8 research outputs found

    Using honeypots to trace back amplification DDoS attacks

    Get PDF
    In today’s interconnected world, Denial-of-Service attacks can cause great harm by simply rendering a target system or service inaccessible. Amongst the most powerful and widespread DoS attacks are amplification attacks, in which thousands of vulnerable servers are tricked into reflecting and amplifying attack traffic. However, as these attacks inherently rely on IP spoofing, the true attack source is hidden. Consequently, going after the offenders behind these attacks has so far been deemed impractical. This thesis presents a line of work that enables practical attack traceback supported by honeypot reflectors. To this end, we investigate the tradeoffs between applicability, required a priori knowledge, and traceback granularity in three settings. First, we show how spoofed attack packets and non-spoofed scan packets can be linked using honeypot-induced fingerprints, which allows attributing attacks launched from the same infrastructures as scans. Second, we present a classifier-based approach to trace back attacks launched from booter services after collecting ground-truth data through self-attacks. Third, we propose to use BGP poisoning to locate the attacking network without prior knowledge and even when attack and scan infrastructures are disjoint. Finally, as all of our approaches rely on honeypot reflectors, we introduce an automated end-to-end pipeline to systematically find amplification vulnerabilities and synthesize corresponding honeypots.In der heutigen vernetzten Welt können Denial-of-Service-Angriffe große Schäden verursachen, einfach indem sie ihr Zielsystem unerreichbar machen. Zu den stärksten und verbreitetsten DoS-Angriffen zählen Amplification-Angriffe, bei denen tausende verwundbarer Server missbraucht werden, um Angriffsverkehr zu reflektieren und zu verstärken. Da solche Angriffe jedoch zwingend gefälschte IP-Absenderadressen nutzen, ist die wahre Angriffsquelle verdeckt. Damit gilt die Verfolgung der Täter bislang als unpraktikabel. Diese Dissertation präsentiert eine Reihe von Arbeiten, die praktikable Angriffsrückverfolgung durch den Einsatz von Honeypots ermöglicht. Dazu untersuchen wir das Spannungsfeld zwischen Anwendbarkeit, benötigtem Vorwissen, und Rückverfolgungsgranularität in drei Szenarien. Zuerst zeigen wir, wie gefälschte Angriffs- und ungefälschte Scan-Datenpakete miteinander verknüpft werden können. Dies ermöglicht uns die Rückverfolgung von Angriffen, die ebenfalls von Scan-Infrastrukturen aus durchgeführt wurden. Zweitens präsentieren wir einen Klassifikator-basierten Ansatz um Angriffe durch Booter-Services mittels vorher durch Selbstangriffe gesammelter Daten zurückzuverfolgen. Drittens zeigen wir auf, wie BGP Poisoning genutzt werden kann, um ohne weiteres Vorwissen das angreifende Netzwerk zu ermitteln. Schließlich präsentieren wir einen automatisierten Prozess, um systematisch Schwachstellen zu finden und entsprechende Honeypots zu synthetisieren

    Optimizing Proactive Measures for Security Operations

    Get PDF
    Digital security threats may impact governments, businesses, and consumers through intellectual property theft, loss of physical assets, economic damages, and loss of confidence. Significant effort has been placed on technology solutions that can mitigate threat exposure. Additionally, hundreds of years of literature have focused on non-digital, human-centric strategies that proactively allow organizations to assess threats and implement mitigation plans. For both human and technology-centric solutions, little to no prior research exists on the efficacy of how humans employ digital security defenses. Security professionals are armed with commonly adopted "best practices" but are generally unaware of the particular artifacts and conditions (e.g., organizational culture, procurement processes, employee training/education) that may or may not make a particular environment well-suited for employing the best practices. In this thesis, I study proactive measures for security operations and related human factors to identify generalizable optimizations that can be applied for measurable increases in security. Through interview and survey methods, I investigate the human and organizational factors that shape the adoption and employment of defensive strategies. Case studies with partnered organizations and comprehensive evaluations of security programs reveal security gaps that many professionals were previously unaware of --- as well as opportunities for changes in security behaviors to mitigate future risk. These studies highlight that, in exemplar environments, the adoption of proactive security assessments and training programs lead to measurable improvements in organizations' security posture

    Control-Flow Security.

