191 research outputs found

    Deconvolutional networks for point-cloud vehicle detection and tracking in driving scenarios

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Vehicle detection and tracking is a core ingredient for developing autonomous driving applications in urban scenarios. Recent image-based Deep Learning (DL) techniques are obtaining breakthrough results in these perceptive tasks. However, DL research has not yet advanced much towards processing 3D point clouds from lidar range-finders. These sensors are very common in autonomous vehicles since, despite not providing as semantically rich information as images, their performance is more robust under harsh weather conditions than vision sensors. In this paper we present a full vehicle detection and tracking system that works with 3D lidar information only. Our detection step uses a Convolutional Neural Network (CNN) that receives as input a featured representation of the 3D information provided by a Velodyne HDL-64 sensor and returns a per-point classification of whether it belongs to a vehicle or not. The classified point cloud is then geometrically processed to generate observations for a multi-object tracking system implemented via a number of Multi-Hypothesis Extended Kalman Filters (MH-EKF) that estimate the position and velocity of the surrounding vehicles. The system is thoroughly evaluated on the KITTI tracking dataset, and we show the performance boost provided by our CNN-based vehicle detector over a standard geometric approach. Our lidar-based approach uses about a 4% of the data needed for an image-based detector with similarly competitive results.Peer ReviewedPostprint (author's final draft

    Point Cloud Processing for Environmental Analysis in Autonomous Driving using Deep Learning

    Get PDF
    Autonomous self-driving cars need a very precise perception system of their environment, working for every conceivable scenario. Therefore, different kinds of sensor types, such as lidar scanners, are in use. This thesis contributes highly efficient algorithms for 3D object recognition to the scientific community. It provides a Deep Neural Network with specific layers and a novel loss to safely localize and estimate the orientation of objects from point clouds originating from lidar sensors. First, a single-shot 3D object detector is developed that outputs dense predictions in only one forward pass. Next, this detector is refined by fusing complementary semantic features from cameras and joint probabilistic tracking to stabilize predictions and filter outliers. The last part presents an evaluation of data from automotive-grade lidar scanners. A Generative Adversarial Network is also being developed as an alternative for target-specific artificial data generation.One of the main objectives of leading automotive companies is autonomous self-driving cars. They need a very precise perception system of their environment, working for every conceivable scenario. Therefore, different kinds of sensor types are in use. Besides cameras, lidar scanners became very important. The development in that field is significant for future applications and system integration because lidar offers a more accurate depth representation, independent from environmental illumination. Especially algorithms and machine learning approaches, including Deep Learning and Artificial Intelligence based on raw laser scanner data, are very important due to the long range and three-dimensional resolution of the measured point clouds. Consequently, a broad field of research with many challenges and unsolved tasks has been established. This thesis aims to address this deficit and contribute highly efficient algorithms for 3D object recognition to the scientific community. It provides a Deep Neural Network with specific layers and a novel loss to safely localize and estimate the orientation of objects from point clouds. First, a single shot 3D object detector is developed that outputs dense predictions in only one forward pass. Next, this detector is refined by fusing complementary semantic features from cameras and a joint probabilistic tracking to stabilize predictions and filter outliers. In the last part, a concept for deployment into an existing test vehicle focuses on the semi-automated generation of a suitable dataset. Subsequently, an evaluation of data from automotive-grade lidar scanners is presented. A Generative Adversarial Network is also being developed as an alternative for target-specific artificial data generation. Experiments on the acquired application-specific and benchmark datasets show that the presented methods compete with a variety of state-of-the-art algorithms while being trimmed down to efficiency for use in self-driving cars. Furthermore, they include an extensive set of standard evaluation metrics and results to form a solid baseline for future research.Eines der Hauptziele führender Automobilhersteller sind autonome Fahrzeuge. Sie benötigen ein sehr präzises System für die Wahrnehmung der Umgebung, dass für jedes denkbare Szenario überall auf der Welt funktioniert. Daher sind verschiedene Arten von Sensoren im Einsatz, sodass neben Kameras u. a. auch Lidar Sensoren ein wichtiger Bestandteil sind. Die Entwicklung auf diesem Gebiet ist für künftige Anwendungen von höchster Bedeutung, da Lidare eine genauere, von der Umgebungsbeleuchtung unabhängige, Tiefendarstellung bieten. Insbesondere Algorithmen und maschinelle Lernansätze wie Deep Learning, die Rohdaten über Lernzprozesse direkt verarbeiten können, sind aufgrund der großen Reichweite und der dreidimensionalen Auflösung der gemessenen Punktwolken sehr wichtig. Somit hat sich ein weites Forschungsfeld mit vielen Herausforderungen und ungelösten Problemen etabliert. Diese Arbeit zielt darauf ab, dieses Defizit zu verringern und effiziente Algorithmen zur 3D-Objekterkennung zu entwickeln. Sie stellt ein tiefes Neuronales Netzwerk mit spezifischen Schichten und einer neuartigen Fehlerfunktion zur sicheren Lokalisierung und Schätzung der Orientierung von Objekten aus Punktwolken bereit. Zunächst wird ein 3D-Detektor entwickelt, der in nur einem Vorwärtsdurchlauf aus einer Punktwolke alle Objekte detektiert. Anschließend wird dieser Detektor durch die Fusion von komplementären semantischen Merkmalen aus Kamerabildern und einem gemeinsamen probabilistischen Tracking verfeinert, um die Detektionen zu stabilisieren und Ausreißer zu filtern. Im letzten Teil wird ein Konzept für den Einsatz in einem bestehenden Testfahrzeug vorgestellt, das sich auf die halbautomatische Generierung eines geeigneten Datensatzes konzentriert. Hierbei wird eine Auswertung auf Daten von Automotive-Lidaren vorgestellt. Als Alternative zur zielgerichteten künstlichen Datengenerierung wird ein weiteres generatives Neuronales Netzwerk untersucht. Experimente mit den erzeugten anwendungsspezifischen- und Benchmark-Datensätzen zeigen, dass sich die vorgestellten Methoden mit dem Stand der Technik messen können und gleichzeitig auf Effizienz für den Einsatz in selbstfahrenden Autos optimiert sind. Darüber hinaus enthalten sie einen umfangreichen Satz an Evaluierungsmetriken und -ergebnissen, die eine solide Grundlage für die zukünftige Forschung bilden

