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Abstract
by Ashutosh Singandhupe

The problem of non-Gaussian noise/outliers has been intrinsic in modern Simultane-

ous Localization and Mapping (SLAM) applications. Despite numerous algorithms in

SLAM, it has become crucial to address this problem in the realm of modern robotics

applications. This work focuses on addressing the above-mentioned problem by in-

corporating the usage of correntropy in SLAM. Before correntropy, multiple attempts

of dealing with non-Gaussian noise have been proposed with significant progress over

time but the underlying assumption of Gaussianity might not be enough in real-life

applications in robotics.

Most of the modern SLAM algorithms propose the ‘best’ estimates given a set of

sensor measurements. Apart from addressing the non-Gaussian problems in a SLAM

system, our work attempts to address the more complex part concerning SLAM: (a)

If one of the sensors gives faulty measurements over time (‘Faulty’ measurements can

be non-Gaussian in nature), how should a SLAM framework adapt to such scenarios?

(b) In situations where there is a manual intervention or a 3rd party attacker tries to

change the measurements and affect the overall estimate of the SLAM system, how

can a SLAM system handle such situations?(addressing the Self Security aspect of

SLAM). Given these serious situations how should a modern SLAM system handle

the issue of the previously mentioned problems in (a) and (b)?

We explore the idea of correntropy in addressing the above-mentioned problems in

asingandhupe@nevada.unr.edu


ii

popular filtering-based approaches like Kalman Filters(KF) and Extended Kalman

Filters(EKF), which highlights the ‘Localization’ part in SLAM. Later on, we propose

a framework of fusing the odometeries computed individually from a stereo sensor and

Lidar sensor (Iterative Closest point Algorithm (ICP) based odometry). We describe

the effectiveness of using correntropy in this framework, especially in situations where

a 3rd party attacker attempts to corrupt the Lidar computed odometry. We extend

the usage of correntropy in the ‘Mapping’ part of the SLAM (Registration), which is

the highlight of our work. Although registration is a well-established problem, earlier

approaches to registration are very inefficient with large rotations and translation. In

addition, when the 3D datasets used for alignment are corrupted with non-Gaussian

noise (shot/impulse noise), prior state-of-the-art approaches fail. Our work has given

birth to another variant of ICP, which we name as Correntropy Similarity Matrix

ICP (CoSM-ICP), which is robust to large translation and rotations as well as to

shot/impulse noise. We verify through results how well our variant of ICP outper-

forms the other variants under large rotations and translations as well as under large

outliers/non-Gaussian noise. In addition, we deploy our CoSM algorithm in applica-

tions where we compute the extrinsic calibration of the Lidar-Stereo sensor as well as

Lidar-Camera calibration using a planar checkerboard in a single frame. In general,

through results, we verify how efficiently our approach of using correntropy can be

used in tackling non-Gaussian noise/shot noise/impulse noise in robotics applications.
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Chapter 1

Introduction

Autonomous navigation is a widely researched topic in robotics, augmented/virtual

reality and, more dominantly, in self-driving cars. Robotic autonomous navigation

has been there for more than 30 years and has contributed significantly to the in-

dustry targeting from small scale driven applications to large scale, which resulted

in the advent of this decade’s self-driving cars and other autonomous robots. The

ease with which most animals and human beings navigate in the environment can be

replicated in robots. However, this complex process of navigation, no wonder how

well we do, can not be easily represented mathematically. The only way that dumb

robots can be made to navigate in an environment is to represent the environment in

some simpler forms, which can be algorithmically justified. Simultaneous Localiza-

tion and Mapping (SLAM) is an algorithmic process of a robot/sensor system, which

involves perceiving the environment using sensors and estimating its position of itself
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in the environment simultaneously [1]. For a robot, the environment is represented

as a culmination of different geometrical structures (landmarks, obstacles etc.), also

called a map. The term pose or robot state represents the position and orientation

of the robot. It is generally termed as the robot state. The map assists the hu-

man operator in visualizing an unknown environment and setting up the robot’s path

for navigation. Another significant advantage the map provides is that it helps in

minimizing the error while estimating the robot state (pose) during navigation. For

example, in keeping track of ‘visited landmarks’, the robot can detect a loop, minimiz-

ing localization error, which is quite similar to how we humans navigate. Research in

autonomous navigation has resulted in numerous algorithms such as Rapidly explor-

ing Random Trees (RRT), extended RRT (RRT*), Rapidly-exploring Random Graph

(RRG), Probabilistic Roadmap (PRM), etc., [2] [3]. These algorithms have directed

many researchers to explore and improve robot navigation in complex environments.

However, the current state of the art demands more improvement since it is yet to be

fully solved for real-time dynamic environments.

1.1 Simultaneous Localization and Mapping

SLAM is a heavy component in modern autonomous systems. The drive for SLAM

research was ignited with the inception of robot navigation in Global Positioning Sys-

tems (GPS) denied environments. Although GPS improves localization, numerous

SLAM techniques are targeted for localization with no GPS in the system. Initially,
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probabilistic estimation techniques were introduced, like Kalman Filters (KF), which

were later extended to Extended Kalman Filters (EKF), and Unscented Kalman Fil-

ters (UKF) for non-linear systems [1]. Particle filters like Rao-Blackwellized and

Monte Carlo filters have also contributed significantly to the SLAM research [1]. An-

other approach that has grabbed attention is the graph-based SLAM, where the robot

pose is represented as a node/vertex in a graph, and the edges represent the errors

in measurements from various sensors. Subsequently, the process involves generating

a pose graph and minimizing the error using mathematical techniques like Gauss-

Newton/Levenberg–Marquardt [4]. SLAM techniques like Oriented fast and Rotated

Briefs-SLAM (ORB2-SLAM) [5, 6] are based on graph-based localization. Another

interesting approach has grabbed attention since the advent of deep learning with a

focus on Convolutional Neural Networks (CNN). Quite interesting results were ob-

served, especially with the work on CNN-SLAM [7]. Experiments show that robot

pose or localization could be achieved from a pair of images acquired by a mov-

ing robot through deep learning or CNN. Even though the CNN-SLAM approach

is promising, this approach has invited a few challenges that need to be addressed.

Deep learning requires high-end Graphics Processing Unit (GPU) systems, which is

still a challenge for robotic embedded systems. Moreover, SLAM systems are seen to

be directed on continuous open-world scenes where the environment keeps changing.

These changes need to be learned continuously for a deep learning system. To our best

knowledge, deep learning has not significantly evolved in the current state of SLAM to

learn the dynamic changes in the environment robustly. From the various techniques
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introduced in SLAM, one can observe that SLAM is inclined to combine various fields

like signal processing, deep learning (CNN-SLAM), and computer vision.

The problem of estimation (or Localization in SLAM ) is one of the most significant

components of robotics. If the system is linear, Kalman Filter (KF) is usually used

to solve the estimation problem. In the presence of Gaussian noise, the KF performs

well [8]. However, in the presence of non-Gaussian noise, the performance of the KF

deteriorates, especially in the presence of impulsive noises. KF is based on the known

Minimum Mean Square Error (MMSE) criterion, which is sensitive to significant

outliers and causes the deterioration of the robustness of the KF in non-Gaussian

noise environments [9]. Our work is focused on using Correntropy in various filtering

and SLAM applications.

Despite the tremendous progress made in SLAM in the past 30 years, one question

still bothers the robotics community, ‘Is SLAM solved’? [1]. Our understanding is

that SLAM is an estimation problem. Given the complexities of the environment and

uncertainties in sensor measurements, SLAM is yet to arrive at a complete solution.

As of our knowledge, SLAM is still unsolved. A good solution significantly relies on

the environment, the robot, the uncertainties in the sensor measurements and the

level of performance that we intend to achieve.
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1.2 Correntropy

Different optimization criteria (for removing outliers) based on information learning

have gained significant attention in the past few years. Information-theoretic quanti-

ties can capture higher-order statistics and offer potentially significant performance

improvement in machine learning and signal processing applications. Correntropy as

a non-linear similarity measure in kernel space has its root in Renyi’s entropy [10] [11].

Prior to Correntropy, multiple methods were introduced to handle state estimation

in the presence of non-Gaussian noise. To the best of our knowledge, there are three

main approaches to improving the system’s robustness.

The first approach uses filters that assist in removing both outliers and non-Gaussian

noise. Noise distributions such as t-distribution and heavy-tailed distribution are

considered in [12] and [13], but it faces the problem of handling more than one-

dimensions. Computational cost and implementation difficulty are the other factors

that prohibit its use.

The second approach dictates the use of a Multiple-Model (MM) filter [14]. This

method assumes that any non-Gaussian distribution can be approximated as a finite

set of Gaussian distributions with different modes. The Probability Density Function

(PDF) that dictates the state posterior is considered the weighted sum of Gaussians.

The Gaussian Sum Filter (GSF), which uses a bank of KFs, is an excellent example

of this, but it is very computationally expensive since the number of modes increases

exponentially with the number of filters in the bank [15].
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The third approach uses Monte Carlo (MC) sampling that allows approximate repre-

sentation of any probability distribution [16]. Particle filters are an excellent example

of this, where the state posterior is represented by a set of random samples with

associated weights. Ensemble KF (EnKF) is another example close to particle filters

where the state posterior is estimated using a finite set of random samples. Similar to

the Particle filter, another approach named Unscented KF (UKF) uses a deterministic

sampling approach that estimates the mean and the covariance matrix of the state

with a minimum set of points called sigma points [17]. Again, the computational cost

is a significant problem in all of the above methods.

In this work, we explore the idea of Correntropy in applications in SLAM for han-

dling outliers/non-Gaussian noise. We also incorporate Correntropy in addressing the

problems of registration/alignment of point clouds. The major contributions of our

work are given in the next subsection.

1.3 Contributions of Proposed Approach

This work aims to address the problem of non-Gaussian noises in modern SLAM

systems. More importantly, we use the idea of Correntropy to address this issue and

employ its usage in various algorithms applied in modern autonomous systems. The

major highlights of this issue are addressed as follows:
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• We present the idea of Correntropy and highlight its importance in handling

non-Gaussian noise/outliers.

• We introduce a framework for using Correntropy in a KF and evaluate our

approach when the sensor measurements are affected by non-Gaussian noise.

• For all the experiments conducted, we add non-Gaussian noise along with the

original data coming from the sensor measurements. This serves two purposes:

– Since we manually add noise in the sensor measurements, we verify the

robustness of a system that incorporates Correntropy with Kalman Filter

compared to traditional methods.

– Handling ‘manually added non-Gaussian noise’ also addresses how an au-

tonomous system, when attacked by a third party, can safely estimate it’s

state.

• We also propose a technique to incorporate Correntropy in addressing the prob-

lem of registration which is the highlight of this work. Concerning the problem

of registration, we highlight the following observations:

– Through results, we see how well the Correntropy can be used to address

the registration problem. We also see that in comparison to the previous

approaches, our approach outclasses other state-of-the-art approaches un-

der various rotations and translations between the ‘Source’ and the ‘Target ’

datasets.
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– We also show the efficiency of our approach when the point cloud data

is affected with manually injected non-Gaussian noise and how well our

approach can benefit in addressing the problem of registration.

• Using our proposed registration algorithm, we calibrate the Lidar and the Stereo

sensor using a planar checkerboard. The entire process requires only a single

frame of data acquired from both sensors.

1.4 Summary

This work is based on incorporating Correntropy in various applications in SLAM.

This chapter began by describing the scope and the importance of SLAM in various

robotics applications. Alongside, we also present Correntropy, and it’s importance

in removing non-Gaussian noise/outliers. Next, we touch upon the background of

correntropy and SLAM techniques in modern robotics applications.

The remaining portion of the work is described in multiple chapters, where Chapter

2 describes the Literature review of concepts relating to SLAM and Correntropy.

Chapter 3 describes the concepts relating to the idea of Correntropy, and it’s scope

and applicability in SLAM. Chapter 4 describes the idea of fusing Kalman Filter

with the idea of Correntropy, and we see the importance of Correntropy in handling

non-Gaussian noise in the basic Kalman filtering framework. Chapter 5 describes

a framework for introducing the Maximum Corentropy criterion in the Extended

Kalman Filter for handling non-Gaussian noise. Chapter 6 describes the idea of
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using Correntropy in addressing the problem of registration which is the highlight of

this work. We evaluate our approach in multiple datasets and compare the RMSE to

most of the other state-of-the-art approaches. Chapter 7 and Chapter 8 describe an

application of using Correntropy Similarity Matrix Iterative Closest Point Algorithm

(CoSM-ICP) in performing Lidar-Stereo and Lidar -Camera Calibration respectively.
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Chapter 2

Literature Review

The whole approach of SLAM is based on a robot localizing itself, given the sen-

sor measurements. However, the traditional SLAM algorithms do not extend to

performing the task of a robot driving itself to collect more information about the

environment. In a more general sense, traditional SLAM algorithms only estimate

localization when it is navigated or assisted by an external source or through an ex-

ternal command. There is no ‘conscious’ effort from the robot to navigate itself and

collect the data from the environment. Active SLAM, exploration and localization

done at the same time, is an approach that attempts to solve this problem. Active

SLAM basically tries to solve it in 3 steps. The first step specifies the robot trying

to find possible actions (e.g., turn right, turn left, forward, backward, path selection,

etc.) that it could take given the map space; however it exposes the challenge of

increased computational complexity. The second step says that, even if an action is



11

confirmed to be taken, the logic behind performing that action needs to be justified

with respect to the goal of the task, as well as the complexity of the future action

that could be taken to achieve that goal. The final step indicates that even if the

action is performed, it is quite difficult to arrive at a conclusion about whether the

exploration task has been completed or not. Based on our knowledge, active SLAM

still requires mathematical proofs at various aspects [1].

This chapter primarily focuses on reviewing various SLAM techniques that were tried

and tested on various autonomous robots. We are risking an attempt to classify

various SLAM techniques, which are based on sensors used for localization and the

ability of the SLAM algorithms to detect a loop closure. Loop closure is a technique

for detecting a visited landmark or a scene in an environment. As of our knowledge,

very few of the state-of-the-art algorithms we have encountered have solved the loop

closure problem with respect to various autonomous systems.

The remainder of the chapter is organized as follows. It introduces techniques, which

are further divided into Light Detection and Ranging (Lidar) based techniques (in-

cluding Lidar and monocular camera) and Stereo-based SLAM techniques. We also

intend to explore the security aspects in relation to autonomous systems and explore

briefly the threats associated with them. Finally, conclusions are discussed at the end

of this chapter.
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2.1 Lidar based odometry

There are numerous algorithms written for estimating odometry using Lidar. Implicit

Moving Least Squares SLAM (IMLS-SLAM) [18] is quite popular and uses a scan-to-

model matching framework. Initially, it uses an algorithm to sample the 3D scans and

uses IMLS for surface reconstruction, which is claimed to have an improved matching

quality. One key factor to note in this work is that it uses only 3D Lidar sensors for

odometry estimation. The work claims to perform better results than the state of

the art algorithm for odometry estimation, Lidar Odometry and Mapping (LOAM)

[19, 20]. However, the KITTI website[21] shows that LOAM outperforms every other

algorithm that has been tested on all the odometry datasets.

Another work by [22], also called as Lidar-Monocular Visual Odometry (LIMO),

have proposed a method which uses data from both Lidar and monocular camera.

It first calculates the camera features and estimates the depth using the Lidar data

corresponding to those features. Fusing the data together, it estimates the motion

using a technique called bundle adjustment. The system for this algorithm can be

better explained in steps/blocks. The first block relates to the camera, where it

extracts the features. It includes a feature tracking step and a feature association

step. Feature tracking is done using the Viso2 library. The feature association step is

mainly related to extracting the depth of the camera features using the highly precise

Lidar data. The Lidar point cloud is transformed into the camera frame and projected

into the image plane. Then, for each feature, the following steps are performed. (1)
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From a projected set of Lidar points, the algorithm chooses a set of points that are

around a given feature. They use a rectangle to define the neighbourhood around

that point. (2) Then, it performs a plane estimation using histograms of depths

with fixed bandwidth. This helps in estimating the depth around corner features

as well. (3) Then, the algorithm estimates the plane that fits the feature using

the triangulation method. However, depth estimation for the features on the road

includes another preemptive processing, which includes RANSAC for plane fitting.

After performing the above steps, the next step includes a frame to frame odometry

estimation using the perspective-n-point problem. Besides the procedures described

above, specific steps need to be addressed, including strategies to select the data

to increase efficiency and robustness. It is essential to select only a few important

landmark features since there could be many in a dynamic environment that would

dramatically increase computation complexity. For these reasons, the landmarks are

classified into near, middle and far. Finally, it uses bundle adjustment on these

detected features to estimate the ego-motion (aka motion estimation of a camera

system). This approach was entirely evaluated on the KITTI dataset. The estimated

trajectories are precise with low drift, but it does not solve the loop closure problem.

