4 research outputs found

    SST: Integrated Fluorocarbon Microsensor System Using Catalytic Modification

    Get PDF
    Selective, sensitive, and reliable sensors are urgently needed to detect air-borne halogenated volatile organic compounds (VOCs). This broad class of compounds includes chlorine, fluorine, bromine, and iodine containing hydrocarbons used as solvents, refrigerants, herbicides, and more recently as chemical warfare agents (CWAs). It is important to be able to detect very low concentrations of halocarbon solvents and insecticides because of their acute health effects even in very low concentrations. For instance, the nerve agent sarin (isopropyl methylphosphonofluoridate), first developed as an insecticide by German chemists in 1938, is so toxic that a ten minute exposure at an airborne concentration of only 65 parts per billion (ppb) can be fatal. Sarin became a household term when religious cult members on Tokyo subway trains poisoned over 5,500 people, killing 12. Sarin and other CWAs remain a significant threat to the health and safety of the general public. The goal of this project is to design a sensor system to detect and identify the composition and concentration of fluorinated VOCs. The system should be small, robust, compatible with metal oxide semiconductor (MOS) technology, cheap, if produced in large scale, and has the potential to be versatile in terms of low power consumption, detection of other gases, and integration in a portable system. The proposed VOC sensor system has three major elements that will be integrated into a microreactor flow cell: a temperature-programmable microhotplate array/reactor system which serves as the basic sensor platform; an innovative acoustic wave sensor, which detects material removal (instead of deposition) to verify and quantify the presence of fluorine; and an intelligent method, support vector machines, that will analyze the complex and high dimensional data furnished by the sensor system. The superior and complementary aspects of the three elements will be carefully integrated to create a system which is more sensitive and selective than other CWA detection systems that are commercially available or described in the research literature. While our sensor system will be developed to detect fluorinated VOCs, it can be adapted for other applications in which a target analyte can be catalytically converted for selective detection. Therefore, this investigation will examine the relationships between individual sensor element performance and joint sensor platform performance, integrated with state-of-the-art data analysis techniques. During development of the sensor system, the investigators will consider traditional reactor design concepts such as mass transfer and residence time effects, and will apply them to the emerging field of microsystems. The proposed research will provide the fundamental basis and understanding for examining multifunctional sensor platforms designed to provide extreme selectivity to targeted molecules. The project will involve interdisciplinary researchers and students and will connect to K-12 and RET programs for underrepresented students from rural areas

    Towards Spatial Queries over Phenomena in Sensor Networks

    Get PDF
    Today, technology developments enable inexpensive production and deployment of tiny sensing and computing nodes. Networked through wireless radio, such senor nodes form a new platform, wireless sensor networks, which provide novel ability to monitor spatiotemporally continuous phenomena. By treating a wireless sensor network as a database system, users can pose SQL-based queries over phenomena without needing to program detailed sensor node operations. DBMS-internally, intelligent and energyefficient data collection and processing algorithms have to be implemented to support spatial query processing over sensor networks. This dissertation proposes spatial query support for two views of continuous phenomena: field-based and object-based. A field-based view of continuous phenomena depicts them as a value distribution over a geographical area. However, due to the discrete and comparatively sparse distribution of sensor nodes, estimation methods are necessary to generate a field-based query result, and it has to be computed collaboratively ‘in-the-network’ due to energy constraints. This dissertation proposes SWOP, an in-network algorithm using Gaussian Kernel estimation. The key contribution is the use of a small number of Hermite coefficients to approximate the Gaussian Kernel function for sub-clustered sensor nodes, and processes the estimation result efficiently. An object-based view of continuous phenomena is interested in aspects such as the boundary of an ‘interesting region’ (e.g. toxic plume). This dissertation presents NED, which provides object boundary detection in sensor networks. NED encodes partial event estimation results based on confidence levels into optimized, variable length messages exchanged locally among neighboring sensor nodes to save communication cost. Therefore, sensor nodes detect objects and boundaries based on moving averages to eliminate noise effects and enhance detection quality. Furthermore, the dissertation proposes the SNAKE-based approach, which uses deformable curves to track the spatiotemporal changes of such objects incrementally in sensor networks. In the proposed algorithm, only neighboring nodes exchange messages to maintain the curve structures. Based on in-network tracking of deformable curves, other types of spatial and spatiotemporal properties of objects, such as area, can be provided by the sensor network. The experimental results proved that our approaches are resource friendly within the constrained sensor networks, while providing high quality query results

