW) in Vienna, Austria, which is compliant to the
standards for subjective studies [84, 248, 249]. YoMoApp was installed on An-
droid smartphones (Samsung Galaxy S4, Android 4.4 KitKat), which were con-
nected to the Internet via Wi-Fi. To throttle the bandwidth, the downlink tra�c
was routed through a modi�ed NetEm network emulator [250]. Three constant
downlink bandwidths of 1 Mbps, 2 Mbps, and 4 Mbps were tested. Moreover, a
variable bandwidth condition was included, for which the bandwidth was set to
1 Mbps, but increased to 3 Mbps for 5 s three times per minute (average band-
width 1.5 Mbps). Finally, an outage condition was tested, for which the band-
width was set to 4 Mbps with outages of 10 s twice per minute (average band-
width 2.7 Mbps).

52 people (29 female, 23 male) participated and were compensated with
vouchers, which asserted reliable and thoughtful study execution. They had to
watch �ve two minute long YouTube videos, which were linked to a speci�c
bandwidth condition each, according to Table 3.4. The videos were available as
4K ultra-HD videos (i.e., 2160p), and included a movie trailer and four nature-
themed clips. After the playback, the participants rated the overall experience,
initial delay, stalling, and video image quality on continuous 5-point ACR MOS
scales [248]

Results

The evaluation of the results will only focus on stalling and adaptation, which
are the most important QoE factors of HAS. Figure 3.4a shows the CDF of the
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Table 3.4: Video content and download throughputs as measured in the lab experi-
ment.

YouTube video ID Avg. throughput (condition) Avg. throughput (free)
6pxRHBw-k8M 2.8 Mbps (4 Mbps) 4.6 Mbps
iNJdPyoqt8U 1.0 Mbps (1 Mbps) 5.8 Mbps

kObNpTFPV5c 1.8 Mbps (2 Mbps) 5.0 Mbps
QS7lN7giXXc 2.3 Mbps (out) 5.0 Mbps
suWsd372pQE 1.3 Mbps (var) 3.9 Mbps

overall stalling duration of each bandwidth condition. As expected, almost no
stalling occurs for the constant bandwidth conditions because the adaptation
logic of YouTube can easily adapt the video quality. For 1 Mbps, 85.00% of the
streaming sessions do not include stalling. For the 2 Mbps condition, 95.12% of
the sessions, and for 4 Mbps, 93.48% of the sessions have a smooth playback
without stalling. Also the remaining sessions have very small stalling times in
the order of a few seconds, except for one outlier with 22 s stalling at 1 Mbps.
In variable bandwidth condition (“var”), still 85.37% of the sessions show no
stalling, but the stalling times of the remaining sessions are higher and reach
a total stalling length of up to 34 s. The most stalling can be observed for the
outage condition (“out”) with an average total stalling length of 25 s. Only 21.43%
of the sessions have a smooth playback. The remaining 78.57% of the sessions
show stalling up to the maximum total stalling length of 41 s.

Figure 3.4b shows the corresponding subjective ratings in terms of MOS and
95% con�dence intervals. After each video, the participants were asked to which
extend the interruptions caused by stalling were perceived disturbing, ranging
from 1 (very disturbing) to 5 (not disturbing at all). For the constant and the
variable bandwidth conditions, which have a MOS of at least 4.41, the interrup-
tions were not perceived disturbing. This corresponds to the monitored total
stalling time, which showed very short stalling times or no stalling for these
conditions. Stalling was only disturbing in the outage condition, which is indi-
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Figure 3.4: Monitoring of stalling and its impact on user experience. In (b), partic-
ipants rated the disturbance of stalling on a continuous scale ranging
from 1 (very disturbing) to 5 (not disturbing at all).

cated by a MOS of 2.83. However, this again corresponds to the high stalling
times monitored by YoMoApp.

In Figure 3.5a, the time on each quality layer is analyzed. It shows the per-
centage of time, for which each resolution was played out during the streaming.
Note that the highest played out resolution is 720p, which might be due to the
limited device capabilities. In the 1 Mbps condition, mainly 360p (92.89%) is re-
quested by the adaptation logic, while the other resolutions are only played out
for a very short amount of time. For the constant conditions with higher band-
width, the share of higher resolutions increases, which is very intuitive. In the
2 Mbps condition 480p (88.84%) is the dominant resolution, while in the 4 Mbps
condition the most time is spent on 720p (67.15%) quality. Not surprisingly, the
outage condition, which is a 4 Mbps on/o� pattern, shows very a similar quality
distribution to the 4 Mbps condition. However, the variable bandwidth condi-
tion plays out the lowest resolution for most of the time (240p, 80.86%), which
indicates that the adaptation logic of YouTube cannot well adapt to �uctuating
conditions, and shows a very conservative behavior.

75



3 QoE-aware Tra�c Management for HTTP Adaptive Video Streaming

1

0.2

0.4

0.6

0.8

1

   2      4     var   out 
network condition [Mbps]

di
st

rib
ut

io
n

0 

720p
480p
360p
240p

(a) Distribution of time on each quality layer.

1 2 4 var     out1

2

3

4

5

network condition [Mbps]

M
O

S

(b) MOS of image quality.

Figure 3.5: Monitoring of time on each quality and its impact on user experience. In
(b), participants rated the image quality on a continuous scale ranging
from 1 (bad) to 5 (excellent).

The corresponding subjective ratings on the image quality are presented in
Figure 3.5b. Again the MOS and 95% con�dence intervals are displayed for each
condition. The most striking result is that the image quality is rated good for all
conditions having a MOS of 4.17 at least. This means that resolution adaptation
did not have a big impact on the QoE, which could be due to the used devices’
small screen size. This con�rms the �ndings that the usage of HAS is especially
bene�cial in mobile scenarios. Nevertheless, comparing the MOS values with
the time shares of Figure 3.5a, the general trend is visible that longer times on
higher resolution lead to higher QoE. This con�rms the previous �ndings that
the time on each quality layer in�uences the QoE of HAS.

To sum up, YoMoApp can be considered a valuable tool for accurately and un-
obtrusively monitoring the QoE of HAS on application layer. As the monitoring
extends also to network and context parameters, and the app is able to collect
subjective feedback on video sessions, YoMoApp is also useful for researchers.
Another research application of YoMoApp to collect a data set for estimating
QoE from network parameters is described in the next section.
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3.2.3 Monitoring of Network Parameters to Estimate QoE

The above presented study was continued as a �eld study to quantify the impact
of realistic network conditions on the QoE of mobile YouTube streaming [34].
Moreover, the goal of the study was to estimate the QoE from monitoring the
network parameters of the HAS session.

Study Description

The �eld study was conducted in Vienna, Austria, during two weeks in January
2015. 30 participants installed YoMoApp to their own smartphones and streamed
videos through their own mobile ISP connection. Although YoMoApp was used
to monitor the streaming, the used version was not yet able to monitor also
network conditions and collect subjective ratings. Thus, another Android-based
passive monitoring tool had to be installed to capture the network usage (�ow
start time, �ow direction, �ow duration, �ow volume, �ow throughput, mobile
operator, RAT, cell ID, signal strength), and periodically upload the logs to an
external server. The participants were asked to access a web-based questionnaire
immediately after streaming a video. They rated the overall quality on a discrete
5-point ACR scale ranging from 1 (bad) to 5 (excellent). Moreover, they rated
whether the session quality was acceptable on a binary scale (acceptable/not
acceptable). The ratings were stored on the server for later analysis. Similar to
the lab study, the participants were compensated with vouchers to assert reliable
study involvement.

During the study, 85 videos were watched and the log �les from the three
sources (YoMoApp, network measurements, QoE ratings) were collected. As
the timestamps were available, the identi�cation of overlapping logs seemed
a straightforward approach. However, only 30 YoMoApp logs could be mapped
to network logs because for the remaining sessions the network monitoring app
was not actively running on the participants’ devices or a Wi-Fi network was
used. Subjective ratings were only accepted when they were submitted within
15 minutes after the video session, and were �ltered according to typical reliabil-
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ity checks. This also resulted in only 30 YoMoApp logs, which could be mapped
to subjective ratings. Eventually, only 10 YoMoApp logs could be mapped to
both network logs and subjective ratings. These problems actually led to the
improvement of YoMoApp by implementing capabilities for network monitor-
ing and collection of subjective feedback.

Results

Figure 3.6 shows the correlation of the network measurements to the partici-
pants’ subjective ratings. The correlations of the parameters with the MOS are
shown in terms of SROCC (black), the correlation with the dichotomous ac-
ceptability in terms of Point-biserial Correlation Coe�cient (PBCC) (yellow).
For both throughput parameters small correlations to both MOS and acceptabil-
ity can be observed. This means, a higher throughput is not directly related to
a higher QoE. Flow duration, �ow volume, and signal strength show negative
correlations. This is surprising, especially for signal strength, because a higher
signal strength seems to reduce the QoE. Note that this evaluation is based only
on the 10 completely logged sessions, such that a generalization of the results
is not possible. However, still there is evidence that network measurements are
not su�cient for an accurate QoE estimation. In the following, the impact of
network parameters on the streaming will be investigated in more detail.

Figure 3.7 illustrates the SROCC between di�erent streaming parameters and
the average �ow throughput (dark brown) and signal strength (light brown).
The data set consists of the 30 video sessions for which YoMoApp logs and net-
work logs could be matched. The correlations are computed for initial delay,
stalling parameters, adaptation parameters, and playback time. From the adapta-
tion parameters, recency time refers to the time after the last quality change, and
weighted time on layer is computed as the mean pooling of the ordinal quality
layers, cf. Section 3.2.1. The average throughput has a fairly high correlation of
0.64 to both the end quality and the weighted time on layer, which con�rms the
�ndings of the lab study that a high throughput generally improves the streamed
resolution of the video. Note that correlations are generally lower in this study
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Figure 3.6: Correlations between network parameters and QoE ratings.

due to the very heterogeneous test environment. Fairly high negative correla-
tions are visible for all stalling parameters, which also con�rms that a higher
throughput reduces the stalling. Similar trends can be observed for maximum
�ow throughput (similar SROCCs) and �ow volume (lower SROCCs). An inverse
trend can be observed for �ow duration, which can be explained by the fact that
longer �ows are caused by worse network conditions. Again, signal strength
only shows small SROCCs, which con�rms that it cannot be directly used to
indicate streaming parameters. These results shows that some network param-
eters, especially average or maximum �ow throughput, are linked to streaming
parameters and the resulting QoE. However, as observed above, the resulting
QoE cannot be directly deduced from network parameters.

In contrast, the correlations of streaming parameters and the QoE ratings
are investigated in Figure 3.8 for the data set of 30 video sessions with both
YoMoApp logs and subjective feedback. Again, the SROCCs between streaming
parameters and MOS are depicted as black bars, and the PBCCs of streaming
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Figure 3.7: Correlations between network parameters and streaming parameters.

parameters and acceptability are shown in yellow. Initial delay does not show
negative correlations, which might be due to very small initial delays during
the �eld study, such that they were not an issue for the participants. Stalling,
on the other hand, shows clear negative correlations to MOS, which con�rms
that stalling is the worst quality degradation of HAS [14]. The video quality pa-
rameters have fairly high correlations to the MOS, especially weighted time on
quality layer (0.58), start quality (0.48), and end quality (0.48). In contrast, no cor-
relation is visible for the number of quality switches (0.04). Still the fairly high
correlation of recency time to MOS (0.52) could indicate that a stable streaming
quality is valued by the users. Unlike MOS, the correlation coe�cients of the
streaming parameters and acceptability are very low, which could indicate that
the acceptability is not in�uenced by a single streaming parameter but rather a
more complex combination of them. Still, MOS and acceptability show a fairly
high PBCC of 0.54 in the collected subjective ratings.
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Figure 3.8: Correlations between streaming parameters and QoE ratings.

All in all, the �eld study shows that application-layer streaming parameters
give better insights into the subjective experience of users than simple network
parameters. Another big advantage is that application-layer parameters can be
directly used as feedback in the QoE-aware tra�c management cycle (cross-
layer tra�c management). The presented network monitoring approach shows
that it is possible to extract QoE factors of HAS from unencrypted network traf-
�c by DPI. Moreover, tools like YoMoApp can be utilized for application-layer
QoE monitoring, which also work in scenarios with end-to-end encryption, but
rely on signaling of QoE parameters for tra�c management (collaborative tra�c
management). Finally, network-only monitoring and tra�c management solu-
tions might also be developed for encrypted network tra�c by applying more
complex machine learning approaches. Still, the estimation of application-layer
parameters from the encrypted network tra�c might be more bene�cial and
meaningful for QoE-aware tra�c management than a direct estimation of the
QoE from a complex, incomprehensible machine learning model.
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3.3 QoE-aware Resource Allocation of Video Flows
on Bo�leneck Links

This section evaluates the performance of di�erent QoE-aware tra�c manage-
ment approaches for a shared bottleneck link based on [12]. This is a common
scenario in access networks, for example, when multiple users and applications
share the same backhaul link. Tra�c management will be applied by allocating
the bandwidth resources of the bottleneck link to the users’ video streaming
and web browsing �ows to achieve a high QoE. The study will con�rm that
a cross-layer approach utilizing application-layer QoE information is feasible
and more dynamic than pure network-based tra�c management. Section 3.3.1
formally describes the scenario and the resource allocation problem. The inves-
tigated tra�c management strategies are presented in Section 3.3.2. Section 3.3.3
outlines the analytical and simulative performance evaluation methodology. Fi-
nally, the results of the performance evaluation are presented in Section 3.3.4.

3.3.1 Resource Allocation Problem on Bo�leneck Links

The system of interest is a single shared bottleneck link, which is used by mul-
tiple users to stream videos or browse websites. All other links in the network
are assumed to have a su�ciently high capacity. This means, the bottleneck link
limits the throughput of each �ow, and consequently, the throughput of each
�ow on the bottleneck link is the throughput of the �ow in the whole network.
To study the pure impact of the tra�c management strategies, this scenario will
only consider classical, i.e., non-adaptive, video streaming because the control
loop of the adaptation logic would interfere with the control loop of the tra�c
management. Thus, an extreme and very critical HAS scenario is investigated,
in which only the lowest quality layer is available. In order to achieve a high
QoE for these video sessions, the goal of the tra�c management is to avoid or
reduce stalling [63]. With respect to web browsing, the page load time has the
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most dominant impact on QoE [119], and thus, should be reduced by the tra�c
management strategies.

Table 3.5: Summary of used symbols for resource allocation problem formulation,
resource allocation algorithms, and analytical performance evaluation
model.

Symbol De�nition
A The set of active application �ows

a ∈ {v, w} An active video or web �ow
S ⊂ A A subset of active �ows

Sv, Sw, Sp The set of active video/web/prioritized �ows
C Link capacity
q Allocated bandwidth

qa, qS , qp Bandwidth allocated to �ow/set of �ows/set of prioritized �ows
bv Average video bit rate
σb Standard deviation of video bit rate
s Flow size
λ Arrival rate
µ Service rate
ρ Utilization

The shared bottleneck link is assumed to have limited downlink capacity C .
The uplink tra�c will not be considered. The link is used to stream videos (iden-
ti�ed by v) or browse websites (identi�ed by w). Each application request trig-
gers a download of content of size sv or sw , respectively. Thereby, each video
has a certain video length tv and an average bit rate bv , such that sv = tv · bv .
Video streaming and web browsing requests are modeled as Poisson processes,
i.e., their inter-arrival times are exponentially distributed with rate λv or λw ,
respectively.

All currently active application �ows are contained in the set A =

{a1, ..., aN} and each �ow may occupy a share of the link capacity C . In the
typical case of transmission via TCP, all active �ows share the link capacity
equally. However, tra�c management can in�uence the resource allocation for
each �ow ai ∈ A, or for each disjoint set of �ows Sj ⊂ A. Thus, the traf-
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�c management strategy can assign a bandwidth qai to each �ow ai, such that∑N
i=1 qai ≤ C . Similarly, it can assign a bandwidth qSj to each set of �ows Sj ,

such that
∑
Sj⊂A qSj ≤ C . The bandwidth allocated to a set of �ows Sj will

be shared equally among each �ow aj ∈ Sj , such that qaj =
qSj
|Sj |

.

When assigning bandwidth to the �ows, the QoE-aware tra�c management
strategies have to consider di�erent application characteristics, usage behaviors,
and QoE factors. This problem can be formulated as follows: Find a mapping
A → R, ai 7→ qai , such that

∑N
i=1 qai ≤ C holds, and the average QoE of

all active �ows ai, i ∈ {1, 2, . . . , N} is maximized. Note that the concept of
QoE fairness [242] is not fully integrated, but it is assumed that improving the
average QoE in the system will increase the number of users with an acceptable
QoE. Nevertheless, the problem statement includes that the resource allocation
takes di�erent application types into account and the respective QoE factors.
In this scenario, this means, the tra�c management is supposed to achieve low
stalling for video streams and short download times for web pages. In case of
video streaming, therefore, the bu�ering ratio will be investigated, i.e., the total
stalling time ts divided by the total video length tv . In case of web browsing,
the download time of a web �ow is considered.

3.3.2 QoE-aware Tra�ic Management Strategies

To target the objective, network operators can customize the bandwidth alloca-
tion according to di�erent resource allocation strategies. These strategies may
di�er in needed input, complexity, and costs, and might result in di�erent perfor-
mance depending on di�erent tra�c distributions and application mixes. In the
following, four algorithms for QoE-aware resource allocation on a shared bottle-
neck link are presented, which consider two applications, i.e., video streaming
and web browsing. Network operators can implement these strategies, for ex-
ample, by SDN [251, 252]. This emerging technology provides a uni�ed interface
to all networking elements, and thus makes the network more manageable and
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controllable. Thus, it can be utilized to adjust the resource allocation on a per
�ow base according to the desired tra�c management strategy [203, 253].

a) Fixed Bandwidth Allocation for All Videos Flows (FBV)

As video streaming is the more demanding application, the Fixed Bandwidth
Allocation for All Videos Flows (FBV) strategy will allocate a �xed bandwidth
for video tra�c. Thereby, a �xed capacity qSv will be reserved for video tra�c,
which is equally shared by all video �ows. The parameter qSv can be adjusted
depending on the actual share of video tra�c. To avoid starvation of the web
browsing �ows, qSv has to be smaller than C . Technically, this algorithm relies
on a detection of the application type only (e.g., classi�cation based on network
tra�c characteristics [168]).

Algorithm The active �ows are separated by type into the set of video stream-
ing �ows Sv and the set of web browsing �ows Sw . All �ows in Sv equally share
the �xed allocated bandwidth qSv , such that each video �ow receives qv =

qSv
|Sv| .

The web �ows share qSw = C−qSv equally, such that each web browsing �ow
gets a bandwidth of qw =

qSw
|Sw| . If one set is empty, the other set can utilize the

whole capacity C . In this case, qv = C
|Sv| , if Sw is empty, and qw = C

|Sw| , if Sv
is empty.

The resource allocation is illustrated in Figure 3.9a. The two video �ows v1

and v2 share qSv equally, and the web �ow can utilize the remaining bandwidth
C− qSv . Figure 3.9b shows the situation when Sw is empty and the video �ows
can share the whole capacity C equally.

b) Fixed Bandwidth Allocation for Each Video Flow (FBF)

The Fixed Bandwidth Allocation for Each Video Flow (FBF) strategy reserves a
�xed bandwidth for each individual video �ow, and thus, can take �ow char-
acteristics into account. For example, a Constant Bit Rate (CBR) video can be
allocated its bit rate (q′vi = bvi ), or a Variable Bit Rate (VBR) video can be allo-
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Figure 3.9: Illustration of FBV behavior.

cated its average video bit rate plus its standard deviation (q′vi = bvi + σbi ) to
account for bit rate variations. Note that any �ow characteristic, which is avail-
able to the tra�c management decision entity can be used. To prevent starva-
tion, a minimum bandwidth for web browsing qSw is required, which can be
adjusted according to the tra�c mix. If the video �ows request more bandwidth
than available, the allocated bandwidth has to be scaled.

Algorithm The active �ows are separated by type into the set of video stream-
ing �ows Sv and the set of web browsing �ows Sw . Each active video streaming
�ow requests a bandwidth q′vi according to its characteristics. If all requests
can be ful�lled, i.e., qr = C − qSw −

∑
aj∈Sv q

′
vj ≥ 0, each video �ow is

allocated its requested bandwidth qvi = q′vi and the remaining capacity qr
is added to qSw . Thus, each web browsing �ows receives qw =

qSw+qr
|Sw| . If

more bandwidth is requested than available, i.e., qr < 0, the requests of the
video �ows have to be scaled. Thus, each video �ow receives a bandwidth of
qvi = (C − qSw ) ·

q′vi∑
aj∈Sv

q′vj
, and each web browsing �ow is allocated

qw =
qSw
|Sw| .
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Figure 3.10a shows the situation in which the requested video rates q′v1 +

q′v2 ≤ C − qSw . The video �ows are both allocated their requested bandwidth
qv1 = q′v1 , qv2 = q′v1 , and the web �ow receives the remaining capacity qw1 =

qSw+qr . In Figure 3.10b, the requests exceed the available bandwidth, i.e., q′v1 +

q′v2 > C−qSw . Thus, the requests are scaled according to their requested rates.
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(a) FBF: Requested video rate does not exceed avail-
able bandwidth for video �ows.
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(b) FBF: Requested video rate exceeds available
bandwidth for video �ows.

Figure 3.10: Illustration of FBF behavior.

c) Weighted Bandwidth Allocation for All Videos Flows (WBV)

The Weighted Bandwidth Allocation for All Videos Flows (WBV) strategy uti-
lizes a �xed service ratio between the two application based on the idea that
video streaming requires a multiple of the bandwidth, which is needed for web
browsing. Thus, it uses a weight parameter wV , and allocates each video �ow a
wV times larger bandwidth than a web browsing �ow. Within each application
class, the allocated bandwidths for each �ow are equal. The advantage is that the
allocation scales with the number of active �ows. Moreover, no �xed separation
between the resources of each application is needed.

Algorithm The active �ows are separated by type into the set of video stream-
ing �ows Sv and the set of web browsing �ows Sw . Each video �ow is assigned

87



3 QoE-aware Tra�c Management for HTTP Adaptive Video Streaming

qv = C · wV
wV ·|Sv|+|Sw|

, which is wV times the bandwidth allocated to web
browsing �ows qw = C · 1

wV ·|Sv|+|Sw|
.

The behavior of the WBV algorithm with weightwV = 2 is illustrated in Fig-
ure 3.11. In Figure 3.11a, one video �ow v1 and one web �oww1 are on the link,
and the ratio between qv1 = 2

3
C and qw1 = 1

3
C is wV . In Figure 3.11b, an ad-

ditional video streaming �ow is added to the link. Now each video �ow receives
2
5
C and the web �ow gets 1

5
C , such that the ratio between the bandwidths of a

video and a web �ow remains wV .
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(a) WBV: Link share in case of two �ows (one web
�ow, one video �ow).
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(b) WBV: Link share in case of three �ows (one web
�ow, two video �ows).

Figure 3.11: Illustration of WBV behavior (wV = 2).

d) Dynamic Bandwidth Allocation for Each Video Flow (DBF)

The Dynamic Bandwidth Allocation for Each Video Flow (DBF) strategy is based
on current application–layer information from video streaming �ows, and will
allocate bandwidth based on the bu�er level. Generally, all �ows will share the
capacity equally. However, if the bu�er level of a video �ow is below a thresh-
old tl, the video �ow will be prioritized. Prioritized �ows can utilize a reserved
bandwidth fraction qp to �ll the bu�er until the bu�er level exceeds a thresh-
old th. Thereby, the tra�c management can leverage the short term �exibility
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introduced by the video bu�er and shift bandwidth to struggling �ows in or-
der to avoid imminent stalling, which is the worst degradation of QoE. Note
that other application-layer information could be used as well to reach di�erent
tra�c management goals. Technically, this strategy requires that application-
layer information is monitored periodically, such that the tra�c management
decision entity can react on a short timescale.

Algorithm In the beginning, the active �ows are added to a set Su, and the set
of prioritized �ows Sp is empty. If the playout bu�er of a video stream decreases
below the lower threshold tl, the �ow is moved from Su to Sp. If the bu�er of
a video �ow in Sp increases above th, it is put back to Su. All �ows in Sp share
qp equally, i.e., qvp =

qp
|Sp| . The web browsing �ows and non-prioritized video

streaming �ows share the remaining bandwidth equally, i.e., qw/vu =
C−qp
|Su| , or

qw/vu = C
|Su| , if Sp is empty.

Figure 3.12a shows one web browsing �ow and two video streaming �ows,
which both have a bu�er level higher than tl. Thus, all �ows share the capacity
C equally. In Figure 3.12b, the bu�er of v2 has fallen below the threshold tl.
Thus, v2 is prioritized and receives qv2 = qp, while the other �ows w1 and v1

share the remaining bandwidth C − qp equally.

3.3.3 Evaluation Methodologies and Scenario

This section outlines the analytical approach that is used for analyzing the
download times of video streaming and web browsing �ows without tra�c man-
agement, as well as for the FBV and WBV strategies. As the applicability of the
analytical models is limited, a simulation is needed, which resumes the perfor-
mance evaluation for the download times of the more complex strategies FBF
and DBF, and also provides stalling results. The simulation is described in detail,
and the evaluation scenario is presented in the end of this section.
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Figure 3.12: Illustration of DBF behavior.

Analytical Approach

The shared bottleneck link is modeled as a birth-death process with a single
server. Flows arrive individually and independently at the system, are served
with a certain downlink bandwidth, and leave the system when the download
is completed. For mathematical tractability, the arrivals are exponentially dis-
tributed with rate λ and the job size (i.e., video or website size) is exponen-
tially distributed with mean s, which gives the service rate µ = C

s
. Thus, a sys-

tem, which shares the capacity equally among all active �ows, i.e., the normal
TCP behavior, is described by an M/M/1 Queue with Processor Sharing Policy
(M/M/1-PS).

Considering the two application types video streaming and web browsing,
di�erent arrival rates λv, λw and mean job sizes sv, sw have to be distinguished.
The needed two class M/M/1-PS model can be derived from the M/M/1 Queue
with Discriminatory Processor Sharing Policy (M/M/1-DPS) model described
in [254]. According to [255], the conditional average response times V (τ) can be
obtained for each class depending on the job size τ . Thus, the average download
time can be computed for any given website size or video size. If additionally the

90



3.3 QoE-aware Resource Allocation of Video Flows on Bottleneck Links

video length (depending on video size τ and video bit rate) is known, the average
stalling time should be de�nable. However, not single �ows, but the situation in
the whole system is evaluated. Thus, the unconditional average response times
V are considered:

Vv =
1

µv(1− ρ)
,

Vw =
1

µw(1− ρ)
,

(3.1)

where ρ = ρv + ρw = λv
µv

+ λw
µw

. Note that average stalling times cannot be
computed from Vv , as video bit rate distributions have to be considered. Thus,
the simulation approach described below will complement the analytical results
and provide stalling times.

In the general M/M/1-DPS model, each class is assigned a weight to control
the sharing of the processor capacity, which can be directly applied to model the
WBV strategy. Thus, the generalized results from [255] provide results for the
average download times of WBV when videos are assigned a wV times larger
bandwidth than web pages:

Vv =
1

µv(1− ρ)
(1 +

µvρw(1− wV )

wV µv(1− ρv) + µw(1− ρw)
),

Vw =
1

µw(1− ρ)
(1 +

µwρv(wV − 1)

wV µv(1− ρv) + µw(1− ρw)
).

(3.2)

The M/M/1 Queue with Generalized Processor Sharing Policy (M/M/1-GPS)
is a further generalization, in which each request or class of requests has an
arbitrary service rate. Thus, to model FBV, an M/M/1-GPS with one class for
video and one class for web pages has to be considered. The stationary joint
distributions can be obtained from the work of [256], but no closed form of the
conditional response time is given. Still, by solving the steady state equations of
the FBV model, the mean number of jobs in the system can be computed from
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the state probabilities. Little’s Theorem is applied to obtain the mean delay in the
system, which is equal to the mean service time in a processor sharing system.

In a similar way, FBF can be modeled by an M/M/1-GPS with an own class
for each video streaming �ow and one class for all web browsing �ows. How-
ever, the video �ows would have to be limited to a tractable number of classes,
and the resulting model would be overly enlarged and complicated, such that
no analytical performance evaluation was conducted. Also for DBF, which is a
dynamic strategy prioritizing video �ows depending on current bu�er levels, no
analytical model can be presented. Thus, the analysis of FBF and DBF strategies
is solely based on the simulation, which is described in the following.

Simulation

The system is simulated with a Java Discrete Event Simulation (DES) to verify
the analytical results for the average download times, to evaluate the strate-
gies for which no analytical model is present, and to obtain detailed results on
stalling. The simulation is based on the analytical model, and thus, the arrivals
of both video streaming �ows and web browsing �ows are exponentially dis-
tributed with rates λv and λw , respectively. Also the size of the videos sv and
web pages sw are exponentially distributed. The �ows share a single link with
a �xed capacity C according to TCP-like best e�ort sharing (no tra�c manage-
ment), or according to one of the four implemented tra�c management strate-
gies (FBV, FBF, WBV, DBF). The download times of each �ow can be obtained.
For web browsing �ows, the download time relates to the page load time, which
is a major QoE factor.

The simulation of video streaming considers VBR videos with an exponen-
tially distributed average bit rate bv . The video is split in segments of 2 s play-
time. The bit rate of each segment varies, but a constant bit rate is assumed
within a segment. The segment bit rates change according to a simple auto-
regressive process, which is able to accurately model videos without scene
changes [257]. In practice, if the video content consists of multiple scenes, higher
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variations may occur, such that the presented results might be negatively af-
fected.

