45,481 research outputs found

    Think aloud: Can eye tracking add value in detecting usability problems?

    Get PDF
    The protocols of Think Aloud and Eye Tracking, in their own unique way have proven to be great methods to understand users\u27 thought processes, and their mental models when interacting with interfaces. However the effectiveness of the combination of the two protocols in discovering usability problems has not been explored. This study aimed to discover if the addition of Eye Tracking data (fixations and scan movements) to the traditional protocol of Think Aloud can uncover more usability problems. Web users were split into three groups: Eye Tracking Only (ET), Think Aloud Only (TA), and Eye Tracking and Think Aloud Only (ET+TA). Participants in all conditions were asked to complete two tasks on two websites each. Along with questionnaires, eye movement data was collected for conditions with the Eye Tracking aspect and verbalizations were collected for conditions with the Think Aloud aspect. The analysis of the data showed that the total number of usability problems (not unique) identified by the participants in the `Eye Tracking and Think Aloud\u27 (ET + TA) condition was higher than the other two conditions. However, a Tukey HSD post-hoc test revealed that the differences between `ET + TA\u27 and the `Eye Tracking Only\u27 (ET) conditions was non-significant. The analysis also which resulted in non-significant differences between the conditions `Eye Tracking\u27 (ET) and `Eye Tracking and Think Aloud\u27 (ET + TA) led to inconclusive results on whether the Think Aloud method is disruptive or not. This may lead future researchers to develop robust practice sessions to help participants verbalize and create evaluation rules for eye movement data

    Enriching student experience through access to novel technology

    Get PDF

    Investigating the effectiveness of an efficient label placement method using eye movement data

    Get PDF
    This paper focuses on improving the efficiency and effectiveness of dynamic and interactive maps in relation to the user. A label placement method with an improved algorithmic efficiency is presented. Since this algorithm has an influence on the actual placement of the name labels on the map, it is tested if this efficient algorithms also creates more effective maps: how well is the information processed by the user. We tested 30 participants while they were working on a dynamic and interactive map display. Their task was to locate geographical names on each of the presented maps. Their eye movements were registered together with the time at which a given label was found. The gathered data reveal no difference in the user's response times, neither in the number and the duration of the fixations between both map designs. The results of this study show that the efficiency of label placement algorithms can be improved without disturbing the user's cognitive map. Consequently, we created a more efficient map without affecting its effectiveness towards the user

    Cloud based testing of business applications and web services

    Get PDF
    This paper deals with testing of applications based on the principles of cloud computing. It is aimed to describe options of testing business software in clouds (cloud testing). It identifies the needs for cloud testing tools including multi-layer testing; service level agreement (SLA) based testing, large scale simulation, and on-demand test environment. In a cloud-based model, ICT services are distributed and accessed over networks such as intranet or internet, which offer large data centers deliver on demand, resources as a service, eliminating the need for investments in specific hardware, software, or on data center infrastructure. Businesses can apply those new technologies in the contest of intellectual capital management to lower the cost and increase competitiveness and also earnings. Based on comparison of the testing tools and techniques, the paper further investigates future trend of cloud based testing tools research and development. It is also important to say that this comparison and classification of testing tools describes a new area and it has not yet been done

    Embedding accessibility and usability: considerations for e-learning research and development projects

    Get PDF
    This paper makes the case that if e‐learning research and development projects are to be successfully adopted in real‐world teaching and learning contexts, then they must effectively address accessibility and usability issues; and that these need to be integrated throughout the project. As such, accessibility and usability issues need to be made explicit in project documentation, along with allocation of appropriate resources and time. We argue that accessibility and usability are intrinsically inter‐linked. An integrated accessibility and usability evaluation methodology that we have developed is presented and discussed. The paper draws on a series of mini‐case studies from e‐learning projects undertaken over the past 10 years at the Open University

    Privacy CURE: Consent Comprehension Made Easy

    Get PDF
    Although the General Data Protection Regulation (GDPR) defines several potential legal bases for personal data processing, in many cases data controllers, even when they are located outside the European Union (EU), will need to obtain consent from EU citizens for the processing of their personal data. Unfortunately, existing approaches for obtaining consent, such as pages of text followed by an agreement/disagreement mechanism, are neither specific nor informed. In order to address this challenge, we introduce our Consent reqUest useR intErface (CURE) prototype, which is based on the GDPR requirements and the interpretation of those requirements by the Article 29 Working Party (i.e., the predecessor of the European Data Protection Board). The CURE prototype provides transparency regarding personal data processing, more control via a customization, and, based on the results of our usability evaluation, improves user comprehension with respect to what data subjects actually consent to. Although the CURE prototype is based on the GDPR requirements, it could potentially be used in other jurisdictions also

    Evaluating the impact of physical activity apps and wearables: interdisciplinary review

