56,367 research outputs found

    Handling tradition for a systemic innovation

    Get PDF
    There is always something from the past embedded in the new, establishing a synergetic and sympathetic relationship which gives meaning and value to this new creation. Innovation is about creating new values. Contemporary trends in architectural contemplation and creation are looking into a redefinition of innovation as an inventive systemic synergy of multiple parameters, the dynamic modeling of which, with the aid of new digital technologies, can suggest the appropriate form and materiality of architectural design. Sympathy and synergy are not mere situations, but primarily values that nurture architectural design and open up new challenges for architectural education. Materialised architecture is the expression of worldviews and values. Its form and materiality constitute the meaningful platform on which the relationship between tradition and innovation are represented. Tradition and innovation have always been in a binary opposition. Through the act of creation, invention, innovation, change and transformation are introduced. However, there has always been something in the new that comes from the existent. This condition can become the foundation for a new conception of innovation to emerge, a systemic innovation in which tradition is reflected upon and exploited as a constraint that will leverage and foster it

    Education for a smarter profession

    Get PDF
    We must build for this nation a big passion for innovation. We must make the development of the creative mind a national agenda. Unless we get really serious about cultivating creativity and promoting innovation, the transformation to an innovation economy will not really happen

    University for the Creative Arts staff research 2011

    Get PDF
    This publication brings together a selection of the University’s current research. The contributions foreground areas of research strength including still and moving image research, applied arts and crafts, as well as emerging fields of investigations such as design and architecture. It also maps thematic concerns across disciplinary areas that focus on models and processes of creative practice, value formations and processes of identification through art and artefacts as well as cross-cultural connectivity. Dr. Seymour Roworth-Stoke

    Teaching, research and practice - establishing a productive balance (Raising the game)

    Get PDF
    The current debates on teaching standards, on research assessment and on the condition of the profession tend to be carried on in isolation from each other. In this article Gordon Murray, a practitioner and teacher, draws a connection between all three topics and underlines the importance and potential of research for both teaching and the profession. His brief review of teaching and professional formation in Japan provides a thought-provoking comparison with architectural education in the UK and the US