The playout bu�er of each video streaming session is accurately simulated
and a simple bu�ering mechanism is implemented. After the �rst segment is
completely downloaded, the playback starts. Thereby, the initial delay is mini-
mal and does not signi�cantly deteriorate the QoE [118]. When the video bu�er
runs empty during the playback, the stalling begins, and the playback resumes
when the bu�er is �lled with 5 s of playtime. Thus, the stalling time of each
video session and the bu�ering ratio, i.e., the ratio of stalling time and playback
time, can be obtained, which indicates the QoE of the video streaming sessions.

Evaluation Scenario

The evaluation scenario is based on the �ndings of [125] for mobile YouTube
video streaming. The default quality on smartphones is 360p with an average
bit rate of bv = 0.5 Mbps. 50 randomly chosen videos were analyzed to obtain
the average video length, which resulted in tv = 110 s. Thus, the average video
size sv = bv · tv = 6.875 MB. The download of 50 randomly chosen websites
resulted in a mean size sw = 1.3 MB. To align the simulation with the analytical
model, the size of each video or web �ow is exponentially distributed with mean
sv or sw , respectively. The videos are split into segments of 2 s playtime. For each
segment i a random size srv(i) is computed, which is exponentially distributed
with mean bv · 2 s = 0.125 MB. The actual segment size sv(i) is determined
according to the simple auto-regressive process sv(i) = 0.7 · sv(i− 1) + 0.3 ·
srv(i). Note that the last segment has to be cropped to reach the desired size of the
whole video. The capacity C of the link was set to 5 Mbps, 10 Mbps, 20 Mbps,
and 100 Mbps, which de�nes µv = C

sv
and µw = C

sw
in the corresponding

analytical models. The arrivals of video �ows λv and web �ows λw were varied
to reach di�erent loads ρ = ρv + ρw = λv

µv
+ λw

µw
and tra�c mixes λv

λw
. Per

load, tra�c mix, and resource management strategy, ten simulation runs were
conducted with a simulation time of 100000 s = 27.78 h each.
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3.3.4 Performance Evaluation Results

In this section, the performance evaluation of the tra�c management strategies
is presented. First, the situation in current best e�ort networks is described to
investigate for which level of network usage resource allocation might improve
the QoE of video streaming and web browsing. Based on these �ndings, the
four tra�c management strategies are evaluated analytically and simulatively
for di�erent application tra�c mixes. Finally, the results for all algorithms are
summarized, and trade-o�s between the QoE of video streaming and the QoE of
web browsing are discussed.

Situation in Current Networks Without Resource Management

To understand why QoE-aware tra�c management is needed, the performance
of �ows in best e�ort networks without resource management is investigated. In
best e�ort networks with TCP, all �ows share the link capacity equally, such that
every active �ow receives the same bandwidth. Figure 3.13 shows the average
download time of 1 MB depending on the link capacity and the load computed
both with the analytical model (solid, M/M/1-PS model in Equation 3.1) and the
simulation (dashed, average over ten runs including 95% con�dence intervals).
The normalized average download time only depends on the average download
bandwidth, which is investigated below. Note that the analytical model is within
the 95% con�dence intervals of the simulation, which veri�es the simulation im-
plementation. For a given network load, it can be seen that a larger link capacity
results in lower average download times. In contrast, the download time grows
hyperbolically when the network load increases towards 1. This results in un-
acceptable download times, and consequently, for example, a bad web browsing
QoE, which most network operators typically avoid by over-provisioning the
network resources.

As di�erent applications have di�erent network requirements, the change of
network QoS parameters, such as download bandwidth, impacts the QoE of
those applications di�erently. Figure 3.14a investigates the average download
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Figure 3.13: Normalized download time of 1MB in best e�ort networks.

bandwidth for di�erent capacities and loads. The average download bandwidth
decreases linearly when the network load increases. To guarantee a smooth
streaming without stalling in case of CBR videos, the average download band-
width has to be at least as high as the average bit rate. Considering video stream-
ing with an average bit rate bv = 0.5 Mbps, the �gure shows that a 5 Mbps link
can support such download bandwidths up to a load of 0.9, while higher ca-
pacities can support even higher loads. However, currently deployed streaming
technologies use VBR videos and employ bu�ering strategies when download-
ing video content, which results in a di�erent performance. For example, the
usage of VBR videos leads to �uctuating network requirements, but the use of
the playout bu�er can overcome certain load peaks. Figure 3.14b depicts the
average bu�ering ratio of the simulated VBR videos depending on the link ca-
pacity and network load. Due to the bit rate �uctuations, stalling of the videos
can already occur with loads of 0.7 and above. This behavior could not be de-
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rived from pure QoS parameters and shows the necessity of QoE-aware tra�c
management especially in high load scenarios.

In the following, if not stated otherwise, a link capacity of 10 Mbps and a net-
work load, which is equivalent to 0.9 in the best e�ort network, will be consid-
ered. As the results of the investigated QoE-aware tra�c management strategies
also depend on the popularity of the applications in the network, di�erent tra�c
mixes ( λv

λw
) will be investigated. For example, the tra�c mix λv

λw
= 10 means

that on average ten times more video streaming �ows arrive on the shared link
than web browsing �ows.

Results of Fixed Bandwidth Allocation for All Videos Flows

The FBV strategy reserves a �xed share of the link capacity to video streaming
�ows. However, if too much bandwidth is reserved for video �ows, the page
load time of web browsing might increase. On the other hand, if the allocated
bandwidth is too small, stalling might increase. Therefore, a range of allocations
from qSv = 0.3C up to qSv = 0.9C is investigated. Figure 3.15a shows the av-
erage download times of web pages depending on the reserved bandwidth qSv
and the tra�c mix λv

λw
, which is depicted on the x-axis. Again both analytical

results (solid, M/M/1-GPS model) and simulation results (dashed, averages over
ten runs including 95% con�dence intervals) are shown. The average download
time of a web page in a best e�ort network is 9 s (highlighted in red, cf. Fig-
ure 3.13), which does not depend on the tra�c mix because all application �ows
are treated equally in a best e�ort network. On the left side of the vertical, dashed
line, the tra�c mix is less than 1, i.e., more web browsing �ows arrive on the
shared link. If the video reservation qSv increases (lighter colors), the down-
load times increase because less resources are left for the web �ows. When λv

λw

increases towards 100 = 1 and beyond, less web �ows are on the link. The band-
width reservations become better aligned to the tra�c mix, which mitigates this
e�ect. Towards the rightmost part of the plot, very high tra�c mixes indicate
that only few web �ows are on the link. These �ows can use the remaining, not
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Figure 3.14: Video application performance in best e�ort networks.
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reserved bandwidthC−qSv almost exclusively, which results in short download
times.

The corresponding results for the video streaming �ows are depicted in Fig-
ure 3.15b, which shows the average bu�ering ratio depending on reservation
qSv and tra�c mix λv

λw
. For high tra�c mixes, the bu�ering ratio converges

towards the best e�ort performance (red, cf. Figure 3.14b) for any reservation
because web �ows are rarely in the system and for short times only. Thus, the
video �ows compete among themselves most of the time, which results in a best
e�ort behavior. In the left part of the �gure, video �ows are less frequently in the
system but they can clearly bene�t from the bandwidth reservation. Thereby, a
higher qSv leads to smaller bu�ering ratios. Only if qSv = 0.3C , the allocated
bandwidth is too small, which leads to higher bu�ering ratios than in the best
e�ort case. Consequently, the reservation qSv has to be carefully selected to
avoid negative e�ects for the QoE. The trade-o�s for the optimization of both
applications will be discussed below.

Results of Fixed Bandwidth Allocation for Each Video Flow

In contrast to FBV, the FBF strategy allocates bandwidth to individual video
�ows based on �ow characteristics. Two allocations are investigated, namely,
the allocation of the average bit rate, and the allocation of average bit rate plus
standard deviation to account for bit rate �uctuations. Figure 3.16a depicts the
average download times of web browsing �ows for both allocations. The re-
sults represent the averages of ten simulation runs and the corresponding 95%
con�dence intervals. To compare the performance of FBF, selected FBV results
(qSv = [0.3 0.6 0.9]C) are added in gray. It can be seen that the download times
increase when the ratio of video �ows increases. This is due to the fact that an
increasing number of video �ows increases the allocated bandwidth, which be-
comes unavailable for web browsing.

The bu�ering ratio of the video �ows in the same scenario is depicted in Fig-
ure 3.16b. It can be seen that the allocation of the average bit rate performs badly
because it cannot avoid the stalling of the simulated VBR videos. In contrast, the
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allocation of average bit rate plus standard deviation is su�cient to account for
the bit rate �uctuation of the VBR content, and almost completely avoids stalling
for tra�c mixes below 1. For increasing tra�c mixes, the requested allocations
exceed the available capacity, such that the allocations have to be scaled down.
This results in increasing bu�ering ratios and a worse video streaming QoE.
Still, FBF performs better than the best e�ort case or the FBV strategy, which
also shares the capacity equally if too many video �ows are on the link, because
the proportional sharing of FBF is better aligned to the demands of the video
streams.

Results of Weighted Bandwidth Allocation for All Videos Flows

With the WBV strategy, each video streaming �ow is allocated wV times the
bandwidth of a web browsing �ow. Figure 3.17a shows the average download
times of web pages obtained with from the analytical model (solid, M/M/1-DPS
model in Equation 3.2) and the simulation (dashed, averages over ten runs and
95% con�dence intervals). Di�erent weights wV = [0.02 0.5 2 5 50] are con-
sidered, including weights that favor web browsing, i.e., wV < 1. The results of
the analytical model and the simulation are well aligned, especially for smaller
wV . For larger wV the analytical model overestimates the page download time.
The larger wV the larger the download time because web browsing �ows get a
smaller share of the capacity. For large weightswV � 1 and large tra�c mixes,
the bandwidth allocated to web �ows becomes arbitrarily small, such that the
average download load time quickly increases.

Figure 3.17b shows the average bu�ering ratio in the same scenario. The lines
represent smooth exponential �ttings of the simulation results, which are de-
picted by the markers. If the tra�c mix is below 1, the video streaming �ows
bene�t from WBV with wV > 1. If the ratio of video streaming �ows increases,
this e�ect diminishes and the bu�ering ratio converges towards the best e�ort
case (red), i.e., equal sharing. The results show that WBV with an appropriate
weight wV is able to align the bandwidth allocation to the �ow sizes for a given
tra�c mix. The bandwidth allocation scales with the number of �ows and signif-
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icantly decreases the bu�ering ratio, while only slightly increasing the average
download time of web pages. Further trade-o�s between the two applications
are discussed below.

Results of Dynamic Bandwidth Allocation for Each Video Flow

The results above showed the performance of tra�c management strategies,
in which the allocation of each �ow was prede�ned at the �ow start and only
changed depending on the number of currently active �ows. DBF, however, is a
dynamic strategy, which utilizes monitored application-layer QoE information
to update the bandwidth allocation. The bu�er of each video �ow is monitored,
and if the bu�er drops below a low threshold tl, the �ow is prioritized to avoid
imminent stalling and keep a high QoE. When the bu�er level rises above a
threshold th, the �ow is not prioritized anymore but is treated normally again.
For the performance evaluation presented below, the prioritization bandwidth,
which is allocated exclusively to prioritized video �ows if there are any, is qp =

0.9C , and the bu�er thresholds are tl = 10 s and th = 20 s. In Figure 3.18a the
average download times of web pages are compared for the DBF (dashed) and
the WBV strategy, which showed a decent performance for both applications.
The DBF strategy results in the highest download times for a balanced tra�c mix
λv
λw

= 1. The more imbalanced the tra�c mix to either more videos streaming
�ows or more web browsing �ows, the shorter the average download times,
which come close to the best e�ort situation.

Figure 3.18b presents the results for video �ows, which face a signi�cant
performance improvement by DBF. For tra�c mixes λv

λw
< 1, stalling can be

avoided almost completely in the investigated scenario. When the ratio of video
�ows increases, the average bu�ering ratio also increases and converges to the
best e�ort situation. Nevertheless, DBF is able to support video �ows even better
than WBV with a high wV > 5, but does not increase the page load times too
much. Thus, it shows a balanced and fair behavior, which is a desired charac-
teristic of a QoE-aware tra�c management strategy. Note that the impact of the
parameters qp, tl, and th was not investigated as the chosen parameters already
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proved a decent performance for avoiding stalling of video streaming sessions,
and demonstrated the advantages of using application-layer QoE parameters for
tra�c management decisions.

Comparison of the Di�erent Strategies

Finally, the di�erent tra�c management strategies are compared, and trade-o�s
between the QoE of the two applications are discussed. As the two QoE perfor-
mance indicators, i.e., average download times of web pages and average bu�er-
ing ratio of video streaming sessions, are con�icting, a Pareto analysis is pre-
sented in Figure 3.19 with the two objectives being the axes of the plot. The best
e�ort performance (average web page download time of 9.04 s, average bu�ering
ratio 0.058) serves as reference and is marked by a red cross. The Pareto-optimal
performances of the tra�c management strategies for a given tra�c mix are
shown in the plot. Five tra�c mixes λv

λw
= [0.1 0.5 1 2 5] are considered, and

the respective Pareto-optimal performances for each tra�c mix are connected
by colored lines. Note that the colored lines do not indicate the location of other
Pareto-optimal performances (i.e., the Pareto frontier), but were added only for
visualization purposes. Only the marked points are Pareto-optimal, and their
shape represents the strategy, which achieved the respective performance.

It can be seen that Pareto-optimal performances, i.e., performances, for which
the QoE of one application cannot be improved without deteriorating the QoE of
the other application, are either left or below of the best e�ort performance. This
means that, for any tra�c mix, the usage of tra�c management can improve at
least the QoE of one application. The plot indicates that WBV algorithms are
especially well suited to achieve short web page download times, while FBF and
DBF strategies can be used to minimize the bu�ering ratio. The desired region
for QoE-aware tra�c management is the gray box in the bottom left part of
the plot, which indicates a QoE improvement for both applications compared
to the situation without tra�c management (best e�ort). For almost all tra�c
mixes except λv

λw
= 0.1, i.e., ten times more web �ows than video �ows, such

performances are possible. They are achieved by WBV and FBV strategies if they
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Figure 3.18: DBF: Dynamic bandwidth allocation for each video �ow based on
bu�er �ll at link load ρ = 0.9.
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use the right parameter setting for the given tra�c mix. Note that the speci�c
parameters of the Pareto-optimal performances are not shown here but can be
obtained from the individual result plots of each strategy above.
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Figure 3.19: Overview of Pareto-optimal performances for di�erent tra�c mixes.

The performance evaluation of di�erent QoE-aware tra�c management
strategies shows that it is possible to improve the QoE of applications, which
compete on a shared bottleneck link, by changing the bandwidth allocation of
the active �ows. However, depending on the tra�c mix and the preferences of
the network operator, the right strategy and the right parameter settings have
to be chosen. For managing the QoE of video streaming, the direct usage of QoE
feedback in terms of application-layer QoE factors is feasible and can signi�-
cantly reduce stalling, which is the most important QoE degradation. Although
also the pure network-based strategies can achieve a decent performance, the
advantage of using QoE feedback is that a dynamic reaction to imminent QoE
degradations is possible.
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3.4 Lessons Learned

This chapter investigated QoE-aware tra�c management for HAS in access net-
works. The requirements are QoE monitoring, tra�c management decisions,
and tra�c management actions. Two approaches were presented to monitor
QoE within the network and within the application. Moreover, a direct estima-
tion of QoE from monitored network parameters was studied. Eventually, band-
width allocation strategies for video �ows on a shared bottleneck link, such as a
residential broadband connection in a typical home environment or a backhaul
link of a mobile base station, were evaluated and the bene�ts of di�erent levels
of monitoring information were discussed.

To monitor the QoE of HAS, two approaches were presented. The �rst ap-
proach complemented the work in [16] and was an example of network-based
monitoring. By DPI, objective video quality metrics were extracted from the net-
work tra�c. These included the requested video quality level of the HAS stream
and the video bit rate, which are objective metrics of each segment, and the SSIM
metric on a per-frame base. As temporal pooling is well aligned with the QoE
�ndings of Chapter 2, it was applied to combine these objective metrics into a
single measure for the whole streaming session. The decent performance of the
QoE estimators con�rms that temporal pooling is a suitable approach to com-
bine periodical objective quality metrics when monitoring HAS. Thus, its appli-
cation is also promising for the increasingly used end-to-end encrypted HAS,
in which objective metrics cannot be extracted by DPI, but have to be estimated
from the network tra�c.

The second approach monitored the QoE unobtrusively within the video
streaming application, and could thus provide accurate information on the QoE
factors just as they are perceived by the end user. Therefore, JavaScript-based
monitoring functions were injected into the streaming website, which moni-
tored the state of the video player, the bu�er, and the video quality level. The
information about initial delay, stalling, and adaptation, which are the most im-
portant QoE factors of HAS, could be computed and might be signaled to the
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network operator as meaningful QoE feedback for QoE-aware tra�c manage-
ment. The concept was implemented in an Android app, which could be used
for researching QoE models for HAS. Moreover, it was used in a �eld study on
QoE estimation from monitored network parameters. The results showed that
application-layer information gave better insights into the QoE of HAS than
simple network parameters.

Finally, four QoE-aware tra�c management strategies based on bandwidth al-
location were presented and their performance was evaluated in a shared bottle-
neck link scenario. Two applications, video streaming and web browsing, were
considered and di�erent ratios between the application �ows were evaluated.
The strategies had di�erent complexity, dynamics, and used di�erent levels of
information ranging from pure �ow type information to real-time application-
layer information about the video bu�er. Analytical models based on processor
sharing queues were used to obtain average download times for some of the
strategies. Additionally, all algorithms were assessed with a Java DES. Thereby,
also the stalling of the video streaming sessions could be evaluated. The results
showed that a joint QoE improvement was possible for both applications com-
pared to the best e�ort scenario without tra�c management. However, opera-
tors have to select the right strategy and the right parameter settings depend-
ing on the tra�c mix in their networks and their objectives. Moreover, dynamic
tra�c management based on application-layer QoE factors proved to be feasible
to react to imminent QoE degradations. Thereby, stalling could be signi�cantly
reduced, which is the most important QoE degradation of HAS.
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4 Socially-aware Tra�ic

Management for HTTP Adaptive

Video Streaming based on Wi-Fi

O�loading

Users of Internet applications provide much information not only about them-
selves but also about their interests, their activities, or their relations. Such social
signals might be created unwittingly or voluntarily, but they can be collected, for
example, from sensors (e.g., location, co-location with others, mobility), applica-
tions (e.g., usage behavior, usage preferences, co-usage with friends), or Online
Social Networks (OSNs) (e.g., friendships, interests, opinions). Social awareness
harvests these ubiquitous signals to extract and exploit useful information in
order to improve a service. Social awareness is also bene�cial for network op-
erators and the tra�c management of Internet services, such as HAS. Thereby,
Socially-aware Tra�c Management (SATM) mechanisms enhance the perfor-
mance of services by utilizing social information in order to perform e�cient
network management, service placement, and tra�c optimization.

The research �eld of SATM introduces promising approaches for enhanced
service delivery on the Internet but also new interdisciplinary challenges. This
is especially due to the fact that multiple stakeholders are involved. Therefore,
incentive-compatible network management mechanisms are needed, which sat-
isfy the goals of all stakeholders, e.g., in terms of high QoE or e�cient resource
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utilization. The realized SATM solutions have to be highly collaborative and
utilize tra�c management information and actions across di�erent layers.

In this chapter, SATM is applied to improve the QoE of HAS. From the vast
possibilities for SATM, a single tra�c management action is considered, namely,
Wi-Fi o�oading. Thereby, mobile connections are o�oaded to �xed networks
using Wi-Fi, which comprises technology for Wireless Local Area Networks
(WLANs) based on the Institute of Electrical and Electronics Engineers (IEEE)
802.11 standards12. In the last years, Wi-Fi o�oading received a lot of attention
from industry to handle the mobile data growth and reduce the load on stressed
mobile networks [258]. Additionally, there is not only a widely distributed pub-
lic Wi-Fi infrastructure, but Wi-Fi is also prevalent in residential environments
of end users [259]. Thus, Wi-Fi o�oading has a huge potential to be utilized
for network-based SATM. A simple hotspot location model is presented, which
can be used for the performance evaluation of public Wi-Fi o�oading systems.
Moreover, a home router platform is proposed to enable private Wi-Fi o�oading
and the socially-aware distribution of video content. A simulative performance
evaluation study quanti�es the impact of public and private Wi-Fi o�oading on
the QoE and energy consumption of HAS sessions, and con�rms the applicabil-
ity of the simple hotspot location model.

Section 4.1 summarizes the background on SATM based on [1], and outlines
background and related works on Wi-Fi o�oading. Section 4.2 presents a sim-
ple model to describe the locations of public Wi-Fi infrastructure in cities based
on [10]. Moreover, it describes a collaborative SATM platform for HAS on resi-
dential Wi-Fi routers based on [42, 56], which supports private Wi-Fi o�oading,
as well as the distribution and caching of niche content. A performance evalu-
ation of the gain of Wi-Fi o�oading for HAS is conducted in Section 4.3 based
on [29, 44, 47], and the applicability of the simple hotspot location model is in-
vestigated. Finally, Section 4.4 integrates the �ndings of this chapter.

1http://standards.ieee.org/about/get/802/802.11.html [Online] – Ac-
cessed: 24.08.2017

2http://grouper.ieee.org/groups/802/11/ [Online] – Accessed: 24.08.2017
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4.1 Background and Related Work

This section presents the background on SATM in general, as well as on its par-
ticular application to Wi-Fi o�oading of HAS. The �rst part of this section fol-
lows [1] and de�nes SATM and the used terminology. Moreover, the involved
stakeholders are introduced, and their interests and potential bene�ts are de-
scribed. Background and related works on Wi-Fi o�oading are presented in
Section 4.1.2.

4.1.1 Socially-aware Tra�ic Management

The concept of SATM requires the utilization of social information and the col-
laboration of stakeholders. In the following, a de�nition of SATM is presented
and the needed terms are introduced. These de�nitions were elaborated within
the Framework Programme 7 (FP7) project Socially-aware Management of New
Overlay Application Tra�c combined with Energy E�ciency in the Internet (EU
FP7 SmartenIT) funded by the European Union (EU).

Terminology and Definition

Any signal, which is emitted by a person, is a social signal. However, in the
context of Internet services, a social signal is considered to be a signal, which
is emitted on the Internet by a user of an Internet application. This also includes
any interaction of an end user with an Internet service. Social signals do not
contain any information, but they can be evaluated in particular contexts to
create information out of them. In the context of OSNs, these signals are, for
example, logins, postings about external events, indications of interest or liking,
or friendship requests and con�rmations. Other examples are sensor data of
mobile devices, which are transmitted when using Internet services, e.g., GPS
locations.
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Social information comprises information about one or more persons, or
their relationships. When social signals are brought into an appropriate con-
text, social information can be deduced, which brings new insights about users
or relationships. For example, evaluating the social signals of a user’s friendship
request in an OSN and another user’s instant con�rmation of that request, gen-
erates the social information that both users are friends. In a di�erent context,
it generates the social information that both users used the OSN service during
the time of the signal emissions. As another example, analyzing the location sig-
nals of a user might create the social information that the user is at the same site
every second Saturday. Adding the external information that there is a football
stadium, will create the social information that the user is interested in football
and a supporter of a certain team. These examples show that the created social
information depends on the used social signals, external information, and the
context of evaluation.

The term social awareness describes the utilization of such social informa-
tion to improve an Internet service. It can include the collection and evaluation
of social signals but also the collaboration with a social information provider.
Social awareness exploits the created or provided social information to increase
the QoE of end users and/or to provide the service more e�ciently. Socially-
aware Tra�c Management (SATM) is an application of social awareness, in
which the tra�c management on the Internet is improved by social informa-
tion on di�erent layers. The goal of SATM is to e�ciently transport data across
the networks, thereby delivering services with a high QoE, avoid congestion,
and save energy, resources, and costs. It can be employed by the services them-
selves, e.g., by scheduling of transmissions or service quality adaptation, or by
the network operator, e.g., in terms of routing, bandwidth shaping, prioritiza-
tion, caching, or o�oading. Also collaborative tra�c management solutions are
possible. In the following, the stakeholders, their goals, and possible bene�ts of
incorporating SATM are described.
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Stakeholders, Goals, and Benefits

With SATM, �ve stakeholders have to be considered. Each of them has his own
goals but also individual bene�ts from participating in SATM. Note that each
actor can be an individual stakeholder, but actors can also have multiple roles.

The cloud service provider or application provider o�ers an Internet ser-
vice to end users, which is running on the infrastructure of a cloud operator
or on own infrastructure. He is interested in monetizing the service, which in-
cludes reducing the costs of consumed ISP and cloud infrastructure. Moreover,
he wants to satisfy the end users to maintain or increase the number of cus-
tomers. Therefore, the QoS and QoE requirements should be ful�lled [160]. By
utilizing social information, QoS/QoE parameters may be improved and new
services may be developed. If social information is utilized to increase the re-
source utilization, also infrastructure costs can be reduced.

The cloud provider or data center operator o�ers storage and computation
resources to the application provider. Moreover, he needs connectivity between
his sites and to the Internet, which he buys from an ISP. The cloud provider
wants to monetize his infrastructure by guaranteeing satisfactory QoS parame-
ters, and thus, ful�lling SLAs with the application provider. Moreover, he wants
to reduce his costs by e�ciently utilizing hardware in terms of resources and
energy consumption. Similarly, he will seek the best SLA with an ISP for net-
work access. To reach these goals, social information can be utilized, especially
for the prediction of service demand and resource utilization.

Internet Service Providers (ISPs) operate communication network infras-
tructures, which they want to monetize. Therefore, they aim to provide high
quality network services to reach a high satisfaction of cloud operators and end
users. By employing social information, an ISP can enrich his network tra�c
management and support new services for application providers, which simul-
taneously makes him more competitive towards cloud providers and end users.
These new services can also reduce the costs by more e�ciently using own re-
sources, and keeping tra�c on transit links low.
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End users are concerned with their QoE [160], their costs for services and
network access, and their energy consumption [260]. Note that costs incur not
only in terms of money but also by being exposed to advertisements. Still, end
users are mainly customers of ISPs and application providers, and thus, not di-
rectly involved in the interactions of other stakeholders. End users provide so-
cial signals, which are utilized for SATM, and bene�t in terms of personalized
services and increased QoE.

Finally, social information providers, such as OSNs, have to be consid-
ered for SATM. They gather social signals and evaluate them to create social
information, which they want to monetize. This information can be o�ered to
application providers, cloud providers, or ISPs to support the operation of SATM
mechanisms.

Figure 4.1 presents the stakeholders for SATM in a typical HAS scenario. The
HAS service is o�ered by the cloud service provider. He pays the cloud provider
to host the streaming service and store the video content. The clouds or data
centers (orange) are connected to the networks of ISPs. Upon request, the video
content is delivered to the end users and is handled by one or multiple ISPs in
di�erent Autonomous Systems (ASs) (blue). After the video consumption, the
end user can share the video content with his friends, e.g., in an OSN (red), such
that they will also request it. Social information can be collected and provided
by any of the stakeholders in the delivery chain, i.e., by cloud service providers,
cloud operators, and ISPs. Moreover, they can receive social information directly
from end users or can buy social information from dedicated social information
providers, which evaluate external sources of social information, such as OSNs.

Examples for Socially-aware Tra�ic Management of HTTP Adaptive
Video Streaming

To illustrate its potential, some possible applications of SATM in the context
of HAS are outlined. For example, social information about user location and
mobility can be exploited to prepare for proximate handovers on both network
and application layer [261]. Also the new trends of edge and fog computing, i.e.,
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ing or storage resources but also from a shared Internet access of a trusting
friend [279–281], e.g., by Wi-Fi o�oading.

To sum up, SATM is an opportunity to leverage ubiquitous social signals for
improved Internet services. Many actors can be involved in collaborative and
cross-layer SATM with various bene�ts for each of them [1]. Thus, even when
considering only HAS, there is a huge potential for applications of SATM, which
cannot be covered comprehensively. Therefore, in the remainder of this chapter,
the focus is on evaluating the applicability of network-based SATM for improv-
ing the QoE of HAS, considering only Wi-Fi o�oading as a tra�c management
action.

4.1.2 Wi-Fi O�loading

Wi-Fi o�oading provides a complementary Internet access over a �xed network.
It allows ISPs to handle the tra�c in well-dimensioned �xed networks, which
saves costs and reduces the load on stressed mobile networks. End users, on
the other hand, can bene�t from higher access bandwidths and avoid exceeding
their data plans, especially when consuming demanding applications like mo-
bile HAS. Wi-Fi infrastructure is growing, especially in urban environments, and
free public Wi-Fi hotspots (e.g., provided by cafes, shops, libraries) are listed in
hotspot databases (e.g., WiGLE3). Moreover, there are specialized Wi-Fi-sharing
communities (e.g., Fon4), commercial infrastructures of big telecommunication
operators (e.g., BT5), civic projects of municipalities (e.g., New York City6), as
well as a countless number of residential private Wi-Fi networks. Wi-Fi o�oad-
ing can leverage social information on location and mobility of users to select
appropriate hotspots, as well as trust information to share private Wi-Fi net-
works. Thus, there is a huge possibility for investigating SATM for Wi-Fi o�-
loading.

3https://wigle.net/ [Online] – Accessed: 24.08.2017
4https://fon.com [Online] – Accessed: 24.08.2017
5http://www.btwifi.co.uk/ [Online] – Accessed: 24.08.2017
6https://link.nyc/ [Online] – Accessed: 24.08.2017
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4.1 Background and Related Work

In [282], currently available features for o�oading mobile tra�c were pre-
sented, such as multipath TCP [283–285]. Reference [286] analyzed and modeled
o�oading in heterogeneous networks. Reference [287] outlined approaches for
enabling mobility and multihoming. Reference [288] studied incentives and al-
gorithms for sharing Wi-Fi infrastructure with nomadic users. Reference [289]
found that Wi-Fi o�oading can save between 75% and 90% of the energy for net-
work transmissions compared to Third Generation Mobile Telecommunications
(3G) connectivity only. References [290, 291] presented systems for sharing pri-
vate Wi-Fi credentials among trusted friends with an OSN app. Reference [292]
analyzed the o�oading e�ciency based on Wi-Fi density. Reference [293] com-
puted the minimum required number of Wi-Fi access points to provide the same
average throughput as a cellular network. Reference [294] proposed analytical
models for the Wi-Fi o�oading e�ciency.