    Lidar-based scene understanding for autonomous driving using deep learning

    Get PDF
    With over 1.35 million fatalities related to traffic accidents worldwide, autonomous driving was foreseen at the beginning of this century as a feasible solution to improve security in our roads. Nevertheless, it is meant to disrupt our transportation paradigm, allowing to reduce congestion, pollution, and costs, while increasing the accessibility, efficiency, and reliability of the transportation for both people and goods. Although some advances have gradually been transferred into commercial vehicles in the way of Advanced Driving Assistance Systems (ADAS) such as adaptive cruise control, blind spot detection or automatic parking, however, the technology is far from mature. A full understanding of the scene is actually needed so that allowing the vehicles to be aware of the surroundings, knowing the existing elements of the scene, as well as their motion, intentions and interactions. In this PhD dissertation, we explore new approaches for understanding driving scenes from 3D LiDAR point clouds by using Deep Learning methods. To this end, in Part I we analyze the scene from a static perspective using independent frames to detect the neighboring vehicles. Next, in Part II we develop new ways for understanding the dynamics of the scene. Finally, in Part III we apply all the developed methods to accomplish higher level challenges such as segmenting moving obstacles while obtaining their rigid motion vector over the ground. More specifically, in Chapter 2 we develop a 3D vehicle detection pipeline based on a multi-branch deep-learning architecture and propose a Front (FR-V) and a Bird’s Eye view (BE-V) as 2D representations of the 3D point cloud to serve as input for training our models. Later on, in Chapter 3 we apply and further test this method on two real uses-cases, for pre-filtering moving obstacles while creating maps to better localize ourselves on subsequent days, as well as for vehicle tracking. From the dynamic perspective, in Chapter 4 we learn from the 3D point cloud a novel dynamic feature that resembles optical flow from RGB images. For that, we develop a new approach to leverage RGB optical flow as pseudo ground truth for training purposes but allowing the use of only 3D LiDAR data at inference time. Additionally, in Chapter 5 we explore the benefits of combining classification and regression learning problems to face the optical flow estimation task in a joint coarse-and-fine manner. Lastly, in Chapter 6 we gather the previous methods and demonstrate that with these independent tasks we can guide the learning of higher challenging problems such as segmentation and motion estimation of moving vehicles from our own moving perspective.Con más de 1,35 millones de muertes por accidentes de tráfico en el mundo, a principios de siglo se predijo que la conducción autónoma sería una solución viable para mejorar la seguridad en nuestras carreteras. Además la conducción autónoma está destinada a cambiar nuestros paradigmas de transporte, permitiendo reducir la congestión del tráfico, la contaminación y el coste, a la vez que aumentando la accesibilidad, la eficiencia y confiabilidad del transporte tanto de personas como de mercancías. Aunque algunos avances, como el control de crucero adaptativo, la detección de puntos ciegos o el estacionamiento automático, se han transferido gradualmente a vehículos comerciales en la forma de los Sistemas Avanzados de Asistencia a la Conducción (ADAS), la tecnología aún no ha alcanzado el suficiente grado de madurez. Se necesita una comprensión completa de la escena para que los vehículos puedan entender el entorno, detectando los elementos presentes, así como su movimiento, intenciones e interacciones. En la presente tesis doctoral, exploramos nuevos enfoques para comprender escenarios de conducción utilizando nubes de puntos en 3D capturadas con sensores LiDAR, para lo cual empleamos métodos de aprendizaje profundo. Con este fin, en la Parte I analizamos la escena desde una perspectiva estática para detectar vehículos. A continuación, en la Parte II, desarrollamos nuevas formas de entender las dinámicas del entorno. Finalmente, en la Parte III aplicamos los métodos previamente desarrollados para lograr desafíos de nivel superior, como segmentar obstáculos dinámicos a la vez que estimamos su vector de movimiento sobre el suelo. Específicamente, en el