On the KITTI datasets, LIMO has a translation error of 0.93% and a rotation error of

0.00026 deg/meter, which has proved to be a significant contribution to the robotics

community.

A different method proposed in [23, 24] deserves attention. Here, the authors put

forward a method that utilizes depth data to estimate the camera motion. It also uses



14

bundle adjustment to refine the motion estimation. At the time of the release of this

method, it was ranked as the first in the KITTI benchmark visual odometry methods.

As a first step or block, visual features are detected and tracked. Depth images, which

could be from the RGB-D camera or from the point clouds, are registered in the depth

registration block using the estimated motion. The final step is called the frame-to-

frame motion estimation, which uses features as input acquired using the sequence

of images, and then these features are fed to the bundle adjustment procedure. The

results were evaluated on the KITTI dataset, wherein in the urban environment, the

relative mean position error was 1.05%, and in the highway, it was 1.86%.

Another work by [25] offers a novel technique called Simultaneous Trajectory Estima-

tion and Mapping (STEAM). This technique trains a Gaussian process model using

the ground truth. The input to this system is a well-detected feature extracted from

the point clouds, and the output of the system is the predicted poses that are com-

puted using the estimator and the ground truth. On a deeper level, this algorithm

starts with Lidar point cloud downsampling, where the heavy data of point clouds is

reduced to sparse points called key points using normalized intensity values. A point

can be selected as a key point or not if it satisfies certain conditions based on the

proposed algorithm. Then these sparse point clouds are matched based on Euclidean

distance. For estimating the trajectory, they implement the STEAM framework in

which continuous-time trajectory is estimated as Gaussian process regression. The

authors have also mentioned a significant point that, for continuous-time trajectory
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estimation, the Gaussian regression problem is quite different from predicting odom-

etry data. In order to reduce the errors in the odometry, the algorithm calculates

the pose change from frame to frame and then compares it against the ground truth

[26–31]. In Gaussian process modelling, the model is learned from noisy observations.

So it becomes significant to select the features to detect in order to build a correct

model. The results were evaluated on a KITTI dataset, and the overall error from all

the path segments was 1.16%.

A different approach to the SLAM problem is the Closest Probability, and Feature

Grid SLAM (CPFG-SLAM) [26], which has proposed a technique for localizing an

unmanned vehicle in the off-road environment. In essence, it combines the features

of the point cloud with probability and the occupancy probability of the grid map.

Expected Maximization (EM) is further used to build the optimization function to

match between the point cloud and grid map. This technique comprises three steps:

data pre-processing, pose estimation and updating the feature grid map. Data pre-

processing constitutes the filtering and classification of the point cloud. Pose esti-

mation comprises estimating the pose and the position by matching the point cloud

to the map. Finally, updating the point cloud features consists of extracting point

cloud features and updating the probability of the grid. Later on, the EM algorithm

is performed using the Levenberg-Marquardt algorithm. Despite high localization

accuracy, this algorithm is not robust against dynamic environments, and also it does

not solve the loop closure problem.
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Another approach, by previously acclaimed authors [23], have proposed real-time

monocular odometry, which is enhanced by depth data. This method is worth men-

tioning since it estimates depth from camera motion using sparse depth data too. It

achieves this result by a method called triangulation that uses previously estimated

motion and features from the image for which depth data is unavailable. Later on,

it uses bundle adjustment to refine the estimated motion. Firstly, it tracks visual

features from the images. Visual features are computed using the Harris corner de-

tection algorithm and are tracked using Kanade Lucas Tomasi (KLT) method [32].

Next, it uses the depth data (either from an RGB-D camera or a Lidar) to register the

point clouds with the depth using the estimated motion. The frame to frame motion

estimation is done using bundle adjustment, whose inputs are the features extracted

from the sequence of images. One interesting thing to note in this algorithm is that it

uses both known and unknown depths of features in order to estimate the odometry

of the camera.

One of the novel techniques that demands attention is from [31], which uses a learn-

ing approach. This technique essentially trains a Gaussian process regression model

using data with ground truth. All the high-level features that are derived from the

Lidar point clouds are used as input, and the predicted biases between poses from

the estimator and the ground truth are the output of the system. However, the whole

process is divided into a number of steps. First, the point clouds are downsampled

to represent only the key points or the well-featured points in the point cloud. In

this step, it calculates the eigenvalues of the matrix, which represent the k-nearest
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neighbours of the point on the point clouds and sets a threshold through some func-

tions to classify it as a key feature point. It uses the libpointmatcher library to do so

[33]. Secondly, for two such downsampled point clouds, the point clouds are matched

based on their Euclidean distance. It uses libnabo for matching [34]. Thirdly, it uses

the STEAM framework, as discussed previously by [25], for trajectory estimation.

However, only the odometry section of the STEAM framework is implemented here.

More information about how the error is predicted and corrected is derived from the

STEAM framework. On the KITTI datasets, it performs relatively better but not

as good as IMLS and LOAM algorithms, as discussed earlier. Based on the authors,

since this is strictly odometry, it does not solve the loop closure problem or reduce the

drift in the odometry. Our understanding is that this algorithm has the potential to

use a deep learning framework for better odometry estimation and correction rather

than using a Gaussian prediction model.

Another novel approach for localization was made by [35] where a Surfel based map is

used. The changes in the robot pose can be estimated by the data association between

the current scan of the Lidar and the model view from the surface map. This technique

is also called Surfel based Mapping (SuMa), which builds globally consistent maps.

In addition to that, Surfel allows us to represent large scale environments and also

maintains detailed geometric information of the point clouds. Based on the current

rapid development in computation, rendering surfels is relatively fast. Odometry is

computed using frame-to-model ICP with a point-to-plane error metric. The error is

minimized using the Gauss-Newton minimization algorithm. This algorithm has been
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evaluated on the KITTI dataset, which shows an average rotational error of 0.00032

deg/m and a translational error of 1.4%.

2.2 Stereo Based Odometry

Perhaps the current state of the art algorithm for the stereo visual odometry is the

SOFT-SLAM [36] that relies on a feature tracking based algorithm. It builds a feature-

based pose graph and then optimizes it by running it in 2 separate threads. One is

the odometry thread, and the other is the mapping thread, which allows it to support

large loop closing and global consistency. It achieves good localization with the use

of featured visual odometry compared to the use of bundle adjustment, which is

computationally very expensive. Unlike other algorithms like ORB-SLAM2, SOFT-

SLAM algorithms are more deterministic (e.g., it results in the same output for the

same dataset.)

Among the popular ones, we would like to mention the contribution of Large Scale

Direct monocular SLAM (LSD-SLAM) [37]. LSD-SLAM has been one of the most

popular SLAM techniques. While most the visual SLAM algorithms are based on fea-

tures extracted from the images, the LSD-SLAM algorithm is a featureless algorithm,

which allows us to build consistent large-scale maps of the environment in addition to

tracking the motion of the camera. The reason behind this is that the features being

used in most SLAM algorithms are completely dependent on the type of features being

extracted, which in a larger complex environment can be different. In this algorithm,
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the global map is represented as a pose graph, which consists of keyframes as vertices,

and the 3D similarity transforms as edges. The classic LSD-SLAM mainly has a 3-

step process: tracking, depth map estimation, and map optimization. The tracking

section tracks new image frames, which allows estimating the rigid body frame with

respect to the current keyframe. Depth estimation uses tracked frames to refine the

current keyframe. The depth map generated after the depth map estimation block is

fed into the global map using the map optimization component.

The above work of LSD-SLAM was also extended to stereo cameras [37]. It is based

on almost the same technique, but the authors have exploited the use of a stereo

camera setup as well. In essence, the depth estimation is done concurrently in 2

setups. One is from the stereo camera setup with a fixed baseline, and the other is

from the multi-view stereo established from the camera motion. The advantage of

having a stereo with a fixed baseline setup is that it avoids scale drift, which typically

occurs in monocular LSD-SLAM. It also handles sudden illumination changes in the

image frames using direct image alignment. This algorithm has been evaluated on the

KITTI dataset, and it is still one of the most popular odometry estimation algorithms

with an overall Root Mean Square Error (RMSE) of 1.21%.

Another stereo approach, given by [38], is based on the Exactly Sparse Delayed State

Filter (ESDSF). This algorithm preserves the state space geometry by representing

it as an algebraic Lie group. Since the approach is based on ESDSF, which is de-

rived from the Extended Information Filter, the main advantage is that it uses a
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sparse information matrix. One of the major features of this method is that it uses a

novel ESDSF on a Lie group, which not only presents all the advantages of classical

ESDSF but also holds the state space geometry using Lie groups. This algorithm

was evaluated on the KITTI dataset and has been compared to various other SLAM

algorithms like ORB-SLAM2, Stereo-Parallel Tracking and Mapping (S-PTAM), and

Stereo LSD-SLAM (S-LSD SLAM). It has shown improvement in the odometry from

most of the popular stereo based SLAM algorithms.

An approach by [39] presents an iterative 2-stage process for frame-to-frame feature-

based odometry estimation. This algorithm attempts to analyze the characteristics

of optical flows and re-projection errors that are generated from the 6-DOF motion.

They have justified the re-projection error that we generated from the optical flow

algorithm, which is dependent on the coordinate of the features.

One of the algorithms that use direct visual odometry was proposed by [24]. This

algorithm attempts to solve the problem of getting stuck at local optima at large

displacements. It is done by dual Jacobian optimization infusion with a multi-scale

pyramidal scheme. In addition to this, it introduces new features based on gradients,

which are robust to illumination changes. Finally, joint odometry is proposed to

incorporate more information from the last frame to previous keyframes.

Stereo algorithms that track key points and select effective frames are accomplished

by another technique called Selective SLAM (SSLAM) [40]. The basic idea in this
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approach is that the error in localization or pose estimation is because of the uncer-

tainty of 3D points. This uncertainty is higher for distant points. One key feature is

that it does not require any loop closure or bundle adjustment. It uses a Harris cor-

ner detector to detect the features and Gradient Location and Orientation Histogram

(GLOH) descriptor to match them.

Given the complexity of the graph-based SLAM, one approach that attempts to sim-

plify the implementation of graph-based SLAM and also challenges the state-of-the-

art SLAM algorithms is the ProSLAM [41]. It’s main goal is to use the stereo images

to generate a 3D map. It is evident that landmarks are essential since they allow for

close detection of loop closures. In this approach, the node of the graph represents

the pose (rotation and translation component), and the edge represents the spatial

constraints. It is generated either by tracking the camera motion or by aligning local

maps acquired at distant times, which also leads to loop closure that is again helpful

for re-localization. The whole approach is taken into four steps: (1) Frame point

generation, which takes the pair of stereo images and generates 3D points; (2) Posi-

tion tracking, which estimates the relative motion of the camera from two subsequent

image pairs acquired at different times as the camera moves; (3) Map management,

which collects all the acquired map (3D point clouds) obtained from the trajectory

and represents it in a compact form; (4) Re-localization, which compares each ac-

quired point cloud from the previously acquired map and corrects the pose as well

as the global map of the environment. This algorithm was evaluated on the KITTI

dataset and has shown less than around 1% of translational error for most of the
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sequences. It has outperformed popular SLAM techniques like S-PTAM [42, 43] and

LSD-SLAM but is on a competitive level on the ORB-SLAM2 [5].

Most SLAM techniques face the challenge of correcting the scale drift from the ac-

quired images. Research by [44], has attempted to resolve this issue. This work uses

a monocular camera, and it estimates the ground plane using a novel cue combination

framework. It achieves results comparable to stereo algorithms and could be carried

out over long data sequences. From every monocular image, it uses sparse features

that are acquired from the stereo images. At the same time, it performs object detec-

tion as well. It provides a model-learning approach from the training data, which is

related to the covariances of the observation cues. Based on the KITTI dataset evalu-

ation, this technique has outperformed VISO2 [45, 46] for both monocular and stereo

cameras. The above method has attempted to build a bridge between monocular

and stereo structure from motion in addition to correcting the scale drift. From the

same researchers, another work that deserves attention was parallel visual odometry

estimation [47]. The approach uses multi-threading for scenes with large motions and

rapidly changing images. It uses three or more CPU parallel threads, and across all

the threads, the system estimates the pose using 3D-2D correspondences, which is

again followed by bundle adjustment.

Using features and descriptors has been one of the most popular approaches to per-

forming localization. [48] uses feature detection algorithms like Oriented fast and

Rotated Briefs (ORB) to detect the features from the image sequences and computes
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feature descriptors using the Fast Retina Keypoint (FREAK) algorithm. This ap-

proach has been popularly known as the Circular Freak ORB (CFORB) algorithm.

One of the key advantages it presents is that since it uses ORB features, it is invariant

to both rotation and scale changes. It has also highlighted that it is invariant to the

environment to uneven terrain changes. Another thing to highlight is that it uses two

geometrical constraints in order to remove invalid geometrical feature matches, which

was not implemented in the common visual odometry algorithm. On the KITTI

benchmark dataset, this has shown an average translational error of 3.73% and a

rotation error of 0.0107deg/rad. This approach has been tested in indoor environ-

ments as well, which performs slightly better than the outdoor environment, and in

addition, it also performs well in the heavily textured environment.

2.3 Security in Autonomous Systems

Although autonomous vehicles, as projected, may lead to safer roads, reduce conges-

tion and solve the parking problem, it still faces the challenge of security over the

network. Since autonomous cars heavily rely on digital systems or computers, it is

very likely to have communication protocols and frameworks employed in the system.

At this point, there are two levels of networking among autonomous vehicles: Vehicle

to Vehicle, Inter-vehicle networking around the vicinity of the vehicle in a local area,

and Vehicle to Infrastructure - networking between vehicle and infrastructure system.
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Sharing vital information among vehicles, like speed, could assist in efficient naviga-

tion on the roads. However, this system of complex architecture across wide networks

can be attacked by various techniques, broadly classified into two categories: Active

and Passive attacks [49].

Passive attacks are not intended to change the system’s functionality; instead, it is

done by a potential attacker to acquire confidential information about the system. A

simple scenario could be eavesdropping, where an attacker could obtain information

by intercepting the data traffic. Even if encryption is used, successful decryption

can be counted as a passive attack. Another scenario could be to analyze the traffic

signal, which allows the attacker to understand certain properties like information

transaction based on duration, timing, bandwidth and number of participants in the

traffic [49].

Active attacks are way more inclusive in terms of functionality and changing the

system as well. There are various ways where a system could be hacked, like a

man-in-the-middle attack, Denial of Service (DoS) attack and Replay attack. In a

man-in-the-middle attack [50, 51], the attacker can fraudulently get access to the

system. In addition to this, a man-in-the-middle attack sends an acknowledgement

to the sender that it is an authorized user, thereby deceiving the whole system.

In a replay attack, the attacker can observe the data traffic and replay a previous

message which could force the system into an unstable state or could request further

data for attacking at different levels of security. DoS means that the system has
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been compromised, which could be done by disabling the communication services or

jamming the communication channels.

With respect to autonomous cars, there have been demonstrations by researchers

who have successfully attempted to gain complete control of the autonomous system,

including disabling the brakes, stopping the engine, locking the doors etc., and most

importantly, completely ignoring the driver input signals. Most autonomous cars

follow the Controller Area Network (CAN)-protocol. However, this has presented

various vulnerabilities in communication in the automotive industry. Primarily, CAN

has a broadcast nature, and it sends packets to all the nodes in the network, which

might allow the attacker to insert malicious components easily. CAN is also vulnerable

to DoS attacks. In addition, CAN has no proper authentication mechanism. Anyone

can send a packet to any node quite easily. It is quite important to mention that any

attacker can attack an autonomous system easily, which makes it very essential for

further research improvements in the autonomous driving industry [49, 52, 53].

2.4 Conclusion

This chapter has briefly described various SLAM techniques in relation to autonomous

robots. We have attempted to classify the SLAM techniques in both Lidar-based

odometry and Stereo-based odometry. In the end, we have also attempted to describe

the security vulnerabilities in autonomous driving systems. We have described various
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types of attacks that have been introduced and demonstrated by various researchers,

which makes it a popular topic for future research.