References [295–297] investigated o�oading to public Wi-Fi infrastructure
in urban environments. Reference [298] scanned available governmental and
private Wi-Fi hotspots in Paris, France, and found a high potential for Wi-Fi o�-
loading. Reference [299] used user mobility, interaction, and tra�c demands to
�nd a deployment of hotspots in metropolitan areas, which enables a higher o�-
loading ratio. Similarly, [300, 301] studied hotspot deployment, but additionally
considered also battery levels. A tracking method was applied by [302] to mea-
sure the spatial distribution of Wi-Fi hotspots, and a high density of hotspots
was observed in residential areas. This relates to [303], which found that base
stations of di�erent operators are clustered according to population density, and
indicates that population density models [304–306] could be used to model the
distribution of Wi-Fi hotspots. Also di�erent stochastic geometry models were
used to model the density of cellular networks [307, 308]. However, these mod-
els lack to generate hotspot distributions for cities of irregular shape, e.g., cities
with a natural coastline. Thus, they are not su�cient for the performance eval-
uation of public Wi-Fi o�oading solutions, and better models are needed.

Tra�c management for mobile services, such as Wi-Fi o�oading, can ben-
e�t from social information, such as the location of users. The user location
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can be gathered from the mobile network operator, from services (e.g., [309]),
or directly from end users. They often share their location with applications,
or as explicit postings in OSNs or specialized services like Foursquare7. Ref-
erence [310] exploited mobility prediction and prefetching to enhance mobile
data o�oading. Reference [311] used number of users and load in the network
to decide on o�oading. Reference [312] proposed a system that selected the o�-
loading of video and download �ows between LTE and Wi-Fi networks based
on QoE and network information. Similarly, [313] evaluated a LTE/Wi-Fi sys-
tem and presented a rate redistribution algorithm to optimize the QoE of video
streams.

4.2 Public and Private Wi-Fi O�loading

Wi-Fi o�oading is a highly relevant tra�c management action due to the wide
distribution of Wi-Fi infrastructure, both in public places and in private homes.
The performance of Wi-Fi o�oading mechanisms is largely depending on the
coverage of hotspots and the strength of the received signal. To design and eval-
uate such mechanisms, thus, a model for the locations of Wi-Fi hotspots is re-
quired. Based on [10], Section 4.2.1 analyzes the distribution of public Wi-Fi
hotspots in large cities and develops a simple model, which can be used to gen-
erate realistic hotspot locations for arbitrary cities. Wi-Fi is also prevalent in
home environments to provide Internet access for mobile devices. Thus, there
is a huge potential to incorporate also this infrastructure in tra�c management.
However, private Wi-Fi networks should not be publicly shared, but only to
trusted friends. Therefore, Section 4.2.2 presents a framework for Home Router
Sharing based on Trust (HORST) following [42, 56]. The framework enables pri-
vate Wi-Fi o�oading, and additionally supports content delivery, caching, and
prefetching mechanisms for HAS.

7https://foursquare.com [Online] – Accessed: 24.08.2017
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4.2.1 Simple Hotspot Location Model for Public Wi-Fi
O�loading

The potential for Wi-Fi o�oading is in�uenced by the distribution of the Wi-Fi
hotspots and their transmission range, i.e., their coverage. If �ows are o�oaded,
the received throughput depends on the backhaul link, the signal strength, and
the number of simultaneous users in the Wi-Fi network. Thus, the locations of
users and Wi-Fi hotspots have to be considered for the performance evaluation
of tra�c management mechanisms utilizing Wi-Fi o�oading. A generic model
would allow to generate hotspot distributions for cities of di�erent size, popu-
lation density, shape, and number of hotspots. These hypothetical distributions
can be used to design novel mechanisms, which rely on o�oading to Wi-Fi in-
frastructure, and evaluate their performance and scalability.

To develop a model for the distribution of Wi-Fi hotspots, the hotspot loca-
tions of ten large cities were collected from a public database and their prop-
erties are analyzed. A simple, intuitive, and generic model is presented, which
shows a su�cient accuracy for all cities. Note that also more complex distribu-
tions or higher order models can be used to model the hotspot locations, which
might better reproduce the characteristics of particular cities. However, these
models are less generic and must be �tted for each city individually. Moreover,
in case individual �tting is necessary, the actual hotspot locations can be taken
from public databases, which give a higher accuracy and render the �tted model
useless.

Methodology

Ten large cities, two in Europe and eight in the United States, with a large num-
ber of Wi-Fi hotspots and di�erent layouts (e.g., grid-based or ring-based lay-
out) were selected to develop a general model for the geographic distribution
of hotspots. Table 4.1 lists the investigated cities and some of their character-
istics, namely, the number of hotspots, the area, and the population. The ad-
dresses of public hotspots in these cities were manually searched on the web-
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based database OpenWiFiSpots8 and parsed from the search results. Note that
some public hotspots might not be listed in the database, and thus, the col-
lected hotspot addresses are only a sample of a possibly larger number of Wi-Fi
hotspots. By using the MapQuest9 geocoding service, the obtained addresses
were transformed into an ordered pair of geographic coordinates (ϕ, λ), i.e.,
latitude ϕ and longitude λ, which uniquely identify each location on the sur-
face of the earth. To illustrate this process, Figure 4.2 depicts a map extract of
London (map source: OpenStreetMap10), and visualizes the hotspots in this area.

Table 4.1: General information about investigated cities.

City Number of Total investigated Population
hotspots area [km2] [in thousands]

Austin 220 220 843
Berlin 110 250 3502
Boston 193 173 637
Brooklyn (NYC) 454 419 2566
Houston 307 306 2161
Los Angeles 199 165 3858
London 668 367 8308
Portland 419 465 603
San Francisco 214 241 826
Seattle 296 202 635

To �nd general characteristics for all cities, the hotspot distributions are an-
alyzed relative to the city center. The city center (ϕc, λc) is calculated by using
the k-means algorithm to compute the centroid of the hotspot locations. Then,
the geographic coordinates of the Wi-Fi hotspots are mapped into a polar coor-
dinate system, which has (ϕc, λc) as origin and north as reference direction:

8http://openwifispots.com/ [Online] – Accessed: 24.08.2017
9https://developer.mapquest.com/ [Online] – Accessed: 24.08.2017

10https://www.openstreetmap.org/ [Online] – Accessed: 24.08.2017
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Figure 4.2: Extract of hotspot locations (blue) of London and computed center (red
cross) at (51.5126N, 0.1405W). Map source: OpenStreetMap.

a = sin2(
ϕ− ϕc

2
) + cosϕ · cosϕc · sin2(

λ− λc
2

), (4.1)

d = 2 · rE · atan2(
√
a,
√

1− a), (4.2)

θ = atan2(sin(λ− λc) · cosϕ,

cosϕc · sinϕ− sinϕc · cosϕ · cos(λ− λc)). (4.3)

Equations 4.2 and 4.3 transform the geographic coordinates (ϕ, λ) (in radi-
ans) of each hotspot location into polar coordinates (d, θ) with the spherical dis-
tance d from the city center and angle θ towards north11. The equations use the
haversine formula (Equation 4.1), the mean radius of the earth rE ≈ 6371 km,

11http://www.movable-type.co.uk/scripts/latlong.html [Online] – Ac-
cessed: 24.08.2017
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and the two-argument atan2 function12, which is a four-quadrant arctangent
function implemented by many programming languages and has a codomain
of [−π, π]. Note that positive angles of θ point clockwise from north, whereas
negative angles point counterclockwise from north.

Analysis of Hotspot Distributions
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Figure 4.3: Angular and distance distributions of London, Portland, and San Fran-
cisco hotspots with respect to city center.

In the following, the distributions of distance and angle of the polar coordi-
nates are analyzed. Figure 4.3 visualizes these distributions for the three diverse
cities of London, Portland, and San Francisco. Figure 4.3a compares the CDFs
of the angles of the hotspots’ polar coordinates (solid) to a uniform distribution
F (x) = x+π

2π
, x ∈ [−π, π) (black dashed). It can be observed that the angular

distributions are not perfectly uniform because of city-speci�c geographic pecu-
liarities like parks or water areas, which cause less hotspots at the corresponding
angles. Nevertheless, still the uniform distributions show a good approximation.
To quantitatively assess the goodness of �t, two standard methods for compar-

12http://www.mathworks.com/help/matlab/ref/atan2.html [Online] – Ac-
cessed: 24.08.2017
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ing distributions are applied and the results for all ten cities are shown in Ta-
ble 4.2. The used metrics are the maximum absolute error, i.e., the Kolmogorov-
Smirnov statistic D, and the mean absolute error (mae)13, which indicate how
far the model is from the real distribution at most (D) and on average (mae).
Con�rming the impressions from Figure 4.3a, the uniform distributions have a
rather high D for all cities due to the particular characteristics of each city. For
example, the highest D value of the city of Austin is caused by the city shape,
which contributed to a slightly elliptic hotspot distribution. However, the low
mae values indicate that the uniform distribution nevertheless well approxi-
mates the angular distribution of hotspots, and achieves a su�cient accuracy
for practical applications (see below).

Table 4.2: Maximum (D) and mean (mae) absolute error for uniform �ttings of
angular distribution.

City D mae

Austin 0.1619 0.0677
Berlin 0.0841 0.0401
Boston 0.0809 0.0274
Brooklyn (NYC) 0.1142 0.0537
Houston 0.1023 0.0412
Los Angeles 0.0757 0.0288
London 0.0855 0.0308
Portland 0.0713 0.0244
San Francisco 0.1036 0.0370
Seattle 0.0887 0.0353

Figure 4.3b depicts the CDFs of the hotspots’ distances from the city cen-
ter (solid). The CDFs show a high similarity to an exponential distribution
F (x, µ) = 1− exp(− x

µ
), x ≥ 0 (dashed) with mean µ. By estimating the mean

µ of the exponential distribution from the hotspot distances in a maximum like-

13http://www.mathworks.com/matlabcentral/fileexchange/
22020-goodness-of-fit--modified-/content/gfit2.m [Online] – Accessed:
24.08.2017
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lihood sense (cf. second column of Table 4.3), a good �tting is obtained. As the
coe�cients of variation cv (cf. third column of Table 4.3) indicate that the dis-
tributions are not perfectly exponential (cv ≈ 1), they are also compared to a
more general gamma distribution F (x, α, β) =

∫ x
0

βα

Γ(α)
uα−1 exp(−βu)du =

γ(α,βx)
Γ(α)

, x ≥ 0 (dash-dot lines), where γ is the lower incomplete gamma func-
tion. Note that the parameters α and β can be estimated from µ and cv . The
goodness of the �ttings is shown in the last columns of Table 4.3 using again
the maximum (D) and mean (mae) absolute error metrics. As observed in Fig-
ure 4.3b, theDE values con�rm that the distance distributions are not perfectly
exponential due to city-speci�c peculiarities. The highest D value is observed
in San Francisco, for example, because there is a high hotspot density along the
northeast waterfront that cannot be accurately covered by the exponential dis-
tribution (cv � 1). Yet again, the generally low mae values show that a decent
approximation can be reached. Using the more general gamma distribution with
two parameters results in a better �tting in terms ofD andmae for most cities.
The smaller the cv values, the better the goodness of the gamma �tting com-
pared to the exponential �tting. Thus, the additional parameter of the gamma
distribution helps to decrease the D and mae metrics especially for cities with
low cV , such as Austin or San Francisco, and improves the approximation of the
real distance distributions. In contrast, the closer cv to 1, e.g., Berlin or London,
the smaller the gain of using a gamma distribution.

These results show that the transformation of the geographic coordinates of
the hotspot locations into polar coordinates with respect to the city center al-
lowed to �nd general characteristics of the hotspot distributions among diverse
cities. In particular, it could be observed that the uniform distribution can pro-
vide a decent approximation of the angular distribution, while the distance dis-
tributions can be �tted with exponential or gamma distributions. These char-
acteristics can now be used to create arti�cial hotspot distributions for generic
cities.
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Table 4.3: Mean (µ) and coe�cient of variation (cv) of distribution of hotspot dis-
tances, andD andmae for exponential (E) and gamma (G) �ttings.

City µ cv DE maeE DG maeG

Austin 3.2041 0.6886 0.1262 0.0545 0.0814 0.0319
Berlin 5.0306 0.9335 0.0661 0.0270 0.0767 0.0295
Boston 2.5224 0.7201 0.1884 0.0476 0.1048 0.0195
Brooklyn (NYC) 5.5942 0.7948 0.2057 0.0383 0.1674 0.0466
Houston 6.7299 0.7294 0.1645 0.0335 0.0608 0.0124
Los Angeles 2.7116 0.7239 0.1079 0.0542 0.1027 0.0418
London 5.7011 0.8826 0.0488 0.0185 0.0609 0.0177
Portland 3.8773 0.7394 0.1186 0.0339 0.0640 0.0199
San Francisco 2.5045 0.6294 0.2732 0.0710 0.0943 0.0179
Seattle 2.9365 0.7968 0.1136 0.0464 0.1304 0.0456

Generation of a Hotspot Distribution for a Generic City

The generation of a hotspot distribution will facilitate the observed character-
istics of the hotspots’ polar coordinates. Thus, the coordinates of the city cen-
ter (ϕc, λc) (latitude/longitude) have to be de�ned �rst. Then, a random Wi-Fi
hotspot location can be computed by generating a uniformly distributed angle
θ and a distance d, which follows the desired exponential or gamma distribu-
tion, for example, by utilizing inverse transform sampling. The polar coordinates
(d, θ) are then transformed to latitude/longitude coordinates (ϕ, λ) (in radians)
taking into account the city center (ϕc, λc) and the radius of the earth rE as
described in Equations 4.4 and 4.514:

ϕ = arcsin(sinϕc · cos
d

rE
+ cosϕc · sin

d

rE
· cos θ), (4.4)

λ = λc + atan2(sin θ · sin d

rE
· cosϕc, cos

d

rE
− sinϕc · sinϕ). (4.5)

14http://www.movable-type.co.uk/scripts/latlong.html [Online] – Ac-
cessed: 24.08.2017
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The limitation of this naive method is that it distributes the Wi-Fi hotspots
over a circular and possibly unlimited area. To distribute hotspots only within a
city with a given shape, additionally an accept-reject method has to be applied,
rejecting all hotspots outside the city limits. However, the resulting truncated
distribution of the accept-reject method will have di�erent characteristics than
the modeled distribution. Figure 4.4 shows this e�ect for the city of San Fran-
cisco. The �rst subplot visualizes the Wi-Fi coverage (blue) taking into account
the real hotspot locations and a transmission range of 100 m. Additionally, the
city limits, which were computed as the convex hull of the hotspot locations, are
shown in black. The subplots below depict arti�cial hotspot distributions with
the same number of hotspots generated according to the �ttings presented in
Tables 4.2 and 4.3. It can be seen that the naive exponential and gamma mod-
els place many Wi-Fi hotspots outside the city limits (red). By accepting only
locations inside the city limits, the truncated exponential and truncated gamma
models result.

original

exponential truncated exponential

gamma truncated gamma

Figure 4.4: Original and generated Wi-Fi coverage (single run) of San Francisco.
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Comparison of Model and Hotspot Characteristics

In the following, the characteristics of the original and the generated hotspot
distributions are compared in detail for the exemplary city of San Francisco.
Note that the accuracy of the models for this city is rather low (compared to the
other cities), such that the presented results can be almost considered a worst
case analysis. Figure 4.5a shows the CDFs of the distance of the hotspots to the
city center for all four generation approaches. It can be seen that the truncation
causes smaller distances compared to the original distribution, which means that
the model parameters have to be adjusted to account for the truncation. From a
practical point of view, the distance of any point to the closest Wi-Fi hotspot is
relevant because it determines the most important o�oading parameters, such
as coverage, interference, or signal strength. Figure 4.5b depicts the CDF of this
distance for the original distribution (black), and the mean distance over 50 gen-
erated distributions using all four generation approaches. Although the impact
of the truncation is visible again, a high similarity can be reached. It can be ob-
served that the exponential models can better replicate this characteristic due to
the higher variance of the distances. As this e�ect can be seen for all ten cities,
only the truncated exponential model will be investigated in the following.

The presented simple model implicitly includes the independence of the
two dimensions of the polar coordinates, which might not hold for the real-
istic hotspot distributions. Therefore, the hotspot densities of the original and
the truncated exponential distributions of San Francisco are spatially investi-
gated. Figure 4.6 investigates the clustering of hotspot locations by applying the
density-based clustering algorithm DBSCAN [314] to �nd clusters of at least 10
hotspots with two di�erent density values ε = 0.003 and ε = 0.005. Note that
a larger ε allows larger distances between hotspots in the same cluster. The al-
gorithm detects �ve clusters in the original hotspot locations in Figure 4.6a, a
large one and four small, very dense, and spatially separated clusters. The cor-
responding analysis of the generated hotspot distribution in Figure 4.6b also re-
sults in one large and four small clusters. However, the small clusters are rather
concentrated around the center and less dense than the clusters in the original
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(b) Distance of random point to closest hotspot.

Figure 4.5: Impact of models (exponential, gamma) and truncation to city limits
(convex hull of hotspots) on generated hotspot distribution in San Fran-
cisco.

hotspot locations. The di�erences are even more striking if the larger ε is used
in Figures 4.6c and 4.6d. The original hotspots show four irregularly shaped and
distributed clusters. In contrast, the generated hotspot distribution has a large,
centered cluster, and thus, does not reproduce the spatial clustering of the orig-
inal hotspots.

To quantify this analysis and generalize it to all cities, the spatial autocor-
relation of the number of hotspots in range is investigated in terms of Moran’s
I [315], which measures the global spatial autocorrelation, and Geary’sC [316],
which is more sensitive to local spatial autocorrelation. Moran’s I ranges from -
1 (regular dispersion) to 0 (random pattern) to 1 (high clustering), while Geary’s
C takes values from 0 (high clustering) to 1 (random pattern) to 2 (regular dis-
persion). Figure 4.7 presents Moran’s I for di�erent Wi-Fi ranges in San Fran-
cisco. It can be seen that Moran’s I approaches 1 when the transmission range
increases because the coverage areas grow and the hotspots are more clustered.
Still, for all ranges, the I values of the model (yellow) are similar to the original
data (blue). Table 4.4 lists Moran’s I and Geary’s C for all ten cities and a Wi-Fi
range of 50 m, and shows that the spatial autocorrelations generally have less
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(a) Clustering of original hotspot locations
with ε = 0.003.
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(b) Clustering of generated hotspot locations
with ε = 0.003.
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(c) Clustering of original hotspot locations
with ε = 0.005.
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with ε = 0.005

Figure 4.6: Clustering with density-based clustering algorithm DBSCAN.
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discrepancy between the original data and the model than San Francisco, and
resemble the original distributions even better.
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Figure 4.7: Spatial autocorrelation of number of hotspots in range measured by
Moran’s I for di�erent Wi-Fi ranges.

The results show that the simple truncated exponential model cannot gener-
ate the spatial patterns of the original hotspot distributions in all details, e.g.,
clustering of hotspots. However, the model can replicate some characteristics
with a high accuracy, such as the distance to the next hotspot or the spatial au-
tocorrelation of the hotspot coverage. The presented results for San Francisco
su�er from the poor �tting of the exponential model for this city compared to
other cities (cf. Table 4.3), and it can be seen that the simple model performs
better for the other cities.
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Table 4.4: Spatial autocorrelation of hotspot coverage for Wi-Fi range of 50m.

City I (orig.) I (model) C (orig.) C (model)
Austin 0.0730 0.0783 0.9295 0.9368
Berlin 0.0201 -0.0012 0.9317 1.0164
Boston 0.0918 0.1432 0.9080 0.8718
Brooklyn (NYC) 0.0333 0.0762 0.9732 0.9389
Houston 0.0042 0.0386 1.0110 0.9766
Los Angeles 0.0180 0.0138 0.9680 1.0013
London 0.1420 0.0511 0.8731 0.9640
Portland 0.0720 0.1574 0.9345 0.8577
San Francisco 0.2073 0.3344 0.8066 0.6804
Seattle 0.1301 0.1741 0.8721 0.8409

Applicability of the Model

To investigate the applicability of the model for practical performance evalu-
ations, three use cases are selected. First, the Wi-Fi coverage within a city is
investigated. Then, the number of hotspots in range is analyzed, and �nally, an
application to Wi-Fi mesh networks is considered.

An accurate estimation of Wi-Fi coverage is the basis for evaluations of o�-
loading potential, signal strength, and their corresponding applications. The dis-
tance to the closest hotspot (cf. Figure 4.5b) and the Wi-Fi transmission range
determine the coverage of a certain location. Figure 4.8 shows the coverage of
the three examples Berlin, London, and San Francisco depending on the Wi-Fi
radius. It depicts the mean coverage percentage (dashed) and 95% con�dence
intervals for ten generated distributions and compares to the original coverage
(solid). A high similarity between the generated and original hotspot distribu-
tion is visible, which follows from the similar distance of arbitrary points to
the closest hotspots presented in Figure 4.5b. This high accuracy also holds for
the other investigated cities and con�rms that the simple truncated exponential
model can be used to investigate the coverage, for example, to quantify how well
tra�c management using Wi-Fi o�oading will perform.
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Figure 4.8: Mean coverage for di�erent Wi-Fi ranges.

The number of hotspots in range are essential for analyses of handovers, in-
terference, bandwidth resource sharing, and their corresponding applications.
Figure 4.9a presents the average number of hotspots in range and 95% con�-
dence intervals depending on the Wi-Fi range. Again ten runs were conducted
for each of the three example cities. The plot shows that the average number of
hotspots can be accurately replicated by the model. In Figure 4.9b, the standard
deviation of the number of hotspots in range has a high similarity for Berlin and
London, but there are large di�erences for the city of San Francisco. This con-
�rms the above �ndings, and it follows that the application of the model su�ers
if the spatial clustering of hotspots cannot be accurately replicated.

Wi-Fi mesh networks rely on direct communication among the hotspots to
save or aggregate backhaul tra�c volume (e.g., BeWi-Fi15 [8, 26]) or for privacy
reasons (e.g., Freifunk16). Therefore, the mesh of the hotspots in a city is rep-
15http://www.tid.es/research/areas/bewifi [Online] – Accessed: 24.08.2017
16https://freifunk.net/en/ [Online] – Accessed: 24.08.2017
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Figure 4.9: Comparison of number of hotspots in range.

resented as a graph with hotspots as nodes, which are connected by an edge if
they are within Wi-Fi range, and thus, can communicate. Figure 4.10a depicts the
number of connected components for the mesh graph of the original hotspots
of San Francisco (blue) and the generated hotspots (yellow) for di�erent Wi-Fi
ranges. It can be seen that the number of connected components decreases if
the transmission range increases. The model has a higher number of connected
components especially for small Wi-Fi ranges. Figure 4.10b presents the CDF of
the betweenness centrality in San Francisco for a transmission range of 50 m. A
higher betweenness centrality means that a hotspot is more important for the
mesh because more �ows would be routed through this node. It can be seen
that the number of isolated hotspots, which have a betweenness centrality of 0,
is higher for the generated distribution. Again the di�erent clustering of both
distributions in the case of San Francisco is evident. The original hotspots are
more locally centered with more locally important nodes with a high between-
ness centrality and less isolated nodes. In contrast, the generated distribution
is highly centralized (cf. Figure 4.6), which results in a few very highly ranked
hotspots. Thus, again for this city, the application of the model to investigate
Wi-Fi mesh networks is not recommended.
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Figure 4.10: Metrics for Wi-Fi mesh network graph representation of San Francisco.

To sum up, the limitation of the simple truncated exponential model to repli-
cate the spatial clustering of the hotspots for some cities propagate to some de-
sired applications, which require proper hotspot collocation, such as handovers,
interference, bandwidth sharing, or mesh networks. Still, for many applications,
such as o�oading potential, coverage, or signal strength, the simple model pro-
vides a su�ciently high accuracy. Thus, the model can be utilized for the perfor-
mance evaluation of tra�c management mechanisms, which rely on coverage
and throughput of public Wi-Fi infrastructure in cities.

4.2.2 Home Router Sharing based on Trust

Next to public Wi-Fi hotspots, also the resources of private Wi-Fi infrastructure
in home environments have to be considered for SATM. Social awareness allows
to predict social cascades of the user and his friends, i.e., the propagation of con-
tent in OSNs, as well as their interests and mobility. This allows to predict where,
when, and by whom content will be requested, and thus, to utilize the Internet
access and storage capacities of private home routers accordingly. However, as
the access to a private Wi-Fi network could be abused by malicious users, it
should not be open to any user, but only to trusted users. Again, social informa-
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tion can be used to infer trust relationships among users, e.g., from friendship
structures and interactions in OSNs. In the following, the Home Router Sharing
based on Trust (HORST) mechanism is presented, which enables SATM for HAS
on private home routers by o�ering Wi-Fi o�oading, caching, prefetching, and
content delivery. This mechanism was developed and evaluated in the context
of the EU FP7 SmartenIT project. First, the basic functionality and use cases for
HORST are outlined. Then, the components of HORST, namely, a �rmware for
home routers, an OSN app, and a mobile device app, are introduced. Finally, the
prototype implementation of the mechanism is described.

a) Basic Functionality and Use Cases

The main goal of HORST is to enable Wi-Fi o�oading for all participating users
based on trust relationships. Therefore, two Wi-Fi networks (Service Set Identi-
�ers (SSIDs)) are established, a private and a shared network. The shared Wi-Fi
is open and can be used to negotiate access to the private Wi-Fi. The access in-
formation of the private Wi-Fi network is uploaded to an OSN, where it can be
shared with other trusted users upon request. The location information available
in the OSN can be used to recommend near Wi-Fi networks to users, such that
the user can request access and connect for Wi-Fi o�oading. Additionally, the
home router establishes a User-owned Nano Data Center (UNaDa) [270, 271] for
the management of relevant video contents. Based on the friendship structures,
the activities, and the interests of the users, social cascades can be computed in
the OSN to predict when which videos will be requested by which user. If the
future requests will be at a user’s or a friend’s home, this allows to cache or
prefetch the relevant videos to the corresponding home router, such that they
can be delivered when the user is connected to the Wi-Fi network. Eventually,
the UNaDas can be federated to form a CDN overlay to e�ciently distribute
the cached and prefetched videos among friends. Thereby, the social cascades
of the content in the OSN can be mimicked for the content delivery, which will
save resources of service providers and cloud operators, and can even reduce the
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age the access request. Additionally, the transmission of delay-tolerant content
can be scheduled and delayed until the user is connected to a Wi-Fi network.
Note that not only trust but also other incentive mechanisms could be possible
to regulate the sharing of Wi-Fi access. These mechanisms should also consider
users who have no home router to share, but also want to participate in HORST
for improved QoE. The strict separation of private and shared Wi-Fi networks
will prevent improper access to private network devices, and tra�c manage-
ment can be applied to the shared access link to make a compromise over the
resource allocation for private �ows and �ows of visiting users.

Content Caching and Prefetching The UNaDa on the home router can pro-
vide local storage for relevant videos, which can be �lled proactively (prefetch-
ing, i.e., download content and place it in storage before �rst request) or reac-
tively (caching, i.e., keep downloaded content in storage for future requests). The
temporal and spatial popularity of video content can be predicted from social
cascades in OSNs or the access history of UNaDas. This allows to select content
for prefetching and improve the local caching on the home router. Thus, users
who are interested in content, which is shared via OSN or frequently requested
by friends, will often �nd that the UNaDa already stores the desired content.
This locally stored content can be requested in the Wi-Fi network with much
less delay and a higher bandwidth, which generally results in a higher QoE for
HAS. HORST also allows to specify that content will be accessed at a later time,
e.g., when users are back at home or when they have shared Wi-Fi access. In this
case, HORST prefetches the video to the speci�ed UNaDa in the indicated period,
which allows to schedule the transmission, such that peak loads in the network
can be avoided. Thus, also ISPs bene�t from HORST’s caching and prefetch-
ing capabilities, which reduce the load on the network and shift delay-tolerant
tra�c to o�-peak periods.

Content Delivery The social cascades of video content in OSNs, in which
video links propagate from users to their friends, can also be reproduced for
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content delivery. Therefore, HORST federates the UNaDas on home routers and
establishes an overlay CDN. Following the social cascades, also the video con-
tents, which are shared in the OSNs, can be delivered from users to their friends.
Again, the video distribution can be scheduled to non-peak hours in case of
delay-tolerant content. For each content request, HORST decides from which
resource to download the content depending on the SATM preferences. If the
content is available is the UNaDas’ overlay CDN, the content can be requested
from another UNaDa to reduce the load on the service provider and cloud oper-
ator. UNaDas in the same AS can be preferred, which will save inter-AS tra�c
for the ISP. Note that the content delivery via the UNaDas’ overlay CDN might
not provide the same performance than downloading content from the service
provider due to the prevalent asymmetric Internet access of home routers (e.g.,
Asymmetric Digital Subscriber Line (ADSL)) with a reduced upload bandwidth.
However, if the expected QoE is not su�cient or the video cannot be requested
from a UNaDa, it is available on the server of the cloud service provider at last.

b) Components of Home Router Sharing based on Trust

Three components are needed to implement the HORST mechanism. These are
a home router �rmware, an OSN application, and an application running on
mobile devices.