    Μέθοδοι κατανεμημένης επεξεργασίας σήματος και σύντηξης δεδομένων για εφαρμογές ασυρμάτων δικτύων αισθητήρων ευρείας κλίμακας

    Get PDF
    Σε αυτή τη Διδακτορική Διατριβή μελετάμε το πρόβλημα της παρακολούθησης και πρόβλεψης της εξέλιξης συνεχών αντικειμένων (π.χ. καταστροφικά περιβαλλοντικά φαινόμενα που διαχέονται) με τη χρήση Ασυρμάτων Δικτύων Αισθητήρων (ΑΔΑ) ευρείας κλίμακας. Προτείνουμε μια ευέλικτη αλλά και πρακτική προσέγγιση με δύο κύρια συστατικά: α) Ασύγχρονο συνεργατικό αλγόριθμο ΑΔΑ που εκτιμά, χρησιμοποιώντας δυναμικά σχηματιζόμενες ομάδες από τρεις συνεργαζόμενους κόμβους, τα τοπικά χαρακτηριστικά της εξέλιξης (διεύθυνση, φορά και ταχύτητα) του μετώπου, καθώς και β) Αλγόριθμο που ανακατασκευάζει το συνολικό μέτωπο του συνεχούς αντικειμένου συνδυάζοντας την πληροφορία των τοπικών εκτιμήσεων. Επιπλέον, ο αλγόριθμος ανακατασκευής, εκμεταλλευόμενος την δυνατότητα εκτίμησης της αβεβαιότητα ως προς τα τοπικά χαρακτηριστικά εξέλιξης, μπορεί να προβλέπει και την πιθανότητα το κάθε σημείο της περιοχής να έχει καλυφθεί από το συνεχές αντικείμενο σε κάθε χρονική στιγμή. Μέσω πλήθους προσομοιώσεων επικυρώσαμε την ικανότητα του συνεργατικού αλγορίθμου να εκτιμά με ακρίβεια τα τοπικά χαρακτηριστικά εξέλιξης πολύπλοκων συνεχών αντικειμένων, καθώς και την ευρωστία του σε αστοχίες των αισθητηρίων κόμβων κατά την επικοινωνία τους αλλά και λόγω της πιθανής ολοσχερούς καταστροφής τους. Τέλος, παρουσιάζουμε τη δυνατότητα του αλγορίθμου ανακατασκευής να παρακολουθεί με ακρίβεια την εξέλιξη μετώπων συνεχών αντικειμένων με πολύπλοκα σχήματα, χρησιμοποιώντας σχετικά μικρό αριθμό τοπικών εκτιμήσεων στις οποίες μπορεί να έχει υπεισέλθει και σημαντικό σφάλμα. In this Dissertation we study the problem of tracking the boundary of a continuous object (e.g. a hazardous diffusive phenomenon) and predicting its local and global spatio-temporal evolution characteristics using large-scale Wireless Sensor Networks (WSNs). We introduce a practical WSN-based approach consisting of two main components: a) An asynchronous collaborative in-network processing algorithm that estimates, using dynamically formed node triplets (clusters), local front model evolution parameters (orientation, direction and speed) of the expanding continuous object, and b) an algorithm that reconstruct the overall hazard's boundary by combining the produced local front estimates as they are becoming available to a fusion center. Based on the estimated uncertainties of local front model parameters, the reconstruction can provide for each point of the considered area the probability to be reached by the hazard’s front. Extensive computer simulations demonstrate that the proposed algorithm can estimate accurately the evolution characteristics of complex diffusive continuous objects, while it remains robust to sensor node and communication link failures. Finally, we show that it can track with accuracy the evolution of continuous objects with complex shapes, using a relatively small number of potentially distorted local front estimates