    Full text link
    Computer security is a topic of paramount importance in computing today. Though enormous effort has been expended to reduce the software attack surface, vulnerabilities remain. In contemporary attacks, subverting the control-flow of an application is often the cornerstone to a successful attempt to compromise a system. This subversion, known as a control-flow attack, remains as an essential building block of many software exploits. This dissertation proposes a multi-pronged approach to securing software control-flow to harden the software attack surface. The primary domain of this dissertation is the elimination of the basic mechanism in software enabling control-flow attacks. I address the prevalence of such attacks by going to the heart of the problem, removing all of the operations that inject runtime data into program control. This novel approach, Control-Data Isolation, provides protection by subtracting the root of the problem; indirect control-flow. Previous works have attempted to address control-flow attacks by layering additional complexity in an effort to shield software from attack. In this work, I take a subtractive approach; subtracting the primary cause of both contemporary and classic control-flow attacks. This novel approach to security advances the state of the art in control-flow security by ensuring the integrity of the programmer-intended control-flow graph of an application at runtime. Further, this dissertation provides methodologies to eliminate the barriers to adoption of control-data isolation while simultaneously moving ahead to reduce future attacks. The secondary domain of this dissertation is technique which leverages the process by which software is engineered, tested, and executed to pinpoint the statements in software which are most likely to be exploited by an attacker, defined as the Dynamic Control Frontier. Rather than reacting to successful attacks by patching software, the approach in this dissertation will move ahead of the attacker and identify the susceptible code regions before they are compromised. In total, this dissertation combines software and hardware design techniques to eliminate contemporary control-flow attacks. Further, it demonstrates the efficacy and viability of a subtractive approach to software security, eliminating the elements underlying security vulnerabilities.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133304/1/warthur_1.pd

    A Human-Centric Approach to Software Vulnerability Discovery

    Get PDF
    Software security bugs | referred to as vulnerabilities | persist as an important and costly challenge. Significant effort has been exerted toward automatic vulnerability discovery, but human intelligence generally remains required and will remain necessary for the foreseeable future. Therefore, many companies have turned to internal and external (e.g., penetration testing, bug bounties) security experts to manually analyze their code for vulnerabilities. Unfortunately, there are a limited number of qualified experts. Therefore, to improve software security, we must understand how experts search for vulnerabilities and how their processes could be made more efficient, by improving tool usability and targeting the most common vulnerabilities. Additionally, we seek to understand how to improve training to increase the number of experts. To answer these questions, I begin with an in-depth qualitative analysis of secure development competition submissions to identify common vulnerabilities developers introduce. I found developers struggle to understand and implement complex security concepts, not recognizing how nuanced development decisions could lead to vulnerabilities. Next, using a cognitive task analysis to investigate experts' and non-experts' vulnerability discovery processes, I observed they use the same process, but dier in the variety of security experiences which inform their searches. Together, these results suggest exposure to an in-depth understanding of potential vulnerabilities as essential for vulnerability discovery. As a first step to leverage both experts and non-experts, I pursued two lines of work: education to support experience development and vulnerability discovery automation interaction improvements. To improve vulnerability discovery tool interaction, I conducted observational interviews of experts' reverse engineering process, an essential and time-consuming component of vulnerability discovery. From this, I provide guidelines for more usable interaction design. For security education, I began with a pedagogical review of security exercises to identify their current strengths and weaknesses. I also developed a psychometric measure for secure software development self-efficacy to support comparisons between educational interventions

    Unmanned Aircraft Systems in the Cyber Domain

    Get PDF
    Unmanned Aircraft Systems are an integral part of the US national critical infrastructure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This textbook will fully immerse and engage the reader / student in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). The first edition topics covered National Airspace (NAS) policy issues, information security (INFOSEC), UAS vulnerabilities in key systems (Sense and Avoid / SCADA), navigation and collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming, operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions. This second edition discusses state-of-the-art technology issues facing US UAS designers. It focuses on counter unmanned aircraft systems (C-UAS) – especially research designed to mitigate and terminate threats by SWARMS. Topics include high-altitude platforms (HAPS) for wireless communications; C-UAS and large scale threats; acoustic countermeasures against SWARMS and building an Identify Friend or Foe (IFF) acoustic library; updates to the legal / regulatory landscape; UAS proliferation along the Chinese New Silk Road Sea / Land routes; and ethics in this new age of autonomous systems and artificial intelligence (AI).https://newprairiepress.org/ebooks/1027/thumbnail.jp