Home Router Firmware The home router �rmware needs to be modi�ed
to bring the HORST functionality to home routers. Due to legal and privacy
issues, the home routers have to provision at least two Wi-Fi networks with
di�erent SSIDs. The shared Wi-Fi network is open to all users but only pro-
vides minimal bandwidth to negotiate access to the private network. Other traf-
�c in the shared network is blocked. If the negotiation is successful, i.e., if the
requesting user is trustworthy, the protected private Wi-Fi network can be ac-
cessed. Therefore, appropriate Wi-Fi hardware is required as well as the support
of Virtual Access Points (VAPs). Several projects implement VAP support, such
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as DD-WRT17, OpenWrt18, and Freetz19. To provide connectivity for all devices,
the �rmware has to distinguish the Basic Service Set Identi�er (BSSID), which
uniquely identi�es a speci�c access point interface mostly with its Media Access
Control (MAC) address. Note that problems might occur in end user devices if
multiple SSIDs share the same MAC address.

The hardware requirements for home routers to serve as cache and contribute
to the CDN overlay are memory and storage. The available memory on current
home routers is su�cient for basic operations, and external Universal Serial Bus
(USB) drives can increase the storage. Then, the �rmware has to set up the UN-
aDa and run an overlay management software. Content has to be pushed or
pulled from other nodes in the overlay network (i.e., other HORST routers) or
the original content provider. Content requests have to be intercepted to serve
cached content, or redirect the request to another node in the overlay. Thereby,
additional load balancing and tra�c management can be applied to assure a high
service quality.

Online Social Network Application The OSN application is the major in-
novation of HORST and provides input for all SATM decisions. It allows to uti-
lize the convenient user management of the OSN for HORST, such that users can
simply log in to the OSN and grant permissions to the app in order to partici-
pate in HORST. The app requires permissions to retrieve personal data, position
data, and communication data. Additionally, users have to submit information
about their own home router, i.e., home router position, Internet Protocol (IP)
address, Wi-Fi SSIDs, and passwords for Wi-Fi networks and UNaDa access.

The OSN app computes trust scores from social information in the OSN. Ex-
plicit trust scores can be obtained by directly asking users to indicate whether
they trust other users. Nevertheless, also implicit trust scores can be computed
based on personal data, communication data, and OSN topology. Trusted users

17http://www.dd-wrt.com/ [Online] – Accessed: 24.08.2017
18https://openwrt.org/ [Online] – Accessed: 24.08.2017
19http://freetz.org/ [Online] – Accessed: 24.08.2017

139

http://www.dd-wrt.com/
https://openwrt.org/
http://freetz.org/


4 Socially-aware Tra�c Management for HAS based on Wi-Fi O�oading

are then determined by comparing their implicit trust score to a threshold de-
�ned by the user. Eventually, a combination of both mechanisms is possible,
e.g., a recommendation of trustworthy users based on their implicit trust scores,
which have to be con�rmed by the user explicitly. If users want to access an-
other Wi-Fi network, they have to send a request to the owner via the OSN app.
The shared Wi-Fi provides a minimal bandwidth to access the OSN for submit-
ting the request. Also the credentials for the private Wi-Fi can be received in the
shared Wi-Fi if the requesting user is considered trustworthy, i.e., after implicit
or explicit trust scores were obtained.

The OSN app can further collect and analyze social information for tra�c
management about users’ positions, interests, and preferences, as well as con-
tent popularity or social cascades. Based on the position data, the app can rec-
ommend and request access to near Wi-Fi networks. Content access patterns can
be analyzed to detect and distribute popular content over the UNaDas’ overlay
CDN. Thereby, the transmission of delay-tolerant content can be scheduled to
non-peak hours to more e�ciently utilize network resources. The same mech-
anisms can be applied to prefetch or cache content for individual users on the
home router to which he already is or soon will be connected. Again, delay-
tolerant content can be predicted, or the user himself can explicitly indicate the
desired content, the time of consumption, and the home router on which the
content has to be stored, thereby, allowing for an e�cient transmission schedul-
ing.

Mobile Device Application The mobile application brings HORST directly
to mobile devices. It manages the request of Wi-Fi credentials from the OSN
app, and stores them on the device for automatic access to the Wi-Fi network.
Moreover, it automatically interacts with the OSN app without the user having
to be constantly engaged manually and upload information. For example, posi-
tion data or delayed content requests can be uploaded. On the other hand, the
mobile app can receive information from the OSN app, e.g., about positions of
near Wi-Fi networks, cached video contents, or delayed requests. Furthermore,
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the mobile app provides interfaces to con�gure the settings of HORST, such as
trust thresholds or prefetching/caching preferences.

c) Design and Prototype Implementation

For the design of an actual HORST implementation, the functionality of mech-
anisms for Wi-Fi o�oading, caching, prefetching, and content delivery has to
be speci�ed. The speci�cation of these mechanisms is part of this work and
will be outlined in the following. In contrast, the actual architecture and im-
plementation of the prototype are not part of this work, and thus, only some
implementation details are mentioned here to better understand the speci�ca-
tion of the mechanisms. The entire design and implementation of the prototype
is described in detail in [42] and its functionality was demonstrated in [65].

For the prototype implementation, the Raspberry Pi20 Single-board Computer
(SBC) with Raspbian operating system was selected as the home router. It was
equipped with a USB-based Wi-Fi dongle supporting two SSIDs (private and
shared) and an Secure Digital (SD) card for storage. The HORST OSN app was
implemented for the OSN Facebook21, and thus, to participate in the HORST
platform, users have to log in to the app on Facebook and accept the required
app permissions. The Facebook app is used for user management, collection of
social information, and computation of trust relationships. For the prototype
implementation, users are considered to trust each other if they are friends on
Facebook. A mobile Android application, which is installed on the user’s mobile
device, handles the user authentication, receives the credentials, installs them in
the mobile device, and connects to the private Wi-Fi network without entering
a password or using Wi-Fi Protected Setup (WPS).

Caching mitigates the load on networks by avoiding repeated downloads of
the same content. In contrast, prefetching shifts video downloads to o�-peak
periods, e.g., during night. However, the prefetched video contents have to be

20https://www.raspberrypi.org/ [Online] – Accessed: 24.08.2017
21https://www.facebook.com/ [Online] – Accessed: 24.08.2017
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selected carefully to avoid unnecessary downloads. Therefore, the content con-
sumption of clients is predicted in two separate processes. The overlay-based
prediction uses information about cached and watched videos on other home
routers in the overlay. The social prediction, on the other hand, takes into ac-
count content shared in the OSN by friends, the location of the user, the age and
global popularity of videos, and the user’s previous requests of the content. The
social information is collected from the Facebook app via the Facebook Graph
Application Programming Interface (API) and the video content provider, which
is the Vimeo22 video sharing portal. The exact speci�cations of the prediction
algorithms implemented in the prototype can be found in [42]. Both algorithms
output rankings of relevant video contents. The top contents of each ranking
are downloaded until the cache is full. Periodically, new rankings are computed
and irrelevant content is replaced according to the Least Recently Used (LRU)
strategy. The used software to run the prediction algorithms and manage the
cache is a Java web application, which is deployed in a Jetty23 web server. The
web server also provides a user interface, which can be accessed by users with
any browser to manage their local cache and access point, and a Representa-
tional State Transfer (REST) API to allow the Android app to register users in
remote home routers. Additionally, the mitmproxy24 software employs a proxy
server to intercept content requests, cache videos, and rewrite content requests,
e.g., if the content is cached locally or available in the overlay.

The prototype incorporates a Peer-to-peer (P2P)-based overlay following the
RB-Tracker approach [317] to interconnect the participating home routers using
the TomP2P25 library. The RB-Tracker mechanism uses a Distributed Hash Ta-
ble (DHT) for the �rst look up of nodes, which store the content, and afterwards
exchanges direct messages to �nd the closest content provider. The advantage
of the distributed approach is that sensitive data, e.g., social information col-
lected from Facebook, are always stored on the own device only, which reduces
22https://vimeo.com/ [Online] – Accessed: 24.08.2017
23http://www.eclipse.org/jetty/ [Online] – Accessed: 24.08.2017
24https://mitmproxy.org/ [Online] – Accessed: 24.08.2017
25https://tomp2p.net/ [Online] – Accessed: 24.08.2017
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the risk of data leaks. Only the list of cached content is exchanged with other
home routers. Thereby, the home routers are identi�ed by IP addresses only,
from which the identity of individual users cannot be deduced. When rewriting
content requests to the home router overlay, the distance of home routers in
terms of AS hops is considered, which is computed by using traceroute in com-
bination with an AS directory. If the closest home router providing the content
is two hops or more away, the content is requested from the data center or CDN
of the service provider instead. Thus, expensive transit tra�c of ISPs is avoided,
since it would imply at least two AS hops.

These speci�cations allowed to implement, evaluate, and demonstrate a pro-
totype of the HORST framework [42, 65]. Using the HORST Android application,
users were able to request access at a Facebook friend’s HORST home router, re-
ceive the credentials for the private Wi-Fi, connect to it, and access the Internet.
This proves the feasibility of the presented framework to increase the Wi-Fi o�-
loading potential by sharing private Wi-Fi infrastructure in home environments
among trusted friends. Additionally, HORST supports other SATM actions for
HAS, namely, caching, prefetching, and content delivery, to reduce the load on
networks and reduce costs for ISPs, which were evaluated in [42]. In this work,
only the performance of Wi-Fi o�oading for HAS is analyzed, and the applied
methodology and results are presented in the following section.

4.3 Wi-Fi O�loading of Mobile HAS Sessions

This section describes the performance evaluation of Wi-Fi o�oading for HAS
based on [29, 44, 47]. Thereby, mobile video streaming sessions are simulated
in a city, which can be o�oaded if shared Wi-Fi access points are in range, oth-
erwise they are served in a mobile network. The video streaming sessions are
assessed in terms of QoE factors and smartphone energy consumption depend-
ing on di�erent RATs and Wi-Fi sharing percentages, i.e., the percentage that
an existing Wi-Fi hotspot can be accessed. The used data sets for the evaluation
scenario are presented in Section 4.3.1. Section 4.3.2 describes the simulation
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framework, and Section 4.3.3 shows the performance evaluation results for the
Wi-Fi o�oading of HAS �ows.

4.3.1 Data Sets for Performance Evaluation

To simulate mobile HAS on smartphones, several data sets are required, which
are presented in this section. These data sets include video characteristics of
mobile requests, coverage and throughput for di�erent RATs, access point loca-
tions, way points of mobile users, as well as an energy model for smartphones.

Characteristics of mobile YouTube video streaming were found in [318]. The
authors streamed 2000 YouTube videos in mobile networks, and analyzed the
video formats, bit rates, and durations. They found that Android and iOS de-
vices selected the itag36 format (240p, 25 fps, H.263, Advanced Audio Coding
(AAC), 3GPP File Format (3GP)) in more than 80% of the sessions. Most videos
had a bit rate between 220 and 250 kbps. In this performance evaluation, the
bit rate distribution of the itag36 format and the distribution of the video dura-
tions, which were obtained from [318] and are shown in Figure 4.12, are used to
generate realistic mobile video requests.
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Figure 4.12: Bit rate and duration of mobile YouTube videos in itag36 format [318].
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A large measurement study on the coverage and performance of cellular and
public Wi-Fi networks was conducted in and around the city of Darmstadt,
Germany, representing a medium sized urban area (population: ~150000, area:
~122.2 km2, two universities, southern part of Frankfurt Rhine-Main Metropoli-
tan Region, 30 km south of Frankfurt am Main, Germany). Since 2013, data
has been collected using the NetworkCoverage26 [319] app in both dedicated
and voluntary measurement studies. The collected data include location, time,
and measurement device, as well as network information like RAT, throughput,
Round Trip Time (RTT), and signal strength. For this performance evaluation,
only the RAT coverage and the active measurements of the mobile and Wi-Fi
networks are used. The mobile measurements were �ltered to only one large
mobile network operator to exclude the impact of di�erent backbone networks
on the measurements, which results in 4436 Fourth Generation Mobile Telecom-
munications (4G), 1043 3G, and 23 Second Generation Mobile Telecommunica-
tions (2G) throughput measurements. 173 Wi-Fi measurements were conducted
in a variety of di�erent public networks. To investigate the performance of pri-
vate Wi-Fi o�oading, the average connection speeds of �xed broadband connec-
tions in Germany during the time of the mobile measurements were obtained
from [320]. Figure 4.13 shows the CDF of the throughputs for each RAT. It can
be seen that 2G (General Packet Radio Service (GPRS), Enhanced Data Rates for
GSM Evolution (EDGE)) has the worst download rates. The best performance
is reached by 4G (LTE), although some measurements seem to be limited to
20 Mbps. 3G (UMTS, High Speed Packet Access (HSPA)) data rates are lower
than 4G, but similar to �xed broadband throughputs, while public Wi-Fi only
shows a performance between 2G and 3G.

The signals of Wi-Fi access points in the inner city of Darmstadt (area:
~1.5 km2) were measured by [321]. The locations of the hotspots can be inter-
polated from the observed Wi-Fi beacons at street level. In total, 1971 hotspot
locations were obtained. Additionally, way points in the same area can be re-

26https://play.google.com/store/apps/details?id=de.tudarmstadt.
networkcoverage [Online] – Accessed: 24.08.2017
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Figure 4.13: Throughput of mobile connections for di�erent RATs in Darmstadt and
residential �xed broadband connections.

trieved from OpenStreetMap27, where users indicated intersections of streets,
buildings, facilities, local businesses, or sights. These way points provide a good
approximation for the locations of mobile users in this area. The access point
and way point locations are visualized in Figure 4.14.

The power consumption of the Google Nexus 5 smartphone was modeled
in [322]. This model was based on indoor measurements with stable device con-
�guration (e.g., display brightness, active components), good network availabil-
ity, good signal strength, and di�erent data rates, using the voltage and current
sensors of the device. The model can be used in this study to evaluate the energy
consumption of individual connections, which is composed of the idle power
consumption of the network interface, the cost for network connection and dis-
connection, and the energy expense per transferred byte. Thereby, the energy

27http://www.openstreetmap.org/export#map=14/49.8788/8.6628 [Online]
– Accessed: 24.08.2017
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Figure 4.14: Way point and Wi-Fi access point locations in the inner city of Darm-
stadt. Map source: OpenStreetMap.

consumption is expected to be similar for indoor and outdoor communication,
as the power consumption of commonly used power ampli�ers does not depend
on the output power.

Figure 4.15 shows the power consumption of an exemplary data transfer us-
ing 3G connectivity. At time 0, the device connects to the network (ramp state).
When the connection is set up (second vertical line), the data transmission be-
gins. Afterwards, the device disconnects from the network (tail state, third and
fourth vertical line), and returns to idle state. The measurements indicated that
ramp and tail durations and energies can be considered as constants for each
RAT. Thus, the energy consumption of a continuous data burst ij with volume
vij can be computed as

Eij = Eramp +
vij
ρij
· P (ρij ) + Etail, (4.6)
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Figure 4.15: Exemplary data transfer using the Google Nexus 5 on 3G. The vertical
lines indicate the start and end of the ramp and tail state.

depending on the interface power consumption P (ρij ) during a data transmis-
sion with rate ρij . Figure 4.16 shows the transmission costs per data rate for
each RAT based on the power models of the Google Nexus 5. It can be seen that
Wi-Fi connections have the lowest power consumption, followed by the 3G and
4G. Note that no higher data rates than 900 kBps could be achieved with 3G. The
energy consumption of an individual connection i can be computed by adding
the energy consumption of all data bursts. If the interval between two bursts ij
and ij+1 is smaller than the ramp and tail durations, the bursts can be combined,
such that the ramp and tail energies are only added once. This corresponds to
the bearer release timeout in cellular networks.
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Figure 4.16: Power consumption of the interfaces of the Google Nexus 5 at di�erent
data rates.

4.3.2 Simulation Framework

The simulation considers the set of access point locations A and way point lo-
cations W . The indicator function χr : W × A 7→ {0, 1} returns 1 if way
point w ∈ W is in transmission range of an access point a ∈ A, depending on
the global transmission range r. Additionally, for each access point, a Bernoulli
trial with probability p (global sharing probability) determines whether the ac-
cess point is shared, i.e., mobile connections can be o�oaded to this access point.
The shared access points are added to the subset As ⊂ A.

In each simulation run, n = 10000 mobile video requests are generated ac-
cording to a Poisson process with rate λ = 1, i.e., one request per second. The
mean baseline bit rate bbi and the video duration di are determined according
to the measured characteristics of mobile YouTube videos (itag36 format, i.e.,
240p). To account for HAS, a bit rate factor f is introduced, which indicates the
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ratio of the current resolution and the 240p baseline (e.g., 1920x1080
320x240

= 27 for
1080p). The simulation considers the typical YouTube resolutions with the fol-
lowing bit rate factors: 240p: 1, 360p: 2.25, 480p: 4, 720p: 12, and 1080p: 27. Thus,
the current video bit rate bi can change according to the selected quality, such
that bi = f · bbi .

For each request 1 ≤ i ≤ n, a random way point wi ∈ W is drawn.
The request can be o�oaded if a shared Wi-Fi access point is in range, i.e.,
∃a ∈ As : χr(wi, a) = 1, otherwise it will be served by the cellular network
with 2G, 3G, or 4G access according to the measured RAT probabilities. The
average throughput ρi of each request depends on the RAT and is determined
randomly from the measured throughput distributions. To simulate �uctuating
network conditions, the actual bandwidth is periodically modi�ed and follows
an exponential distribution with mean ρi.

YouTube currently employs a streaming behavior based on thresholds of the
playback bu�er [5]. The main idea is to download data only until the bu�ered
playtime exceeds an upper threshold β to minimize the amount of unnecessar-
ily downloaded video data if the streaming is aborted. If the bu�ered playtime
drops below a lower threshold α, the download of video data resumes to avoid
imminent stalling. In this evaluation, the used thresholds are α = 30 s and
β = 100 s. The framework also has to take into account the playback and qual-
ity adaptation. Therefore, the playback stops if the bu�er is empty, and it starts
or resumes (after the initial delay or a stalling event) when the bu�er exceeds
the lower threshold α. To simulate HAS, a simple adaptation logic has to be im-
plemented to adapt the current bit rate bi(t) = f · bbi to the network conditions.
Every time the bandwidth ρi(t) changes, the implemented conservative adapta-
tion logic sets the bit rate factor to the highest factor f , such that ρi(t) > bbi · f
(i.e., the bu�er increases), or f = 1 else. The remaining download volume of the
video is updated accordingly.

The framework consists of a DES implemented in MATLAB. It utilizes
four streaming-related events (dli, playi), (dli, playi), (dli, playi), (dli, playi),
which are shown in Figure 4.17, and a periodical (change_ρi) event. The video
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request i starts at ti with the (dli, playi) event, in which the baseline video bit
rate bbi , video duration di, way point, RAT, and throughput ρi are determined.
The events calls a (dli, playi) event at the same time ti, at which the download
of the �rst tra�c burst i1 immediately starts. The (dli, playi) event indicates
that video data are downloaded, but the video is not played back. Four cases
have to be considered to compute the times of the subsequent streaming events:

dl,  playdl,  play

dl,  playdl,  play

B>α

B>β
B<α

B=0

Figure 4.17: State diagram of the video streaming process (i.e., downloading dl
and playback play) depending on bu�ered playtime B and the burst
thresholds α and β.

a) Case ρij (t) > bi(t):

If ρij (t) > bi(t), the download rate is larger than the bit rate and the
bu�er increases, such that the upper threshold β will be reached. Then,
the burst download can be divided into three phases ∆t, ∆t′, and ∆t′′,
which are depicted in Figure 4.18. The �gure shows the bu�ered playtime
B and the two thresholds on the y-axis. The time is plotted on the x-axis.

At the start of the �rst phase, the video bu�er is empty (initial delay or
stalling), and the video is downloaded with rate d

dt
= ρij (t). The video

playback starts when the bu�ered playtime B exceeds the threshold α

151



4 Socially-aware Tra�c Management for HAS based on Wi-Fi O�oading

time

bu
ffe

re
d 

pl
ay

tim
e 

B

ti1
ti2

α

β

Δt Δt’ Δt’’ Δt’ Δt’’

ii b
dt
d

j
−= ρ

ib
dt
d

−=

jidt
d ρ=

Figure 4.18: Playback bu�er in case of ρij (t) > bi(t).

or the video is completely downloaded. The playback start is initiated by
the (dli, playi) event after time ∆t, i.e., α · bi(t) = ρij (t) ·∆t, and

∆t = min(
α · bi(t)
ρij (t)

,
vi(t)−

∑j−1
k=1 vik

ρij (t)
). (4.7)

To minimize the negative e�ect of initial delay on the QoE of the video
streaming session, the start quality is set to the highest bit rate factor
f , such that, for the current bandwidth ρi1(t) and the selected bit rate
bi(t) = f · bbi , the initial delay is expected to be below 5 s, or f = 1 else.

The burst continues until the upper threshold β is reached or the video
is completely downloaded, which is triggered by a (dli, playi) event. In
this phase, the gradient of the bu�er is d

dt
= ρij (t) − bi(t), and the
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downloaded data volume is either (β−α) · bi(t), or the remaining video
data. Thus,

∆t′ = min(
(β − α)) · bi(t)
ρij (t)− bi(t)

,
vi(t)− (α · bi(t))

ρij (t)
,
vi(t)−

∑j−1
k=1 vik

ρij (t)
).

(4.8)

If the video is not completely downloaded, a third phase has to be con-
sidered, in which no data is downloaded until the bu�er drops below
α. The playback decreases the bu�er with gradient d

dt
= −bi(t), thus,

(α− β) · bi(t) = −bi(t) ·∆t′′, and

∆t′′ =
(α− β) · bi(t)
−bi(t)

= β − α. (4.9)

This phase determines the time of the next (dli, playi) event, i.e., the start
of the next burst ij+1. Afterwards, the ∆t′ and ∆t′′ phases alternate until
the video is completely downloaded.

b) Case ρij (t) ≤ bbi :

If ρij (t) ≤ bbi , and thus, f = 1, the received data rate cannot increase the
playback bu�er. Hence, the upper threshold β will not be reached, and
the download of the video data does not pause. Whenever the playback
of the video starts, the bu�er of the video will eventually deplete, which
results in periodical stalling. In this case, there are two di�erent download
phases, ∆t and ∆t′, which are depicted in Figure 4.19.

At the start of the �rst phase, the video bu�er is empty (initial delay or
stalling), and subsequently, phases ∆t and ∆t′ alternate until the video is
completely downloaded. The bursts in each phase have to be considered
as individual bursts for computational reasons, but have to be combined
later. During the initial delay or stalling, the video is not played back until
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Figure 4.19: Playback bu�er in case of ρij (t) > bi(t).

the bu�er is �lled up to the threshold α, for which a (dli, playi) event is
scheduled after time ∆t:

∆t = min(
α · bbi
ρij (t)

,
vi(t)−

∑j−1
k=1 vik

ρij (t)
). (4.10)

Then, the playback resumes, which will lead to further stalling, i.e.,
(dli, playi), after time ∆t′:

∆t′ = min(
α · bbi

bbi − ρij (t)
,
vi(t)−

∑j−1
k=1 vik

ρij (t)
). (4.11)

As the download of video data continues throughout the two phases, the
back-to-back bursts eventually have to be combined into a single burst.
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c) Bandwidth Changes:

Apart from the described streaming events, the (change_ρi) event is
scheduled periodically every second for every request. When the event is
processed, the new current bandwidth of request i, ρi(t), is determined
randomly according to an exponential distribution with mean ρi. The
adaptation logic sets f to the highest value, such that ρi(t) > bbi · f (i.e.,
the bu�er increases), or f = 1 otherwise. The current bit rate bi(t), the
volume of the video vi(t), the volume of the current burst ij , and the
computed time of appearance of the subsequent streaming event are up-
dated. Moreover, the quality adaptation is monitored in the simulation
framework. If the bandwidth changes within one of the basic cases, i.e.,
Case a) or b), the respective equations can be slightly modi�ed to compute
the next event. However, if the new bandwidth changes the cases either
from Case a) to b), or vice versa, a transition phase ∆t∗ might have to be
included.

d) Transition Phases:

If the bandwidth ρij (t) drops below bbi , f is set to 1 and the transition
from Case a) to b) has to be considered. If the transition occurs in phase
∆t, the updated time of appearance of the (dli, playi) event can be com-
puted from the corresponding phase equation in Case b). If it occurs in
phase ∆t′′, the (dli, playi) event does not need to be updated. In both sit-
uations, the phase ∆t′ follows. In case the transition occurs in phase ∆t′,
the ongoing burst from Case a) is continued in a transition phase with
time ∆t∗ and in subsequent phases. In the transition phase, the bu�er
will completely deplete, which results in a stalling event (dli, playi), or
the completion of the video download.

∆t∗ = min(
B · bbi

bbi − ρij (t)
,
vi(t)−

∑j−1
k=1 vik

ρij (t)
). (4.12)
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In the opposite case of a transition from Case b) to a), i.e., a bandwidth
increase above bbi , two situations have to be distinguished. If the tran-
sitions occurs in phase ∆t, again the updated (dli, playi) event can be
computed from the corresponding phase equation of Case a). In case it
occurs in phase ∆t′, the burst continues for ∆t∗ until the upper thresh-
old β is reached and phase ∆t′′ starts triggered by a (dli, playi) event,
or the download is completed.

∆t∗ = min(
(β −B)) · bi(t)
ρij (t)− bi(t)

,
vi(t)−

∑j−1
k=1 vik

ρij (t)
). (4.13)

The implemented events and the discussed phases allow to obtain all QoE
factors of HAS for a video session i (i.e., initial delay, stalling, quality adaptation),
as well as the energy consumption based on the arrival times tij and volumes
vij of each burst ij .

4.3.3 Performance Evaluation Results

The simulation framework was �rst applied to evaluate Wi-Fi o�oading for
classical video streaming, i.e., video streaming without adaptation. The results,
which are described in [44, 47], showed that the QoE and energy consumption
were slightly worse if the �ow was o�oaded to public Wi-Fi hotspots due to
lower throughput compared to 3G and 4G. The following evaluation uses the
same approach and simulation framework, but investigates the performance of
Wi-Fi o�oading for HAS, thereby considering both o�oading to public and pri-
vate Wi-Fi hotspots. The presented mean results are based on �ve simulation
runs per test condition, which proved to be su�cient to obtain small con�dence
intervals. The results for initial delay, stalling, and adaptation are presented, but
no mapping to QoE is shown, as no holistic QoE model for HAS has been widely
accepted, which considers all these QoE factors.

First, the baseline results for the QoE of HAS are shown for all RATs (2G,
3G, 4G, public Wi-Fi) according to the measured throughput distributions. Fig-
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ure 4.20a depicts the mean and 95% con�dence interval of the initial delays
of HAS sessions for all access technologies. The highest mean initial delay of
around 40 s occurs for 2G access, which has the lowest throughput. The other
RATs have lower mean initial delays below 10 s. These delays were consid-
ered negligible QoE degradations because people are accustomed to some de-
lays [118]. Figure 4.20b shows the mean and 95% con�dence interval of the
number of stalling events per streaming session. For public Wi-Fi, 3G, and 4G,
HAS is able to almost completely avoid stalling, which is the worst QoE degra-
dation [63]. Only for 2G, due to the too low throughput, the mean number of
stalling events is signi�cantly higher around 2.3.

HAS trades o� stalling by switching to a reduced image quality. The CDF of
the number of quality changes per second is shown in Figure 4.20c. 4G access
results a constant video quality for around 75% of the videos. However, an al-
most linear increase until the maximum switching frequency of 0.6 switches per
second can be observed, which is a big QoE degradation for long videos [138].
3G and public Wi-Fi show a similar behavior but the ratio of constant quality
HAS sessions is lower at around 40% and 20%, respectively. Also around 20% of
2G sessions have no quality switches, but the CDF increases faster, which indi-
cates that adaptation occurs more rarely. The corresponding time percentages
on each layer are shown in Figure 4.20d. With 2G access, video streams have a
resolution of 240p most of the time, but no higher resolutions for most videos,
such that the QoE of users is poor. The other RATs allow that High De�nition
(HD) resolution (720p and 1080p) is streamed for a substantial percentage of
time. Thereby, the HD percentage is around 20% for Wi-Fi, around 50% for 3G,
and around 85% for 4G. This shows that these access technologies better support
video streaming, as they provide a higher quality layer for a longer time, which
results in higher QoE. Note that the video resolutions of Wi-Fi are generally
smaller than 3G or 4G due to lower throughput.

The performance of Wi-Fi o�oading for HAS will be evaluated depending on
the transmission range of hotspots and the Wi-Fi sharing probability, i.e., the
probability that a Wi-Fi hotspot can be accessed. The sharing probability can
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Figure 4.20: Key performance indicators for QoE of mobile HAS depending on net-
work interface.

account for di�erent Wi-Fi access, such as open access to public infrastructure,
contracted access to hotspots of a single provider, or private sharing of Wi-Fi
networks. In terms of the Wi-Fi backhaul links, not only the measured through-
put distribution of public Wi-Fi infrastructure will be considered but also the
throughput of residential broadband connections to also account for o�oad-
ing to private hotspots (e.g., HORST, Wi-Fi sharing community). As 2G access
was rarely observed in the coverage measurements and it shows a signi�cantly
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worse performance than the other cellular RATs, the corresponding results will
not be presented.
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Figure 4.21: QoE indicators of HAS for public and residential Wi-Fi o�oading sce-
narios.