27

Chapter 3

Correntropy: Concepts

3.1 Basics of Correntropy

This chapter is focused on the meaning of correntropy in geometrical and probabilistic

terms. In general regression and adaptive filtering scenarios, the goal is to bring the

system output as ‘close’ to the desired signal as possible. The ‘closeness’ is defined

via distance function or similarity measure. It is well known that the Mean Squared

Error (MSE) is normally employed as a cost function which can be represented as :

MSE(Y, Z) = E[(Y − Z)2] =

∫
y

∫
z

(y − z)2pY Z(y, z)dydz =

∫
e

e2pE(e)de (3.1)

where the desired signal is represented as Z = {zi} , i = 1, ..., N and the system

output is represented as Y = {yi} , i = 1, ..., N . One can see that the MSE is a
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quadratic function in the joint space with a valley along z = y line.

Figure 3.1: Joint space representation of the MSE.

From Fig. 3.1, one can clearly see the ‘geometric’ meaning of correntropy. One ob-

servation suggests that MSE is a quadratic function in the joint space with the valley

along the z = y line. In a probabilistic sense, similarity means a specific quantification

of how close Z is to Y , which intuitively explains why MSE is a similarity measure in

the joint space, as mentioned in Fig. 3.1. Equ. 3.1 signifies that the PDF of the error

weighs the error square(e2). It simply means that the values away from the z = y line

contribute quadratically to the error term. If the error PDF is Gaussian distributed,

then MSE is optimal, which may not be the case for a lot of real-time applications.

For samples that are far away from the mean value of the error distribution, the error
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term amplifies because of the quadratic nature of the MSE. This makes MSE optimal

for short-tail distribution (e.g., Gaussian). For other fat-tail data distribution like

laplacian, the MSE is suboptimal.

Now , cross-correntropy or simply correntropy of 2 random variables Z and Y can be

defined as:

v(Z, Y ) = EZY [Gσ(Z − Y )] =

∫ ∫
Gσ(z − y)p(z, y)dzdy (3.2)

If we are sampling from densities, then correntropy can be estimated as:

v̂(Z, Y ) =
1

N

N∑
i=1

Gσ(zi − yi) =
1

N

N∑
i=1

Gσ(ei) (3.3)

Fig. 3.2 represent the joint space representation of correntropy when σ = 1. One can

observe that it exponentially attenuates contribution away from the line z = y.

From Equ. 3.3 one can define the cost function that maximizes the error probability

density at the origin which can simply be written as Maximum Correntropy Criterion

(MCC) algorithm.

MCC = max
w

v̂(E). (3.4)

Equ.3.4 shows the general format of correntropy where the parameter w control the

error PDF E = Z − Y . If we use the Parzen method, the error PDF pE(e) can be
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Figure 3.2: Joint space representation of Correntropy/Cross-correntropy.

estimated as

pE(e) =
1

N

N∑
i=1

Gσ(e− ei). (3.5)

Evaluating this PDF at e = 0, we obtain v̂(Z, Y ) = pE(0).

One can understand the overall idea of correntropy as the probability of how similar

two random variables are in the neighbourhood of the joint space controlled by the

kernel bandwidth, which can be interpreted as the spotlight controlling the ‘observa-

tion window’ in which the similarity is assessed. If the above definition is still unclear,

one can think of the following example: Suppose you are given 2 sample biological

cells of a living organism in a petri dish. You are asked to find out if the two cells are

from the same organism or from different organisms. You have a microscope in your
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lab with the potential to ‘observe’ these two living cells with great detail, and the mi-

croscope can be equipped with a lens of different magnification powers. Now, to find

out if they are from the same organism, the ’difference’ or ‘distance’ between the two

cells in some metric must be small (or in some simple sense, if the ‘difference’ is less,

they are very similar), else, the two cells are from different organisms. This ‘distance’

or ‘difference’ is dependent on two simple factors: the type of microscope and it’s

magnification power. Now proceeding with this understanding, we can say that the

kernel function Gσ acts as a microscope and the σ denotes the magnification power

of the lense (bandwidth in the earlier example). Hence the kernel bandwidth act as

a spotlight controlling the ‘observation window’ (Note: Different kernel function(or

microscope) can be used with different lenses(bandwidth parameter) )

This idea has been heavily explored in the domain of Machine learning applications.

Our work is focused on bringing this concept to the modern SLAM framework and

evaluating how well correntropy can be used to resolve non-Gaussian noise.

3.2 Summary

This chapter describes the underlying concepts of correntropy and its comparison to

the popular MSE. This foundation is essential for our future correntropy deployment

in multiple SLAM applications. We have attempted to briefly understand correntropy

and highlighted its importance in dealing with non-Gaussian error distributions.
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Chapter 4

Correntropy Kalman Filter

4.1 Motivation

In this chapter, we discuss the state of the art of state estimation in the presence

of non-Gaussian noise and how the Kalman filter handles this kind of noise. We

show through numerical simulations that the Kalman filter does not perform well,

for example, in the presence of shot noise. We then present the concept of maximum

correntropy (MCC) and how to use it inside a KF. The MCC is an approach to

measure the similarity between two random variables using information from higher-

order signal statistics. The new formulation of the KF dealing with non-Gaussian

noise is tested using a simulated dataset to prove that the MCC-KF can better handle

non-Gaussian noise.
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This paper is organized as follows. Section 4.2 reviews the basic Kalman Filter based

on the weighted least square method. Section 4.3 introduces the concept of corren-

tropy and describes the maximum correntropy criterion. Section 4.4 demonstrates the

simulation results in both the basic KF method and the MCC-KF method. Finally,

the chapter is concluded in Section 4.5.

4.2 Kalman Filter Based on WLS method

Consider the linear stochastic discrete-time system

xk = Fxk−1 + wk

yk = Hxk + vk

(4.1)

where

• xk ∈ Rn is the state vector.

• yk ∈ Rm is the measurements (observations) vector.

• wk is the zero-mean process, with covariance matrices Qk = E[wkw
T
k ].

• vk is the measurement noise, with covariance matrix Rk = E[vkv
T
k ].

• F is the state transition model which is applied to the previous state xk−1.

• H is the observation model which maps the true state space into the observed

space.
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There are several methods that could be employed to derive the KF equation, such as

the orthogonality principle, the Maximum A Posterior (MAP) approach, the Unbiased

Minimum Variance (UMV) approach, and the Weighted Least Square (WLS) method.

In WLS, the quadratic objective function is

J = 1
2
(yk −Hx̂k)TR−1k (yk −Hx̂k)+

1
2
(x̂k − Fx̂k−1)TP−1k|k−1(x̂k − Fx̂k−1)

(4.2)

where

• Pk|k−1 = E[e−k e
−T
k ].

• e−k = xk − x̂−k .

• Rk = E[vkv
T
k ].

• Qk = E[wkw
T
k ].

The KF equations presented above can be derived by solving

∂J

∂x̂k
= 0. (4.3)

Then the KF is written as

x̂0 = E[x0], (4.4)

P0 = E[e0e
T
0 ], (4.5)
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x̂−k = Fx̂k−1, (4.6)

Pk|k−1 = FPk−1|k−1F
T +Qk, (4.7)

Kk = (Pk|k−1 +HTR−1k H)−1HTR−1k , (4.8)

x̂k = x̂−k +Kk(yk −Hx̂−k ), (4.9)

Pk|k = (I −KkH)Pk|k−1(I −KkH)T +KkRkK
T
k . (4.10)

where

• e0 = x0 − x̂0, for k=1,2,... .

• E(·) is the expected value operation

• Kk ∈ Rn×m is the Kalman gain.

• x̂−k is the priori estimate of the state xk. It is based on measurements up to and

including time k − 1, and has covariance Pk|k−1.

• x̂k is the posteriori estimate of the state xk. It is based on measurements up to

and including time k, and has covariance Pk|k.

4.3 Maximum Correntropy Criterion

Correntropy is generally defined as the similarity measure of two random variables.

Given two random variables X, Y ∈ R having joint distribution function fxy(x, y),
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the correntropy is defined as:

Cσ(X, Y ) = E[kσ(X, Y )] =

∫ ∫
kσ(x, y)fxy(x, y)dxdy (4.11)

where

• E[.] denotes the expectation operator.

• kσ(., .) is positive definite kernel function.

• fxy(., .) is the joint density functions of X and Y .

For a finite number of data points N available in practical applications, the estimator

can be computed as:

Ĉσ(X, Y ) =
1

N

N∑
i=1

kσ(xi, yi). (4.12)

In our experiments we use a Gaussian kernel, which can be written as:

Ĉσ(X, Y ) =
1

N

N∑
i=1

Gσ(xi − yi), (4.13)

where

Gσ(xi − yi) = exp(−‖xi − yi‖
2

2σ2
), (4.14)

with the bandwidth σ.

The Maximum Correntropy is realized if the Gaussian Correntropy function is posi-

tive, bounded and reaches its maximum if and only if X = Y .
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It can be understood from Figure 6.2.

Figure 4.1: Correntropy Criterion.

To introduce the kernel inside the standard KF formulation, the objective function

in eq. (4.2) can be re-written as:

J = Gσ(||yk −Hx̂k||R−1
k

)+

Gσ(||x̂k − Fx̂k−1||P−1
k|k−1

).

(4.15)

as derived in [54] and [55].
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Then the equations for the MCC-KF can be written as follows:

x̂0 = E[x0], (4.16)

P0 = E[e0e
T
0 ], (4.17)

x̂−k = Fx̂k−1, (4.18)

Pk|k−1 = FPk−1|k−1F
T +Qk. (4.19)

The remaining state estimation can be calculated as:

Lk =
Gσ(||yk −Hx̂k||R−1

k
)

Gσ(||x̂k − Fx̂k−1||P−1
k|k−1

)
, (4.20)

Kk = (P−1k|k−1 + LkH
TR−1k H)−1LKH

TR−1K , (4.21)

x̂k = x̂−k +Kk(yk −Hx̂−k ), (4.22)

Pk|k = (I −KkH)Pk|k−1(I −KkH)T +KkRkK
T
k . (4.23)

From the derivation of Lk, it can be seen that if yk appears to be too big (outlier

measurement), Gσ approaches zero, and so is Lk. If this is the case, Lk tends to zero

and the Kalman Gain, Kk, becomes zero. This means that the state update in eq.
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(4.22) is updated by the state of the system as given by eq. (4.18). The mathematical

representation of the described formulations can be written as:

lim
yk→∞

Lk = 0, (4.24)

lim
Lk→0

Kk = 0, (4.25)

lim
Kk→0

x̂−k = x̂−k . (4.26)

4.4 Simulation Results

(a) (b)

Figure 4.2: (a) Lidar Measurements with shot noises. (b) KF response to shot
noises (labeled as state predictions)

To conduct our study, we implement both a Kalman Filter (KF) and a Maximum

Correntropy Criterion Kalman Filter (MCC-KF) on a simulated dataset. We use lidar

and radar measurements collected by a robot navigating in a predefined trajectory.
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The dataset we use to evaluate our experiment is https://github.com/mithi/fusion-

ekf/tree/master/data. Detailed information about data can be found in the intro-

duction section mentioned in https://github.com/mithi/fusion-ekf. However, we are

focusing our approach on the Kalman Filter, as mentioned in the equation in Section

4.3. The goal is to fuse the data coming from the lidar and from the radar, using

the KF to estimate the position of the robot with respect to a fixed coordinate frame

system. For the purpose of our simulation, we can say that we are dealing with two

noisy sensors. In particular, lidar computes the position in a cartesian coordinate

system (x, y), and the radar evaluates the position and the relative velocity in a polar

coordinate system (ρ, φ, θ). In our simulation, we add shot noise at random times in

the lidar measurements only. Then we compare the response of the standard KF to

shot noises as well as the response of the MCC-KF to the shot noises. Our framework

of evaluation is shown in Figure 4.3.

Figure 4.3: Framework of our evaluation.

In short, we describe our approach in the following steps:
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• Read the 2D Lidar measurements in the cartesian coordinates (x, y) from the

dataset file.

• Read the Radar Measurements in the Polar coordinates from the data file.

Convert the polar coordinate data to the corresponding cartesian coordinate.

• Introduce shot noises at random locations in the Lidar data.

• Implement Kalman Filter and evaluate the response of the Kalman filter to the

shot noises.

• Implement MCC Kalman Filter and evaluate the response of the MCC Kalman

filter to the shot noises.

For this dataset we have the following state equations:

• State Vector

xk = Fxk−1 + wk,

yk = Hxk + vk,

(4.27)

where

F =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(4.28)

H =

1 0 0 0

0 1 0 0
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(4.29)

vk is the process noise with covariance Rk where, for Lidar measurments Rk is:

Rk =

0.0225 0

0 0.0225


(4.30)

and for Radar measurements Rk is:

Rk =


0.009 0.0 0.0

0.0 0.09 0

0 0 0.09


(4.31)
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• The process covariance matrix Qk is :

Qk =



2.25 0 4.5 0

0 2.25 0 4.5

4.5 0 9 0

0 4.5 0 9


(4.32)

We compare the estimation from a KF to the MCC-KF to predict both the position

of and the velocity of the travelling robot, given the noisy sensor data.

The data is read from a file having the following format:

• L(lidar): x y t gtx gty gtvx gtvy.

• R(radar): ρ φ θ t.

where:

• (x, y) is a measurement given by the lidar.

• (ρ, φ, θ) is a measurement given by the radar in polar coordinates.

• (t) is the timestamp associated to a measurement.

• (gtx, gty, gtvx, gtvy) is the real ground truth state of the system.

In Figure 4.2, 4.4, 4.5, 4.6 and 4.7 (a) we can observe that after introducing shot noise

in the Lidar measurements at random locations the KF fails drastically. The lidar

measurements (green circles) are intentionally randomly disturbed. In Figure 4.2, 4.4,
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(a) (b)

Figure 4.4: (a) Lidar Measurements with shot noises. (b) KF response to shot
noises (labeled as state predictions)

(a) (b)

Figure 4.5: (a) Lidar Measurements with shot noises. (b) KF response to shot
noises (labeled as state predictions)

4.5, 4.6 and 4.7 (b), it is possible to observe the comparison between the estimated

trajectory (violet triangles), lidar measurements (green circles), radar measurements

(yellow squares) and ground truth (black triangles) in the presence of the above

described shot noise. Note that all the plots are illustrated in position (m) versus

time (s).

We introduce random shot noises using the rand() function in C + +. For all the
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(a) (b)

Figure 4.6: (a) Lidar Measurements with shot noises. (b) KF response to shot
noises (labeled as state predictions)

(a) (b)

Figure 4.7: (a) Lidar Measurements with shot noises. (b) KF response to shot
noises (labeled as state predictions)

simulations, we picked different random locations within the range of 100 sample

data points, and, within a range of 20, different random values were inserted at these

locations.

The RMSE results for the KF without any noise are shown in Table 4.1. The RMSE

values for the KF with simulated noise input are shown in Table 4.2. The RMSE

values for the MCC-KF with simulated noise input are shown in table 4.3. It can
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be clearly seen that the KF fails in the presence of shot noise. Gaussian correntropy

function can be used to solve this problem.

Table 4.1: Standard KF RMSE error with no noise

RMSE Errors

RMSE for x 0.185913
RMSE for y 0.190259

Table 4.2: KF RMSE error with noise

RMSE Error in x RMSE Error in y

Simulation 1 (Fig. 4.2) 0.252935 1.95544
Simulation 2 (Fig. 4.4) 0.261795 2.38964
Simulation 3 (Fig. 4.5) 0.319903 2.71349
Simulation 4 (Fig. 4.6) 0.468542 4.89599
Simulation 5 (Fig. 4.7) 0.30235 2.52797

Table 4.3: MCC-RMSE error with noise

RMSE Error in x RMSE Error in y

Simulation 1 (Fig. 4.8) 0.1890 0.2414
Simulation 2 (Fig. 4.9) 0.1933 0.2509
Simulation 3 (Fig. 4.10) 0.1900 0.2689
Simulation 4 (Fig. 4.11) 0.2049 0.2738
Simulation 5 (Fig. 4.12) 0.1905 0.2321

Comparing the results obtained in both cases, it can be noticed that the estimation

is more robust and reliable in the case of the MCC-KF.
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(a) (b)

Figure 4.8: (a) Lidar Measurements with shot noises. (b) MCC-KF response to
shot noises (labeled as state predictions)

(a) (b)

Figure 4.9: (a) Lidar Measurements with shot noises. (b) MCC-KF response to
shot noises (labeled as state predictions)
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(a) (b)

Figure 4.10: (a) Lidar Measurements with shot noises. (b) MCC-KF response to
shot noises (labeled as state predictions)

(a) (b)

Figure 4.11: (a) Lidar Measurements with shot noises. (b) MCC-KF response to
shot noises (labeled as state predictions)
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(a) (b)

Figure 4.12: (a) Lidar Measurements with shot noises. (b) MCC-KF response to
shot noises (labeled as state predictions)
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4.5 Conclusion

In this chapter, we extensively reviewed and discussed the KF to better understand

how it works and how it can be modified to take into account higher-order signal

statistics. We exposed the main implementation and ran a different simulation to

prove that when dealing with non-Gaussian noise, it is necessary to introduce a new

element inside the filter called correntropy. This addition lets us use higher-order

statistics to improve state estimation. In a preliminary phase, we run a total of

five simulations in which, each time, we introduce a random shot noise to the lidar

measurements to prove that the standard formulation of the KF does not behave as

well in the presence of non-Gaussian noise. After deriving the MCC-KF equations,

multiple simulations give more statistical value to our results. Finally, in this paper,

we demonstrate that, in the presence of non-Gaussian noise, the utilized MCC-KF

handles better this type of noise if compared to the standard KF, resulting in better

and more robust state estimation.
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Chapter 5

MCC-EKF for Autonomous Car

Security

5.1 Motivation

Despite the flood of numerous SLAM algorithms that have been proposed so far, very

few of them address the problem of securing the autonomous system in case it gets

attacked. Numerous incidents have been reported where researchers have attacked the

autonomous car systems (for example, Tesla) that made the car change it’s naturally

estimated trajectory [56]. This has raised a serious concern in modern autonomous

systems and needs to be addressed [50, 51, 53]. Although cyber-security experts have

proposed various solutions to solving those issues, these security/hacking problems

are still an open challenge. It is important to note that any system can potentially
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be attacked. Now, if a SLAM system is vulnerable, it becomes a challenge to deploy

it in real-time scenarios. So, can a SLAM system be secured by itself? Which means

can a SLAM system be designed in a way where it can detect an attack/outliers by

itself to avoid the change in it’s natural estimated trajectory?