Capítulo 2 detectamos vehículos en 3D creando una arquitectura de aprendizaje profundo de dos ramas y proponemos una vista frontal (FR-V) y una vista de pájaro (BE-V) como representaciones 2D de la nube de puntos 3D que sirven como entrada para entrenar nuestros modelos. Más adelante, en el Capítulo 3 aplicamos y probamos aún más este método en dos casos de uso reales, tanto para filtrar obstáculos en movimiento previamente a la creación de mapas sobre los que poder localizarnos mejor en los días posteriores, como para el seguimiento de vehículos. Desde la perspectiva dinámica, en el Capítulo 4 aprendemos de la nube de puntos en 3D una característica dinámica novedosa que se asemeja al flujo óptico sobre imágenes RGB. Para ello, desarrollamos un nuevo enfoque que aprovecha el flujo óptico RGB como pseudo muestras reales para entrenamiento, usando solo information 3D durante la inferencia. Además, en el Capítulo 5 exploramos los beneficios de combinar los aprendizajes de problemas de clasificación y regresión para la tarea de estimación de flujo óptico de manera conjunta. Por último, en el Capítulo 6 reunimos los métodos anteriores y demostramos que con estas tareas independientes podemos guiar el aprendizaje de problemas de más alto nivel, como la segmentación y estimación del movimiento de vehículos desde nuestra propia perspectivaAmb més d’1,35 milions de morts per accidents de trànsit al món, a principis de segle es va predir que la conducció autònoma es convertiria en una solució viable per millorar la seguretat a les nostres carreteres. D’altra banda, la conducció autònoma està destinada a canviar els paradigmes del transport, fent possible així reduir la densitat del trànsit, la contaminació i el cost, alhora que augmentant l’accessibilitat, l’eficiència i la confiança del transport tant de persones com de mercaderies. Encara que alguns avenços, com el control de creuer adaptatiu, la detecció de punts cecs o l’estacionament automàtic, s’han transferit gradualment a vehicles comercials en forma de Sistemes Avançats d’Assistència a la Conducció (ADAS), la tecnologia encara no ha arribat a aconseguir el grau suficient de maduresa. És necessària, doncs, una total comprensió de l’escena de manera que els vehicles puguin entendre l’entorn, detectant els elements presents, així com el seu moviment, intencions i interaccions. A la present tesi doctoral, explorem nous enfocaments per tal de comprendre les diferents escenes de conducció utilitzant núvols de punts en 3D capturats amb sensors LiDAR, mitjançant l’ús de mètodes d’aprenentatge profund. Amb aquest objectiu, a la Part I analitzem l’escena des d’una perspectiva estàtica per a detectar vehicles. A continuació, a la Part II, desenvolupem noves formes d’entendre les dinàmiques de l’entorn. Finalment, a la Part III apliquem els mètodes prèviament desenvolupats per a aconseguir desafiaments d’un nivell superior, com, per exemple, segmentar obstacles dinàmics al mateix temps que estimem el seu vector de moviment respecte al terra. Concretament, al Capítol 2 detectem vehicles en 3D creant una arquitectura d’aprenentatge profund amb dues branques, i proposem una vista frontal (FR-V) i una vista d’ocell (BE-V) com a representacions 2D del núvol de punts 3D que serveixen com a punt de partida per entrenar els nostres models. Més endavant, al Capítol 3 apliquem i provem de nou aquest mètode en dos casos d’ús reals, tant per filtrar obstacles en moviment prèviament a la creació de mapes en els quals poder localitzar-nos millor en dies posteriors, com per dur a terme el seguiment de vehicles. Des de la perspectiva dinàmica, al Capítol 4 aprenem una nova característica dinàmica del núvol de punts en 3D que s’assembla al flux òptic sobre imatges RGB. Per a fer-ho, desenvolupem un nou enfocament que aprofita el flux òptic RGB com pseudo mostres reals per a entrenament, utilitzant només informació 3D durant la inferència. Després, al Capítol 5 explorem els beneficis que s’obtenen de combinar els aprenentatges de problemes de classificació i regressió per la tasca d’estimació de flux òptic de manera conjunta. Finalment, al Capítol 6 posem en comú els mètodes anteriors i demostrem que mitjançant aquests processos independents podem abordar l’aprenentatge de problemes més complexos, com la segmentació i estimació del moviment de vehicles des de la nostra pròpia perspectiva

    Correntropy: Answer to non-Gaussian noise in modern SLAM applications?