First, the mean number of stalling events over all HAS sessions in a run is
evaluated. Figure 4.21a depicts the mean and 95% con�dence intervals over all
simulation runs. The x-axis shows the di�erent Wi-Fi sharing probabilities. The
di�erent colors indicate di�erent Wi-Fi transmission ranges from 10 m (black) to
100 m (yellow). The dashed lines connect the results for public Wi-Fi o�oading,
i.e., using the measured throughput distribution of the Darmstadt Wi-Fi net-
works, while the solid lines connect the results for residential Wi-Fi o�oading,
i.e., using the throughput distribution of �xed broadband connections in Ger-
many. It can be seen for public Wi-Fi o�oading that the mean number of stalling
events increases when the sharing probability is larger and more sessions can
be o�oaded to a hotspot. The same e�ect can be observed for increasing Wi-Fi
range. The reason for both e�ects is that the throughput of public Wi-Fi net-
works is worse compared to the mobile throughput of 3G and 4G. Thus, when
the sharing probability or Wi-Fi range increases, more connections can be o�-
loaded, but thereby, receive less bandwidth, such that stalling is more likely.
For residential Wi-Fi o�oading, the throughput distribution is similar to 3G.
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Because of the higher throughput, stalling can almost completely be avoided
when o�oading to residential hotspots, and the QoE of HAS is not deteriorated.

Figure 4.21b shows the mean percentage of time on the highest quality layer,
i.e., 1080p, and 95% con�dence intervals. For public Wi-Fi o�oading, less time is
spent on the highest quality layer, when the sharing probability or Wi-Fi range
increase. Also the percentages of time on all other quality layers approach the
Wi-Fi baseline (cf. Figure 4.20d), and thus, the QoE of HAS decreases. Consider-
ing residential Wi-Fi o�oading, the time on highest layer also decreases when
more HAS sessions are o�oaded. However, due to the higher throughput, a
higher percentage can be achieve, which results in a better QoE than public
Wi-Fi o�oading.
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Figure 4.22: Energy consumption of HAS for public and residentialWi-Fi o�oading
scenarios.

The power consumption of the smartphone is analyzed in Figure 4.22a. It
shows the CDFs of the baseline power consumption of HAS sessions with pub-
lic Wi-Fi, 3G, and 4G in red. It can be seen that the consumed energy of public
Wi-Fi is lower than 4G in 15%, and lower than 3G in 25% of the HAS sessions.
For the o�oading scenarios, again, public (dashed) and residential (solid) Wi-
Fi o�oading is distinguished. The sharing probability varies from 1% (yellow)
to 100% (black), while the Wi-Fi range is set to 25 m. When the sharing proba-
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bility increases, the energy consumption of public Wi-Fi o�oading approaches
the Wi-Fi baseline. This means, the number of sessions with very little energy
consumption increases, but for most sessions more energy is consumed. The
reason is again the lower throughput, and thus, longer transmissions from the
public Wi-Fi hotspots. Note that for a sharing probability of 100%, the CDF does
not overlap the baseline CDF because not all sessions can be o�oaded, e.g., if
no Wi-Fi hotspot is in range. In case of residential Wi-Fi o�oading, the energy
consumption decreases due to higher throughput than public Wi-Fi o�oading.
Moreover, it can be seen that less energy is consumed compared to the baseline
3G access although both have comparable access speeds. Figure 4.22b depicts
the power consumption for di�erent Wi-Fi ranges from 10 m (yellow) to 100 m
(black) for a �xed sharing probability of 10%. A similar behavior is visible, i.e.,
the energy consumption generally deteriorates when the Wi-Fi range increases,
and thus, more sessions are o�oaded.

To sum up, the results showed that HAS is well suited for mobile usage. For
3G and 4G, almost all stalling could be avoided and the videos could be watched
at least 50% of the time in HD resolution (720p or 1080p). Thereby, 4G proved to
be the best RAT for HAS due to the highest throughput, which results in longer
times on high quality layers. Due to the high throughput, also the energy con-
sumption is lowest because shorter transmission bursts are needed to download
the video with 4G access.

The utilization of Wi-Fi o�oading deteriorated the QoE and energy consump-
tion of end users due to lower throughput at public Wi-Fi hotspots. Thus, al-
though mobile network operators bene�t from Wi-Fi o�oading, end users cur-
rently do not. The evaluation of Wi-Fi o�oading to residential hotspots showed
that the QoE and energy consumption were better compared to public Wi-Fi o�-
loading, and also to 3G access, which had a comparable throughput distribution.
Thus, Wi-Fi o�oading still can be attractive for end users, however, operators
have to ensure that similar or higher throughputs can be achieved in Wi-Fi net-
works than in cellular networks.
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4.3.4 Applicability of Simple Hotspot Model for the
Performance Evaluation of Public Wi-Fi O�loading

In Section 4.2.1, a simple model for generating hotspot distributions in cities
was presented. In this section, its applicability is revisited for the performance
evaluation of public Wi-Fi o�oading. Therefore, the simulation runs for public
Wi-Fi o�oading in Darmstadt are repeated with a hotspot distribution, which
was generated for Darmstadt according to the simple hotspot location model.

Darmstadt hotspots
truncated exponential

(a) Original and generated hotspot distribution for
Darmstadt.
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Figure 4.23: Evaluation of applicability of Wi-Fi hotspot location model to Wi-Fi
o�oading.

Figure 4.23a visualizes the original (top) and a generated (bottom) hotspot
distributions for Darmstadt. White dots indicate the locations of hotspots, and
the colors indicate the hotspot proximity from close (blue) to far (red). Gener-
ated hotspot locations outside the convex hull of the original hotspot locations
(black) were rejected, and the resulting hotspot distribution has the same num-
ber of hotspots as the original distribution, i.e., 1971 hotspots. At �rst sight, both
distributions do not show the same spatial characteristics, which con�rms the
�ndings from Section 4.2.1. Figure 4.23b compares the o�oading ratio, i.e., the
mean ratio of sessions o�oaded to Wi-Fi hotspots. The x-axis shows di�erent
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Wi-Fi sharing probabilities. The bars indicate the o�oading ratio for di�erent
Wi-Fi ranges, while colored bars represent the original hotspot distribution and
gray bars represent the generated hotspot distribution. It can be seen that the
corresponding o�oading ratios for the original and the generated distribution
are very close especially for high sharing probability and high Wi-Fi range. For
low sharing probabilities, i.e., in situations when HAS sessions can rarely be
o�oaded, the locations of the few available hotspots have a big impact on the
o�oading ratio, which can cause some di�erences. Nevertheless, the observed
di�erences are not larger than 10%.
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Figure 4.24: Comparison of QoE results for original and generated hotspot distribu-
tion.

Figure 4.24 compares the QoE results for both hotspot distributions. Thereby,
it resembles Figure 4.21. In Figure 4.24a, the dashed lines connect the mean num-
ber of stalling events for the original hotspot distribution, and the solid lines
connect the corresponding results for the generated hotspot distribution. It can
be seen that the results for both hotspot distributions are very close, and the
95% con�dence intervals overlap in most cases. Also the results for the time on
highest layer, which are presented in Figure 4.24b con�rm the high similarity
between the original and the generated hotspot distribution. Although the con-
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�dence intervals rarely overlap, the mean time percentages on highest layer do
not di�er more than 5%.

The application of the generated hotspot distribution for the performance
evaluation of public Wi-Fi o�oading con�rms the practical value of the simple
hotspot location model. The obtained results about o�oading ratio and the QoE
of HAS sessions only showed small deviations from the original hotspot distri-
bution. Nevertheless, if the actual locations of Wi-Fi hotspots are available, they
should be used for the performance evaluation. However, the model is general
and can be applied to arbitrary cities to generate hotspot distributions, e.g., if
the actual Wi-Fi hotspot locations are not available, or a future hotspot distri-
bution should be evaluated. In these scenarios, the usage of generated hotspot
distributions for the performance evaluation of public Wi-Fi o�oading will pro-
vide a meaningful approximation to the results, which could be obtained with
the real, unknown hotspot distributions.

4.4 Lessons Learned

This chapter investigated SATM for improving the QoE of HAS. SATM utilizes
ubiquitous social signals for improved tra�c management of Internet services.
It is a highly collaborative and cross-layer approach involving many stakehold-
ers, and thus, has a huge potential for applications. As not all applications can be
covered comprehensively, the focus of this chapter was on Wi-Fi o�oading. Wi-
Fi o�oading provides a complementary Internet access over a �xed network to
reduce the load on mobile networks. The applicability of Wi-Fi o�oading can
bene�t from social information, such as information about location and mo-
bility of users to select appropriate public hotspots, or information about trust
between users to share private Wi-Fi networks. A simple hotspot location model
for the performance evaluation of public Wi-Fi o�oading was designed and its
applicability was con�rmed. A socially-aware home router platform for private
Wi-Fi o�oading and video content distribution was presented. Finally, the im-
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pact of public and private Wi-Fi o�oading on the QoE and energy consumption
of HAS sessions was investigated in a simulation study.

The performance of Wi-Fi o�oading in cities depends on the locations and
coverage of Wi-Fi hotspots. To �nd a general model for such hotspot distribu-
tions, the characteristics of public Wi-Fi infrastructure in cities were analyzed.
After a transformation to polar coordinates with respect to the city center, a
uniform distribution of the angle and an exponential distribution of the dis-
tance was �tted. A simple model for generating hotspot distributions for arbi-
trary cities could be derived. Although the generated hotspot distributions can-
not accurately recreate the spatial patterns of real hotspot locations, they could
replicate the o�oading potential, coverage, or signal strength in a city. Thus, the
simple model can be used to generate hotspot distributions for the performance
evaluation of Wi-Fi o�oading in scenarios, for which real hotspot locations are
not available. A performance evaluation study for public Wi-Fi o�oading with
a generated hotspot distribution showed similar results to the study with the
original hotspot distribution, and thus, con�rmed the applicability of the simple
hotspot location model.

Apart from to public hotspots, also private Wi-Fi infrastructure can be uti-
lized for SATM. However, the sharing of private Wi-Fi networks requires a trust
relationship to the owner to avoid abuse by malicious users. To easily enable
private Wi-Fi o�oading among trusted users, the HORST mechanism was de-
veloped, which additionally supports caching, prefetching, and content delivery
on the home router. Therefore, HORST consists of a �rmware for home routers,
an OSN app, and a mobile device app. The �rmware hosts SATM mechanisms on
the private home router, which leverage social information from the OSN app
and the mobile app to improve the QoE of HAS. A HORST prototype was im-
plemented, evaluated, and demonstrated, which allowed users to request access
at a friend’s HORST home router, receive the credentials for the private Wi-Fi,
connect to it, and access the Internet. This proved the feasibility of HORST to
increase the Wi-Fi o�oading potential. The utilization of other SATM mecha-
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nisms, i.e., caching, prefetching, and content delivery, for improved QoE of HAS
provided additional incentives to o�oad with HORST.

The performance evaluation of public Wi-Fi o�oading for HAS in the city of
Darmstadt, Germany, showed that QoE and smartphone energy consumption
of o�oaded HAS sessions deteriorated. The reason is the lower throughput of
public Wi-Fi hotspots compared to 3G and 4G access. The analysis of o�oad-
ing to residential Wi-Fi hotspots, which had a �xed broadband connection and
a throughput distribution similar to 3G, indicated it is possible to improve the
energy consumption compared to public Wi-Fi o�oading, and also to 3G access.
Thereby, the results came closer to 4G access, which allowed for the best HAS
performance in terms of QoE and energy consumption. The results showed that
Wi-Fi o�oading of HAS sessions is only bene�cial for end users if the received
bandwidth in the Wi-Fi network is not lower than in the mobile network. This
means, the throughput and coverage of public Wi-Fi infrastructure has to keep
up with the increasing 4G coverage if improved QoE and energy consumption
shall be incentives to encourage o�oading. This has to be taken into account
by operators, which o�er public Wi-Fi as an alternative Internet access. For the
moment, private Wi-Fi o�oading, e.g., using HORST, is a more promising ap-
proach to improve the QoE and energy consumption of HAS, and to reduce the
load on cellular networks, especially taking the increasing speeds of residential
�xed broadband connections into account [323].
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This thesis focused on QoE and access network tra�c management of HAS.
In the following, the thesis is summarized, especially considering the research
questions of Section 1.1, which are highlighted in bold. The major �ndings for
each research question are presented and conclusions are discussed. Finally, an
outlook to future research on the basis of this thesis completes this monograph.

5.1 Summary and Contributions

Video streaming is one of the most popular and demanding applications of to-
day’s Internet. The high data volumes, bandwidth requirements, and delay con-
straints of video tra�c pose a lot of challenges to ISPs, which want to deliver
the tra�c as e�ciently as possible, while maintaining a high subjectively per-
ceived service quality. To measure the satisfaction of end users with a networked
service, the concept of Quality of Experience (QoE) has been established. QoE
research aims to identify QoE factors on di�erent layers, which have a high
correlation to the subjectively perceived quality. Ideally, all QoE factors of a ser-
vice can be integrated into a holistic QoE model, which allows to quantify the
satisfaction of end users based on the values of the identi�ed QoE factors.

The current HTTP Adaptive Video Streaming (HAS) technology allows to
align the streaming demands to the network conditions by adapting the video
bit rate. However, the impact of quality adaptation on the QoE has not been
comprehensively investigated yet. Therefore, this thesis reviewed the previous
QoE results and investigated the impact of adaptation on the QoE of HAS
in subjective crowdsourced QoE studies. It was found that only the time on each
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layer and its respective image quality impacted the subjectively perceived qual-
ity, while the other adaptation-related parameters, such as number of quality
changes, did not show a signi�cant e�ect. Based on these results better adapta-
tion logics can be designed, which reach a higher QoE by maximizing the time on
high quality layers �rst, instead of focusing on low switching frequency or con-
servative up-switching behavior. These results were also used to formulate an
optimization problem as a linear program, which can be solved to compute the
QoE-optimal adaptation strategy for given throughput conditions. This frame-
work allows to benchmark and compare HAS adaptation logics in terms of dis-
tance to the optimally achievable QoE. Video streaming service providers can
use this benchmark to �nd the best adaptation logics for realistic network con-
ditions, in which their service is typically consumed.

The identi�cation of the most important QoE factors of HAS allowed to de-
velop monitoring approaches for these factors on network and adapta-
tion layer. Temporal pooling of objective per-frame or per-segment metrics,
which were collected by DPI, reached high correlations to subjective MOS val-
ues. ISPs can deploy such monitoring in their networks to keep track of the QoE
of their customers in real-time. As only little information about the underly-
ing content is used, the concept of temporal pooling might also be applied in
the context of end-to-end encrypted video tra�c. Irrespective of end-to-end en-
cryption, application-layer monitoring can be implemented as it monitors the
QoE factors directly at the client application. An Android app was developed to
monitor the video streaming by injecting JavaScript monitoring functions into
the website, which contains the video player element. Additionally, the app al-
lows to log network and device statistics, which can also be used to estimate the
QoE. Finally, the app cannot only be used for QoE monitoring, but it can also
collect subjective quality ratings of users. Such an unobtrusive monitoring app
can be provided by video services or network operators to their customers to
gain a full understanding of all QoE factors perceived by the end user. Addition-
ally, subjective QoE studies can be conducted with the app, which makes it a
valuable tool for researching the QoE of HAS.
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The monitored information is bene�cial as input to QoE-aware tra�c man-
agement solutions. This thesis investigated di�erent resource allocation
strategies for video streaming and web browsing �ows on a shared bot-
tleneck link. This scenario relates to access networks where multiple users
and applications typically share a single backhaul link. Analytical and simu-
lative performance evaluations were conducted and identi�ed the bene�ts of
QoE-aware tra�c management and the trade-o�s between the di�erent resource
allocation strategies. As a joint QoE improvement was possible for both applica-
tions compared to the best e�ort scenario without tra�c management, ISPs have
to invest into identifying the right tra�c management strategy for the speci�c
application mix in their networks. Moreover, it was found that dynamically con-
sidering application-layer information for tra�c management has advantages
over pure network-based strategies. This further con�rms the potential of col-
laborative and cross-layer approaches for QoE-aware tra�c management, such
as application-aware networks and network-aware applications. Given these
�ndings, network operators and service providers have to agree on standard
interfaces to exchange application and network information, which allows for
an improved QoE-aware tra�c management.

Considering the end user, his shared resources, and ubiquitous social
information about users, their interests, or their interactions with other users
can further enhance QoE-aware tra�c management. The concept of Socially-
aware Tra�c Management (SATM) was introduced and the most important
stakeholders were identi�ed. These stakeholders can collaborate to deliver a
personalized service to the end user to reach a high satisfaction with the ser-
vice. Therefore, all members of the video service delivery chain should identify
and bring together the relevant stakeholders for implementing SATM. In par-
ticular, they have to investigate what social signals they can harvest and how
they can bene�t from social information. Then again, standard interfaces have
to be de�ned to exchange social information among the di�erent stakeholders
for improved services and an improved tra�c management.
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Due to increasing user mobility, which puts huge loads on cellular networks,
growing public Wi-Fi infrastructure, and the prevalence of residential Wi-Fi net-
works in home environments, Wi-Fi o�loading was considered as a SATM
mechanism to improve the QoE of HAS. To evaluate the potential for public
Wi-Fi o�oading, the distribution of Wi-Fi hotspot locations was modeled. The
developed simple model reached a high accuracy in terms of o�oading poten-
tial, coverage, or signal strength. It could be successfully applied in a real perfor-
mance evaluation study, in which the generated hotspot distribution gave simi-
lar results to the original hotspot distribution. Based on this simple model, Wi-
Fi hotspot location distributions can be generated in arbitrary cities, for which
real hotspot locations are not available. This allows to design and evaluate the
performance of new SATM mechanisms based on Wi-Fi o�oading. Neverthe-
less, the simple model had limited applicability in case the spatial collocation
of hotspots has to be reconstructed. This thesis also presented a trust-based
SATM framework for home routers, which allows to improve the QoE of HAS by
o�ering Wi-Fi o�oading, caching, prefetching, and content delivery. As home
routers are typically provided by ISPs to their customers, this SATM platform
can be easily deployed to share private Wi-Fi networks, improve tra�c manage-
ment, and reach a higher QoE. Finally, the performance of Wi-Fi o�oading of
mobile HAS sessions was investigated in terms of QoE and energy e�ciency. It
was found that the utilization of Wi-Fi o�oading deteriorated the QoE factors
and energy consumption of end users due to lower throughput at public Wi-
Fi hotspots. However, if a comparable throughput distribution is available at
the Wi-Fi hotspots, e.g., in residential environments with �xed broadband con-
nections, both subjectively perceived metrics can be improved. Based on these
�ndings, in order to encourage end users to o�oad in terms of QoE and energy
consumption, the capacity of the available public Wi-Fi infrastructure has to
be increased to provide comparable throughput like current mobile networks.
Moreover, the sharing of private Wi-Fi infrastructure has to be facilitated and
incentivized, e.g., by utilizing the proposed SATM framework for home routers.
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5.2 Outlook

Continuing the work of this thesis, future research should strive to even bet-
ter understand the QoE of HAS. The previous QoE results and the �ndings of
this thesis have to be combined to eventually develop a holistic QoE model for
HAS. Therefore, more subjective studies will be needed to investigate HAS sys-
tems with more or di�erent quality layers, video lengths, and contents. Also the
impact of non-technical in�uence factors of QoE, such as human and context in-
�uence factors [82], has to be addressed. Based on the �ndings of these studies,
new monitoring concepts have to be developed to cover all relevant QoE factors.
The trend towards end-to-end encryption will restrain the usage of current net-
work monitoring mechanisms. It has to be investigated if established methods,
like temporal pooling, can be transferred to encrypted tra�c. The performance
of recent trends, such as the estimation of QoE from statistical features of the
encrypted tra�c with machine learning, or QoE monitoring with VNFs, have to
be evaluated and improved.

QoE-aware tra�c management has to leverage new networking technologies,
such as SDN, which allows to �exibly program the network behavior. This leads
to more possibilities for QoE monitoring and tra�c management in the net-
work. As this thesis identi�ed their gain, the implementation of cross-layer and
collaborative approaches with new networking technologies has to be tackled
to bene�t from additional information and take enhanced tra�c management
decision. Moreover, the trend towards edge and fog computing has to be inte-
grated into tra�c management solutions. Edge resources of ISPs or end users
can be utilized to host data and services in the proximity of end users, thereby
reducing delays and mitigating load on core networks and data centers. There-
fore, the concept of the trust-based SATM platform on home routers, which was
presented in this thesis, can be extended to include also other edge and fog de-
vices. The mobility of end users can be supported when virtualized services or
service components can be dynamically migrated or instantiated. The orches-
tration and consolidation of such services and service chains on edge resources
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has to target a high cost and energy e�ciency, and also a high QoE of end users.
As many tra�c management solutions currently only focus on the QoE of sin-
gle users, new mechanisms have to be developed, which also consider the QoE
of multiple users. This requires more research on QoE fairness and coordinated
tra�c management actions.

More research is also needed in the �eld of SATM. This thesis showed, for
the example of utilizing private and public Wi-Fi infrastructure, that end users
were able to participate in SATM and that both ISPs and end users could ben-
e�t. Thus, in future works, Wi-Fi o�oading has to be leveraged and also other
mechanisms need to be investigated. Ultimately, di�erent approaches and mech-
anisms should be combined to create synergies, which result in improved tra�c
management on all layers. Therefore, it is necessary to de�ne and implement
interfaces for the collaboration of stakeholders in terms of exchange of infor-
mation and coordination of tra�c management actions. With respect to social
information, it has to be researched how relevant social information can be iden-
ti�ed and best exploited. Due to the vast amount of data, e.g., in OSNs, sampling
techniques, big data analytics, or deep learning might be utilized. Furthermore,
models for social interactions are needed, which could be used for improved
tra�c management decisions. First attempts, e.g., to model the social cascades
of video sharing in OSNs, have to be re�ned, and new models have to be de-
veloped. Finally, privacy issues have to be considered to prevent the abuse of
sensitive personal data, which might require additional legal regulations. Nev-
ertheless, SATM foreshadows a huge potential for improving service delivery
and QoE, which still has to be uncovered and popularized.

The above presented outlook touches only the obvious future work, for which
this monograph can be used as a starting point to launch new research activities.
It is intentionally modest, as disruptive technology trends and groundbreaking
research milestones might change the challenges, goals, and prospects of re-
search at any time. At the time of writing this thesis, the presented �ndings on
the relevant QoE factors of HAS, and the conducted studies on QoE-aware and
socially-aware tra�c management approaches help to enhance the satisfaction

172



5.2 Outlook

of end users with video streaming services in many ways. This thesis allows
service providers to design and benchmark improved HAS adaptation logics.
Moreover, it o�ers ISPs concepts for QoE monitoring on di�erent layers and
for QoE-aware tra�c management on bottleneck links, such as in access net-
works. Finally, it shows how end users can participate and bene�t from SATM
on the example of o�oading to Wi-Fi infrastructure, which is prevalent in homes
and public spaces. Beyond that, the general concepts and methodologies, which
were discussed throughout this thesis, are not limited to speci�c technologies
and services, but can still be applied when the QoE of other or future networked
services is to be investigated and improved.
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Acronyms

2G Second Generation Mobile Telecommunications.

3G Third Generation Mobile Telecommunications.

3GP 3GPP File Format.

3GPP Third Generation Partnership Project.

4G Fourth Generation Mobile Telecommunications.

AAC Advanced Audio Coding.

ACR Absolute Category Rating.

ADSL Asymmetric Digital Subscriber Line.

ANOVA Analysis of Variance.

API Application Programming Interface.

AS Autonomous System.

BIEB Bandwidth Independent E�cient Bu�ering Adaptation Logic.

BSSID Basic Service Set Identi�er.

CBR Constant Bit Rate.
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Acronyms

CDF Cumulative Distribution Function.

CDN Content Delivery Network.

COST European Cooperation in Science and Technology.

COST �alinet European Network on Quality of Experience in Multimedia
Systems and Services.

DASH Dynamic Adaptive Streaming over HTTP.

DBF Dynamic Bandwidth Allocation for Each Video Flow.

DCR Degradation Category Rating.

DES Discrete Event Simulation.

DFG Deutsche Forschungsgemeinschaft.

DFG Crowdsourcing Design und Bewertung neuer Mechanismen für Crowd-
sourcing als neue Form der Arbeitsorganisation im Internet.

DFG ÖkoNet Entwurf und Bewertung neuer Mechanismen für das Internet
der Zukunft - Neue Paradigmen und ökonomische Aspekte.

DFG QoE-DZ Analyse und Optimierung des Trade-o�s zwischen QoE und En-
ergiee�zienz in Datenzentren.

DHT Distributed Hash Table.

Di�Serv Di�erentiated Services.

DOM Document Object Model.

DPI Deep Packet Inspection.

EDGE Enhanced Data Rates for GSM Evolution.

176



Acronyms

EU European Union.

EU FP7 SmartenIT Socially-aware Management of New Overlay Application
Tra�c combined with Energy E�ciency in the Internet.

EU H2020 INPUT In-network Programmability for Next-generation Personal
Cloud Service Support.

EU H2020 MONROE Measuring Mobile Broadband Networks in Europe.

EU H2020 MONROE/Mobi-QoE Monitoring and Analysis of Quality of Ex-
perience in Mobile Broadband Networks.

FBF Fixed Bandwidth Allocation for Each Video Flow.

FBV Fixed Bandwidth Allocation for All Videos Flows.

FP7 Framework Programme 7.

fps Frames per Second.

FTW Forschungszentrum Telekommunikation Wien.

GPRS General Packet Radio Service.

GPS Global Positioning System.

H.264/AVC H.264 Advanced Video Coding.

H.264/SVC H.264 Scalable Video Coding.

H.265/HEVC H.265 High E�ciency Video Coding.

H2020 Horizon 2020.

HAS HTTP Adaptive Video Streaming.
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Acronyms

HD High De�nition.

HDS Adobe HTTP Dynamic Streaming.

HLS Apple HTTP Live Streaming.

HORST Home Router Sharing based on Trust.

HSPA High Speed Packet Access.

HTML Hypertext Markup Language.

HTML5 Hypertext Markup Language Version 5.

HTTP Hypertext Transfer Protocol.

IEEE Institute of Electrical and Electronics Engineers.

IP Internet Protocol.

IPTV Internet Protocol Television.

IQX Exponential Interdependency of QoE and QoS.

ISP Internet Service Provider.

KLU Klagenfurt University Adaptation Logic.

LRU Least Recently Used.

LTE Long Term Evolution.

M/M/1-DPS M/M/1 Queue with Discriminatory Processor Sharing Policy.

M/M/1-GPS M/M/1 Queue with Generalized Processor Sharing Policy.

M/M/1-PS M/M/1 Queue with Processor Sharing Policy.
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Acronyms

MAC Media Access Control.

MCNKP Multiple-choice Nested Knapsack Problem.

MILP Mixed Integer Linear Program.

MOS Mean Opinion Score.

MPEG Moving Picture Experts Group.

MSS Microsoft Silverlight Smooth Streaming.

NAS Network-attached Storage.

NFV Network Function Virtualization.

NGMN Next Generation Mobile Networks.

NGMN P-SERQU Service Quality De�nition and Measurement.

OSI Open Systems Interconnection.

OSN Online Social Network.

P2P Peer-to-peer.

PBCC Point-biserial Correlation Coe�cient.

PLCC Pearson Linear Correlation Coe�cient.

QoE Quality of Experience.

QoS Quality of Service.

QP Quantization Parameter.
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Acronyms

RAT Radio Access Technology.

REST Representational State Transfer.

RTT Round Trip Time.

SAND Server and Network Assisted DASH.

SATM Socially-aware Tra�c Management.

SBC Single-board Computer.

SD Secure Digital.

SDN Software-de�ned Networking.

SLA Service-level Agreement.

SROCC Spearman Rank Order Correlation Coe�cient.

SSID Service Set Identi�er.

SSIM Structural Similarity.

STB Set-top Box.

TCP Transmission Control Protocol.

TRI Tribler-based Adaptation Logic.

TUB Technical University Berlin Adaptation Logic.

UMTS Universal Mobile Telecommunications System.

UNaDa User-owned Nano Data Center.

URL Uniform Resource Locator.
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Acronyms

USB Universal Serial Bus.

VAP Virtual Access Point.

VBR Variable Bit Rate.

VCEG Video Coding Experts Group.

VNF Virtual Network Function.

WBV Weighted Bandwidth Allocation for All Videos Flows.

WLAN Wireless Local Area Network.

WPS Wi-Fi Protected Setup.

181





Bibliography and References

Bibliography of the Author

Book Chapters

[1] M. Seufert, G. Darzanos, I. Papa�li, R. Łapacz, V. Burger, and T. Hoßfeld,
“Socially-Aware Tra�c Management”, in Socioinformatics – The Social
Impact of Interactions between Humans and IT, K. Zweig, W. Neuser, V.
Pipek, M. Rohde, and I. Scholtes, Eds., Springer International Publishing,
2014, pp. 25–43.

[2] V. Burger, D. Hock, I. Scholtes, T. Hoßfeld, D. Garcia, and M. Seufert, “So-
cial Network Analysis in the Enterprise: Challenges and Opportunities”,
in Socioinformatics – The Social Impact of Interactions between Humans
and IT, K. Zweig, W. Neuser, V. Pipek, M. Rohde, and I. Scholtes, Eds.,
Springer International Publishing, 2014, pp. 95–120.

Journal Papers

[3] C. Metter, M. Seufert, F. Wamser, T. Zinner, and P. Tran-Gia, “Analyti-
cal Model for SDN Signaling Tra�c and Flow Table Occupancy and its
Application for Various Types of Tra�c”, IEEE Transactions on Network
and Service Management, 2017, in press.

[4] T. Zinner, S. Geissler, S. Lange, S. Gebert, M. Seufert, and P. Tran-Gia, “A
Discrete-Time Model for Optimizing the Processing Time of Virtualized
Network Functions”, Computer Networks, 2017, in press.

183



Bibliography and References

[5] F. Wamser, P. Casas, M. Seufert, C. Moldovan, P. Tran-Gia, and T.
Hoßfeld, “Modeling the YouTube Stack: from Packets to Quality of Ex-
perience”, Computer Networks, vol. 109, no. 2, pp. 211–224, 2016.

[6] M. Seufert, V. Burger, K. Lorey, A. Seith, F. Loh, and P. Tran-Gia, “Assess-
ment of Subjective In�uence and Trust with an Online Social Network
Game”, Computers in Human Behavior, vol. 64, pp. 233–246, 2016.