This chapter is focused on addressing the SLAM security problem by building a

self-secure SLAM framework that can detect potential outliers/attacks. We propose

to use the Maximum Correntropy Criterion - Extended Kalman Filter (MCC-EKF)

approach in our framework and show through the results how our approach avoids

attacks. The framework that we build is based on using the odometry from two SLAM

methods and fusing them using MCC-EKF, which results in the overall estimation of

the autonomous system. This also answers the question - Can we use two odometry

from different SLAM methods and get a better estimate of the trajectory? The results

show that we can improve the overall trajectory. The prime motivation for our work

is to resolve a situation when the system gets attacked that forces the autonomous

system to change it’s naturally estimated trajectory [49] [55]. In several examples, we

have seen how an attacker can attack an autonomous system and change its trajectory

to the attacker’s own desired location [56]. We propose to use the MCC-EKF SLAM

algorithm in our system, which has the potential to give a solution to this problem.

We use this approach in our system as well as evaluate our approach in the popular

KITTI dataset [57] and discuss the results.
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5.2 Proposed Methodology

Figure 5.1 gives the basic system architecture of our proposed approach. As mentioned

in Section 1, we use two different SLAM algorithms to get the odometry. We also

use two different sensors to accomplish our goal. We use a simulated Velodyne Lidar

(VLP-32) and a simulated stereo camera in our setup. We have evaluated our system

in a gazebo simulated environment from an open-source repository [58]. We attempt

to evaluate how the odometry information from the two SLAM methods [59, 60] can

be used to enhance the overall odometry of the autonomous system (e.g., autonomous

car).

For calculating the Lidar odometry, we use the Iterative Closest Point (ICP) SLAM,

which uses 3D Lidar data for estimating the 6 DOF position of the Lidar sensor. For

our purpose, we are using only the raw Lidar measurements. In this approach, at

first, the Lidar data is downsampled to reduce computational complexity. We use a

voxel grid filter of size 0.2 to downsample the point clouds. Later on, it estimates

the sensor pose using the ICP, which is applied iteratively in consecutive frames. We

use the point-to-plane error metric for faster convergence. Every estimated pose is

then fed to a pose graph approach to optimize the relative pose as well as to detect

the loop closure. The results of this approach are shown in the Results section. For

the ICP parameters, we have set the maximum iterations to 100, and the maximum

corresponding ratio is set to 0.01.
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Figure 5.1: System Architecture.

Using the stereo camera data, we calculate the odometry using RTAB-Map Frame-

To-Map (F2M) strategy [59].

Our approach takes advantage of these two SLAM methods, and then we feed their

respective calculated odometry in our MCC-EKF framework. Here we also propose

to introduce shot noises or attack vectors into the estimated Lidar odometry and see

how our framework responds to the attacks. Let the attack vector at time k be ak.

So the measurement equation is updated as y
′

k = yk + ak. Then Equ. (4.20) gets

updated as:

Lk =
Gσ(||y′k −Hx̂k||R−1

k
)

Gσ(||x̂k − Fx̂k−1||P−1
k|k−1

)
. (5.1)

So when y
′

k is large as defined by the kernel bandwidth, Lk is 0, which forces the

Kalman Gain Kk to be 0. So the next state is updated by the system state as given

in Equ. (4.18). This process, as one can see, can reject the attacks/outliers, thus

securing the system.
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The MCC-EKF algorithm (Algorithm 1) for our approach is given below.

Algorithm 1 MCC-EKF algorithm for autonomous system security.

Computed odometry from MCC-EKF SLAM Lidar Odom (ICP) −→Lo(x, y, z, r, p, y)
Stereo Odom (F2M) −→So(x, y, z, r, p, y)
Initialization;
Lidar odom −→ (Lo)
Stereo odom −→ (So)
Compute x0 from Equ. (4.16)
Compute P0 from Equ. (4.17)
Prior Estimation Compute x̂−k from Equ. (4.18)
Compute Pk|k−1 from Equ. (4.19)

while get Lo and So do Compute Lk from Equ. (5.1)
Compute Gain Kk from Equ. (4.21)
Update state xk from Equ. (4.22)
Update Pk|k from Equ. (4.23)

5.3 Results

We evaluate our approach on two systems - the simulated gazebo system and the

KITTI dataset. The Gazebo simulated system uses a Prius model with inbuilt Lidar

and camera system. The source code and the model description are available as open-

source [58]. Figure 5.2 shows the simulated gazebo environment for our work. We

have edited the Prius car model in order to include a stereo system so that we can

get the odometry from the stereo camera (using RTAB-Map FrameToMap (F2M)).

Figure 5.3 shows one sequence of the data from the KITTI dataset. Again, it is

mentioned earlier that we are using two different SLAM algorithms - ICP for Lidar

odometry calculation and FrameToMap Visual odometry calculation (from RTAB-

Map) for the stereo camera. We are injecting attacks on the Lidar odometry and
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Figure 5.2: Gazebo Simulation Environment.

evaluating how the MCC-EKF responds. Generally, for our framework, we can use

any two SLAM algorithms to output odometry.

(a) (b)

Figure 5.3: KITTI dataset data (SEQ 11): (a)- Environment, and (b) its 3D
Lidar map.

For the Lidar odometry, we use ICP based approach to retrieve the odometry from

Lidar. Initially, we downsample the point cloud using voxel grid filtering, and we

use the Point-to-Plane error metric for faster convergence of the ICP algorithm. The

sample result from our gazebo simulated model is shown in Figure 5.4. Figure 5.4(a)

shows the Lidar odometry and the map. Figure 5.4(c) shows the Lidar trajectory

with respect to the ground truth. The dotted line is the ground truth.
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(a) (b)

(c) (d)

Figure 5.4: (a, c) Lidar odometry, and (b, d) Stereo odometry (dotted path shows
the ground truth.)

(a) (b)

Figure 5.5: (a) Odometry trajectory of each method. (b) Zoom-in at one location.

Using the stereo camera, we calculate another set of odometry using Frame2Map in

RTAB-Map. The sample result of the odometry as well as the mapping is shown in
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Figure 5.6: MCC-EKF response to attacks on Lidar data.

(a) (b)

Figure 5.7: Evaluation on KITTI sequence number 27. Here, (a) Normal EKF
response to attacks in Lidar data, RMSE: 10.406; (b) MCC-EKF reponse to attacks,

RMSE: 1.85.

Figure 5.4(b) and Figure 5.4(d)

The next step involves using the odometries obtained from the above-mentioned meth-

ods in our MCC-EKF framework. The combined odometries (Lidar odometry, Stereo

odometry and the MCC-EKF odometry) for the example shown in Figure 5.4 is shown

in Figure 5.5. In Table 1, this trajectory is referred to as Trajectory 1.

Our initial query, as mentioned earlier, was, can we improve the odometry by using

these two odometries obtained from different SLAM algorithms? In our experiment
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Figure 5.8: EKF response on KITTI dataset SEQ 01 when attack vector is in-
troduced.

Figure 5.9: MCC-EKF response on KITTI dataset SEQ 01 when attack vector
is introduced.

(Gazebo simulation), we compare the Root Mean Square Error (RMSE) values of

individual trajectories with respect to the ground truth. Table 5.1 compares the

RMSE values, which clearly shows that MCC-EKF performs better than the individ-

ual SLAM algorithms.

Another problem that we intended to solve was to avoid attacks (false injection of

odometry values). This was the primary reason for our work presented here. We inject

false values in the lidar odometry and test the response of our MCC-EKF approach.

Table 5.2 indicates the RMSE values of the algorithms when false odometry is injected.



60

We inject constant false values at a random location in the lidar odometry, and we see

that MCC-EKF can handle those attacks as compared to the use of the traditional

EKF algorithm. The sigma parameter of the Gaussian kernel function Gσ plays an

important role in MCC-EKF implementation. For our experiment, it is set to 10.

Figure 5.6 shows the response of the MCC-EKF to the attacks on the Lidar data.

In Figure 5.6, it is important to note that the trajectories are translated so that all

the paths are displayed clearly. One can see that MCC-EKF does not get affected at

places where the attacks were introduced.

Table 5.1: RMSE comparison

Traj 1 Traj 2
Stereo-SLAM (RMSE) 0.861 1.840472
Lidar-SLAM (RMSE) 0.598076 0.505731

MCC-EKF-SLAM (RMSE) 0.419823 0.49761

Table 5.2: RMSE comparison after attack vectors

Traj 1 Traj 2
Random attacks 1

Normal EKF (RMSE) 3.624596 5.01472
MCC-EKF (RMSE) 0.420437 0.81037
Random attacks 2

Normal EKF (RMSE) 4.624596 7.01472
MCC-EKF (RMSE) 0.43317 0.85132

As it is clear, MCC-EKF is a variant of the traditional EKF, and the MCC-EKF

is robust to attacks or sudden outliers. So if we introduce attacks in the system

(attacking Lidar odometry), the trajectory changes drastically. However, using the

MCC-EKF approach, the attacks are rejected.
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We have evaluated the approach on the KITTI dataset. For the KITTI dataset, we

have shown our results in two sequences. We have compared the results of MCC-EKF

with normal EKF with and without attacks. The comparison of both the systems

is shown in Figure 5.8 and 5.9. Figure 5.8 shows the normal EKF response with

attacks, while Figure 5.9 shows the MCC-EKF response with attacks. We can clearly

see that the MCC-EKF can successfully eliminate the attacks, but the EKF can

not. The source code is available on our ARA lab GitHub: https://github.com/

aralab-unr/MCC-EKF-SLAM

Table 5.3: RMSE comparison on KITTI dataset.

Random Attacks 1

SEQ 01 SEQ 05 SEQ 11 SEQ 27
EKF 2.04 2.42 1.475 3.193625

MCC-EKF 0.0198 0.0073 0.110 0.142083

Random Attacks 2
EKF 3.79 7.0685 2.1875 10.406

MCC-EKF 0.0198 0.092263 0.1842 1.85

5.4 Conclusions

In this chapter, we have attempted to provide a self-secure solution to an autonomous

system using the MCC-EKF approach. From the results, we have shown how an

autonomous system can be attacked by an attacker/hacker and change the system’s

naturally estimated trajectory and how even a simple injection of false positions can

affect the overall trajectory of the autonomous system. We have also shown how the

MCC-EKF approach can resolve the issue of sudden attacks/outliers to the system. In

https://github.com/aralab-unr/MCC-EKF-SLAM
https://github.com/aralab-unr/MCC-EKF-SLAM
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addition, we have also proposed that we can also get a better estimate of the odometry

by fusing the odometry data from two different SLAM algorithms to obtain a better

odometry estimate of the autonomous system.

Our future work will focus on proposing a solution where we can secure the system

if the attacker chooses to inject false data on the sensor’s raw measurements. We

also plan to extend this work to distributed MCC-EKF security for vehicle to vehicle

network in which multi-robot system research [2, 61–75] can be utilized.
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Chapter 6

Correntropy Registration

6.1 Motivation

This chapter focuses on the Registration or Alignment of 3D point sets. Although

the Registration problem is a well-established problem, and it is solved using multiple

variants of the Iterative Closest Point (ICP) Algorithm, most of the approaches in

the current state-of-the-art still suffer from misalignment when the Source and the

Target point sets are separated by large rotations and translation. In this work, we

propose a variant of the Standard ICP algorithm, where we introduce a Correntropy

Relationship Matrix in the computation of the rotation and translation component,

which attempts to solve the significant rotation and translation problem between

Source and Target point sets. This matrix is computed through the correntropy

criterion, which is updated in every iteration. The correntropy criterion defined in
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this approach maintains the relationship between the points in the Source dataset

and the Target dataset. Through our experiments and validation, we verify that our

approach has performed well under various rotations and translations compared to

the other well-known state-of-the-art methods available in the Point Cloud Library

(PCL) and other methods available as open source.

Registering two point clouds is an active area of research in the community. Registra-

tion is the process of aligning two point cloud datasets of the same scene, which are

separated by a certain transformation (rotation and translation). The registration

problem can be explained as finding the transformation between two point clouds

such that the relative error between the 2 point sets is minimized. The problem of

registration is a significant component in Simultaneous Localization and Mapping

(SLAM) for robotics and other visual data matching algorithms [76]. The relative

transformation computed from point clouds acquired at close time intervals from a

3D sensor can be used to compute the overall trajectory of a system [1, 76, 77].

Early approaches for 3D point cloud registration can be attributed to Besl and

MacKay [78, 79] and Arun et.al [78], which consists of computing the centroid for

both Source and Target datasets. Each point from both the datasets is subtracted

from their respective centroids, and later on, Singular Value Decomposition (SVD)

is used to compute the rotation component. This procedure is performed iteratively

until the relative mean square error between the point cloud datasets is minimized,
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and hence it is termed the Iterative Closest Point (ICP) Algorithm. Since then, vari-

ants of ICP have been introduced, and a point-to-plane variant of ICP operates on

taking advantage of surface normal information [80]. Instead of minimizing the root

mean square of the individual points as done in the generalized version of the ICP, the

point to plane Algorithm minimizes error along the surface normal [19, 31, 81–85].

Despite the various advances in the registration methodologies, handling the situation

where the data set is noisy is still a significant concern. If the noise is Gaussian, we

can remove most of it from the data. However, when the noise is non-Gaussian (e.g.,

shot noises), it becomes difficult to resolve. Hence, it is essential to address the prob-

lem of handling non-Gaussian noise. The idea of Correntropy has seen widespread

use in modern machine learning, signal processing, and other related fields [86, 87].

Correntropy is a measure of similarity between two random variables and has been

implemented with the traditional Kalman filter [55]. Some recent work [87–90] has

introduced the Correntropy concept to the registration problem to overcome the draw-

backs of the ICP algorithm. In the traditional ICP algorithm, if any of the point cloud

dataset (Source or Target) is affected by non-Gaussian noise, the ICP fails drastically

and affects the overall transformation estimation of the point clouds. In this work,

we show basic examples of how the addition of non-Gaussian noise can affect the

traditional ICP and compare how our approach can be better than the traditional

ICP algorithm and its variants. We also compare our approach with the well known

Normal Distribution Transform (NDT) algorithm available in the PCL library.
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In this work, we propose a Correntropy Similarity Matrix Iterative Closest Point

(CoSM ICP) algorithm. In our approach, we introduce a matrix of size N ×N which

maintains a ’numeric’ relationship between Source and Target dataset points (size

of Source dataset and Target dataset is N , hence the matrix size is N × N). This

numeric relationship is calculated through the well-known correntropy criterion, and

it is updated at every iteration. It is calculated only between the nearest points from

Source dataset to the Target dataset, thereby making the Similarity Matrix a sparse

matrix. Our approach not only provides a significant improvement in the alignment

of Source and Target dataset under various rotations and translations, but it also

proves quite effective against non-Gaussian outliers affecting the dataset. In addi-

tion to evaluating our approach in multiple datasets, we also evaluate the method

where we inject the Source dataset with random false values. Through experimen-

tal comparison with the traditional ICP and other approaches, we evaluate how well

our approach can estimate the transformation between the ’infected’ Source and the

Target dataset, and we see how our approach performs better than the well-known

state-of-the-art methods. Alongside estimating accurate transformations, handling

shot-noise or the non-Gaussian noise vectors is a critical component for better trans-

formation estimation and is the driving force for our work.