    Distributed Signal Processing and Data Fusion Methods for Large Scale Wireless Sensor Network Applications

    Get PDF
    Σε αυτή τη Διδακτορική Διατριβή μελετάμε το πρόβλημα της παρακολούθησης και πρόβλεψης της εξέλιξης συνεχών αντικειμένων (π.χ. καταστροφικά περιβαλλοντικά φαινόμενα που διαχέονται) με τη χρήση Ασυρμάτων Δικτύων Αισθητήρων (ΑΔΑ) ευρείας κλίμακας. Προτείνουμε μια ευέλικτη αλλά και πρακτική προσέγγιση με δύο κύρια συστατικά: α) Ασύγχρονο συνεργατικό αλγόριθμο ΑΔΑ που εκτιμά, χρησιμοποιώντας δυναμικά σχηματιζόμενες ομάδες από τρεις συνεργαζόμενους κόμβους, τα τοπικά χαρακτηριστικά της εξέλιξης (διεύθυνση, φορά και ταχύτητα) του μετώπου, καθώς και β) Αλγόριθμο που ανακατασκευάζει το συνολικό μέτωπο του συνεχούς αντικειμένου συνδυάζοντας την πληροφορία των τοπικών εκτιμήσεων. Επιπλέον, ο αλγόριθμος ανακατασκευής, εκμεταλλευόμενος την δυνατότητα εκτίμησης της αβεβαιότητα ως προς τα τοπικά χαρακτηριστικά εξέλιξης, μπορεί να προβλέπει και την πιθανότητα το κάθε σημείο της περιοχής να έχει καλυφθεί από το συνεχές αντικείμενο σε κάθε χρονική στιγμή. Μέσω πλήθους προσομοιώσεων επικυρώσαμε την ικανότητα του συνεργατικού αλγορίθμου να εκτιμά με ακρίβεια τα τοπικά χαρακτηριστικά εξέλιξης πολύπλοκων συνεχών αντικειμένων, καθώς και την ευρωστία του σε αστοχίες των αισθητηρίων κόμβων κατά την επικοινωνία τους αλλά και λόγω της πιθανής ολοσχερούς καταστροφής τους. Τέλος, παρουσιάζουμε τη δυνατότητα του αλγορίθμου ανακατασκευής να παρακολουθεί με ακρίβεια την εξέλιξη μετώπων συνεχών αντικειμένων με πολύπλοκα σχήματα, χρησιμοποιώντας σχετικά μικρό αριθμό τοπικών εκτιμήσεων στις οποίες μπορεί να έχει υπεισέλθει και σημαντικό σφάλμα.In this Dissertation we study the problem of tracking the boundary of a continuous object (e.g. a hazardous diffusive phenomenon) and predicting its local and global spatio-temporal evolution characteristics using large-scale Wireless Sensor Networks (WSNs). We introduce a practical WSN-based approach consisting of two main components: a) An asynchronous collaborative in-network processing algorithm that estimates, using dynamically formed node triplets (clusters), local front model evolution parameters (orientation, direction and speed) of the expanding continuous object, and b) an algorithm that reconstruct the overall hazard's boundary by combining the produced local front estimates as they are becoming available to a fusion center. Based on the estimated uncertainties of local front model parameters, the reconstruction can provide for each point of the considered area the probability to be reached by the hazard’s front. Extensive computer simulations demonstrate that the proposed algorithm can estimate accurately the evolution characteristics of complex diffusive continuous objects, while it remains robust to sensor node and communication link failures. Finally, we show that it can track with accuracy the evolution of continuous objects with complex shapes, using a relatively small number of potentially distorted local front estimates
    corecore