    Get PDF
    The problem of non-Gaussian noise/outliers has been intrinsic in modern Simultaneous Localization and Mapping (SLAM) applications. Despite numerous algorithms in SLAM, it has become crucial to address this problem in the realm of modern robotics applications. This work focuses on addressing the above-mentioned problem by incorporating the usage of correntropy in SLAM. Before correntropy, multiple attempts of dealing with non-Gaussian noise have been proposed with significant progress over time but the underlying assumption of Gaussianity might not be enough in real-life applications in robotics.Most of the modern SLAM algorithms propose the `best' estimates given a set of sensor measurements. Apart from addressing the non-Gaussian problems in a SLAM system, our work attempts to address the more complex part concerning SLAM: (a) If one of the sensors gives faulty measurements over time (`Faulty' measurements can be non-Gaussian in nature), how should a SLAM framework adapt to such scenarios? (b) In situations where there is a manual intervention or a 3rd party attacker tries to change the measurements and affect the overall estimate of the SLAM system, how can a SLAM system handle such situations?(addressing the Self Security aspect of SLAM). Given these serious situations how should a modern SLAM system handle the issue of the previously mentioned problems in (a) and (b)? We explore the idea of correntropy in addressing the above-mentioned problems in popular filtering-based approaches like Kalman Filters(KF) and Extended Kalman Filters(EKF), which highlights the `Localization' part in SLAM. Later on, we propose a framework of fusing the odometeries computed individually from a stereo sensor and Lidar sensor (Iterative Closest point Algorithm (ICP) based odometry). We describe the effectiveness of using correntropy in this framework, especially in situations where a 3rd party attacker attempts to corrupt the Lidar computed odometry. We extend the usage of correntropy in the `Mapping' part of the SLAM (Registration), which is the highlight of our work. Although registration is a well-established problem, earlier approaches to registration are very inefficient with large rotations and translation. In addition, when the 3D datasets used for alignment are corrupted with non-Gaussian noise (shot/impulse noise), prior state-of-the-art approaches fail. Our work has given birth to another variant of ICP, which we name as Correntropy Similarity Matrix ICP (CoSM-ICP), which is robust to large translation and rotations as well as to shot/impulse noise. We verify through results how well our variant of ICP outperforms the other variants under large rotations and translations as well as under large outliers/non-Gaussian noise. In addition, we deploy our CoSM algorithm in applications where we compute the extrinsic calibration of the Lidar-Stereo sensor as well as Lidar-Camera calibration using a planar checkerboard in a single frame. In general, through results, we verify how efficiently our approach of using correntropy can be used in tackling non-Gaussian noise/shot noise/impulse noise in robotics applications

    Robust 3D IMU-LIDAR Calibration and Multi Sensor Probabilistic State Estimation

    Get PDF
    Autonomous robots are highly complex systems. In order to operate in dynamic environments, adaptability in their decision-making algorithms is a must. Thus, the internal and external information that robots obtain from sensors is critical to re-evaluate their decisions in real time. Accuracy is key in this endeavor, both from the hardware side and the modeling point of view. In order to guarantee the highest performance, sensors need to be correctly calibrated. To this end, some parameters are tuned so that the particular realization of a sensor best matches a generalized mathematical model. This step grows in complexity with the integration of multiple sensors, which is generally a requirement in order to cope with the dynamic nature of real world applications. This project aims to deal with the calibration of an inertial measurement unit, or IMU, and a Light Detection and Ranging device, or LiDAR. An offline batch optimization procedure is proposed to optimally estimate the intrinsic and extrinsic parameters of the model. Then, an online state estimation module that makes use of the aforementioned parameters and the fusion of LiDAR-inertial data for local navigation is proposed. Additionally, it incorporates real time corrections to account for the time-varying nature of the model, essential to deal with exposure to continued operation and wear and tear. Keywords: sensor fusion, multi-sensor calibration, factor graphs, batch optimization, Gaussian Processes, state estimation, LiDAR-inertial odometry, Error State Kalman Filter, Normal Distributions Transform
    • …
    corecore