Inspired by this Correntropy concept, we fuse it with the ICP algorithm, called Cor-

rentropy Similarity Matrix ICP or CoSM-ICP. Our main contribution to this work

can be summarized as follows:
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• We propose a new data registration algorithm in which the Correntropy Simi-

larity Matrix ICP is introduced.

• We evaluate our approach on various randomly generated transformation ma-

trices between Source and the Target.

• Through evaluation on these random transformation matrices, we see how well

our approach performs better than the other well-known state-of-the-art meth-

ods.

• We also introduce outliers in the Source dataset and evaluate our approach on

the ‘infected’ Source dataset.

• We compare our approach with other approaches on the ‘infected’ Source dataset

and see through the results how well our approach performs better than the

other state-of-the-art methods.

6.2 Correntropy Criterion

We begin by describing the mathematical representation of point cloud data and

develop our Algorithm based on it. We denote Source point cloud as Ps and Target

point cloud as Pt. The points in the point cloud Ps contains N points in which

each point can be referenced as pj = {xj, yj, zj}, where xj, yj, zj denotes the 3D

coordinates of the point pj. Similarly, the points in the point cloud Pt contains N

points in which each point can be represented as qk = {xk, yk, zk}, where xk, yk, zk
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Table 6.1: Nomenclature

Variables Usages
Ps Source Point Cloud Set.
Pt Target Point Cloud Set.
N Total number of points in point clouds Ps and Pt.
j, k Index of every point in point cloud where j, k = 1, .., N .
pj Individual 3D point (xj, yj, zj) in a point cloud Ps, or pj ∈ Ps.
qk Individual 3D point (xk, yk, zk) in a point cloud Pt, or qk ∈ Pt.
Gσ Gaussian kernel function with bandwidth σ.
R Rotation matrix.
tr Translation vector.
ε2 Root mean square error.
s Scaling factor.
SM Similarity Matrix.
scen,tcen Centroids computation of Source and Target datasets.

denotes the 3D coordinates of the point qk. Throughout the paper, we describe a

matrix as bold and capitalized letters, a vector is represented as bold and lowercase

letters and the rest of the variables (single dimension) are represented as lowercase

variables. Figure 8.2 shows a brief description of the point clouds, and Table 6.1

denotes the mathematical notations used throughout this work.

We use the Correntropy concept between the Source point cloud and the Target point

cloud. Correntropy has proved beneficial in removing large outliers [86]. Correntropy

is essentially a similarity measure of two random variables. We use the Correntropy

concept between Source and Target point clouds. In this scenario, we are measuring

the similarity between points pj and qk from the point clouds Ps and Pt, respectively.

Then the Correntropy criterion between points pj and qk can be mathematically

represented as :

Vσ(pj,qk) = E[κσ(pj − qk)]. (6.1)
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(a) (b)

Figure 6.1: (a) Red is the Source point cloud Ps (bunny rabbit). Ps contains N
points pj (j = 1, .., N), each of which is a 3D representation xj , yj , zj . White is the
Target point cloud Pt. Pt contains N points qk (k = 1, .., N), each of which is a

3D representation xk, yk, zk. Same goes for the dragon dataset in (b).

Equ. (6.1) also refers to in common literature as a cross-Correntropy of two random

variables [3, 54]. In Equ. (6.1), E[.] refers to the expectation of the variable, and κσ

denotes the kernel function. We can manually choose the size of the kernel function

(also referred to as bandwidth σ). In our approach, we use the Gaussian kernel

function where we redefine the Correntropy function as:

Vσ(pj,qk) =
1

N

N∑
j,k=1

Gσ(pj − qk). (6.2)

From Equ.(6.2),

Gσ(pj − qk) = exp(−‖pj − qk‖2

2σ2
), (6.3)

where σ is the bandwidth or the kernel size of the Gaussian kernel. From Equ. (6.3) it

becomes evident that if pj = qk Gaussian Correntropy is maximum, and the Gaussian
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Correntropy function is positive and bounded [3, 54].

Figure 6.2: Correntropy Criterion. Here, when the difference between the points
(pj − qk) is small, i..e., when they are similar, and the Gaussian kernel function
Gσ approaches to 1. On the contrary, when the difference is large, the Gaussian

kernel function approaches to 0.

Fig. 6.2 shows the basic understanding of the Correntropy criterion. We see that

when the difference between the points (pj − qk) is small, i.e., they are similar,

and the Gaussian kernel function Gσ approaches to 1. On the contrary, when the

difference is large, the Gaussian kernel function approaches 0. It essentially means

that when a potentially changed data point (e.g., qk ) is far varied from pj, the

Gaussian kernel signifies that the points pj and qk are not similar. Intuitively, this

similarity is dependent on the value of σ. This technique allows us to reject the

faulty data point (shot noise or non-Gaussian noise) qk. This idea of calculating
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the maximum similarity is given in Equ. (6.3) is called the maximum Correntropy

criterion.

When the value of qk approaches ∞ then the kernel function approaches 0, i.e.,

lim
qk→∞

Gσ = 0. (6.4)

Intuitively, when the Gaussian Kernel shrinks to 0, the Correntropy approaches the

value p(pj = qk) [91].

6.3 Proposed Method

6.3.1 Correntropy Similarity Matrix with Iterative Closest

Point Algorithm

Given the general description of the Correntropy concept in the previous section, we

extend this idea of Correntropy to the well known ICP algorithm. Traditional ICP

[78] describes the alignment of point clouds such that the Mean Square Error (MSE)

between point sets is minimized. The MSE is the key criterion of convergence in

ICP and its variants. ICP revolves around the problem of aligning point sets Ps

and Pt. We denote the point sets as Ps =
{

[pj]
N
j=1

}
(here {} denotes a point set)

and Pt =
{

[qk]
N
k=1

}
, respectively. Our goal is to best align Source point set Ps to

Target point set (or a model point set) Pt. This leads to finding the appropriate

rotation and translation between the two point sets, such that the Root Mean Square
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Error (RMSE) error between the two point set is minimized (or is within a defined

threshold). This process is commonly known as registration between the Source Ps

and the Target Pt.

Now, the problem can be written as: find the best R and tr such that the MSE, ε2,

between two point clouds (Ps and Pt) is minimized. This problem can be mathemat-

ically written as,

ε2 =
N∑

j,k=1

‖pj − (sRqk + tr)‖2 , (6.5)

where s is the scaling component. pj ∈ Ps is the set of all the points in the Source

point set, and qk ∈ Pt is the set of all the points in the Target point set (j, k =

1, ..., N).

Our work is built on the work of Arun et al.[78], and it is well known from their work

that initially they compute the corresponding points between Source and Target point

sets. The Corresponding points in this work are computed as shortest point from each

point in the Source dataset to the Target dataset. This can be efficiently done using

k-d tree data structure. We introduce an additional parameter using the Correntropy

criterion to find the similarity metric between points. Now, we say that for a Source

point index i the corresponding point index in the Target point set is c(i) (c is vector

of corresponding points from Source to Target. Note: We do not perform reciprocal

correspondence i.e., from Target to Source). From Equ.6.3 we compute the similarity
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between the two corresponding points Ps and Pt as

d = Ps(i)−Pt(c(i)),

Gσ(Ps(i)−Pt(c(i))) =
1

(2πσ)
1
D

exp(
dTd

2σ2
).

(6.6)

Here, D is the dimensions and D = 3 in this case [92]. Now, we can create a

similarity matrix between the Source, and the Target points based on the similarity

metric computed in Equ. 6.6. Intuitively, the size of the similarity matrix is N ×N .

In every iteration, we initialize the value of this similarity matrix as zeros and update

them in every iteration based on the similarity metric computed above in Equ.6.6. It

is updated as shown below:

SM(i, c(i)) = Gσ(Ps(i)−Pt(c(i))),

SM(c(i), i) = Gσ(Ps(i)−Pt(c(i))),

(6.7)

where SM is the similarity matrix which we intend to use in the computation of the

rotation component. The centroid of both the point clouds i.e., the Source and Target

is computed as given by Equ.6.8

scen =
1

N

N∑
i=1

pi,

tcen =
1

N

N∑
i=1

qi,

(6.8)
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where scen and tcen are the computed centroid of Source and Target data set respec-

tively. The difference between the computed centroid scen and the individual Source

points is computed. The same procedure is followed for the Target points. It is given

in Equ. 6.9

p
′

i = pi − scen,

q
′

j = qj − tcen.

(6.9)

The Singular Value decomposition (SVD) for finding the rotation component is based

on first finding the 4 × 4 matrix as shown in Equ. 6.10 where we introduce our

Similarity Matrix:

H =
N∑
i=1

p
′

iSMq
′T
i . (6.10)

The size of the SM matrix is N × N where as the size of the p’ matrix is 4 × N

(under homogeneous transformation) which results in 4×N matrix. The result when

multiplied with q′T (which is a N × 4 matrix) will have the final result in a 4 × 4

matrix form which is the size of the Matrix H. The rest of the algorithm is the same

as the traditional algorithm where we compute the SVD of H as given by Equ. 6.11

H = UΛVT . (6.11)
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Now the Rotation component is calculated as given by Equ. 6.12.

R = VUT . (6.12)

The determinant of R must be a positive integer. The translation component is

simply computed as the difference of the centroids computed in Equ.6.9. Algorithm

2 describes the entire procedure of our proposed method.

Algorithm 2 CoSM Algorithm

1: function ReadDataSets(Ps,Pt) . Read the Source and the Target datasets.
2: while not converged do
3: c← ComputeCorrespondence(Ps,Pt). . Compute Correspondence
4: SM = zeros(N,N) . Initialize N ×N Similarity Matrix to all zeros.
5: for i← 1 to N do
6: d = Ps(i)−Pt(c(i)).
7: Compute Gσ as shown in Equ.6.6.
8: SM(i, c(i)) = Gσ(Ps(i)−Pt(c(i))).
9: SM(c(i), i) = Gσ(Ps(i)−Pt(c(i))).

10: end for
11: Compute centroid as given in Equ.6.8.
12: Compute the difference as given in Equ.6.9.
13: Compute the H Matrix as given in Equ.6.10.
14: Compute SVD of H as given in Equ.6.11.
15: Compute R as given in Equ.6.12.
16: Compute tr as difference of centroids.
17: end while
18: end function=0

6.3.2 Properties of the Similarity Matrix

6.3.2.1 SM Matrix is a sparse Matrix

Since at every iteration, we initialize the values to zeros and based on Equ. 6.7 we fill

the Correntropy similarity values at a specified location, the matrix is sparse. Line
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Figure 6.3: Similarity Matrix.’*’ represent the Correntropy values.

8 and 9 in Algorithm 2 indicated that we update the indices in the Source and the

Target point indexes based on the Correntropy criterion. Fig. 6.3 shows a simple

structure of the similarity matrix.

6.3.2.2 The rows and columns are linearly independent

Every element in the SM matrix or SM(i, j) represents the Correntropy relationship

between the ith Source point and the jth Target point. Since we are computing the

similarity of the point from the Source index to the Target index, every other indices

in that particular row/column is intuitively zero. This clearly means for every row

index in the Source point set there is only one corresponding index point in the Target

dataset with a similarity metric which assures one to one relationship between every

Source point to every Target point. The points in the Source point set are transformed

based on this rotation matrix after every iteration. This process is repeated every

iteration and one can find that the number of points with closer similarity metric

(∼ 1) increases. Fig 6.4 shows that as the iterations increases the rank approaches

N .
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Figure 6.4: As the iterations increases, the rank of the matrix approaches N .
Here N is 1360.

6.3.2.3 Similarity Matrix is a Mirror-Symmetric Matrix.

From Equ. 6.7, one can verify that if the matrix is diagonally separated, then it’s a

mirror image of each other (Mirror-Symmetric Matrices) which means SM = SMT .

6.4 Results

6.4.1 Evaluation on Datasets with no outliers.

We validated our approach on three simple and well-known datasets: the Bunny

Rabbit, the Happy Buddha, and the Dragon dataset. In addition, we have also

performed our evaluation on a Lidar dataset (KITTI dataset) since it captures data

on a large scale. We perform our experiment on an Intel i7 2.GHz CPU with 32 Gb

of RAM. We implemented our approach in the PCL library (version 1.9) and released

our code in the GitHub repository ( https://github.com/aralab-unr/CoSM-ICP).

In this section, we did not add any random outliers, and we introduced random

rotation and translation between the Source and the Target point sets. First, we

capture a sample pcd file and transform the acquired point cloud with a random

https://github.com/aralab-unr/CoSM-ICP
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transformation matrix where all the individual components of the transformation

matrix were randomly generated with different seeds (we assume throughout the

paper that the units for angle are in radians). We name the original point cloud as

read from the pcd file as Target and the randomly transformed point cloud as the

Source. The problem statement is to find the relative transformation between the

Source and the Target such that the Source is aligned with the Target. For the above

steps, the Algorithm is described in Algorithm 3.

Algorithm 3 Transform the point cloud with a Random Transformation Matrix.

1: function ReadPCDFile(’filename.pcd’,Pt). . Read the PCD file and name it
as a Target.

2: aax= Random angular component along the X-axis (-6.28 to 6.28 radians).
3: aay= Random angular component along the Y-axis (-6.28 to 6.28 radians).
4: aaz= Random angular component along the Z-axis (-6.28 to 6.28 radians).
5: trtx= Random translation along the X-axis.
6: trty= Random translation along the Y-axis.
7: trtz= Random translation along the Z-axis.
8: M← GenerateTransformationMatrix(aax, aay, aaz, trtx, trty, trtz)
9: Ps ← TransformPointCloud(Pt,M)

10: return Ps . Return the transformed point cloud and name it as Source.
11: end function

To validate our approach on the datasets, we collected the results on a simple scenario

where the Source is transformed manually with a simple transformation matrix which

has less variation in rotation and translation ((r, p, y, x, y, z) = (0.314, 0, 0, 0, 0, 0.05)).

We reduce the number of point clouds to decrease the computational time by per-

forming Voxel grid filtering (leaf size 0.05) on the point clouds. The original number

of points in the bunny point cloud sets is 40256 points, and after applying voxel

grid filtering, we get the number of points reduced to 1360 points. Similarly, for the

Dragon dataset, the original number of points is 43467 points, and after voxel grid
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(a) (b) (c)

Figure 6.5: Rotated and translated point cloud (white is the original point
cloud (Target), and Red is the transformed point cloud (Source)) with rotation
of (r, p, y) = (0.314, 0, 0) and translation of 0.05 unit in the z-axis. (a) shows the
bunny rabbit point cloud down sampled using voxel grid filtering of leaf size 0.005.
(b) shows the dragon point cloud down sampled using voxel grid filtering of leaf
size 0.005. (c) shows the happy buddha point cloud down sampled using voxel grid

filtering of leaf size 0.005.

filtering, the number of points is reduced to 1593 points. The original number of

points for the Happy Buddha dataset is 76166 points, and after voxel grid filtering,

we get 1090 points. The Source and the Target point clouds for the datasets are

shown in Fig. 6.5.

After applying a few iterations, our approach aligns equally well (RMSE: 2.46336e-14)

in comparison to the well-known methods like ICP with the standard SVD method

(RMSE: 6.25494e-06) and ICP point-to-plane (RMSE: 2.77175e-16). The results for

different datasets are shown in Fig. 6.6. We compared the Root Mean Square Error

(RMSE) on this particular transformation, and we see that ICP point to plane con-

verges faster than other methods, including ours (in 50 iterations). Fig. 6.7 shows

the RMSE comparisons of different approaches on different datasets for this simple

transformation. In this example, ICP point to plane seems to converge faster than
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.6: Transformation from Source to Target :
(r,p,y,x,y,z)=(0.314,0,0,0,0,0.05). White point cloud: Original point cloud
(Target). Red point cloud: Source point cloud and Green point cloud : Source
transformed point cloud after 10 iterations using (a) ICP Standard SVD (RMSE:
6.25494e-06) (b) ICP Point to Plane (RMSE: 2.77175e-16) and (c) CoSM ICP
(RMSE: 3.34226e-06) on the Bunny Rabbit dataset. Similarly we perform 50
iterations on the Dragon dataset using (d) ICP Standard SVD (RMSE: 2.86089e-
14 ) (e) ICP Point to Plane (RMSE: 3.93822e-16) and (f) CoSM ICP (RMSE:
2.72838e-15) and 35 iterations on the Happy Buddha dataset using (g) ICP
Standard SVD (RMSE: 1.72851e-13) (h) ICP Point to Plane (RMSE: 3.91357e-16)

and (i) CoSM ICP (RMSE: 2.46336e-14).
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our method since the rotation and translation components are very small. The next

step is to evaluate how well our method performs as compared to the other methods

when the rotation is significant.