    Combating Attacks and Abuse in Large Online Communities

    Get PDF
    Internet users today are connected more widely and ubiquitously than ever before. As a result, various online communities are formed, ranging from online social networks (Facebook, Twitter), to mobile communities (Foursquare, Waze), to content/interests based networks (Wikipedia, Yelp, Quora). While users are benefiting from the ease of access to information and social interactions, there is a growing concern for users' security and privacy against various attacks such as spam, phishing, malware infection and identity theft. Combating attacks and abuse in online communities is challenging. First, today’s online communities are increasingly dependent on users and user-generated content. Securing online systems demands a deep understanding of the complex and often unpredictable human behaviors. Second, online communities can easily have millions or even billions of users, which requires the corresponding security mechanisms to be highly scalable. Finally, cybercriminals are constantly evolving to launch new types of attacks. This further demands high robustness of security defenses. In this thesis, we take concrete steps towards measuring, understanding, and defending against attacks and abuse in online communities. We begin with a series of empirical measurements to understand user behaviors in different online services and the uniquesecurity and privacy challenges that users are facing with. This effort covers a broad set of popular online services including social networks for question and answering (Quora), anonymous social networks (Whisper), and crowdsourced mobile communities (Waze). Despite the differences of specific online communities, our study provides a first look at their user activity patterns based on empirical data, and reveals the need for reliable mechanisms to curate user content, protect privacy, and defend against emerging attacks. Next, we turn our attention to attacks targeting online communities, with focus on spam campaigns. While traditional spam is mostly generated by automated software, attackers today start to introduce "human intelligence" to implement attacks. This is maliciouscrowdsourcing (or crowdturfing) where a large group of real-users are organized to carry out malicious campaigns, such as writing fake reviews or spreading rumors on social media. Using collective human efforts, attackers can easily bypass many existing defenses (e.g.,CAPTCHA). To understand the ecosystem of crowdturfing, we first use measurements to examine their detailed campaign organization, workers and revenue. Based on insights from empirical data, we develop effective machine learning classifiers to detect crowdturfingactivities. In the meantime, considering the adversarial nature of crowdturfing, we also build practical adversarial models to simulate how attackers can evade or disrupt machine learning based defenses. To aid in this effort, we next explore using user behavior models to detect a wider range of attacks. Instead of making assumptions about attacker behavior, our idea is to model normal user behaviors and capture (malicious) behaviors that are deviated from norm. In this way, we can detect previously unknown attacks. Our behavior model is based on detailed clickstream data, which are sequences of click events generated by users when using the service. We build a similarity graph where each user is a node and the edges are weightedby clickstream similarity. By partitioning this graph, we obtain "clusters" of users with similar behaviors. We then use a small set of known good users to "color" these clusters to differentiate the malicious ones. This technique has been adopted by real-world social networks (Renren and LinkedIn), and already detected unexpected attacks. Finally, we extend clickstream model to understanding more-grained behaviors of attackers (and real users), and tracking how user behavior changes over time. In summary, this thesis illustrates a data-driven approach to understanding and defending against attacks and abuse in online communities. Our measurements have revealed new insights about how attackers are evolving to bypass existing security defenses today. Inaddition, our data-driven systems provide new solutions for online services to gain a deep understanding of their users, and defend them from emerging attacks and abuse

    Counter Unmanned Aircraft Systems Technologies and Operations

    Get PDF
    As the quarter-century mark in the 21st Century nears, new aviation-related equipment has come to the forefront, both to help us and to haunt us. (Coutu, 2020) This is particularly the case with unmanned aerial vehicles (UAVs). These vehicles have grown in popularity and accessible to everyone. Of different shapes and sizes, they are widely available for purchase at relatively low prices. They have moved from the backyard recreation status to important tools for the military, intelligence agencies, and corporate organizations. New practical applications such as military equipment and weaponry are announced on a regular basis – globally. (Coutu, 2020) Every country seems to be announcing steps forward in this bludgeoning field. In our successful 2nd edition of Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets (Nichols, et al., 2019), the authors addressed three factors influencing UAS phenomena. First, unmanned aircraft technology has seen an economic explosion in production, sales, testing, specialized designs, and friendly / hostile usages of deployed UAS / UAVs / Drones. There is a huge global growing market and entrepreneurs know it. Second, hostile use of UAS is on the forefront of DoD defense and offensive planners. They are especially concerned with SWARM behavior. Movies like “Angel has Fallen,” where drones in a SWARM use facial recognition technology to kill USSS agents protecting POTUS, have built the lore of UAS and brought the problem forefront to DHS. Third, UAS technology was exploding. UAS and Counter- UAS developments in navigation, weapons, surveillance, data transfer, fuel cells, stealth, weight distribution, tactics, GPS / GNSS elements, SCADA protections, privacy invasions, terrorist uses, specialized software, and security protocols has exploded. (Nichols, et al., 2019) Our team has followed / tracked joint ventures between military and corporate entities and specialized labs to build UAS countermeasures. As authors, we felt compelled to address at least the edge of some of the new C-UAS developments. It was clear that we would be lucky if we could cover a few of – the more interesting and priority technology updates – all in the UNCLASSIFIED and OPEN sphere. Counter Unmanned Aircraft Systems: Technologies and Operations is the companion textbook to our 2nd edition. The civilian market is interesting and entrepreneurial, but the military and intelligence markets are of concern because the US does NOT lead the pack in C-UAS technologies. China does. China continues to execute its UAS proliferation along the New Silk Road Sea / Land routes (NSRL). It has maintained a 7% growth in military spending each year to support its buildup. (Nichols, et al., 2019) [Chapter 21]. They continue to innovate and have recently improved a solution for UAS flight endurance issues with the development of advanced hydrogen fuel cell. (Nichols, et al., 2019) Reed and Trubetskoy presented a terrifying map of countries in the Middle East with armed drones and their manufacturing origin. Guess who? China. (A.B. Tabriski & Justin, 2018, December) Our C-UAS textbook has as its primary mission to educate and train resources who will enter the UAS / C-UAS field and trust it will act as a call to arms for military and DHS planners.https://newprairiepress.org/ebooks/1031/thumbnail.jp
    corecore