    Teaching Construction in the Virtual University: the WINDS project

    No full text
    This paper introduces some of the Information Technology solutions adopted in Web based INtelligent Design Support (WINDS) to support education in A/E/C design. The WINDS project WINDS is an EC-funded project in the 5th Framework, Information Society Technologies programme, Flexible University key action. WINDS is divided into two actions: ·The research technology action is going to implement a learning environment integrating an intelligent tutoring system, a computer instruction management system and a set of co-operative supporting tools. ·The development action is going to build a large knowledge base supporting Architecture and Civil Engineering Design Courses and to experiment a comprehensive Virtual School of Architecture and Engineering Design. During the third year of the project, more than 400 students all over Europe will attend the Virtual School. During the next three years the WINDS project will span a total effort of about 150 man-years from 28 partners of 10 European countries. The missions of the WINDS project are: Advanced Methodologies in Design Education. WINDS drives a breakdown with conventional models in design education, i.e. classroom or distance education. WINDS implements a problem oriented knowledge transfer methodology following Roger Schank's Goal Based Scenario (GBS) pedagogical methodology. GBS encourages the learning of both skills and cases, and fosters creative problem solving. Multidisciplinary Design Education. Design requires creative synthesis and open-end problem definition at the intersection of several disciplines. WINDS experiments a valuable integration of multidisciplinary design knowledge and expertise to produce a high level standard of education. Innovative Representation, Delivery and Access to Construction Education. WINDS delivers individual education customisation by allowing the learner access through the Internet to a wide range of on-line courses and structured learning objects by means of personally tailored learning strategies. WINDS promotes the 3W paradigm: learn What you need, Where you want, When you require. Construction Practice. Construction industry is a repository of ""best practices"" and knowledge that the WINDS will profit. WINDS system benefits the ISO10303 and IFC standards to acquire knowledge of the construction process directly in digital format. On the other hand, WINDS reengineers the knowledge in up-to-date courses, educational services, which the industries can use to provide just-in-time rather than in-advance learning. WINDS IT Solutions The missions of the WINDS project state many challenging requirements both in knowledge and system architecture. Many of the solutions adopted in these fields are innovative; others are evolution of existing technologies. This paper focuses on the integration of this set of state-of-the-art technologies in an advanced and functionally sound Computer Aided Instruction system for A/E/C Design. In particular the paper deals with the following aspects: Standard Learning Technology Architecture The WINDS system relies on the in progress IEEE 1484.1 Learning Technology Standard Architecture. According to this standard the system consists of two data stores, the Knowledge Library and the Record Database, and four process: System Coach, Delivery, Evaluation and the Learner. WINDS implements the Knowledge Library into a three-tier architecture: 1.Learning Objects: ·Learning Units are collections of text and multimedia data. ·Models are represented in either IFC or STEP formats. ·Cases are sets of Learning Units and Models. Cases are noteworthy stories, which describes solutions, integrate technical detail, contain relevant design failures etc. 2.Indexes refer to the process in which the identification of relevant topics in design cases and learning units takes place. Indexing process creates structures of Learning Objects for course management, profile planning procedures and reasoning processes. 3.Courses are taxonomies of either Learning Units or a design task and Course Units. Knowledge Representation WINDS demonstrates that it is possible and valuable to integrate a widespread design expertise so that it can be effectively used to produce a high level standard of education. To this aim WINDS gathers area knowledge, design skills and expertise under the umbrellas of common knowledge representation structures and unambiguous semantics. Cases are one of the most valuable means for the representation of design expertise. A Case is a set of Learning Units and Product Models. Cases are noteworthy stories, which describe solutions, integrate technical details, contain relevant design failures, etc. Knowledge Integration Indexes are a medium among different kind of knowledge: they implement networks for navigation and access to disparate documents: HTML, video, images, CAD and product models (STEP or IFC). Concept indexes link learning topics to learning objects and group them into competencies. Index relationships are the base of the WINDS reasoning processes, and provide the foundation for system coaching functions, which proactively suggest strategies, solutions, examples and avoids students' design deadlock. Knowledge Distribution To support the data stores and the process among the partners in 10 countries efficiently, WINDS implements an object oriented client/server as COM objects. Behind the DCOM components there is the Dynamic Kernel, which dynamically embodies and maintains data stores and process. Components of the Knowledge Library can reside on several servers across the Internet. This provides for distributed transactions, e.g. a change in one Learning Object affects the Knowledge Library spread across several servers in different countries. Learning objects implemented as COM objects can wrap ownership data. Clear and univocal definition of ownerships rights enables Universities, in collaboration with telecommunication and publisher companies, to act as "education brokers". Brokerage in education and training is an innovative paradigm to provide just-in-time and personally customised value added learning knowledg

    Editorial

    Get PDF

    Plotting the Centre: Bramante’s Drawings for the New St. Peter’s Basilica

    Get PDF
    This paper examines the concept of 'centre' in the design and symbolism of the new St Peter's Basilica, executed by Donato Bramante in the early 16th century. Drawing upon theological and philosophical notions of centre in late Medieval and Renaissance culture (specifically Nicolas Cusanus), the study argues that Bramante's drawings for the project reveal a particular understanding of centre, and its constellations of sub-centres, that broadly follow Platonic cosmological principles highlighted in the Timaeus. The paper considers how this understanding of space was also communicated in the iconography of the frescoes in the Stanza della Segnatura in the Vatican Palace, executed by Raphael at the same time as Bramante's design for the new basilica, in which Bramante is also credited as the author of the perspective construction

    Designing the interface between research, learning and teaching.

    Full text link
    Abstract: This paper’s central argument is that teaching and research need to be reshaped so that they connect in a productive way. This will require actions at a whole range of levels, from the individual teacher to the national system and include the international communities of design scholars. To do this, we need to start at the level of the individual teacher and course team. This paper cites some examples of strategies that focus on what students do as learners and how teachers teach and design courses to enhance research-led teaching. The paper commences with an examination of the departmental context of (art and) design education. This is followed by an exploration of what is understood by research-led teaching and a further discussion of the dimensions of research-led teaching. It questions whether these dimensions are evident, and if so to what degree in design departments, programmes and courses. The discussion examines the features of research-led departments and asks if a department is not research-led in its approach to teaching, why it should consider changing strategies
    • 

    corecore