Fig. 6.9 shows the results of different approaches, including ours, when the rotation

and the translation component of the transformation matrix is quite large. In this

example, we use the Bunny Rabbit dataset where the Source is transformed from the

Target as:

(r, p, y, x, y, z) = (−1.32811,−5.87854, 2.12814,−0.874,−0.433, 0.221).

The translation component is small compared to the rotation component. In this

example, our method performs well compared to the other methods, with RMSE as

4.76074e-06 (in our method) after 20 iterations. It clearly shows that the Source is

aligned very well with our approach, whereas in other methods, the Source failed

to align with the Target point cloud. We compared the RSME results with other

approaches like GICP, NDT, and ICP-nonlinear [93–95]. Fig 6.8 shows the RMSE

results for various methods on the Bunny Rabbit dataset. Our method performs

well in comparison to others. In addition, Table 6.2 shows the RMSE comparison

of various methods applied to the Bunny Rabbit dataset with various rotations and

translations.

In Fig. 6.10 we use the Dragon dataset where the Source is transformed from the

Target as:
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Table 6.2: RMSE comparison of different methods with different values of rota-
tion and translation after 50 iterations on Bunny Rabbit dataset. Note: Rotation

component is in radians.

Transformation(r,p,y,x,y,z) ICP Standard SVD ICP Point to Plane GICP ICP Non-Linear NDT CoSM ICP
(2.39384,-2.57132,4.66973,0.876204,-2.83931,2.68268) 0.000428388 88.0656 0.0011591 0.000206335 15.5141 1.81066e-13
(6.10518,-0.249119,2.41527,1.99458,8.99637,1.20097) 0.000274292 268.684 81.2352 0.000301596 81.2352 3.09602e-13
(1.17438,-5.95203,-4.13622,4.6532,6.28659,0.0542642) 0.000177495 147.987 58.9048 2.69103e-11 58.9048 1.75634e-13
(-0.866749,-2.6182,-0.318386,-2.1561,-1.25001,-4.8753) 0.000283007 859.114 28.7628 0.000244988 28.7628 1.98801e-13
(5.08434,-3.9644,-2.66895,2.45251,-6.82633,1.41512) 0.000471378 58.1505 55.996 1.54e-11 55.996 2.63875e-13

(r, p, y, x, y, z) = (2.39318,−5.02554,−2.69076, 0.000,−0.003, 0.003).

Again, our method performs well compared to other methods with RMSE as 8.66664e-

08 (in our method) after 25 iterations. We arrive at a similar conclusion that the

Source is aligned very well with our approach, whereas in other methods, the Source

failed to align with the Target point cloud. Fig. 6.11 shows the RMSE results for

various methods on the Dragon dataset. In addition, Table 6.3 shows the RMSE

comparison of various methods applied to the Dragon dataset with various rotations

and translations.

In Fig. 6.12 we use the Happy Buddha dataset where the Source is transformed from

the Target as (r, p, y, x, y, z) = (−4.50504, 1.31677, 4.83251,−0.023,−0.019,−0.008).

Again, our method performs well in comparison to the rest of the methods with RMSE

as 2.26675e-06 in our method after 25 iterations. We arrive at a similar conclusion

that the Source is aligned very well with our approach where as in other methods the

Source failed to align with the Target point cloud. Fig 6.13 shows the RMSE results

for various methods on the Happy Buddha dataset. In addition, Table 6.4 shows the

RMSE comparison of various methods applied on the Happy Buddha dataset with

various rotation and translation.
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Figure 6.7: Convergence of different Registration Methods (ICP Standard SVD,
ICP point to plane, GICP and CoSM ICP) on different datasets on the simple
transformation ((r, p, y, x, y, z) = (pi/10, 0, 0, 0, 0, 0.05)). (a) Shows RMSE com-
parison on Bunny Rabbit dataset. (b) Shows RMSE comparison on the Dragon

dataset. (c) RMSE comparison on the Happy Buddha dataset.
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Figure 6.8: RMSE comaprison of various methods on the Bunny Rabbit dataset.
(b) shows the zoomed in version of (a).

For evaluating on the Lidar dataset, we applied a voxel grid filtering of leaf size 1.5.

The original point cloud size is 115150 points, and after voxel grid filtering, we get 1497

points. In Fig. 6.14 we use the Lidar dataset where the Source is transformed from the

Target as (r, p, y, x, y, z) = (−4.27108,−0.505914, 0.0988647, 10.938,−10.532, 17.832).

Again, our method performs well compared to the rest of the methods with RMSE

as 2.26675e-06 in our method after 25 iterations. We arrive at a similar conclusion

that the Source is aligned very well with our approach, whereas in other methods, the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.9: White Point Cloud: Original Point Cloud (Target). Red Point Cloud:
Source point cloud. Green Point Cloud: Source transformed point cloud after
applying iterations. Source is transformed from the Target as ((r,p,y,x,y,z)=(-
1.32811,-5.87854,2.12814,-0.874,-0.433,0.221)). (a)-(c) shows the convergence of the
Source point clouds after 5, 10 and 20 iterations using the standard ICP, respec-
tively (RMSE after 20 iterations is 0.000358474). (d)-(f) shows the same using ICP
Point to Plane (RMSE after 20 iterations is 0.00216325). (g)-(i) shows the same

using CoSM ICP (RMSE after 20 iterations is 4.76074e-06).

Source failed to align with the Target point cloud. Fig 6.15 shows the RMSE results

for various methods on the Lidar dataset. In addition, Table 6.5 shows the RMSE

comparison of various methods applied on the Lidar dataset with various rotation
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.10: White point cloud: Original Point Cloud (Target). Red point cloud:
Source point cloud. Green point cloud: shows the Source transformed point cloud
after applying different registration methods. Source is transformed from the Tar-
get as ((r,p,y,x,y,z)=(2.39,-5.025,-2.69,0.00,-0.003,0.003)). (a)-(c) shows the con-
vergence of the Source point clouds after 5, 10 and 25 iterations using the standard
ICP, respectively (RMSE after 25 iterations is 0.000198014). (d)-(f) shows the same
using ICP Point to Plane (RMSE after 25 iterations is 0.000136451). (g)-(i) shows

the same using CoSM ICP (RMSE after 25 iterations is 8.66664e-08).

and translations.
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Figure 6.11: RMSE comparison of various methods on Dragon dataset. (b) shows
the zoomed in version of (a).

Table 6.3: RMSE comparison of different methods with different values of rotation
and translation (from Source to Target) after 50 iterations on Dragon dataset. Note:

Rotation component is in radians

Transformation(r,p,y,x,y,z) ICP Standard SVD ICP Point to Plane GICP ICP Non-Linear NDT CoSM ICP
(-2.8152,-2.09474,-2.48844,5.66472,6.31125,-9.44663) 0.000167091 638.278 156.91 0.000159398 156.9 4.19748e-13
(0.429847,2.60943,3.61045,3.6405,-1.63246,7.60966) 0.00016037 325.136 73.1995 0.000224256 73.1995 1.25329e-13

(-2.78018,2.15172,-4.43629,-4.52232,-9.42573,-2.54953) 0.000142098 3015.76 115.142 0.000162551 115.142 3.78298e-13
(1.75465,-1.56088,-1.70889,2.33321,6.13018,3.79368) 0.000142188 26.6913 56.4895 0.000224482 56.4895 1.94386e-13
(-3.72204,1.05945,2.34622,-4.65481,9.74086,3.64636) 0.000159037 115.65 127.159 126.91 127.159 4.19583e-13

Table 6.4: RMSE comparison of different methods with different values of rotation
and translation (from Source to Target)after 50 iterations on the Happy Buddha

dataset. Note: Rotation component is in radians

Transformation(r,p,y,x,y,z) ICP Standard SVD ICP Point to Plane GICP ICP Non-Linear NDT CoSM ICP
(0.429847,2.60943,3.61045,3.6405,-1.63246,7.60966) 0.00016037 325.136 73.1995 0.000224256 73.1995 1.25329e-13

(-1.58692,-5.66055,-4.80461,-7.03304,0.718292,2.77415) 0.000142378 469.843 55.5392 0.00016041 55.5392 1.41924e-13
(-2.79112,4.31946,-2.15715,2.44105,2.03992,-1.87023) 0.000121835 39.1843 0.0018519 0.000133238 11.981 7.99904e-14

(-0.744191,-1.86187,-1.78262,-4.61717,1.79701,-7.04776) 0.000192252 81.0697 71.9632 0.000192185 71.9632 1.80283e-13
(5.17263,1.57234,1.9238,-0.263428,5.05962,-2.27954) 0.000157366 116.57 27.6866 0.000182242 27.6866 1.38844e-13

6.4.2 Evaluation on datasets with outliers.

In this section, we evaluated our approach in cases where the data has outliers. We

inject random data values at random indexes in the Source point set. The algorithm

for injecting random outliers is shown in Algorithm 4.

In this experiment, we selected the percentage of points in the Source dataset to be
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.12: White point cloud: Original point cloud (Target). Red point cloud:
Source point cloud. Green: Source transformed point cloud after applying differ-
ent registration methods. Source is transformed from the Target as ((r,p,y,x,y,z)=(-
4.50504,1.31677,4.83251,-0.023,-0.019,-0.008)). (a)-(c) shows the convergence of the
Source point clouds after 5, 10 and 25 iterations using the standard ICP, respec-
tively (RMSE after 25 iterations is 0.000128905). (d)-(f) shows the same using ICP
Point to Plane (RMSE after 25 iterations is 0.000124717). (g)-(i) shows the same

using CoSM ICP (RMSE after 25 iterations is 2.26675e-06).

affected by outliers. We added the outliers after performing voxel grid filtering of

leaf size 0.05 since one can still encounter outliers after pre-processing the data. The

Source point cloud is transformed from the Target point cloud with the transformation
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Figure 6.13: RMSE comparison of various methods on the Happy Buddha
dataset. (b) shows the zoomed in version of (a).

Table 6.5: RMSE comparison of different methods with different values of rotation
and translation (from Source to Target)after 50 iterations on the KITTI Lidar

dataset. Note: Rotation component is in radians

Transformation(r,p,y,x,y,z) ICP Standard SVD ICP Point to Plane GICP ICP Non-Linear NDT CoSM ICP
(4.23443,-5.64022,-3.13665,-2.2485,-1.19326,-9.12248) 16.1754 371.296 38.1373 16.1762 274.547 3.4779e-08
(3.64853,-3.29044,-5.13981,0.991908,-5.06315,4.75733) 16.9795 480.78 321.312 23.8551 432.754 3.20148e-08
(-5.78829,0.576843,1.91183,0.640607,6.7615,3.82172) 194.469 513.454 225.474 194.581 257.164 4.47064e-08

(-1.0146,-0.427581,-3.42779,7.22804,-7.6078,-0.806072) 10.2524 286.673 18.9515 10.266 24.5575 2.83469e-08
(0.149154,4.33846,1.82095,-2.5633,-0.377752,-1.20834) 16.8181 1010.43 248.244 17.2776 258.734 4.46591e-08

Algorithm 4 Add random data values at random data indexes.

1: function InjectOutliers(Ps). . Read the Source point cloud data.
2: ridx= Pick random index in the Source point set.
3: trtx= Random translation along the X-axis.
4: trty= Random translation along the Y-axis.
5: trtz= Random translation along the Z-axis.
6: Ps[ridx].x = Ps[ridx].x+ trtx
7: Ps[ridx].y = Ps[ridx].y + trty
8: Ps[ridx].z = Ps[ridx].z + trtz
9: return Ps . Return the ‘infected’ point cloud and name it as Source.

10: end function

(r, p, y, x, y, z) = (−1.32811,−5.87854, 2.12814,−0.874,−0.433, 0.221). The Source

point cloud is indeed affected by outliers, and we compare the results with different

approaches on different datasets when 10% ,25%, and 50% of the Source data points

are affected.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.14: (From KITTI dataset) White point cloud: Original Point
Cloud(Target). Red point cloud: Source point cloud and Green point cloud: Source
transformed point cloud after applying different registration methods. Source is
transformed from the Target as ((r,p,y,x,y,z)=(-4.2,-0.5,0.098,10.9, -10.5, 17.8)).
(a)-(c) shows the convergence of the Source point clouds after 7, 15 and 33 itera-
tions using the standard ICP, respectively (RMSE after 33 iterations is 13.7695).
(d)-(f) shows the same using ICP Point to Plane (RMSE after 33 iterations is
12.6385). (g)-(i) shows the same using CoSM ICP (RMSE after 25 iterations is

1.01689e-08).

We compared our approach with other methods as well. Table 6.6 shows the RMSE

comparison with other datasets where 10% of the Source dataset (after voxel grid
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Figure 6.15: RMSE comparison of various methods on the KITTI Lidar dataset.

filtering) is is affected. Our methods outperform other approaches under various

rotations and translations. Our results are consistent and keeps performing better

even when 25% and 50% of the Source dataset are affected as shown in Table 6.7 and

Table 6.8.

Table 6.6: (10% of the Source data contains outliers) RMSE comparison of dif-
ferent methods with different values of rotation and translation (from Source to
Target) after 50 iterations on different datasets. Note: Rotation component is in

radians

Bunny Dataset
Transformation(r,p,y,x,y,z) ICP Standard SVD ICP Point to Plane GICP ICP Non-Linear NDT CoSM ICP

(-2.36822,-0.726873,-5.69612,7.08856,-2.68581,7.63531) 0.000411328 711.375 114.581 0.000269638 114.581 6.15845e-05
(-2.67216,3.73756,-0.902484,-9.27928,-4.0282,4.09878) 0.000257389 374.895 0.000460177 23.8551 119.48 7.70252e-05
(-1.56059,4.39878,-2.80893,-3.94166,-3.10092,-3.34176) 0.000527419 304.884 37.13 0.000487805 37.13 8.26112e-05

Dragon Dataset
(0.177274,-3.62568,5.47677,0.852604,-5.3915,-9.91804) 0.000220957 76.301 128.455 0.000246111 128.455 6.49243e-05
(-0.620232,-5.82563,3.78543,4.85066,2.74563,-8.42101) 0.000270745 45.484 101.049 23.8551 101.049 7.94277e-05
(-1.53521,4.48718,-0.388112,-7.74233,5.42215,-6.44992) 0.00021795 241.345 125.922 0.000223478 125.922 7.67165e-05

Happy Buddha Dataset
(-2.83367,-1.24896,2.98587,2.69059,3.34046,-4.41227) 0.000176202 19.1229 36.8922 0.000212469 36.8922 7.10533e-05
(-2.47527,-5.65213,-3.30425,-3.8167,8.95128,-9.03962) 0.000210153 598.839 174.049 0.000217757 174.049 8.03656e-05
(3.05982,-0.897597,-1.43556,1.60636,1.22125,7.01582) 0.000171509 146.972 52.0521 0.000202291 52.0521 7.24014e-05

6.4.3 Effect of σ.

As shown in the previous section, the registration works well when the value of σ is

100. With lower values of σ like 0.01, it aligned well for small rotation and translation.
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Figure 6.16: CoSM Results when Source is infected with noise. White point
cloud: Original Point Cloud (Target). Red point cloud: Infected Source point
cloud. Green point cloud: Source transformed point cloud after applying iterations.
Transformation from Source to Target : ((r,p,y,x,y,z)=(1.658, 0.607, -1.204, 0.00, -
0.003, 0.003)). (a),(b) and (c) show the result of CoSM ICP on the Bunny dataset
when 10%, 25% and 50%of the data is affected with outliers. Their respective
RMSE’s are 8.64002e− 05,0.000203088 and 0.000384025. (d),(e) and (f) show the
result of CoSM ICP on the Dragon dataset when 10%, 25% and 50%of the data
is affected with outliers. Their respective RMSE’s are 6.91792e − 05,0.000163833
and 0.000368516. (g),(h) and (i) show the result of CoSM ICP on the Happy
Buddha dataset when 10%, 25% and 50%of the data is affected with outliers. Their
respective RMSE’s are 9.29047e− 05,0.000205528 and 0.000386966. For each case,

we performed around 30 iterations.
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Table 6.7: (25% of the Source data contains outliers) RMSE comparison of dif-
ferent methods with different values of rotation and translation (from Source to
Target) after 50 iterations on different datasets. Note: Rotation component is in

radians

Bunny Dataset
Transformation(r,p,y,x,y,z) ICP Standard SVD ICP Point to Plane GICP ICP Non-Linear NDT CoSM ICP