[7] S. Tavakoli, S. Egger, M. Seufert, R. Schatz, K. Brunnström, and N. Gar-
cía, “Perceptual Quality of HTTP Adaptive Streaming Strategies: Cross-
Experimental Analysis of Multi-Laboratory and Crowdsourced Subjec-
tive Studies”, IEEE Journal on Selected Areas in Communications, vol. 34,
no. 8, pp. 2141–2153, 2016.

[8] V. Burger, M. Seufert, T. Hoßfeld, and P. Tran-Gia, “Performance Eval-
uation of Backhaul Bandwidth Aggregation Using a Partial Sharing
Scheme”, Physical Communication, vol. 19, pp. 135–144, 2016.

[9] P. Casas, M. Seufert, F. Wamser, B. Gardlo, A. Sackl, and R. Schatz, “Next
to You: Monitoring Quality of Experience in Cellular Networks from the
End-devices”, IEEE Transactions on Network and Service Management,
vol. 13, no. 2, pp. 181–196, 2016.

[10] M. Seufert, T. Griepentrog, V. Burger, and T. Hoßfeld, “A Simple WiFi
Hotspot Model for Cities”, IEEE Communications Letters, vol. 20, no. 2,
pp. 384–387, 2016.

[11] M. Seufert, S. Lange, and T. Hoßfeld, “More than Topology: Joint Topol-
ogy and Attribute Sampling and Generation of Social Network Graphs”,
Computer Communications, vol. 73, no. B, pp. 176–187, 2016.

[12] F. Wamser, A. Blenk, M. Seufert, T. Zinner, W. Kellerer, and P. Tran-Gia,
“Modeling and Performance Analysis of Application-Aware Resource
Management”, International Journal of NetworkManagement, vol. 25, no.
4, pp. 223–241, 2015.

184



Bibliography and References

[13] T. Hoßfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia, “Identi-
fying QoE Optimal Adaptation of HTTP Adaptive Streaming Based on
Subjective Studies”, Computer Networks, vol. 81, pp. 320–332, 2015.

[14] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia,
“A Survey on Quality of Experience of HTTP Adaptive Streaming”, IEEE
Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2015.

[15] T. Hoßfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia, “Close
to Optimum? User-centric Evaluation of Adaptation Logics for HTTP
Adaptive Streaming”, PIK - Praxis der Informationsverarbeitung und
Kommunikation, vol. 37, pp. 275–285, 2014.

[16] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A System for On-line
Monitoring of YouTube QoE in Operational 3G Networks”, ACM SIG-
METRICS Performance Evaluation Review, vol. 41, no. 2, pp. 44–46, 2013.

[17] F. Wamser, D. Hock, M. Seufert, B. Staehle, R. Pries, and P. Tran-Gia,
“Using Bu�ered Playtime for QoE-Oriented Resource Management of
YouTube Video Streaming”, Transactions on Emerging Telecommunica-
tions Technologies, vol. 24, no. 3, pp. 288–302, 2013.

[18] D. Hock, F. Wamser, M. Seufert, R. Pries, and P. Tran-Gia, “OC2E2AN:
Optimized Control Center for Experience Enhancements in Access Net-
works”, PIK - Praxis der Informationsverarbeitung und Kommunikation,
vol. 36, p. 40, 2013.

Conference Papers

[19] M. Seufert, S. Lange, and M. Meixner, “Automated Decision Making
based on Pareto Frontiers in the Context of Service Placement in Net-
works”, in Proceedings of the 29th International Teletra�c Congress (ITC),
Genoa, Italy, 2017.

185



Bibliography and References

[20] F. Wamser, S. Höfner, M. Seufert, and P. Tran-Gia, “Client-side Dynamic
Server Selection for MPEG DASH Video Streaming”, in Proceedings of
the ACM SIGCOMM Workshop on QoE-based Analysis and Management
of Data Communication Networks (Internet-QoE), Los Angeles, CA, USA,
2017.

[21] M. Seufert, B. Kamneng Kwam, F. Wamser, and P. Tran-Gia, “EdgeNet-
workCloudSim: Placement of Service Chains in Edge Clouds Using Net-
workCloudSim”, in Proceedings of the 1st IEEE International Workshop on
Network Programmability – From the Data Center to the Ground (NetFoG),
Bologna, Italy, 2017.

[22] A. Schwind, M. Seufert, Ö. Alay, P. Casas, P. Tran-Gia, and F. Wamser,
“Concept and Implementation of Video QoE Measurements in a Mobile
Broadband Testbed”, in Proceedings of the IEEE/IFIP Workshop on Mobile
Network Measurement (MNM), Dublin, Ireland, 2017.

[23] M. Seufert, O. Zach, M. Slanina, and P. Tran-Gia, “Unperturbed Video
Streaming QoE Under Web Page Related Context Factors”, in Proceed-
ings of the 9th International Conference on Quality of Multimedia Experi-
ence (QoMEX), Erfurt, Germany, 2017.

[24] M. Seufert, N. Wehner, F. Wamser, P. Casas, A. D’Alconzo, and P. Tran-
Gia, “Unsupervised QoE Field Study for Mobile YouTube Video Stream-
ing with YoMoApp”, in Proceedings of the 9th International Conference
on Quality of Multimedia Experience (QoMEX), Erfurt, Germany, 2017.

[25] P. Casas, A. D’Alconzo, F. Wamser, M. Seufert, B. Gardlo, A. Schwind,
P. Tran-Gia, and R. Schatz, “Predicting QoE in Cellular Networks using
Machine Learning and in-Smartphone Measurements”, in Proceedings
of the 9th International Conference on Quality of Multimedia Experience
(QoMEX), Erfurt, Germany, 2017.

[26] V. Burger, M. Seufert, T. Zinner, and P. Tran-Gia, “An Approximation of
the Backhaul Bandwidth Aggregation Potential Using a Partial Sharing

186



Bibliography and References

Scheme”, in Proceedings of the 15th IFIP/IEEE International Symposium
on Integrated Network Management (IM), Lisbon, Portugal, 2017.

[27] L. Dinh-Xuan, M. Seufert, F. Wamser, and P. Tran-Gia, “Study on the
Accuracy of QoE Monitoring for HTTP Adaptive Video Streaming Us-
ing VNF”, in Proceedings of the 1st IFIP/IEEE International Workshop on
Quality of Experience Management (QoE-Management), Lisbon, Portugal,
2017.

[28] O. Zach, M. Seufert, M. Hirth, M. Slanina, and P. Tran-Gia, “On Use of
Crowdsourcing for H.264/AVC and H.265/HEVC Video Quality Evalua-
tion”, in Proceedings of Radioelektronika, Brno, Czech Republic, 2017.

[29] M. Seufert, V. Burger, and F. Kaup, “Evaluating the Impact of WiFi O�-
loading on Mobile Users of HTTP Adaptive Video Streaming”, in Pro-
ceedings of the 5th IEEE International Workshop on Quality of Experience
for Multimedia Communications (QoEMC), Washington, DC, USA, 2016.

[30] C. Metter, M. Seufert, F. Wamser, T. Zinner, and P. Tran-Gia, “Analytic
Model for SDN Controller Tra�c and Switch Table Occupancy”, in Pro-
ceedings of the 12th International Conference on Network and ServiceMan-
agement (CNSM), Best Paper Award, Montreal, Canada, 2016.

[31] M. Seufert, S. Lange, and M. Meixner, “Automated Decision Mak-
ing Methods for the Multi-objective Optimization Task of Cloud
Service Placement”, in Proceedings of the 1st International Workshop
on Programmability for Cloud Networks and Applications (PROCON),
Würzburg, Germany, 2016.

[32] M. Seufert and T. Hoßfeld, “One Shot Crowdtesting: Approaching the
Extremes of Crowdsourced Subjective Quality Testing”, in Proceedings
of the 5th ISCA/DEGA Workshop on Perceptual Quality of Systems (PQS),
Berlin, Germany, 2016.

187



Bibliography and References

[33] F. Wamser, M. Seufert, S. Höfner, and P. Tran-Gia, “Concept for Client-
initiated Selection of Cloud Instances for Improving QoE of Distributed
Cloud Services”, in Proceedings of the ACM SIGCOMM Workshop on
QoE-based Analysis and Management of Data Communication Networks
(Internet-QoE), Florianópolis, Brazil, 2016.

[34] M. Seufert, P. Casas, F. Wamser, N. Wehner, R. Schatz, and P. Tran-Gia,
“Application-Layer Monitoring of QoE Parameters for Mobile YouTube
Video Streaming in the Field”, in Proceedings of the 6th IEEE Interna-
tional Conference on Communications and Electronics (ICCE), Ha Long,
Vietnam, 2016.

[35] L. Dinh-Xuan, M. Seufert, F. Wamser, and P. Tran-Gia, “QoE Aware
Placement of Content in Edge Networks on the Example of a Photo Al-
bum Cloud Service”, in Proceedings of the 6th IEEE International Con-
ference on Communications and Electronics (ICCE), Ha Long, Vietnam,
2016.

[36] M. Seufert, O. Zach, T. Hoßfeld, M. Slanina, and P. Tran-Gia, “Impact of
Test Condition Selection in Adaptive Crowdsourcing Studies on Subjec-
tive Quality”, in Proceedings of the 8th International Conference on Qual-
ity of Multimedia Experience (QoMEX), Lisbon, Portugal, 2016.

[37] M. Seufert, T. Hoßfeld, A. Schwind, V. Burger, and P. Tran-Gia, “Group-
based Communication in WhatsApp”, in Proceedings of the 1st IFIP Inter-
net of People Workshop (IoP), Vienna, Austria, 2016.

[38] V. Burger, J. F. Pajo, O. R. Sanchez, M. Seufert, C. Schwartz, F. Wamser, F.
Davoli, and P. Tran-Gia, “Load Dynamics of a Multiplayer Online Battle
Area and Simulative Assessment of Edge Server Placements”, in Proceed-
ings of the ACM Multimedia Systems Conference (MMSys), Klagenfurt,
Austria, 2016.

[39] M. Seufert, T. Hoßfeld, and C. Sieber, “Impact of Intermediate Layer on
Quality of Experience of HTTP Adaptive Streaming”, in Proceedings of

188



Bibliography and References

the 11th International Conference on Network and Service Management
(CNSM), Barcelona, Spain, 2015.

[40] P. Casas, B. Gardlo, M. Seufert, F. Wamser, and R. Schatz, “Taming QoE
in Cellular Networks: from Subjective Lab Studies to Measurements in
the Field”, in Proceedings of the 11th International Conference on Network
and Service Management (CNSM), Barcelona, Spain, 2015.

[41] V. Burger, G. Darzanos, I. Papa�li, and M. Seufert, “Trade-O� between
QoE and Operational Cost in Edge Resource Supported Video Stream-
ing”, in Proceedings of the 10th International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC), Krakow, Poland, 2015.

[42] A. Lareida, G. Petropoulos, V. Burger, M. Seufert, S. Soursos, and B.
Stiller, “Augmenting Home Routers for Socially-Aware Tra�c Manage-
ment”, in Proceedings of the 40th Annual IEEE Conference on Local Com-
puter Networks (LCN), Clearwater Beach, FL, USA, 2015.

[43] M. Seufert, A. Schwind, T. Hoßfeld, and P. Tran-Gia, “Analysis of Group-
based Communication in WhatsApp”, in Proceedings of the 7th EAI In-
ternational Conference on Mobile Networks and Management (MONAMI),
Santander, Spain, 2015.

[44] V. Burger, F. Kaup, M. Seufert, M. Wichtlhuber, D. Hausheer, and P.
Tran-Gia, “Energy Considerations for WiFi O�oading of Video Stream-
ing”, in Proceedings of the 7th EAI International Conference on Mobile
Networks and Management (MONAMI), Santander, Spain, 2015.

[45] M. Seufert, F. Wamser, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
“YouTube QoE on Mobile Devices: Subjective Analysis of Classical vs.
Adaptive Video Streaming”, in Proceedings of the 6th International Work-
shop on Tra�c Analysis and Characterization (TRAC), Dubrovnik, Croa-
tia, 2015.

189



Bibliography and References

[46] P. Casas, R. Schatz, F. Wamser, M. Seufert, and R. Irmer, “Exploring QoE
in Cellular Networks: How Much Bandwidth do you Need for Popular
Smartphone Apps?”, in Proceedings of the 5th ACM SIGCOMMWorkshop
on All Things Cellular: Operations, Applications and Challenges (ATC),
London, UK, 2015.

[47] V. Burger, M. Seufert, F. Kaup, M. Wichtlhuber, D. Hausheer, and P.
Tran-Gia, “Impact of WiFi O�oading on Video Streaming QoE in Ur-
ban Environments”, in Proceedings of the IEEE Workshop on Quality of
Experience-based Management for Future Internet Applications and Ser-
vices (QoE-FI), London, UK, 2015.

[48] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
“YoMoApp: a Tool for Analyzing QoE of YouTube HTTP Adaptive
Streaming in Mobile Networks”, in Proceedings of the European Confer-
ence on Networks and Communications (EuCNC), Paris, France, 2015.

[49] M. Seufert, V. Burger, F. Wamser, P. Tran-Gia, C. Moldovan, and T.
Hoßfeld, “Utilizing Home Router Caches to Augment CDNs toward
Information-Centric Networking”, in Proceedings of the European Con-
ference on Networks and Communications (EuCNC), Paris, France, 2015.

[50] S. Egger, B. Gardlo, M. Seufert, and R. Schatz, “The Impact of Adapta-
tion Strategies on Perceived Quality of HTTP Adaptive Streaming”, in
Proceedings of the 1st Workshop on Design, Quality and Deployment of
Adaptive Video Streaming (VideoNext), Sydney, Australia, 2014.

[51] K. Wajda, R. Stankiewicz, Z. Dulinski, T. Hoßfeld, M. Seufert, D.
Hausheer, M. Wichtlhuber, I. Papa�li, M. Dramitinos, P. Cruschelli,
S. Soursos, R. Lapacz, and B. Stiller, “Socially-aware Management of
New Overlay Applications Tra�c - The Optimization Potentials of the
SmartenIT Approach”, in Proceedings of the 6th International Conference
on Mobile Networks and Management (MONAMI), Würzburg, Germany,
2014.

190



Bibliography and References

[52] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner, “Assessing E�ect Sizes of
In�uence Factors Towards a QoE Model for HTTP Adaptive Streaming”,
in Proceedings of the 6th InternationalWorkshop on Quality of Multimedia
Experience (QoMEX), Singapore, 2014.

[53] I. Papa�li, K. Wajda, R. Lapacz, A. Predieri, T. Bocek, and M. Seufert, “An
Overview of Application Tra�c Management Approaches: Challenges
and Potential Extensions”, in Proceedings of the 8th International Confer-
ence on Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), Birmingham, UK, 2014.

[54] B. Gardlo, S. Egger, M. Seufert, and R. Schatz, “Crowdsourcing 2.0: En-
hancing Execution Speed and Reliability of Web-based QoE Testing”,
in Proceedings of the International Conference on Communications (ICC),
Sydney, Australia, 2014.

[55] M. Seufert, K. Lorey, M. Hirth, and T. Hoßfeld, “Gami�cation Framework
for Personalized Surveys on Relationships in Online Social Networks”,
in Proceedings of the 1st International Workshop on Crowdsourcing and
Gami�cation in the Cloud (CGCloud), Dresden, Germany, 2013.

[56] M. Seufert, V. Burger, and T. Hoßfeld, “HORST - Home Router Sharing
based on Trust”, in Proceedings of theWorkshop on Social-aware Economic
Tra�c Management for Overlay and Cloud Applications (SETM), Zurich,
Switzerland, 2013.

[57] M. Seufert, G. Darzanos, V. Burger, I. Papa�li, and T. Hoßfeld, “Socially-
Aware Tra�c Management”, in Proceedings of the Workshop Sozioinfor-
matik, Koblenz, Germany, 2013.

[58] V. Burger, T. Hoßfeld, D. Garcia, M. Seufert, I. Scholtes, and D. Hock,
“Resilience in Enterprise Social Networks”, in Proceedings of the Work-
shop Sozioinformatik, Koblenz, Germany, 2013.

191



Bibliography and References

[59] A. Sackl, M. Seufert, and T. Hoßfeld, “Asking Costs Little? The Impact
of Tasks in Video QoE Studies on User Behavior and User Ratings”, in
Proceedings of the 4th International Workshop on Perceptual Quality of
Systems (PQS), Vienna, Austria, 2013.

[60] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A System for On-line
Monitoring of YouTube QoE in Operational 3G Networks”, in Proceed-
ings of the 31st International Symposium on Computer Performance, Mod-
eling, Measurements and Evaluation (IFIP Performance), Vienna, Austria,
2013.

[61] M. Seufert, M. Slanina, S. Egger, and M. Kottkamp, “To Pool or not to
Pool: A Comparison of Temporal Pooling Methods for HTTP Adaptive
Video Streaming”, in Proceedings of the 5th International Workshop on
Quality of Multimedia Experience (QoMEX), Klagenfurt, Austria, 2013.

[62] P. Casas, M. Seufert, S. Egger, and R. Schatz, “Quality of Experience in
Remote Virtual Desktop Services”, in Proceedings of the IFIP/IEEE Inter-
national Workshop on Quality of Experience Centric Management (QC-
Man), Ghent, Belgium, 2013.

[63] T. Hoßfeld, R. Schatz, M. Seufert, M. Hirth, T. Zinner, and P. Tran-Gia,
“Quanti�cation of YouTube QoE via Crowdsourcing”, in Proceedings of
the International Workshop on Multimedia Quality of Experience - Mod-
eling, Evaluation, and Directions (MQoE), Dana Point, CA, USA, 2011.

So�ware Demonstrations

[64] F. Wamser, F. Loh, R. Bruschi, P. Lago, M. Seufert, and P. Tran-Gia, Dy-
namic Cloud Service Placement for Live Video Streaming with a Remote-
Controlled Drone, 15th IFIP/IEEE International Symposium on Integrated
Network Management (IM), Best Demonstration Award, Lisbon, Portu-
gal, 2017.

192



Bibliography and References

[65] G. Petropoulos, A. Lareida, S. Soursos, M. Seufert, V. Burger, and B.
Stiller, WiFi O�oading and Socially Aware Prefetching on Augmented
Home Routers, 40th Annual IEEE Conference on Local Computer Net-
works (LCN), Best Demonstration Award, Clearwater Beach, FL, USA,
2015.

[66] M. Seufert, F. Wamser, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz, On
theMonitoring of YouTube QoE in Cellular Networks from End-devices, 7th
Wireless of the Students, by the Students, for the Students Workshop
(S3), Paris, France, 2015.

[67] F. Wamser, M. Seufert, P. Tran-Gia, R. Irmer, P. Casas, and R. Schatz,
YoMoApp - Performance Monitoring of Mobile Networks, European Con-
ference on Networks and Communications (EuCNC), Paris, France,
2015.

[68] F. Wamser, D. Hock, M. Seufert, T. Zinner, and P. Tran-Gia, Demonstrat-
ing the Bene�t of Joint Application and Network ControlWithin aWireless
Access Network, IEEE Conference on Computer Communications (INFO-
COM), Turin, Italy, 2013.

[69] D. Hock, F. Wamser, M. Seufert, R. Pries, and P. Tran-Gia, OC2E2AN: Op-
timized Control Center for Experience Enhancements in Access Networks,
Conference on Networked Systems (NetSys), Stuttgart, Germany, 2013.

[70] F. Wamser, D. Hock, M. Seufert, R. Pries, and P. Tran-Gia, Performance
Optimization in Access Networks Using a Combined Control Strategy, 12th
Würzburg Workshop on IP: ITG Workshop ’Visions of Future Genera-
tion Networks’ (Euroview), Würzburg, Germany, 2012.

Poster Presentations

[71] M. Seufert, T. Hoßfeld, and C. Sieber, Impact of Intermediate Layer on
Quality of Experience of HTTP Adaptive Streaming. 11th International

193



Bibliography and References

Conference on Network and Service Management (CNSM), Barcelona,
Spain, 2015.

[72] M. Seufert, F. Wamser, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz, On
theMonitoring of YouTube QoE in Cellular Networks from End-devices, 7th
Wireless of the Students, by the Students, for the Students Workshop
(S3), Paris, France, 2015.

[73] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
Understanding YouTube QoE in Cellular Networks with YoMoApp – a QoE
Monitoring Tool for YouTube Mobile, 21st Annual International Confer-
ence on Mobile Computing and Networking (MobiCom), 2015.

[74] M. Seufert, V. Burger, and T. Hoßfeld, HORST – Home Router Sharing
based on Trust, Workshop on Social-aware Economic Tra�c Manage-
ment for Overlay and Cloud Applications (SETM), Zurich, Switzerland,
2013.

[75] F. Wamser, D. Hock, M. Seufert, R. Pries, and P. Tran-Gia, Application
and Quality of Experience Aware Resource Management in Wireless Ac-
cess Networks, EuroNF Summer School Modeling and Analysis of Novel
Mechanisms in Future Internet Applications, Würzburg, Germany, 2012.

Technical Reports

[76] M. Seufert, T. Hoßfeld, G. Sperb Machado, T. Bocek, M. Biancani, P. Cr-
uschelli, R. Lapacz, G. Darzanos, I. Papa�li, and K. Wajda, “A Survey of
Cloud Services and Potential Applications of Social Awareness”, Uni-
versity of Würzburg, Tech. Rep. 496, 2015.

[77] T. Hoßfeld, M. Hirth, J. Redi, F. Mazza, P. Korshunov, B. Naderi, M.
Seufert, B. Gardlo, S. Egger, and C. Keimel, “Best Practices and Recom-
mendations for Crowdsourced QoE - Lessons learned from the Qualinet
Task Force Crowdsourcing”, COST Action IC1003 European Network on

194



Bibliography and References

Quality of Experience in Multimedia Systems and Services (QUALINET),
Tech. Rep., 2014.

[78] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner, “Crowdsourced Sub-
jective User Study Results on QoE In�uence Factors of HTTP Adaptive
Streaming”, University of Würzburg, Tech. Rep. 491, 2014.

[79] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia,
“A Survey on Quality of Experience of HTTP Adaptive Streaming”, Uni-
versity of Würzburg, Tech. Rep. 490, 2014.

[80] M. Wennesheimer, D. Robinson, J. De Vriendt, D. De Vleeschauwer, C.
Bahr, K. Heise, S. Argyropoulos, B. Feiten, M. Bilgic, T. Raiha, S. Egger,
M. Seufert, M. Slanina, M. Kottkamp, H. Gsödl, H. Ibl, and R. García
Pérez, “Service Quality De�nition and Measurement”, Next Generation
Mobile Networks Alliance (NGMN), Tech. Rep., 2013, Version 1.0.4.

[81] T. Hoßfeld, T. Zinner, R. Schatz, M. Seufert, and P. Tran-Gia, “Transport
Protocol In�uences on YouTube QoE”, University of Würzburg, Tech.
Rep. 482, 2011.

General References

[82] P. Le Callet, S. Möller, and A. Perkis (eds), “Qualinet White Paper on
De�nitions of Quality of Experience”, European Network on Quality of
Experience in Multimedia Systems and Services (COST Action IC 1003),
Lausanne, Switzerland, Tech. Rep., 2013, Version 1.2.

[83] International Telecommunication Union, ITU-T Recommendation E.800:
De�nitions of Terms Related to Quality of Service, 2008.

[84] ——, ITU-T Recommendation P.910: Subjective Video Quality Assessment
Methods for Multimedia Applications, 2008.

[85] D. F. Brueck and M. B. Hurst, “Apparatus, System, and Method for Multi-
bitrate Content Streaming”, US7818444 B2, 2010.

195



Bibliography and References

[86] A. Zambelli, “Smooth Streaming Technical Overview”, Microsoft Cor-
poration, Tech. Rep., 2009.

[87] Adobe Systems Inc., “HTTP Dynamic Streaming on the Adobe Flash
Platform”, Adobe Systems Inc., Tech. Rep., 2010.

[88] European Telecommunications Standard Institute (ETSI), Universal Mo-
bile Telecommunication System (UMTS); LTE; Transparent End-to-end
Packet-switched Streaming Service (PSS); Protocols and Codecs (3GPP TS
26.234 version 9.1.0 Release 9), 2009.

[89] ——, Universal Mobile Telecommunication System (UMTS); LTE; Transpar-
ent End-to-end Packet-swiched Streaming Service (PSS); Progressive Down-
load and Dynamic Adaptive Streaming over HTTP (3GP-DASH) (3GPP TS
26.247 version 1.0.0 Release 10), 2010.

[90] International Standards Organization/International Electrotechnical
Commission (ISO/IEC), 23009-1:2012 Information Technology – Dynamic
Adaptive Streaming over HTTP (DASH) – Part 1: Media Presentation De-
scription and Segment Formats, 2012.

[91] ——, 14496-10:2012 Information Technology – Coding of Audio-visual Ob-
jects – Part 10: Advanced Video Coding, 2012.

[92] ——, 23008-2:2013 Information Technology – High E�ciency Coding and
Media Delivery in Heterogeneous Environments – Part 2: High E�ciency
Video Coding, 2013.

[93] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video
Coding Extension of the H.264/AVC Standard”, IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–1120, 2007.

[94] M. Wien, H. Schwarz, and T. Oelbaum, “Performance Analysis of SVC”,
IEEE Transactions on Circuits and Systems for Video Technology, vol. 17,
no. 9, pp. 1194–1203, 2007.

196



Bibliography and References

[95] R. Gupta, A. Pulipaka, P. Seeling, L. Karam, and M. Reisslein, “H.264
Coarse Grain Scalable (CGS) and Medium Grain Scalable (MGS) Encoded
Video: A Trace Based Tra�c and Quality Evaluation”, IEEE Transactions
on Broadcasting, vol. 58, no. 3, pp. 428–439, 2012.

[96] M. Gra�, C. Timmerer, H. Hellwagner, D. Negru, W. Cherif, and S. Bat-
tista, “Scalable Video Coding Guidelines and Performance Evaluations
for Adaptive Media Delivery of High De�nition Content”, in Proceedings
of the IEEE Symposium on Computers and Communications (ISCC), Split,
Croatia, 2013.

[97] M. Gra�, C. Timmerer, H. Hellwagner, W. Cherif, and A. Ksentini, “Eval-
uation of Hybrid Scalable Video Coding for HTTP-based Adaptive Me-
dia Streaming with High-de�nition Content”, in Proceedings of the 14th
International Symposium and Workshops on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM), Madrid, Spain, 2013.

[98] J. Famaey, S. Latre, N. Bouten, W. Van de Meerssche, B. De
Vleeschauwer, W. Van Leekwijck, and F. De Turck, “On the Merits
of SVC-based HTTP Adaptive Streaming”, in Proceedings of the 13th
IFIP/IEEE International Symposium on Integrated Network Management
(IM), Ghent, Belgium, 2013.

[99] T. Arsan, “Review of Bandwidth Estimation Tools and Application to
Bandwidth Adaptive Video Streaming”, in Proceedings of the 9th In-
ternational Conference on High-Capacity Optical Networks and Emerg-
ing/Enabling Technologies (HONET), Istanbul, Turkey, 2012.

[100] D. Yun, K. Chung, and J. Hong, “E�cient Bandwidth Estimation for
HTTP Adaptive Streaming”, in Proceedings of the International Confer-
ence on Information Networking (ICOIN), Phuket, Thailand, 2014.

[101] S. S. Chaudhari and R. C. Biradar, “Survey of Bandwidth Estimation
Techniques in Communication Networks”, Wireless Personal Communi-
cations, vol. 83, no. 2, pp. 1425–1476, 2015.

197



Bibliography and References

[102] K. Lazic, I. Basicevic, and J. Kovacevic, “Bandwidth Estimation in Adap-
tive Video Streaming over HTTP”, in Proceedings of the 5th IEEE Interna-
tional Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA,
2015.

[103] C. Müller, S. Lederer, and C. Timmerer, “An Evaluation of Dynamic
Adaptive Streaming over HTTP in Vehicular Environments”, in Proceed-
ings of the 4th Workshop on Mobile Video (MoVID), Chapel Hill, NC, USA,
2012.

[104] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz, “Adaptation Algo-
rithm for Adaptive Streaming over HTTP”, in Proceedings of the 19th
International Packet Video Workshop (PV), Munich, Germany, 2012.

[105] S. Oechsner, T. Zinner, J. Prokopetz, and T. Hoßfeld, “Supporting Scal-
able Video Codecs in a P2P Video-on-Demand Streaming System”, in
Proceedings of the 21th ITC Specialist Seminar onMultimedia Applications
– Tra�c, Performance and QoE (ITC-SS21), Miyazaki, Japan, 2010.

[106] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H. J.
Epema, M. Reinders, M. R. van Steen, and H. J. Sips, “Tribler: A Social-
based Peer-to-peer System”, Concurrency and Computation: Practice and
Experience, vol. 20, no. 2, pp. 127–138, 2008.

[107] C. Sieber, T. Hoßfeld, T. Zinner, P. Tran-Gia, and C. Timmerer, “Imple-
mentation and User-centric Comparison of a Novel Adaptation Logic for
DASH with SVC”, in Proceedings of the IFIP/IEEE International Workshop
on Quality of Experience Centric Management (QCMan), Ghent, Belgium,
2013.

[108] O. Oyman and S. Singh, “Quality of Experience for HTTP Adaptive
Streaming Services”, IEEE Communications Magazine, vol. 50, no. 4,
pp. 20–27, 2012.

198



Bibliography and References

[109] G. Tian and Y. Liu, “Towards Agile and Smooth Video Adaptation in Dy-
namic HTTP Streaming”, in Proceedings of the 8th International Confer-
ence on Emerging Networking Experiments and Technologies (CoNEXT),
Nice, France, 2012.

[110] T. Huang, R. Johari, and N. McKeown, “Downton Abbey Without
the Hiccups”, in Proceedings of the ACM SIGCOMM Workshop on Fu-
ture Human-centric Multimedia Networking (FhMN), Hong Kong, China,
2013.