    Get PDF
    Background: Although many smartphone apps and wearables have been designed to improve physical activity, their rapidly evolving nature and complexity present challenges for evaluating their impact. Traditional methodologies, such as randomized controlled trials (RCTs), can be slow. To keep pace with rapid technological development, evaluations of mobile health technologies must be efficient. Rapid alternative research designs have been proposed, and efficient in-app data collection methods, including in-device sensors and device-generated logs, are available. Along with effectiveness, it is important to measure engagement (ie, users’ interaction and usage behavior) and acceptability (ie, users’ subjective perceptions and experiences) to help explain how and why apps and wearables work. Objectives: This study aimed to (1) explore the extent to which evaluations of physical activity apps and wearables: employ rapid research designs; assess engagement, acceptability, as well as effectiveness; use efficient data collection methods; and (2) describe which dimensions of engagement and acceptability are assessed. Method: An interdisciplinary scoping review using 8 databases from health and computing sciences. Included studies measured physical activity, and evaluated physical activity apps or wearables that provided sensor-based feedback. Results were analyzed using descriptive numerical summaries, chi-square testing, and qualitative thematic analysis. Results: A total of 1829 abstracts were screened, and 858 articles read in full. Of 111 included studies, 61 (55.0%) were published between 2015 and 2017. Most (55.0%, 61/111) were RCTs, and only 2 studies (1.8%) used rapid research designs: 1 single-case design and 1 multiphase optimization strategy. Other research designs included 23 (22.5%) repeated measures designs, 11 (9.9%) nonrandomized group designs, 10 (9.0%) case studies, and 4 (3.6%) observational studies. Less than one-third of the studies (32.0%, 35/111) investigated effectiveness, engagement, and acceptability together. To measure physical activity, most studies (90.1%, 101/111) employed sensors (either in-device [67.6%, 75/111] or external [23.4%, 26/111]). RCTs were more likely to employ external sensors (accelerometers: P=.005). Studies that assessed engagement (52.3%, 58/111) mostly used device-generated logs (91%, 53/58) to measure the frequency, depth, and length of engagement. Studies that assessed acceptability (57.7%, 64/111) most often used questionnaires (64%, 42/64) and/or qualitative methods (53%, 34/64) to explore appreciation, perceived effectiveness and usefulness, satisfaction, intention to continue use, and social acceptability. Some studies (14.4%, 16/111) assessed dimensions more closely related to usability (ie, burden of sensor wear and use, interface complexity, and perceived technical performance). Conclusions: The rapid increase of research into the impact of physical activity apps and wearables means that evaluation guidelines are urgently needed to promote efficiency through the use of rapid research designs, in-device sensors and user-logs to assess effectiveness, engagement, and acceptability. Screening articles was time-consuming because reporting across health and computing sciences lacked standardization. Reporting guidelines are therefore needed to facilitate the synthesis of evidence across disciplines

    A Comparison of a Brain-Computer Interface and an Eye Tracker: Is There a More Appropriate Technology for Controlling a Virtual Keyboard in an ALS Patient?

    Get PDF
    The ability of people affected by amyotrophic lateral sclerosis (ALS), muscular dystrophy or spinal cord injuries to physically interact with the environment, is usually reduced. In some cases, these patients suffer from a syndrome known as locked-in syndrome (LIS), defined by the patient’s inability to make any move-ment but blinks and eye movements. Tech communication systems available for people in LIS are very limited, being those based on eye-tracking and brain-computer interface (BCI) the most useful for these patients. A comparative study between both technologies in an ALS patient is carried out: an eye tracker and a visual P300-based BCI. The purpose of the study presented in this paper is to show that the choice of the technology could depend on user´s preference. The evaluation of performance, workload and other subjective measures will allow us to determine the usability of the systems. The obtained results suggest that, even if for this patient the BCI technology is more appropriate, the technology should be always tested and adapted for each user.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Piloting Multimodal Learning Analytics using Mobile Mixed Reality in Health Education

    Get PDF
    © 2019 IEEE. Mobile mixed reality has been shown to increase higher achievement and lower cognitive load within spatial disciplines. However, traditional methods of assessment restrict examiners ability to holistically assess spatial understanding. Multimodal learning analytics seeks to investigate how combinations of data types such as spatial data and traditional assessment can be combined to better understand both the learner and learning environment. This paper explores the pedagogical possibilities of a smartphone enabled mixed reality multimodal learning analytics case study for health education, focused on learning the anatomy of the heart. The context for this study is the first loop of a design based research study exploring the acquisition and retention of knowledge by piloting the proposed system with practicing health experts. Outcomes from the pilot study showed engagement and enthusiasm of the method among the experts, but also demonstrated problems to overcome in the pedagogical method before deployment with learners
    corecore