(1.55693,-1.11205,4.17676,-6.05252,1.66971,5.82581) 0.000426784 1175.52 71.583 0.000365769 71.583 0.000187812
(5.65505,4.15868,-3.27751,9.31612,-5.23313,-5.55587) 0.000346638 3286.84 0.000410574 144.696 144.696 0.000167037
(-2.55584,-4.76118,3.16486,-7.20725,3.99654,-7.30791) 0.000447408 1343.79 117.165 0.000552115 117.165 0.000216027

Dragon Dataset
(6.25758,2.3638,-2.88282,-7.36544,-6.20769,-7.92445) 0.000294534 67.9046 156.303 0.000286822 156.303 0.000168995
(3.76055,2.28707,4.29734,-8.8644,-6.40219,1.19919) 0.000255092 115.102 120.245 0.000292728 120.245 0.000158364

(4.63246,-4.08457,-1.65193,-9.97667,-4.37054,1.77417) 0.000354324 174.437 119.75 0.000263999 119.75 0.000162741
Happy Buddha Dataset

(-1.20164,-2.47146,4.2161,1.29076,7.69533,-6.64823) 0.000295019 116.015 98.0711 0.000298207 98.0711 0.000194422
(-1.14973,-4.81181,3.44981,9.95025,9.69451,8.84972) 0.000266775 103.766 269.094 0.000262239 269.094 0.000177326

(-2.78376,3.84551,-5.11847,-0.469235,-7.93148,-7.98029) 0.000269701 116.321 127.049 0.000269828 127.049 0.0001856

Table 6.8: (50% of the Source data contains outliers) RMSE comparison of dif-
ferent methods with different values of rotation and translation (from Source to
Target) after 50 iterations on different datasets. Note: Rotation component is in

radians

Bunny Dataset
Transformation(r,p,y,x,y,z) ICP Standard SVD ICP Point to Plane GICP ICP Non-Linear NDT CoSM ICP

(4.21267,-5.1913,0.510754,4.78028,-3.81009,-8.99842) 0.000555246 176.793 118.74 0.000705962 118.74 0.000367226
(-1.90501,2.94602,-4.15732,-4.38121,-8.43926,0.951326) 0.000533201 1644.03 91.374 0.000535398 91.374 0.000364791
(-3.88617,5.23854,-4.81381,2.95017,-6.77983,-2.26068) 0.000615907 83.6865 61.5916 0.000610313 61.5916 0.00036124

Dragon Dataset
(-4.41725,-2.40238,-0.642351,3.74842,-9.32348,-9.14091) 0.000487516 188.167 185.885 0.000510906 185.885 0.000372615

(3.29757,5.37519,4.68352,5.59739,-1.76298,-7.59656) 0.000362955 487.439 90.1547 0.000516225 90.1547 0.000327693
(-2.27986,-2.66004,-5.61896,-9.89552,-2.83092,4.9319) 0.000520534 91.5809 127.933 0.000472107 127.933 0.000380396

Happy Buddha Dataset
(5.4771,1.17243,-0.67022,-8.42324,-5.29389,-3.70151) 0.000462191 510.054 111.689 0.000489964 111.689 0.000384029
(1.77436,-2.70017,-4.70393,1.9514,4.74639,-8.0765) 0.000478957 128.078 90.493 0.000489046 90.493 0.000383038

(-3.01961,2.91297,-5.51066,6.01917,4.29907,5.78239) 0.000486108 155.204 86.8654 0.00173299 86.8654 0.000399139

However for large rotation and translation between the Source and the Target it took

a large number of iterations to converge. For even smaller values of σ like 0.001, and

for larger rotation and translation, alignment did take place. Moreover, the iterations

were larger (∼ 500), and the computed transformation was prone to errors.
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6.5 Discussion

We have found that using a Correntropy Relationship matrix proved to be very ef-

fective in registration. Through experiments, we have evaluated that our approach

is robust to large rotation and translation as well as robust to outliers. We have

compared our approach to other state-of-the-art methods like GICP, NDT, ICP Non-

Linear, etc., and proved it’s efficiency under large transformation matrices. It is quite

important to note that the size of the Correntropy Matrix is dependent on the size

of the dataset, which means that if we have larger datasets, our approach would

be computationally very expensive for each iteration (∼ 7ms for a dataset of size

10000 points for each iteration). In addition to our previously mentioned results,

we have also evaluated on different datasets using multiple runs. We define a run

such that in each run, we generate a random transformation matrix, and we compute

a transformation matrix from randomly generated translation and rotation compo-

nents and transform the original point cloud (which we call as Target) to another

point cloud (which we call it as Source). We then employ several state-of-the-art

methods like GICP, NDT, ICP Non-Linear NDT, and CoSM ICP iteratively on the

Source point cloud. In this case, we perform the iteration 50 times during each run

and collect the final RMSE’s from each of the methods. The components of the ran-

dom transformation matrix (translation and rotations (x, y, z, r, p, y)) are generated

independently with different seeds (the system’s clock defines seeds). The mean for

all the components is zero. The standard deviation for the translation components
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along x, y, z is 10, whereas the angular components are 6.28317 radians (360 degrees)

along each axes. On the Bunny dataset, we found that ICP Point to Plane had a

very large RMSE ( mean RMSE for ICP Point to Plane is 1.9668e+03 in 100 runs)

which means the Source dataset was not at all aligned to the Target dataset. How-

ever, GICP and NDT are better than ICP Point to Plane in most cases (the mean

RMSE of GICP in 100 runs is 75.6727, and the mean RMSE of NDT in 100 runs

is 76.2536). However, in certain transformations, GICP and NDT perform well with

RMSE of 8.8582e-04 and 5.6122e-04. On the other hand, if we compare the aver-

age RMSE of Standard ICP, ICP Non-linear and CoSM ICP, their average RMSE’s

in 100 runs is 2.4156e-04, 2.3781e-04 and 3.2489e-07, respectively. CoSM ICP is

better than the other approaches (by more than ∼ 100%). Fig 6.17(a) shows the

distribution of errors (RMSE’s) of various methods in 100 runs on the Bunny Rabbit

dataset. Fig. 6.17(b) shows the RMSE deviation of Standard ICP, ICP Non-Linear,

and CoSM ICP. In the Dragon dataset, the average RMSE’s of Standard ICP, ICP

Point to Plane, GICP, ICP Non-Linear, NDT and CoSM ICP is 1.1372e-04, 177.0397,

86.8183, 1.4154, 87.5327 and 2.6989e-13, respectively. In this case as well, CoSM out-

performed the other approaches by more than ∼ 100%. It is again evident from Fig.

6.18(a) and Fig. 6.18(b). On the Happy buddha dataset, the average RMSE’s for

Standard ICP, ICP Point to Plane, GICP, ICP Non-Linear, NDT and CoSM ICP

is 9.4830e-05, 414.0633, 93.0712, 1.1289e-04, 93.3621 and 5.6055e-13 respectively in

100 runs. Again it is validated that CoSM ICP performs better than the rest of the

approaches by more than ∼ 100%. Fig. 6.19(a) and Fig. 6.19(b) clearly validates our
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claim for the happy buddha dataset. Readers can note that the top and the bottom

of the box plot shown represent the 25th and 75th percentiles, respectively, and the

middle red line shows the median of the error (average RMSE’s) across 100 runs.
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Figure 6.17: Average RMSE’s of various methods in 100 runs (Bunny Rabbit
dataset). Each run consists of random rotation and translation between the Source

and the Target.
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Figure 6.18: Average RMSE’s of various methods in 100 runs (Dragon dataset).
Each run consist of random rotation and translation between the Source and the

Target.

It is significant to note that our approach has proved beneficial in solving the regis-

tration problem under various rotations and translations as compared to other well-

known methods. We encourage the community to validate our approach on their own
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Figure 6.19: Average RMSE’s of different methods in 100 runs (Happy Buddha
dataset). Each run consist of random rotation and translation between the Source

and the Target.

datasets.

6.6 Conclusions

One of the critical things we have addressed is to find an accurate estimate of the

transformation between the Source and the Target point clouds under various rota-

tions and translations. In this work, we have verified our approach in various datasets,

where the Source is transformed from the Target using various randomly generated

transformation matrices. We can see through the obtained results that our method

has performed better than the other state-of-the-art approaches. In addition, we also

evaluate our approach when the Source dataset is affected by noise generated with

random intensity and affecting random data points. In this scenario as well, we have

verified that our proposed approach has outperformed most of the other state-of-the-

art approaches where the ‘infected’ Source dataset is transformed randomly from the
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Target dataset. We firmly insist that our readers evaluate our approach located in

our Github repository( https://github.com/aralab-unr/CoSM-ICP).

https://github.com/aralab-unr/CoSM-ICP
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Chapter 7

Single Frame Lidar Stereo Camera

Calibration Using Registration of

3D planes

7.1 Motivation

This chapter focuses on finding the extrinsic parameters (rotation and translation)

between the Lidar and the Stereo sensor setups. We use a planar checkerboard and

place it inside the Field-of-View (FOV) of both the sensors, where we extract the 3D

plane information of the checkerboard acquired from the sensor’s data. The planes

extracted from the sensor’s data are used as reference data sets to find the relative

transformation between the two sensors. We use our proposed method Correntropy
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Similarity Matrix Iterative Closest Point (CoSM-ICP) Algorithm, as mentioned in

the previous chapter, to estimate the relative transformation. In this work, we use

a single frame of the point cloud data acquired from the Lidar sensor and a single

frame from a calibrated Stereo camera point cloud to perform this operation. We

evaluate our approach on a simulated dataset since it has the freedom to evaluate

under multiple configurations. Through results, we verify our approach under various

configurations.

7.2 Background

Primitive approaches for an autonomous multi-sensor system involve a predefined

setup where the sensors are placed at known locations relative to each other. This

setup does not necessarily involve any calibration methodology since the sensors’ rel-

ative translation and rotation components are known. However, with the advent of

unique designs of autonomous systems in the market and the research community, it

has become essential for automatic and efficient calibration methods for multi-sensor

setups. Calibration in a multi-sensor system is essentially finding the relative trans-

formation between the sensors. With our focus on autonomous navigation, Lidar and

stereo camera configurations are explicitly designed to the requirement of the au-

tonomous system. These sensors, however, need to be calibrated (finding the relative

rotation and translation between the two sensors) for efficient autonomous navigation

[96].
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Fig. 7.1 shows a sample setup of Lidar-Stereo Calibration. Early methods that

involved extrinsic calibration between Lidar and a camera (or a stereo camera) made

use of a calibration card or some well-defined calibration objects [96–103]. A planar

checkerboard is one of the most widely used calibration objects since it can easily

extract features from both the Lidar and the camera data. Most of these approaches

have highlighted the importance of placing the calibration objects in the Field-of-

View (FOV) of both sensors. Finding the correspondences between the Lidar and

the stereo data points is crucial for efficient Lidar and stereo camera calibration.

The correspondences are calculated either manually or automatically using feature

extraction algorithms. The accurate estimation of the correspondences is essential for

efficient calibration.

Figure 7.1: Sample Lidar and stereo camera configuration setup. Cc is the stereo
camera coordinate frame (here we consider the left camera center as stereo camera’s
coordinate frame), and Lc is the Lidar coordinate frame. The objective here is to

compute the transformation T between Lc and Cc.

The method proposed by Zhang and Pless [97] has used a planar checkerboard pat-

tern as a calibration target to calibrate a 2D laser scanner and a monocular camera.
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The checkerboard was placed with different poses in front of the 2D laser and the

camera. The relative transformation in this method is calculated by minimizing the

re-projection error of features of the checkerboard as viewed by the 2D Lidar and the

camera. Their algorithm required at least five poses, whereas, in theory, the extrinsic

calibration could be achieved in 3 poses. This method was later extended to a 3D

laser by Unnikrishnan, and Hebert [104], in which they estimated the plane parame-

ters from the 3D Lidar and the camera data. They calculate the initial rotation and

translation using plane-plane correspondence and later refine it by minimizing the

point to plane distance. Another work by Geiger et al. [105] placed several checker-

boards on the scene where its algorithm detects the checkerboards and matches them

with the planes from the laser data. In their approach, a simple one shot of the scene

is enough since there are several checkerboards. Most of these methods involve the

use of plane information of the checkerboard and do not consider the boundary of the

checkerboard. Work by [106] has shown accurate results even with fewer poses of the

calibration target. Since the laser point can approximate the boundary more accu-

rately when the checkerboard is placed closer to the sensor, it shows high accuracy.

The authors introduced a similar transformation between the Lidar and the camera,

which showed better results than rigid transformation.

Other calibration objects were also used for the calibration method. Work proposed in

[100] used a polygonal board, and using the vertices of the board, they estimated the

calibration parameters. However, it involved manual labelling of the correspondences
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in the camera frame. These correspondences are used to estimate the calibration

parameters using a genetic algorithm-based approach. Other approaches [101–103]

have used planar boards with rectangular holes, planar boards with circular holes,

and other 3d objects. One of the drawbacks of using all the above methods is that it

is laborious and time-consuming.

Along with the approaches mentioned above, several target-less or no object-based cal-

ibration approaches have been proposed as well [107, 108]. Initial work by Scaramuzza

[109] has introduced a technique for calibrating a 3D laser and an omnidirectional

camera from natural scenes. The algorithm automatically extracts some features from

the sensor data and manually selects correspondence between the selected features.

Another work by Moghadam [110] exploits the linear features present in the indoor

environment. It uses the 3D line features from the point cloud and the corresponding

2D line segment from the camera to estimate the rigid body transformation between

the two. Boughorbal [111] uses a chi-square test to maximize the correlation between

the sensor data. This technique exploits the statistical dependence of the data ac-

quired from the two sensors. Levinson and Thrun [112] uses a series of corresponding

laser scans and camera images to estimate the calibration parameters. Work by [113]

uses similar mutual information metrics between the two sensors’ data by measuring

the statistical dependence between the data [114].

From Pandey, [113], a theoretical derivation is proposed, which estimates the kernel

density of the probability distribution of the sensor data. Scott [114] has proposed
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an approach for automatic calibration using diligently selected natural scenes. This

algorithm searches over the selected scenes to extract models and yields better results.

One advantage of this approach is that it requires no knowledge of the physical world

and continuously finds scenes that constraints the optimization parameters. One

recent and exciting approach by Jeong [115] exploits known features such as road

markings. These features are captured by both the Lidar and the stereo sensors and

use a multiple cost function for robust optimization even with rough initial values.

Work by Jeong [115] uses the road as a reference for computing transformation, and

it is required to be done in a controlled environment. It is also time-consuming and

requires significant effort to obtain the transformation parameters.

We propose an easy and efficient process to perform the Lidar-stereo camera cali-

bration using a checkerboard calibration target. Our work is similar to the work

proposed by [116], where we compute the plane coefficients using the data from both

the Lidar and the camera data. Later on, these coefficients are used to construct a

well-structured set of 3D points residing in that plane. Our work differs from the

above-mentioned works, where we use our own proposed Correntropy Similarity Ma-

trix(CoSM ICP) approach for aligning the points in the plane and computing the

relative transformation between the sensors. In essence, the significant contributions

of our work are outlined as follows:

• We develop our algorithm based on finding planes acquired from both the Lidar

and the camera sensor’s data.
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• We compute the plane coefficients separately from both the sensor’s data.

• From the plane coefficients acquired from both the sensors, we determine the

plane’s location and populate the plane with structured data points.

• Our proposed algorithm only needs to populate a limited number of points for

the plane to plane matching.

• We use our CoSM ICP approach to find the relative transformation between

the points present in the plane.