[111] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “Elastic: A
Client-side Controller for Dynamic Adaptive Streaming over HTTP
(DASH)”, in Proceedings of the 20th International Packet Video Workshop
(PV), San Jose, CA, USA, 2013.

[112] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran, “Probe
and Adapt: Rate Adaptation for HTTP Video Streaming at Scale”, IEEE
Journal on Selected Areas in Communications, vol. 32, no. 4, pp. 719–733,
2014.

[113] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran, “Streaming
Video over HTTP with Consistent Quality”, in Proceedings of the 5th
ACM Multimedia Systems Conference (MMSys), Singapore, 2014.

[114] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
Bu�er-based Approach to Rate Adaptation: Evidence from a Large Video
Streaming Service”, ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4, pp. 187–198, 2015.

[115] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control-theoretic Ap-
proach for Dynamic Adaptive Video Streaming over HTTP”, ACM SIG-
COMM Computer Communication Review, vol. 45, no. 4, pp. 325–338,
2015.

199



Bibliography and References

[116] P. Juluri, V. Tamarapalli, and D. Medhi, “QoE Management in DASH Sys-
tems using the Segment Aware Rate Adaptation Algorithm”, in Proceed-
ings of the IEEE/IFIP Network Operations and Management Symposium
(NOMS), Istanbul, Turkey, 2016.

[117] G. Cofano, L. De Cicco, and S. Mascolo, “Modeling and Design of Adap-
tive Video Streaming Control Systems”, IEEE Transactions on Control of
Network Systems, 2016, in press.

[118] T. Hoßfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen,
“Initial Delay vs. Interruptions: Between the Devil and the Deep Blue
Sea”, in Proceedings of the 4th International Workshop on Quality of Mul-
timedia Experience (QoMEX), Yarra Valley, Australia, 2012.

[119] S. Egger, P. Reichl, T. Hoßfeld, and R. Schatz, “Time is Bandwidth? Nar-
rowing the Gap between Subjective Time Perception and Quality of Ex-
perience”, in Proceedings of the IEEE International Conference on Com-
munications (ICC), Ottawa, Canada, 2012.

[120] R. E. Kooij, A. Kamal, and K. Brunnström, “Perceived Quality of Channel
Zapping”, in Proceedings of the Communication Systems and Networks
(CSN), Palma de Mallorca, Spain, 2006.

[121] S. Egger, T. Hoßfeld, R. Schatz, and M. Fiedler, “Waiting Times in Quality
of Experience for Web Based Services”, in Proceedings of the 4th Inter-
national Workshop on Quality of Multimedia Experience (QoMEX), Yarra
Valley, Australia, 2012.

[122] A. Sackl, S. Egger, and R. Schatz, “Where’s the Music? Comparing
the QoE Impact of Temporal Impairments Between Music and Video
Streaming”, in Proceedings of the 5th International Workshop on Quality
of Multimedia Experience (QoMEX), Klagenfurt, Austria, 2013.

[123] T. De Pessemier, K. De Moor, W. Joseph, L. De Marez, and L. Martens,
“Quantifying the In�uence of Rebu�ering Interruptions on the User’s

200



Bibliography and References

Quality of Experience During Mobile Video Watching”, IEEE Transac-
tions on Broadcasting, vol. 59, no. 1, pp. 47–61, 2013.

[124] M.-N. Garcia, D. Dytko, and A. Raake, “Quality Impact Due to Initial
Loading, Stalling, and Video Bitrate in Progressive Download Video Ser-
vices”, in Proceedings of the 6th InternationalWorkshop onQuality ofMul-
timedia Experience (QoMEX), IEEE, Singapore, 2014.

[125] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao,
“YouTube Everywhere: Impact of Device and Infrastructure Synergies
on User Experience”, in Proceedings of the Internet Measurement Confer-
ence (IMC), Berlin, Germany, 2011.

[126] L. Chen, Y. Zhou, and D. M. Chiu, “Video Browsing - A Study of User
Behavior in Online VoD Services”, in Proceedings of the 22nd Interna-
tional Conference on Computer Communications and Networks (ICCCN),
Nassau, Bahamas, 2013.

[127] S. S. Krishnan and R. K. Sitaraman, “Video Stream Quality Impacts
Viewer Behavior: Inferring Causality Using Quasi-experimental De-
signs”, IEEE/ACM Transactions on Networking, vol. 21, no. 6, pp. 2001–
2014, 2013.

[128] A. Raake and S. Egger, “Quality and Quality of Experience”, in Quality of
Experience: Advanced Concepts, Applications and Methods, S. Möller and
A. Raake, Eds., Springer, 2014.

[129] Y. Qi and M. Dai, “The E�ect of Frame Freezing and Frame Skipping on
Video Quality”, in Proceedings of the 2nd International Conference on In-
telligent Information Hiding and Multimedia Signal Processing (IIH-MSP),
Pasadena, CA, USA, 2006.

[130] T. N. Minhas and M. Fiedler, “Impact of Disturbance Locations on Video
Quality of Experience”, in Proceedings of the 2nd Workshop of Quality of
Experience for Multimedia Content Sharing (QoEMCS), Lisbon, Portugal,
2011.

201



Bibliography and References

[131] Q. Huynh-Thu and M. Ghanbari, “Temporal Aspect of Perceived Quality
in Mobile Video Broadcasting”, IEEE Transactions on Broadcasting, vol.
54, no. 3, pp. 641–651, 2008.

[132] K. D. Singh, Y. Hadjadj-Aoul, and G. Rubino, “Quality of Experience Es-
timation for Adaptive HTTP/TCP Video Streaming Using H. 264/AVC”,
in Proceedings of the IEEE Consumer Communications and Networking
Conference (CCNC), Las Vegas, NV, USA, 2012.

[133] D. Ghadiyaram, J. Pan, and A. C. Bovik, “A Time-varying Subjective
Quality Model for Mobile Streaming Videos with Stalling Events”, in
Proceedings of SPIE Applications of Digital Image Processing XXXVIII, San
Diego, CA, USA, 2015.

[134] K. Zeng, H. Yeganeh, and Z. Wang, “Quality-of-experience of Stream-
ing Video: Interactions between Presentation Quality and Playback
Stalling”, in Proceedings of the IEEE International Conference on Image
Processing (ICIP), Phoenix, AZ, USA, 2016.

[135] J. Yao, S. S. Kanhere, I. Hossain, and M. Hassan, “Empirical Evaluation
of HTTP Adaptive Streaming Under Vehicular Mobility”, in Proceedings
of the 10th International IFIP TC 6 Networking Conference: Networking,
Valencia, Spain, 2011.

[136] T. Zinner, T. Hoßfeld, T. N. Minash, and M. Fiedler, “Controlled vs. Un-
controlled Degradations of QoE – The Provisioning-Delivery Hysteresis
in Case of Video”, in Proceedings of the 1st Workshop of Quality of Experi-
ence for Multimedia Content Sharing (QoEMCS), Tampere, Finland, 2010.

[137] B. Lewcio, B. Belmudez, A. Mehmood, M. Wältermann, and S. Möller,
“Video Quality in Next Generation Mobile Networks – Perception of
Time-varying Transmission”, in Proceedings of the IEEE International
Workshop Technical Committee on Communications Quality and Relia-
bility (CQR), Naples, FL, USA, 2011.

202



Bibliography and References

[138] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen, “Flicker E�ects
in Adaptive Video Streaming to Handheld Devices”, in Proceedings of the
19th ACM International Conference on Multimedia (MM), Scottsdale, AZ,
USA, 2011.

[139] M. Gra� and C. Timmerer, “Representation Switch Smoothing for Adap-
tive HTTP Streaming”, in Proceedings of the 4th International Workshop
on Perceptual Quality of Systems (PQS), Vienna, Austria, 2013.

[140] M. Zink, J. Schmitt, and R. Steinmetz, “Layer-encoded Video in Scal-
able Adaptive Streaming”, IEEE Transactions on Multimedia, vol. 7, no.
1, pp. 75–84, 2005.

[141] Y. Shen, Y. Liu, Q. Liu, and D. Yang, “A Method of QoE Evaluation for
Adaptive Streaming based on Bitrate Distribution”, in Proceedings of the
Workshop on QoE-centric Network and Application Management (QoE-
NAM), Sydney, Australia, 2014.

[142] A. K. Moorthy, L. K. Choi, A. C. Bovik, and G. De Veciana, “Video Qual-
ity Assessment on Mobile Devices: Subjective, Behavioral and Objective
Studies”, IEEE Journal of Selected Topics in Signal Processing, vol. 6, no.
6, pp. 652–671, 2012.

[143] J. De Vriendt, D. De Vleeschauwer, and D. Robinson, “Model for Esti-
mating QoE of Video Delivered Using HTTP Adaptive Streaming”, in
Proceedings of the 13th IFIP/IEEE International Symposium on Integrated
Network Management (IM), Ghent, Belgium, 2013.

[144] F. Wang, Z. Fei, J. Wang, Y. Liu, and Z. Wu, “HAS QoE Prediction Based
on Dynamic Video Features with Data Mining in LTE Network”, Science
China Information Sciences, vol. 60, no. 4, p. 042 404, 2017.

[145] D. Z. Rodríguez, Z. Wang, R. L. Rosa, and G. Bressan, “The Impact of
Video-quality-level Switching on User Quality of Experience in Dy-
namic Adaptive Streaming over HTTP”, EURASIP Journal on Wireless
Communications and Networking, vol. 2014, no. 216, pp. 1–15, 2014.

203



Bibliography and References

[146] H. T. Tran, T. Vu, N. P. Ngoc, and T. C. Thang, “A Novel Quality Model
for HTTP Adaptive Streaming”, in Proceedings of the 6th IEEE Interna-
tional Conference on Communications and Electronics (ICCE), Ha Long,
Vietnam, 2016.

[147] M.-N. Garcia, F. De Simone, S. Tavakoli, N. Staelens, S. Egger, K.
Brunnström, and A. Raake, “Quality of Experience and HTTP Adaptive
Streaming: A Review of Subjective Studies”, in Proceedings of the 6th
International Workshop on Quality of Multimedia Experience (QoMEX),
Singapore, 2014.

[148] C. Alberti, D. Renzi, C. Timmerer, C. Mueller, S. Lederer, S. Battista,
and M. Mattavelli, “Automated QoE Evaluation of Dynamic Adaptive
Streaming over HTTP”, in Proceedings of the 5th International Workshop
on Quality of Multimedia Experience (QoMEX), Klagenfurt, Austria, 2013.

[149] J. Xue, D.-Q. Zhang, H. Yu, and C. W. Chen, “Assessing Quality of Ex-
perience for Adaptive HTTP Video Streaming”, in Proceedings of the
International Conference on Multimedia and Expo Workshops (ICMEW),
Chengdu, China, 2014.

[150] Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao, “Deriving and Validating
User Experience Model for DASH Video Streaming”, IEEE Transactions
on Broadcasting, vol. 61, no. 4, pp. 651–665, 2015.

[151] J. A. Redi, T. Hoßfeld, P. Korshunov, F. Mazza, I. Povoa, and C.
Keimel, “Crowdsourcing-based Multimedia Subjective Evaluations: A
Case Study on Image Recognizability and Aesthetic Appeal”, in Proceed-
ings of the 2nd International Workshop on Crowdsourcing for Multimedia
(CrowdMM), Barcelona, Spain, 2013.

[152] M. Varela, T. Mäki, L. Skorin-Kapov, and T. Hoßfeld, “Increasing Pay-
ments in Crowdsourcing: Don’t Look a Gift Horse in the Mouth”, in
Proceedings of the 4th International Workshop on Perceptual Quality of
Systems (PQS), Vienna, Austria, 2013.

204



Bibliography and References

[153] M. Hirth, S. Scheuring, T. Hoßfeld, C. Schwartz, and P. Tran-Gia, “Pre-
dicting Result Quality in Crowdsourcing Using Application Layer Mon-
itoring”, in Proceedings of the 5th International Conference on Communi-
cations and Electronics (ICCE), Da Nang, Vietnam, 2014.

[154] T. Hoßfeld, M. Hirth, P. Korshunov, P. Hanhart, B. Gardlo, C. Keimel,
and C. Timmerer, “Survey of Web-based Crowdsourcing Frameworks
for Subjective Quality Assessment”, in Proceedings of the 16th Interna-
tional Workshop on Multimedia Signal Processing (MMSP), Jakarta, In-
donesia, 2014.

[155] T. Hoßfeld and C. Keimel, “Crowdsourcing in QoE Evaluation”, in Qual-
ity of Experience, S. Möller and A. Raake, Eds., Springer, 2014, pp. 315–
327.

[156] C. Keimel, J. Habigt, C. Horch, and K. Diepold, “QualityCrowd: A Frame-
work for Crowd-based Quality Evaluation”, in Proceedings of the Picture
Coding Symposium (PCS), Krakow, Poland, 2012.

[157] T. Zinner, O. Hohlfeld, O. Abboud, and T. Hoßfeld, “Impact of Frame
Rate and Resolution on Objective QoE Metrics”, in Proceedings of the 2nd
International Workshop on Quality of Multimedia Experience (QoMEX),
Trondheim, Norway, 2010.

[158] L. Janowski and P. Romaniak, “QoE as a Function of Frame Rate and
Resolution Changes”, in Proceedings of the 3rd International Workshop
on Future Multimedia Networking (FMN), Krakow, Poland, 2010.

[159] A. Sackl, P. Zwickl, and P. Reichl, “The Trouble with Choice: An Empir-
ical Study to Investigate the In�uence of Charging Strategies and Con-
tent Selection on QoE”, in Proceedings of the 9th International Conference
on Network and Service Management (CNSM), Zurich, Switzerland, 2013.

[160] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A Generic Quantitative Rela-
tionship Between Quality of Experience and Quality of Service”, IEEE
Network, vol. 24, no. 2, pp. 36–41, 2010.

205



Bibliography and References

[161] E. Y.-H. Lin, “A Biblographical Survey on Some Well-known Non-
Standard Knapsack Problems”, INFOR: Information Systems and Oper-
ational Research, vol. 36, no. 4, pp. 274–317, 1998.

[162] O. B. Maia, H. C. Yehia, and L. de Errico, “A Concise Review of the Qual-
ity of Experience Assessment for Video Streaming”, Computer Commu-
nications, vol. 57, pp. 1–12, 2015.

[163] Y. Chen, K. Wu, and Q. Zhang, “From QoS to QoE: a Tutorial on Video
Quality Assessment”, IEEE Communications Surveys & Tutorials, vol. 17,
no. 2, pp. 1126–1165, 2015.

[164] P. Juluri, V. Tamarapalli, and D. Medhi, “Measurement of Quality of Ex-
perience of Video-on-Demand Services: A Survey”, IEEE Communica-
tions Surveys & Tutorials, vol. 18, no. 1, pp. 401–418, 2016.

[165] M. G. Martini, C. T. Hewage, M. M. Nasrall, and O. Ognenoski, “QoE
Control, Monitoring, and Management Strategies”, in Multimedia Qual-
ity of Experience (QoE): Current Status and Future Requirements, C. W.
Chen, P. Chatzimisios, T. Dagiuklas, and L. Atzori, Eds., John Wiley &
Sons, 2015, pp. 149–168.

[166] T. Zhao, Q. Liu, and C. W. Chen, “QoE in Video Transmission: A User
Experience-Driven Strategy”, IEEE Communications Surveys & Tutorials,
vol. 19, no. 1, pp. 285–302, 2017.

[167] A. Raake, J. Gustafsson, S. Argyropoulos, M.-N. Garcia, D. Lindegren, G.
Heikkilä, M. Pettersson, P. List, and B. Feiten, “IP-based Mobile and Fixed
Network Audiovisual Media Services”, IEEE Signal Processing Magazine,
vol. 28, no. 6, pp. 68–79, 2011.

[168] T. T. Nguyen and G. Armitage, “A Survey of Techniques for Internet
Tra�c Classi�cation Using Machine Learning”, IEEE Communications
Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

206



Bibliography and References

[169] N. Namdev, S. Agrawal, and S. Silkari, “Recent Advancement in Machine
Learning Based Internet Tra�c Classi�cation”, Procedia Computer Sci-
ence, vol. 60, pp. 784–791, 2015.

[170] J. Pokhrel, B. Wehbi, A. Morais, A. Cavalli, and E. Allilaire, “Estimation
of QoE of Video Tra�c Using a Fuzzy Expert System”, in Proceedings
of the 10th IEEE Consumer Communications and Networking Conference
(CCNC), Las Vegas, NV, USA, 2013.

[171] A. Khan, L. Sun, and E. Ifeachor, “QoE Prediction Model and its Appli-
cation in Video Quality Adaptation over UMTS Networks”, IEEE Trans-
actions on Multimedia, vol. 14, no. 2, pp. 431–442, 2012.

[172] I. Ketykó, K. De Moor, T. De Pessemier, A. J. Verdejo, K. Vanhecke,
W. Joseph, L. Martens, and L. De Marez, “QoE Measurement of Mobile
YouTube Video Streaming”, in Proceedings of the 3rdWorkshop onMobile
Video Delivery (MoViD), Florence, Italy, 2010.

[173] International Telecommunication Union, ITU-T Recommendation P.1203:
Parametric Bitstream-based Quality Assessment of Progressive Download
and Adaptive Audiovisual Streaming Services over Reliable Transport,
2016.

[174] R. Schatz, T. Hoßfeld, and P. Casas, “Passive YouTube QoE Monitoring
for ISPs”, in Proceedings of the 2nd International Workshop on Future In-
ternet and Next Generation Networks (FINGNet), Palermo, Italy, 2012.

[175] P. Casas, R. Schatz, and T. Hoßfeld, “Monitoring YouTube QoE: Is Your
Mobile Network Delivering the Right Experience to Your Customers?”,
in Proceedings of the IEEEWireless Communications and Networking Con-
ference (WCNC), Shanghai, China, 2013.

[176] B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “YoMo: A
YouTube Application Comfort Monitoring Tool”, in Proceedings of the
1st Workshop of Quality of Experience for Multimedia Content Sharing
(QoEMCS), Tampere, Finland, 2010.

207



Bibliography and References

[177] M. Eckert, T. M. Knoll, and F. Schlegel, “Advanced MOS Calculation for
Network Based QoE Estimation of TCP Streamed Video Services”, in
Proceedings of the 7th International Conference on Signal Processing and
Communication Systems (ICSPCS), Gold Coast, Australia, 2013.

[178] P. Ameigeiras, A. Azcona-Rivas, J. Navarro-Ortiz, J. J. Ramos-Munoz,
and J. M. Lopez-Soler, “A Simple Model for Predicting the Number and
Duration of Rebu�ering Events for YouTube Flows”, IEEE Communica-
tions Letters, vol. 16, no. 2, pp. 278–280, 2012.

[179] R. Huysegems, B. De Vleeschauwer, K. De Schepper, C. Hawinkel, T.
Wu, K. Laevens, and W. Van Leekwijck, “Session Reconstruction for
HTTP Adaptive Streaming: Laying the Foundation for Network-based
QoE Monitoring”, in Proceedings of the 20th IEEE International Workshop
on Quality of Service (IWQoS), Coimbra, Portugal, 2012.

[180] T. Wu, S. Petrangeli, R. Huysegems, T. Bostoen, and F. De Turck,
“Network-based Video Freeze Detection and Prediction in HTTP Adap-
tive Streaming”, Computer Communications, vol. 99, pp. 37–47, 2017.

[181] P. Szilágyi and C. Vulkán, “Network side Lightweight and Scalable
YouTube QoE Estimation”, in Proceedings of the IEEE International Con-
ference on Communications (ICC), London, UK, 2015.

[182] D. Tsilimantos, T. Karagkioules, A. Nogales-Gómez, and S. Valentin,
“Tra�c Pro�ling for Mobile Video Streaming”, in Proceedings of the IEEE
International Conference on Communications (ICC), Paris, France, 2017.

[183] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: Toward Quality-of-Experience Estimation for Mobile
Apps from Passive Network Measurements”, in Proceedings of the 15th
Workshop on Mobile Computing Systems and Applications (HotMobile),
Santa Barbara, CA, USA, 2014.

208



Bibliography and References

[184] M. Z. Sha�q, J. Erman, L. Ji, A. X. Liu, J. Pang, and J. Wang, “Under-
standing the Impact of Network Dynamics on Mobile Video User En-
gagement”, in Proceedings of the ACM SIGMETRICS, Austin, TX, USA,
2014.

[185] W. Pan, G. Cheng, H. Wu, and Y. Tang, “Towards QoE Assessment of
Encrypted YouTube Adaptive Video Streaming in Mobile Networks”, in
Proceedings of the 24th IEEE/ACM International Symposium on Quality of
Service (IWQoS), Vilanova i la Geltrú, Spain, 2016.

[186] M. Katsarakis, R. Teixeira, M. Papadopouli, and V. Christophides, “To-
wards a Causal Analysis of Video QoE from Network and Application
QoS”, in Proceedings of the ACM SIGCOMM Workshop on QoE-based
Analysis and Management of Data Communication Networks (Internet-
QoE), Florianópolis, Brazil, 2016.

[187] R. Dubin, O. Hadar, I. Richman, O. Trabelsi, A. Dvir, and O. Pele,
“Video Quality Representation Classi�cation of Safari Encrypted DASH
Streams”, in Proceedings of the Digital Media Industry & Academic Forum
(DMIAF), Santorini, Greece, 2016.

[188] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki, “Mea-
suring Video QoE from Encrypted Tra�c”, in Proceedings of the ACM
Internet Measurement Conference (IMC), Santa Monica, CA, USA, 2016.

[189] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “YouTube QoE
Estimation Based on the Analysis of Encrypted Network Tra�c Using
Machine Learning”, in Proceedings of the 5th IEEE International Work-
shop on Quality of Experience for Multimedia Communications (QoEMC),
Washington, DC, USA, 2016.

[190] R. K. P. Mok, E. W. W. Chan, and R. K. C. Chang, “Measuring the Qual-
ity of Experience of HTTP Video Streaming”, in Proceedings of the 12th
IFIP/IEEE International Symposium on Integrated Network Management
(IM), Dublin, Ireland, 2011.

209



Bibliography and References

[191] R. K. P. Mok, E. W. W. Chan, X. Luo, and R. K. C. Chan, “Inferring the QoE
of HTTP Video Streaming from User-Viewing Activities”, in Proceedings
of the 1st ACM SIGCOMM Workshop on Measurements Up the STack (W-
MUST), Toronto, Canada, 2011.

[192] G. Gómez, L. Hortigüela, Q. Pérez, J. Lorca, R. García, and M. C. Aguayo-
Torres, “YouTube QoE Evaluation Tool for Android Wireless Termi-
nals”, EURASIP Journal on Wireless Communications and Networking,
vol. 2014, no. 164, pp. 1–14, 2014.

[193] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni,
and K. Lau, “QoE Doctor: Diagnosing Mobile App QoE with Automated
UI Control and Cross-layer Analysis”, in Proceedings of the Internet Mea-
surement Conference (IMC), Melbourne, Australia, 2014.

[194] H. Nam, K.-H. Kim, D. Calin, and H. Schulzrinne, “YouSlow: A Perfor-
mance Analysis Tool for Adaptive Bitrate Video Streaming”, ACM SIG-
COMM Computer Communication Review, vol. 44, no. 4, pp. 111–112,
2014.

[195] H. Nam, K.-H. Kim, and H. Schulzrinne, “QoE Matters More Than QoS:
Why People Stop Watching Cat Videos”, in Proceedings of the IEEE IN-
FOCOM, San Francisco, CA, USA, 2016.

[196] H. Nam and H. Schulzrinne, “YouSlow: What In�uences User Abandon-
ment Behavior for Internet Video?”, Columbia University, Tech. Rep.,
2016.

[197] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang, “Understanding the Impact of Video Quality on User En-
gagement”, in Proceedings of the ACM SIGCOMM, Toronto, Canada, 2011.

[198] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang,
“Developing a Predictive Model of Quality of Experience for Internet
Video”, ACM SIGCOMM Computer Communication Review, vol. 43, no.
4, pp. 339–350, 2013.

210



Bibliography and References

[199] A. C. Dalal, A. K. Bouchard, S. Cantor, Y. Guo, and A. Johnson, “Assess-
ing QoE of On-demand TCP Video Streams in Real Time”, in Proceedings
of the IEEE International Conference on Communications (ICC), Ottawa,
Canada, 2012.

[200] S. Baraković and L. Skorin-Kapov, “Survey and Challenges of QoE Man-
agement Issues in Wireless Networks”, Journal of Computer Networks
and Communications, vol. 2013, no. 165146, pp. 1–28, 2013.

[201] Q. M. Qadir, A. A. Kist, and Z. Zhang, “Mechanisms for QoE Optimisa-
tion of Video Tra�c: A Review Paper”, Australasian Journal of Informa-
tion, Communication Technology and Applications, vol. 1, no. 1, pp. 1–18,
2015.

[202] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis, “Trickle: Rate Limiting
YouTube Video Streaming”, in Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ATC), Boston, MA, USA, 2012.

[203] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-Based
Application-Aware Networking on the Example of YouTube Video
Streaming”, in Proceedings of the 2nd European Workshop on Software
De�ned Networks (EWSDN), Berlin, Germany, 2013.

[204] S. Laga, T. Van Cleemput, F. Van Raemdonck, F. Vanhoutte, N. Bouten, M.
Claeys, and F. De Turck, “Optimizing Scalable Video Delivery through
OpenFlow Layer-based Routing”, in Proceedings of the IEEE/IFIP Network
Operations and Management Symposium (NOMS), Krakow, Poland, 2014.

[205] A. El Essaili, D. Schroeder, D. Staehle, M. Shehada, W. Kellerer, and E.
Steinbach, “Quality-of-Experience Driven Adaptive HTTP Media Deliv-
ery”, in Proceedings of the IEEE International Conference on Communica-
tions (ICC), Budapest, Hungary, 2013.

[206] A. El Essaili, D. Schroeder, E. Steinbach, D. Staehle, and M. Shehada,
“QoE-based Tra�c and Resource Management for Adaptive HTTP

211



Bibliography and References

Video Delivery in LTE”, IEEE Transactions on Circuits and Systems for
Video Technology, vol. 25, no. 6, pp. 988–1001, 2015.

[207] J. Navarro-Ortiz, P. Ameigeiras, J. M. Lopez-Soler, J. Lorca-Hernando, Q.
Perez-Tarrero, and R. Garcia-Perez, “A QoE-Aware Scheduler for HTTP
Progressive Video in OFDMA Systems”, IEEE Communications Letters,
vol. 17, no. 4, pp. 677–680, 2013.

[208] F. Wamser, T. Zinner, P. Tran-Gia, and J. Zhu, “Dynamic Bandwidth Al-
location for Multiple Network Connections: Improving User QoE and
Network Usage of YouTube in Mobile Broadband”, in Proceedings of the
ACM SIGCOMM Capacity Sharing Workshop (CSWS), Chicago, IL, USA,
2014.

[209] N. Bouten, M. Claeys, S. Latré, J. Famaey, W. Van Leekwijck, and F. De
Turck, “Deadline-based Approach for Improving Delivery of SVC-based
HTTP Adaptive Streaming Content”, in Proceedings of the IEEE Network
Operations and Management Symposium (NOMS), Krakow, Poland, 2014.

[210] F. Wamser, L. I�änder, T. Zinner, and P. Tran-Gia, “Implementing
Application-Aware Resource Allocation on a Home Gateway for the Ex-
ample of YouTube”, in Mobile Networks and Management: 6th Interna-
tional Conference, MONAMI 2014, Würzburg, Germany, September 22-26,
2014, Revised Selected Papers, R. Agüero, T. Zinner, R. Goleva, A. Timm-
Giel, and P. Tran-Gia, Eds., Springer, 2015, pp. 301–312.

[211] T. Phan-Xuan and E. Kamioka, “E�ciency of QoE-driven Network Man-
agement in Adaptive Streaming over HTTP”, in Proceedings of the 22nd
Asia-Paci�c Conference on Communications (APCC), Yogyakarta, Indone-
sia, 2016.

[212] J. Gross, J. Klaue, H. Karl, and A. Wolisz, “Cross-layer Optimization of
OFDM Transmission Systems for MPEG-4 Video Streaming”, Computer
Communications, vol. 27, no. 11, pp. 1044–1055, 2004.

212



Bibliography and References

[213] S. Khan, Y. Peng, E. Steinbach, M. Sgroi, and W. Kellerer, “Application-
Driven Cross-Layer Optimization for Video Streaming over Wireless
Networks”, IEEE Communications Magazine, vol. 44, no. 1, pp. 122–130,
2006.

[214] L. Superiori, M. Wrulich, P. Svoboda, M. Rupp, J. Fabini, W. Karner, and
M. Steinbauer, “Content-aware Scheduling for Video Streaming over
HSDPA Networks”, in Proceedings of the 2nd International Workshop on
Cross Layer Design (IWCLD), Palma de Mallorca, Spain, 2009.

[215] S. Thakolsri, S. Khan, E. Steinbach, and W. Kellerer, “QoE-driven Cross-
layer Optimization for High Speed Downlink Packet Access”, Journal of
Communications, vol. 4, no. 9, pp. 669–680, 2009.

[216] B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “Aquarema
in Action: Improving the YouTube QoE in Wireless Mesh Networks”,
in Proceedings of the Baltic Congress on Future Internet Communications
(BCFIC), Riga, Latvia, 2011.

[217] N. Bouten, J. Famaey, S. Latré, R. Huysegems, B. D. Vleeschauwer, W. V.
Leekwijck, and F. D. Turck, “QoE Optimization Through In-network
Quality Adaptation for HTTP Adaptive Streaming”, in Proceedings of
the 8th International Conference on Network and Service Management
(CNSM), Las Vegas, NV, USA, 2012.

[218] R. K. Mok, X. Luo, E. W. Chan, and R. K. Chang, “QDASH: a QoE-aware
DASH system”, in Proceedings of the 3rd ACM Multimedia Systems Con-
ference (MMSys), Chapel Hill, NC, USA, 2012.

[219] X. Wang, M. Chen, T. T. Kwon, L. Yang, and V. C. Leung, “AMES-Cloud:
A Framework of Adaptive Mobile Video Streaming and E�cient Social
Video Sharing in the Clouds”, IEEE Transactions on Multimedia, vol. 15,
no. 4, pp. 811–820, 2013.

213



Bibliography and References

[220] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shah-
mehri, “Helping Hand or Hidden Hurdle: Proxy-assisted HTTP-based
Adaptive Streaming Performance”, in Proceedings of the 21st IEEE Inter-
national Symposium on Modelling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), San Francisco, CA, USA,
2013.

[221] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race, “To-
wards Network-wide QoE Fairness using OpenFlow-assisted Adaptive
Video Streaming”, in Proceedings of the ACM SIGCOMMWorkshop on Fu-
ture Human-centric Multimedia Networking (FhMN), Hong Kong, China,
2013.

[222] S. Petrangeli, M. Claeys, S. Latré, J. Famaey, and F. De Turck, “A Multi-
agent Q-Learning-based Framework for Achieving Fairness in HTTP
Adaptive Streaming”, in Proceedings of the IEEE/IFIP Network Operations
and Management Symposium (NOMS), Krakow, Poland, 2014.

[223] B. Fu, G. Kunzmann, D. Corujo, M. Wetterwald, and R. Costa, “QoE-
aware Tra�c Management for Mobile Video Delivery”, in Proceedings of
the IEEE International Conference on Communications Workshops (ICC),
Budapest, Hungary, 2013.

[224] B. Fu, D. Staehle, G. Kunzmann, E. Steinbach, and W. Kellerer, “QoE-
aware Priority Marking and Tra�c Management for H.264/SVC-based
Mobile Video Delivery”, in Proceedings of the 8th ACMWorkshop on Per-
formance Monitoring and Measurement of Heterogeneous Wireless and
Wired Networks (PM2HW2N), Barcelona, Spain, 2013.

[225] P. Tang, P. Wang, N. Wang, and V. Nguyen Ngoc, “QoE-Based Resource
Allocation Algorithm for Multi-Applications in Downlink LTE Sys-
tems”, in Proceedings of the International Conference on Computer, Com-
munications and Information Technology (CCIT), Beijing, China, 2014.

214



Bibliography and References

[226] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen, “Server-
based Tra�c Shaping for Stabilizing Oscillating Adaptive Streaming
Players”, in Proceedings of the 23rd ACM Workshop on Network and Op-
erating Systems Support for Digital Audio and Video (NOSSDAV), Oslo,
Norway, 2013.

[227] X. Liu and A. Men, “QoE-aware Tra�c Shaping for HTTP Adaptive
Streaming”, International Journal of Multimedia and Ubiquitous Engi-
neering, vol. 9, no. 2, pp. 33–44, 2014.

[228] H. Nam, K.-H. Kim, J. Y. Kim, and H. Schulzrinne, “Towards QoE-aware
Video Streaming using SDN”, in Proceedings of the IEEE Global Commu-
nications Conference (GLOBECOM), Austin, TX, USA, 2014.

[229] O. Dobrijevic, M. Santl, and M. Matijasevic, “Ant Colony Optimization
for QoE-centric Flow Routing in Software-de�ned Networks”, in Pro-
ceedings of the 11th International Conference on Network and ServiceMan-
agement (CNSM), Barcelona, Spain, 2015.

[230] S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen, and F. De Turck,
“Network-based Dynamic Prioritization of HTTP Adaptive Streams to
Avoid Video Freezes”, in Proceedings of the IFIP/IEEE International Sym-
posium on Integrated Network Management (IM), Ottawa, Canada, 2015.

[231] T. Kimura, M. Yokota, A. Matsumoto, K. Takeshita, T. Kawano, K. Sato,
H. Yamamoto, T. Hayashi, K. Shiomoto, and K. Miyazaki, “QUVE: QoE
Maximizing Framework for Video-Streaming”, IEEE Journal of Selected
Topics in Signal Processing, vol. 11, no. 1, pp. 138–153, 2017.

[232] A. Bentaleb, A. C. Begen, and R. Zimmermann, “SDNDASH: Improving
QoE of HTTP Adaptive Streaming Using Software De�ned Network-
ing”, in Proceedings of the ACM Multimedia Conference (MM), Amster-
dam, The Netherlands, 2016.

215



Bibliography and References

[233] Y. Li, P. A. Frangoudis, Y. Hadjadj-Aoul, and P. Bertin, “A Mobile Edge
Computing-based Architecture for Improved Adaptive HTTP Video De-
livery”, in Proceedings of the IEEE Conference on Standards for Commu-
nications and Networking (CSCN), Berlin, Germany, 2016.

[234] G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and
S. Mascolo, “Design and Experimental Evaluation of Network-assisted
Strategies for HTTP Adaptive Streaming”, in Proceedings of the 7th ACM
International Conference on Multimedia Systems (MMSys), Klagenfurt,
Austria, 2016.

[235] S. Wilk, D. Stohr, and W. E�elsberg, “A Content-Aware Video Adapta-
tion Service to Support Mobile Video”, ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 12, no. 5s,
82:1–82:23, 2016.

[236] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. De Turck, “QoE-
driven Rate Adaptation Heuristic for Fair Adaptive Video Streaming”,
ACM Transactions on Multimedia Computing, Communications, and Ap-
plications (TOMM), vol. 12, no. 2, 28:1–28:24, 2016.

[237] J. Chen, M. Ammar, M. Fayed, and R. Fonseca, “Client-Driven Network-
level QoE Fairness for Encrypted ’DASH-S’”, in Proceedings of the ACM
SIGCOMM Workshop on QoE-based Analysis and Management of Data
Communication Networks (Internet-QoE), Florianopolis, Brazil, 2016.

[238] E. Thomas, M. O. van Deventer, T. Stockhammer, A. C. Begen, M.-L.
Champel, and O. Oyman, “Applications and Deployments of Server and
Network Assisted DASH”, in Proceedings of the International Broadcast-
ing Convention (IBC), Amsterdam, The Netherlands, 2016.

[239] International Standards Organization/International Electrotechnical
Commission (ISO/IEC), 23009-5:2015 Information Technology – Dynamic
Adaptive Streaming over HTTP (DASH) – Part 5: Server and network as-
sisted DASH (SAND), 2016.

216



Bibliography and References

[240] M. Bouet, J. Leguay, and V. Conan, “Cost-based Placement of Virtualized
Deep Packet Inspection Functions in SDN”, in Proceedings of the IEEE
Military Communications Conference (MILCOM), San Diego, CA, USA,
2013.

[241] M. Bouet, J. Leguay, T. Combe, and V. Conan, “Cost-based Placement
of vDPI Functions in NFV Infrastructures”, International Journal of Net-
work Management, vol. 25, no. 6, pp. 490–506, 2015.

[242] T. Hoßfeld, L. Skorin-Kapov, P. Heegaard, and M. Varela, “De�nition of
QoE Fairness in Shared Systems”, IEEE Communications Letters, vol. 21,
no. 1, pp. 184–187, 2017.

[243] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality
Assessment: From Error Visibility to Structural Similarity”, IEEE Trans-
actions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[244] S. Rimac-Drlje, M. Vranjes, and D. Zagar, “In�uence of Temporal Pooling
Method on the Objective Video Quality Evaluation”, in Proceedings of
the IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB), Bilbao, Spain, 2009.

[245] K. Seshadrinathan and A. C. Bovik, “Temporal Hysteresis Model of Time
Varying Subjective Video Quality”, in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
Prague, Czech Republic, 2011.

[246] K. Lee, J. Park, S. Lee, and A. C. Bovik, “Temporal Pooling of Video
Quality Estimates Using Perceptual Motion Models”, in Proceedings of
the 17th IEEE International Conference on Image Processing, Hong Kong,
China, 2010.

[247] A. Ninassi, O. Le Meur, P. Le Callet, and D. Barba, “Considering Tem-
poral Variations of Spatial Visual Distortions in Video Quality Assess-
ment”, IEEE Journal of Selected Topics in Signal Processing, vol. 3, no. 2,
pp. 253–265, 2009.

217



Bibliography and References

[248] International Telecommunication Union, ITU-T Recommendation P.800:
Methods for Subjective Determination of Transmission Quality, 1996.

[249] ——, ITU-T Recommendation P.1501: Subjective Testing Methodology for
Web Browsing, 2013.

[250] S. Hemminger, “Network Emulation with NetEm”, in Proceedings of the
6th Australia’s National Linux Conference (LCA), Canberra, Australia,
2005.

[251] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in
Campus Networks”, ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, p. 69, 2008.

[252] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer, “Inter-
faces, Attributes, and Use Cases: A Compass for SDN”, IEEE Communi-
cations Magazine, vol. 52, no. 6, pp. 210–217, 2014.

[253] T. Zinner, M. Jarschel, A. Blenk, F. Wamser, and W. Kellerer, “Dynamic
Application-Aware Resource Management Using Software-De�ned Net-
working: Implementation Prospects and Challenges”, in Proceedings of
the IFIP/IEEE International Workshop on Quality of Experience Centric
Management (QCMan), Krakow, Poland, 2014.

[254] L. Kleinrock, “Time-shared systems: A theoretical treatment”, Journal of
the ACM (JACM), vol. 14, no. 2, pp. 242–261, 1967.

[255] G. Fayolle, I. Mitrani, and R. Iasnogorodski, “Sharing a Processor Among
Many Job Classes”, Journal of the ACM (JACM), vol. 27, no. 3, pp. 519–
532, 1980.

[256] J. W. Cohen, “The multiple phase service network with generalized pro-
cessor sharing”, Acta informatica, vol. 12, no. 3, pp. 245–284, 1979.

[257] S. Tanwir and H. Perros, “A Survey of VBR Video Tra�c Models”, IEEE
Communications Surveys & Tutorials, vol. 15, no. 4, pp. 1778–1802, 2013.

218



Bibliography and References

[258] Wireless Broadband Alliance, “WBA Industry Report 2011: Global De-
velopments in Public Wi-Fi”, Tech. Rep., 2011.

[259] Strategy Analytics, “Global Broadband and WLAN (Wi-Fi) Networked
Households Forecast 2009-2018”, Tech. Rep., 2014.

[260] S. Ickin, K. Wac, M. Fiedler, L. Janowski, J.-H. Hong, and A. K. Dey,
“Factors In�uencing Quality of Experience of Commonly Used Mobile
Applications”, IEEE Communications Magazine, vol. 50, no. 4, pp. 48–56,
2012.

[261] F. Kaup and D. Hausheer, “Optimizing Energy Consumption and QoE
on Mobile Devices”, in Proceedings of the IEEE International Conference
on Network Protocols (ICNP), Göttingen, Germany, 2013.

[262] P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco, “Socially-aware Rout-
ing for Publish-Subscribe in Delay-tolerant Mobile Ad Hoc Networks”,
IEEE Journal on Selected Areas in Communications, vol. 26, no. 5, pp. 748–
760, 2008.

[263] A. Roy, P. De, and N. Saxena, “Location-based Social Video Sharing over
Next Generation Cellular Networks”, IEEE Communications Magazine,
vol. 53, no. 10, pp. 136–143, 2015.

[264] N. Sastry, E. Yoneki, and J. Crowcroft, “Buzztraq: Predicting Geograph-
ical Access Patterns of Social Cascades Using Social Networks”, in Pro-
ceedings of the 2nd ACM EuroSys Workshop on Social Network Systems
(SocialNets), Nuremberg, Germany, 2009.

[265] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft, “Track Globally,
Deliver Locally: Improving Content Delivery Networks by Tracking Ge-
ographic Social Cascades”, in Proceedings of the 20th International Con-
ference on World Wide Web (WWW), Hyderabad, India, 2011.

219



Bibliography and References

[266] Z. Wang, L. Sun, X. Chen, W. Zhu, J. Liu, M. Chen, and S. Yang,
“Propagation-based Social-aware Replication for Social Video Con-
tents”, in Proceedings of the 20th ACM International Conference on Mul-
timedia, Nara, Japan, 2012.

[267] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. Lau, “Scaling Social Media
Applications into Geo-distributed Clouds”, IEEE/ACM Transactions on
Networking (TON), vol. 23, no. 3, pp. 689–702, 2015.

[268] Z. Wang, J. Liu, and W. Zhu, Social Video Content Delivery, ser. Springer-
Briefs in Electrical and Computer Engineering. Springer, 2016.

[269] I. Kilanioti and G. A. Papadopoulos, “Content Delivery Simulations Sup-
ported by Social Network-awareness”, SimulationModelling Practice and
Theory, vol. 71, pp. 114–133, 2017.

[270] N. Laoutaris, P. Rodriguez, and L. Massoulie, “ECHOS: Edge Capacity
Hosting Overlays of Nano Data Centers”, ACM SIGCOMM Computer
Communication Review, vol. 38, no. 1, pp. 51–54, 2008.

[271] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and P. Rodriguez,
“Greening the Internet with Nano Data Centers”, in Proceedings of the
5th International Conference on Emerging Networking Experiments and
Technologies (Co-NEXT), Rome, Italy, 2009.

[272] J. He, A. Chaintreau, and C. Diot, “A Performance Evaluation of Scalable
Live Video Streaming with Nano Data Centers”,Computer Networks, vol.
53, no. 2, pp. 153–167, 2009.

[273] Z. Li, H. Shen, H. Wang, G. Liu, and J. Li, “SocialTube: P2P-assisted Video
Sharing in Online Social Networks”, in Proceedings of the IEEE INFO-
COM, Orlando, FL, USA, 2012.

[274] S. Traverso, K. Huguenin, I. Triestan, V. Erramilli, N. Laoutaris, and
K. Papagiannaki, “TailGate: Handling Long-Tail Content with a Little
Help from Friends”, in Proceedings of the 21st International Conference
on World Wide Web (WWW), Lyon, France, 2012.

220



Bibliography and References

[275] F. Zhou, L. Zhang, E. Franco, A. Mislove, R. Revis, and R. Sundaram,
“WebCloud: Recruiting Social Network Users to Assist in Content Dis-
tribution”, in Proceedings of the 11th IEEE International Symposium on
Network Computing and Applications (NCA), Cambridge, MA, USA, 2012.

[276] K. Huguenin, A.-M. Kermarrec, K. Kloudas, and F. Taïani, “Content and
Geographical Locality in User-generated Content Sharing Systems”, in
Proceedings of the 22nd InternationalWorkshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV), Toronto, Canada,
2012.

[277] X. Wang, T. Kwon, Y. Choi, H. Wang, and J. Liu, “Cloud-assisted Adaptive
Video Streaming and Social-aware Video Prefetching for Mobile Users”,
IEEE Wireless Communications, vol. 20, no. 3, pp. 72–79, 2013.

[278] M. Ma, Z. Wang, K. Su, and L. Sun, “Understanding the Power of
Smartrouter-based Peer CDN for Video Streaming”, in Proceedings of the
25th International Conference on Computer Communication and Networks
(ICCCN), Waikoloa, HI, USA, 2016.

[279] G. Nan, Z. Mao, M. Yu, M. Li, H. Wang, and Y. Zhang, “Stackelberg Game
for Bandwidth Allocation in Cloud-based Wireless Live-streaming So-
cial Networks”, IEEE Systems Journal, vol. 8, no. 1, pp. 256–267, 2014.

[280] L. Gao, M. Tang, H. Pang, J. Huang, and L. Sun, “Performance Bound
Analysis for Crowdsourced Mobile Video Streaming”, in Proceedings of
the Annual Conference on Information Science and Systems (CISS), Prince-
ton, NJ, USA, 2016.

[281] Y. Cao, T. Jiang, X. Chen, and J. Zhang, “Social-aware Video Multicast
Based on Device-to-device Communications”, IEEE Transactions on Mo-
bile Computing, vol. 15, no. 6, pp. 1528–1539, 2016.

[282] Y. Khadraoui, X. Lagrange, and A. Gravey, “A Survey of Available Fea-
tures for Mobile Tra�c O�oad”, in Proceedings of the 20th European
Wireless Conference, Barcelona, Spain, 2014.

221



Bibliography and References

[283] M. Gonzalez, T. Higashino, and M. Okada, “Radio Access Considerations
for Data O�oading with Multipath TCP in Cellular/WiFi Networks”, in
Proceedings of the International Conference on Information Networking
(ICOIN), Bangkok, Thailand, 2013.

[284] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure, “Explor-
ing Mobile/WiFi Handover with Multipath TCP”, in Proceedings of the
ACM SIGCOMMWorkshop on Cellular Networks: Operations, Challenges,
and Future Design, Helsinki, Finland, 2012.

[285] S. Chen, Z. Yuan, and G.-M. Muntean, “An Energy-aware Multipath-
TCP-based Content Delivery Scheme in Heterogeneous Wireless Net-
works”, in Proceedings of the IEEE Wireless Communications and Net-
working Conference (WCNC), Shanghai, China, 2013.

[286] S. Singh, H. S. Dhillon, and J. G. Andrews, “O�oading in Heterogeneous
Networks: Modeling, Analysis, and Design Insights”, IEEE Transactions
on Wireless Communications, vol. 12, no. 5, pp. 2484–2497, 2013.

[287] A. Gladisch, R. Daher, and D. Tavangarian, “Survey on Mobility and Mul-
tihoming in Future Internet”, Wireless Personal Communications, vol. 74,
no. 1, pp. 45–81, 2014.

[288] L. Mamatas, I. Psaras, and G. Pavlou, “Incentives and Algorithms for
Broadband Access Sharing”, in Proceedings of the ACM SIGCOMMWork-
shop on Home Networks, New Delhi, India, 2010.

[289] N. Gautam, H. Petander, and J. Noel, “A Comparison of the Cost and En-
ergy E�ciency of Prefetching and Streaming of Mobile Video”, in Pro-
ceedings of the 5th Workshop on Mobile Video (MoVid), Oslo, Norway,
2013.

[290] C. B. Lafuente, X. Titi, and J.-M. Seigneur, “Flexible Communication:
A Secure and Trust-Based Free Wi-Fi Password Sharing Service”, in
Proceedings of the 10th IEEE International Conference on Trust, Security

222



Bibliography and References

and Privacy in Computing and Communications (TrustCom), Changsha,
China, 2011.

[291] L. J. Donelson and C. W. Sweet, Method, Apparatus and System for Wire-
less Network Authentication Through Social Networking, US Patent App.
13/287,931, 2012.

[292] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile Data O�oading: How
Much Can WiFi Deliver?”, IEEE/ACM Transactions on Networking (TON),
vol. 21, no. 2, pp. 536–550, 2013.

[293] J. Kim, N.-O. Song, B. H. Jung, H. Leem, and D. K. Sung, “Placement
of WiFi Access Points for E�cient WiFi O�oading in an Overlay Net-
work”, in Proceedings of the 24th IEEE Annual International Symposium
on Personal, Indoor, and Mobile Radio Communications (PIMRC), London,
UK, 2013.

[294] D. Suh, H. Ko, and S. Pack, “E�ciency Analysis of WiFi O�oading
Techniques”, IEEE Transactions on Vehicular Technology, vol. 65, no. 5,
pp. 3813–3817, 2016.

[295] N. Sastry, J. Crowcroft, and K. Sollins, “Architecting Citywide Ubiqui-
tous Wi-Fi Access”, in Proceedings of the 6th Workshop on Hot Topics in
Networks (HotNets), Atlanta, GA, USA, 2007.

[296] P. Vidales, A. Manecke, and M. Solarski, “Metropolitan Public WiFi Ac-
cess Based on Broadband Sharing”, in Proceedings of the Mexican Inter-
national Conference on Computer Science (ENC), Mexico City, Mexico,
2009.

[297] S. Dimatteo, P. Hui, B. Han, and V. O. Li, “Cellular Tra�c O�oading
Through WiFi Networks”, in Proceedings of the 8th IEEE International
Conference on Mobile Adhoc and Sensor Systems (MASS), Valencia, Spain,
2011.

223



Bibliography and References

[298] V. F. Mota, D. F. Macedo, Y. Ghamri-Doudane, and J. M. S. Nogueira, “On
the Feasibility of WiFi O�oading in Urban Areas: The Paris Case Study”,
in Proceedings of the IFIP Wireless Days (WD), Valencia, Spain, 2013.

[299] E. M. R. Oliveira and A. C. Viana, “From Routine to Network Deployment
for Data O�oading in Metropolitan Areas”, in Proceedings of the 11th
Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON), Singapore, 2014.

[300] E. Bulut and B. K. Szymanski, “WiFi Access Point Deployment for E�-
cient Mobile Data O�oading”, ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 17, no. 1, pp. 71–78, 2013.

[301] ——, “Rethinking O�oading WiFi Access Point Deployment from User
Perspective”, in Proceedings of the 12th IEEE International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob), New York, NY, USA, 2016.

[302] P. Rouveyrol, P. Raveneau, and M. Cunche, “Large Scale Wi-Fi Tracking
Using a Botnet of Wireless Routers”, in Proceedings of the Workshop on
Surveillance & Technology, Philadelphia, PA, USA, 2015.

[303] M. Michalopoulou, J. Riihijarvi, and P. Mahonen, “Studying the Relation-
ships between Spatial Structures of Wireless Networks and Population
Densities”, in Proceedings of the IEEE Global Communications Conference
(GLOBECOM), Miami, FL, USA, 2010.

[304] C. Clark, “Urban Population Densities”, Journal of the Royal Statistical
Society. Series A (General), vol. 114, no. 4, pp. 490–496, 1951.

[305] J. F. McDonald, “Econometric Studies of Urban Population Density: A
Survey”, Journal of Urban Economics, vol. 26, no. 3, pp. 361–385, 1989.

[306] D. A. Gri�th and D. W. Wong, “Modeling Population Density Across
Major US Cities: A Polycentric Spatial Regression Approach”, Journal of
Geographical Systems, vol. 9, no. 1, pp. 53–75, 2007.

224



Bibliography and References

[307] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge Uni-
versity Press, 2012.

[308] H. ElSawy, E. Hossain, and M. Haenggi, “Stochastic Geometry for Mod-
eling, Analysis, and Design of Multi-tier and Cognitive Cellular Wireless
Networks: A Survey”, IEEE Communications Surveys & Tutorials, vol. 15,
no. 3, pp. 996–1019, 2013.

[309] A. Ruhela, R. M. Tripathy, S. Triukose, S. Ardon, A. Bagchi, and A. Seth,
“Towards the Use of Online Social Networks for E�cient Internet Con-
tent Distribution”, in Proceedings of the 5th IEEE International Conference
on Advanced Networks and Telecommunication Systems (ANTS), Banga-
lore, India, 2011.

[310] V. A. Siris and M. Anagnostopoulou, “Performance and Energy E�-
ciency of Mobile Data O�oading with Mobility Prediction and Prefetch-
ing”, in Proceedings of the 14th IEEE International Symposium and Work-
shops on a World of Wireless, Mobile and Multimedia Networks (WoW-
MoM), Madrid, Spain, 2013.

[311] B. H. Jung, N.-O. Song, and D. K. Sung, “A Network-assisted User-centric
WiFi-o�oading Model for Maximizing Per-user Throughput in a Het-
erogeneous Network”, IEEE Transactions on Vehicular Technology, vol.
63, no. 4, pp. 1940–1945, 2014.

[312] R. Mahindra, H. Viswanathan, K. Sundaresan, M. Y. Arslan, and S. Ran-
garajan, “A Practical Tra�c Management System for Integrated LTE-
WiFi Networks”, in Proceedings of the 20th Annual International Confer-
ence on Mobile Computing and Networking (MobiCom), Maui, HI, USA,
2014.

[313] M. Seyedebrahimi and X.-H. Peng, “Optimising QoE Distribution for
Video Applications through LTE-WiFi Interworking”, in Proceedings of
the 9th International Conference on Next Generation Mobile Applications,
Services and Technologies (NGMAST), Cambridge, UK, 2015.

225



Bibliography and References

[314] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise”, in Pro-
ceedings of the 2nd International Conference on Knowledge Discovery and
Data Mining (KDD), Portland, OR, USA, 1996.

[315] P. A. P. Moran, “Notes on Continuous Stochastic Phenomena”,
Biometrika, vol. 37, no. 1/2, pp. 17–23, 1950.

[316] R. C. Geary, “The Contiguity Ratio and Statistical Mapping”, The Incor-
porated Statistician, vol. 5, no. 3, pp. 115–146, 1954.

[317] A. Lareida, T. Bocek, M. Waldburger, and B. Stiller, “RB-Tracker: A Fully
Distributed, Replicating, Network-, and Topology-aware P2P CDN”, in
Proceedings of the 13th IFIP/IEEE International Symposium on Integrated
Network Management (IM), Ghent, Belgium, 2013.

[318] J. J. Ramos-Muñoz, J. Prados-Garzon, P. Ameigeiras, J. Navarro-Ortiz,
and J. M. López-Soler, “Characteristics of Mobile YouTube Tra�c”, IEEE
Wireless Communications, vol. 21, no. 1, pp. 18–25, 2014.

[319] F. Kaup, F. Jomrich, and D. Hausheer, “Demonstration of NetworkCov-
erage – A Mobile Network Performance Measurement App”, in Proceed-
ings of the International Conference on Networked Systems (NetSys), Cott-
bus, Germany, 2015.

[320] Akamai, “Q4 2014 State of the Internet”, Tech. Rep., 2015.

[321] K. Panitzek, I. Schweizer, T. Bönning, G. Seipel, and M. Mühlhäuser,
“First Responder Communication in Urban Environments”, Interna-
tional Journal of Mobile Network Design and Innovation, vol. 4, no. 2,
pp. 109–118, 2012.

[322] F. Kaup, M. Wichtlhuber, S. Rado, and D. Hausheer, “Can Multipath TCP
Save Energy? A Measuring and Modeling Study of MPTCP Energy Con-
sumption”, in Proceedings of the 40th Annual IEEE Conference on Local
Computer Networks (LCN), Clearwater Beach, FL, USA, 2015.

[323] Akamai, “Q4 2016 State of the Internet”, Tech. Rep., 2017.

226



ISSN 1432-8801


	Introduction
	Scientific Contribution
	Outline of the Thesis

	Quality of Experience of HTTP Adaptive Video Streaming
	Background and Related Work
	HTTP Adaptive Video Streaming Technology
	Previous QoE Results for HAS
	Initial Delay
	Stalling
	Adaptation
	General QoE Models for HTTP Adaptive Video Streaming


	Impact of Adaptation on the QoE of HAS
	Influence of Adaptation-related Parameters
	Study Description
	Results of the Study on Adaptation-related Parameters

	Impact of Time on Intermediate Layer
	Study Description
	Results of the Study on Time on Intermediate Layer


	Towards a QoE-optimal Adaptation Logic
	Optimization Problem for QoE-optimal Adaptations
	Evaluation Scenario
	Performance Evaluation Results

	Lessons Learned

	QoE-aware Traffic Management for HTTP Adaptive Video Streaming
	Background and Related Work
	QoE Monitoring of Video Streaming
	Monitoring in the Network
	Monitoring in the Application

	QoE-aware Traffic Management Mechanisms for Video Streaming
	Network Traffic Management
	Cross-layer and Collaborative Traffic Management


	QoE Monitoring of HAS
	Monitoring of QoE Parameters in the Network
	Study Description
	Temporal Pooling
	Results

	Monitoring of QoE Parameters on Application Layer
	Study Description
	Results

	Monitoring of Network Parameters to Estimate QoE
	Study Description
	Results


	QoE-aware Resource Allocation of Video Flows on Bottleneck Links
	Resource Allocation Problem on Bottleneck Links
	QoE-aware Traffic Management Strategies
	a) Fixed Bandwidth Allocation for All Videos Flows (FBV)
	Algorithm

	b) Fixed Bandwidth Allocation for Each Video Flow (FBF)
	Algorithm

	c) Weighted Bandwidth Allocation for All Videos Flows (WBV)
	Algorithm

	d) Dynamic Bandwidth Allocation for Each Video Flow (DBF)
	Algorithm


	Evaluation Methodologies and Scenario
	Analytical Approach
	Simulation
	Evaluation Scenario

	Performance Evaluation Results
	Situation in Current Networks Without Resource Management
	Results of Fixed Bandwidth Allocation for All Videos Flows
	Results of Fixed Bandwidth Allocation for Each Video Flow
	Results of Weighted Bandwidth Allocation for All Videos Flows
	Results of Dynamic Bandwidth Allocation for Each Video Flow
	Comparison of the Different Strategies


	Lessons Learned

	Socially-aware Traffic Management for HAS based on Wi-Fi Offloading
	Background and Related Work
	Socially-aware Traffic Management
	Terminology and Definition
	Stakeholders, Goals, and Benefits
	Examples for Socially-aware Traffic Management of HTTP Adaptive Video Streaming

	Wi-Fi Offloading

	Public and Private Wi-Fi Offloading
	Simple Hotspot Location Model for Public Wi-Fi Offloading
	Methodology
	Analysis of Hotspot Distributions
	Generation of a Hotspot Distribution for a Generic City
	Comparison of Model and Hotspot Characteristics
	Applicability of the Model

	Home Router Sharing based on Trust
	a) Basic Functionality and Use Cases
	Wi-Fi Offloading
	Content Caching and Prefetching
	Content Delivery

	b) Components of Home Router Sharing based on Trust
	Home Router Firmware
	Online Social Network Application
	Mobile Device Application

	c) Design and Prototype Implementation


	Wi-Fi Offloading of Mobile HAS Sessions
	Data Sets for Performance Evaluation
	Simulation Framework
	Performance Evaluation Results
	Applicability of Simple Hotspot Model for the Performance Evaluation of Public Wi-Fi Offloading

	Lessons Learned

	Conclusion
	Summary and Contributions
	Outlook

	Acronyms
	Bibliography and References