7.3 Proposed Methodology

In this section, we describe the steps involved in our Lidar-stereo calibration. We

perform different steps corresponding to the data acquired from the 3D Lidar sensor

and the stereo camera data. The overall procedure involved in our work is shown in

Fig. 7.2. In this work, use only a single frame of the Lidar’s 3D data and the stereo

camera’s 3D data, which contains the 3D points of the calibration target. For the 3D

Lidar sensor, we manually select the region containing the 3D points corresponding

to the calibration target (checkerboard). We do the same for the stereo camera data,

and we assume that the camera is calibrated and we know the intrinsic parameters

of both the cameras in the stereo sensor setups. It was convenient for us to use

the same calibration target for camera calibration as well. Again, the key point is

to determine the plane coefficients acquired from both the Lidar’s 3D data and the
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Figure 7.2: Flowchart of our approach.

stereo camera’s computed 3D data. Fig. 7.2, as read from left to right, initially shows

the simulated scene setup that includes a Lidar and a stereo camera separated by a

certain transformation. The left camera centre defines the stereo camera’s frame of

reference. We directly show the 3D computed points from the stereo sensor setup

for simplicity (3D points are computed using the well-known Stereo Global Block

Matching(SGBM) of the image pairs). We manually select the region which contains

the points corresponding to the calibration target from both the Lidar 3D point

clouds and the stereo computed 3D point cloud. We compute the plane coefficients

for each of these selected regions using Random Sample Consensus (RANSAC). We

construct a well-structured set of points from the computed plane coefficients (from

the Lidar and the stereo sensor data). We use our CoSM ICP approach to compute the

transformation between these point sets. The transformation computed by the CoSM

ICP returns the relative transformation between the Lidar and the stereo sensors.
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7.3.1 Lidar data processing

Using a single calibration target is relatively easy and intuitive for an extrinsic cali-

bration between multiple sensors. As mentioned earlier, the first step of our process is

to capture the 3D points (from the Lidar sensor) and the 3D points (from the stereo

camera) that contain the calibration target. From the 3D data, we manually pick the

region containing the points corresponding to the calibration target and ignore the

rest. This selected data contains points of the calibration target, which is effectively

a plane. Other automatic approaches, like distance filtering[117], can be used for this

process, but we let the user pick the region for complete control. Now, from this

‘selected’ point set, we intend to get the corresponding plane coefficients. RANSAC

is our choice for this process, which determines the best-fit plane of 3D points using

inliers. We use the following steps for our work.

• Randomly selects 3 points from the ‘selected’ points.

• Compute the plane equation using these 3 points.

• Compute inliers using the computed plane with all other 3D points.

• Repeat the process with the highest inlier ratio.

For this setup, we set the maximum iterations for our RANSAC algorithm as 1000. 3D

points that are within 10mm from the plane are considered inliers. The inlier ratio,

which crosses 90% or more, is considered as a best-fit plane. The plane equation
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computed from the Lidar points is given as alx+ bly+ clz+ dl = 0, where al,bl,cl and

dl represent the coefficients of the plane.

7.3.2 Stereo camera data processing

This section details the process of computing the 3D plane equations of the calibration

target using the point clouds generated from the stereo camera setup. In this work,

we assume that the camera is already calibrated, and we know the intrinsic param-

eters. For our experiments, we perform the calibration steps that are implemented

in Robot Operating System (ROS). For camera calibration, we use the same checker-

board calibration target that we have used to perform the Lidar-camera calibration

as mentioned in this work. To compute the point clouds from a pair of stereo images,

we use the popular Semi-Global Block Matching (SBGM) algorithm [118] to generate

the depth map from the stereo image pairs. Based on the quality of the images (res-

olution, frame rate), we can tune multiple parameters of the SGBM algorithm (block

size, speckleRange, speckleWIndowSize, etc.) to get the desired quality of the depth

map for further point cloud generation. In our framework we use the well known

StereoSGBM() function provided by OpenCV [119]. The reader is suggested to

refer to [118] and [119] to explore further options in point cloud generation from

stereo images. We manually select the 3D points computed from the stereo camera

and compute the plane equation corresponding to the 3D points using RANSAC. We

follow the same steps as mentioned in the Lidar data plane computation:
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• Randomly selects 3 points from the 3D point clouds computed from the stereo

data.

• Compute the plane equation using these 3 points.

• Compute inliers using the computed plane with all other 3D points.

• Repeat the process with the highest inlier ratio.

The plane equation computed from the camera points is given as asx+bsy+csz+ds =

0, where as, bs, cs and ds represent the coefficients of the plane.

7.3.3 Transformation estimation

We compute the transformation between these sensors from the plane equations cal-

culated from both the Lidar and the camera data. For this step, we use the computed

plane equations to populate the planes with a fixed number of points separated by

a known distance (e.g., 100 points). The point sets generated from this process can

be ‘aligned’. The resultant transformation gives us the transformation between the

Lidar and the camera sensor. The primary reason for this process is that the number

of points in the Lidar point set is different from the number of points in the com-

puted 3D points from the stereo camera. Our CoSM ICP needs to have an equal

number of points for alignment. We describe our CoSM ICP approach by first de-

scribing the Correntropy criterion and then using it in our approach to compute the

transformation between the Lidar and the stereo data points.
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7.4 Results

We perform our initial evaluation in a simulated environment provided by Open

Robotics[120]. To demonstrate our results, we start with a basic simulated dataset

containing simulated Lidar data and a simulated stereo camera setup (mounted on a

simulated Prius model car) established in a simulated environment in Gazebo, which

is shown in Fig.7.3 (a) and (b) [121]. The primary reason for selecting this simulation

setup is that we can compare our results since we know the ground truth, and this

setup contains other complexities in the environment, like buildings and cars (beyond

the calibration card). Our experiments test the results with a linear transformation

ranging from 0.05m to 2.5m (with x, y, z axes). We set up a simple test case of a

Lidar-stereo setup where the stereo camera faces the calibration target and is placed

near the Lidar sensor under various configurations. (e.g., 5cm along the y axis of the

Lidar sensor or t = [0, 0.05, 0.0]). We intend to calculate the transformation between

the stereo’s left camera (Cc) with respect to the Lidar’s frame Lc. The stereo camera

has a baseline of 7cm between the left and the right cameras. Both the cameras

have the resolution of 1280× 720, and since we use a simulated setup, we ignore the

radial and tangential distortion (both were set to 0). In this scenario, we evaluate our

approach on multiple configurations where the ground truth is already known, as it

can be seen in Fig. 7.3. So, in this case, our problem statement is defined as finding

the transformation between the Lidar(Lc) and the Stereo camera(Sc) setup using our

proposed methodology. This setup provides a base test case to verify our algorithm.
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(a) (b) (c) (d)

Figure 7.3: Simulation setup for evaluating Lidar-stereo calibration under multi-
ple configurations: (a) denotes a gazebo simulation of Prius car model with Lidar
and stereo camera; (b) denotes the TF-frames of the Lidar and the stereo camera.
The link ouster link is the reference frame for Lidar; (c) and (d) denote TF-frames
of multiple configurations of Lidar-stereo setup. t = [tx, ty, tz] denotes the trans-
lation component along x, y, z. It essentially denotes how the stereo camera is
transformed with respect to the Lidar sensor along x, y, z. For (c) the transla-
tion between the Lidar and the stereo sensor is t = [0, 0.5, 0.0], and for (d) it is

t = [−0.5, 0.5, 0].

Thus it can be extended to complex real-time test cases.

7.4.1 Evaluation on Simulated data

The various configurations under which we performed our experiments are shown in

Table 7.1. It shows the original ground truth transformations between the Lidar and

the stereo sensor. We place the calibration target at an average distance of 2m to 3m

from the calibration target throughout our experiments (this distance is with respect

to the Lidar coordinate frame (Lc)).

After performing the steps mentioned in our approach, we collect the computed trans-

formations returned by our approach. Table 7.2 shows the individual estimated trans-

formation computed using our method. The reason for separating the components is

to evaluate each component separately.
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Table 7.1: Configuration setups used in our experiments (or Ground Truth).

Setting tx(m) ty(m) tz(m) roll (rad) pitch(rad) yaw(rad)

1 0 0.4 0.0 0.0 0.0 0.0
2 0 0.1 0.0 0.0 0.0 0.0
3 0 0.05 0.0 0.0 0.0 0.0
4 0 0.6 0.0 0.0 0.0 0.0
5 0 1.2 0.0 0.0 0.0 0.0
6 0 2.2 0.0 0.0 0.0 0.0
7 0.5 0.5 0.0 0.0 0.0 0.0
8 −0.5 1.5 0.3 0.0 0.0 0.0
9 −0.5 0.5 0 0.0 0.0 −0.0
10 0.5 0.5 0 0 0 −0.523599
11 0.5 0.5 0.3 0 0.349066 −0.523599
12 0.3 0.6 0.4 0 0.349066 −0.523599
13 0.2 0.3 0.2 0.261799 0 −0.523599
14 0.7 0.2 0.9 0 0.349066 0

Table 7.2: Individually computed transformation based on our approach.

Setting tx(m) ty(m) tz(m) roll (rad) pitch(rad) yaw(rad)

1 0.019 0.342 −0.074 −0.108 −0.032 −0.0090
2 −0.044 −0.091 0.031 −0.0280 0.01700 0.0089
3 0.004 0.046 0.009 −0.0129 0.0069 0.00999
4 0.004 −0.655 0.082 0.046 0.0430 0.0100
5 −0.015 −1.147 0.036 −0.016 0.0039 0.0109
6 0.025 −2.165 0.013 0.0169 0.014 0.0099
7 −0.504 −0.468 0.004 −0.0360 0.0040 0.0059
8 0.541 −0.494 0.091 0.033 0.039 0.0090
9 −0.476 0.549 0.401 −0.093 −0.0049 −0.001993
10 0.488 0.545 0.045 −0.532 0.009 −0.00099
11 0.445 0.567 0.267 −0.5341 0.2085 −0.166
12 0.345 0.571 0.431 −0.2740 0.1023 −0.0663
13 0.163 0.291 0.201 −0.174 0.0209 −0.166
14 0.661 0.242 1.03 −0.331 0.0989 −0.123

For further evaluation, we show the average error in multiple configurations as done

in the experiments. Fig.7.4 shows the average error of the individual components of

the rotation and translation components under various configurations. From the data

as given in Table 7.2, we can see that under simple translation along x, y, z axes, our

algorithm performs well (with individual RMSE’s ∼ 0.01 along with all the individual

components). Even under small rotations, our approach returns relatively close values

(RMSE ∼ 0.05) compared to the ground truth. However, when the transformation

between Cc and Lc is significant (>60 degrees or 1.0472 radians), the overall RMSE
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increases, and the computed transformation is quite far off from the ground truth

values (RMSE >1.3541).
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Figure 7.4: Translation and Rotation errors of individual components(x, y, z and
roll,pitch and yaw) under various configurations.

7.4.2 Effect of σ

For all the experiments performed in this work, σ was set to 100. With lower values

of σ like 0.01, the computed transformation was equally well for slight rotation and

translation. However for significant rotation and translation between the Source and

the Target it took a large number of iterations to converge. For even smaller values of

σ like 0.001, the computed transformation was relatively well for large rotation and

translation (RMSE ∼ 0.01). However, it took ∼ 500 iterations to converge.
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7.5 Discussion

One of the critical observations here was to estimate 3D points computed from the

stereo camera setup accurately. Throughout the experiments, we collected datasets

for all the individual configurations as mentioned in Table 7.1. We hand-picked each

dataset that had a good collection of 3D point sets with less visible outliers. However,

we hope that with further advancements in 3D depth estimation, we can get more

accurate and robust results.

Since it was a simulated setup, it could have been simple to have a Lidar sensor,

a stereo camera, and a calibration target. However, one of our primary goals was

to have a calibration technique in various environments. We plan to evaluate our

approach in real-time; however, evaluating a Lidar and a stereo camera setup under

various configurations is time-consuming. So, in our simulated environment, we add

environmental complexities and evaluate our approach. We let the user select the

region in the 3D point sets corresponding to the calibration plane. Since it is essential

for the algorithm to have accurate plane coefficients, manual selection can provide

complete control.

7.6 Conclusions

This work proposes a novel algorithm for an efficient Lidar-stereo calibration using

a single frame of Lidar data and the stereo camera data (3D points estimated from

the stereo camera). In this work, we propose estimating the plane coefficients from



114

both the Lidar and the stereo camera data. From the computed plane coefficients

(from both the sensor’s data), we construct a well-spaced 3D point structure. Later,

we propose to use our methodology called CoSM ICP to compute the transformation

between the ‘structured’ points, thereby accomplishing the purpose of Lidar-stereo

calibration. CoSM ICP maintains one-to-one relationship between each point in the

Source dataset and the Target dataset. CoSM ICP is also robust to large rotations

and translations, which makes it the right choice for this approach to be implemented

in this work. One of the primary challenges we still face is the efficient detection

of plane coefficients from the 3D points of the stereo data. We still face failure in

estimation if we have inadequate data from the stereo point cloud.
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Chapter 8

Single Frame Lidar-Camera

Calibration Using Registration of

3D planes

8.1 Motivation

This work focuses on finding the extrinsic parameters (rotation and translation) be-

tween the Lidar and an RGB camera sensor. We use a planar checkerboard and place

it inside the Field-of-View (FOV) of both the sensors, where we extract the 3D plane

information of the checkerboard acquired from the sensor’s data. The plane coeffi-

cients extracted from the sensor’s data are used to construct a well-structured set of
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3D points. These 3D points are then ‘aligned,’ which gives the relative transforma-

tion between the two sensors. We use our proposed method Correntropy Similarity

Matrix Iterative Closest Point (CoSM-ICP) Algorithm, to estimate the relative trans-

formation. This work uses a single frame of the point cloud data acquired from the

Lidar sensor and a single frame from a calibrated camera data to perform this oper-

ation. From the camera image, we use projection of the calibration target’s corner

points to compute the 3D points, and along the process, we calculate the 3D plane

equation using the corner points. We evaluate our approach on a simulated dataset

with complex environment settings since it has the freedom to assess under multiple

configurations. Through results, we verify our method under various configurations.

Lidar and camera calibration is a well-studied problem, and most of the previous

approaches require calibration cards or some well-defined calibration objects [96–

103]. Fig. 8.1 shows a simple Lidar camera configuration setup. A calibration card

is placed in the Field-of-View (FOV) of both sensors. Extracting features from a

checkerboard is convenient, making a planar checkerboard one of the most widely used

calibration objects. Most of these approaches have emphasized placing the calibration

objects in the FOV of both sensors. Finding the correspondences between the Lidar

and the camera data points is crucial for efficient Lidar and camera calibration[122].

The correspondences are calculated either manually or automatically using feature

extraction algorithms. The accurate estimation of the correspondences is essential for

efficient calibration.
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Figure 8.1: Sample Lidar and camera configuration setup (It is a stereo camera
setup, however we use only the images from the left camera for our work). Cc is
the camera coordinate frame (here we consider the left camera center of the stereo
camera’s coordinate frame), and Lc is the Lidar coordinate frame. The objective

here is to compute the transformation T between Lc and Cc.

8.2 Background

The earlier method proposed by Zhang and Pless [97] aimed to calibrate a 2D laser

and a monocular camera, and they used a planar checkerboard pattern to achieve

that. Their approach involved placing the checkerboard in front of the 2D laser and

the camera with different poses. The relative transformation is calculated by mini-

mizing the re-projection error of features of the checkerboard as viewed by the 2D

Lidar and the camera. Their algorithm required at least five poses, whereas, in the-

ory, the extrinsic calibration could be achieved in 3 poses. Unnikrishnan and Hebert

[104] extended this method to a 3D laser, in which they estimated the plane param-

eters from the 3D Lidar and the camera data. In their approach, the initial rotation

and translation were calculated using plane-plane correspondence and later refined

by minimizing the point to plane distance. Another work proposed by Geiger et al.
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[105] placed several checkerboards on the scene where their proposed algorithm de-

tects the checkerboards and matches them with the planes from the laser data. Since

there were several checkerboards in the scene, one shot of the scene is enough. Most

of these methods involve the use of plane information of the checkerboard and do not

consider the boundary of the checkerboard. Work by [106] requires fewer poses of the

calibration target and has shown accurate results. In their work, the checkerboard

is placed closer to the sensor, allowing the laser point to approximate the boundary

more accurately, and hence it showed high accuracy. The authors introduced a simi-

larity transformation between the Lidar and the camera, which showed better results

than rigid transformation.

Apart from the planar checkerboard, researchers also used several other calibration

objects for the calibration method [123–126]. Work proposed in [100] used a polygonal

board, and the calibration parameters were estimated using the vertices of the board.

However, the camera frame involved manual labelling of the correspondences. These

correspondences were used to estimate the calibration parameters using a genetic

algorithm-based approach. Other approaches [101–103] have used planar boards with

rectangular holes, planar boards with circular holes, and other 3D objects. One of the

drawbacks of using all the above methods is that it is laborious and time-consuming.

In addition to the approaches mentioned above, several target-less or no object-based

calibration approaches have been proposed as well [107, 108, 127]. Initial work by
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Scaramuzza [109] has introduced a technique of using natural scenes to calibrate a

3D laser and an omnidirectional camera. The features were extracted automatically

from the sensor data based on their algorithm, and they manually selected the corre-

spondence between the features. Another work by Moghadam [110] exploits the linear

features present in the indoor environment. It uses the 3D line features from the point

cloud and the corresponding 2D line segment from the camera to estimate the rigid

body transformation between the two. Boughorbal [111] proposed to maximize the

correlation between the sensor data using a chi-square test. This technique exploits

the statistical dependence of the data acquired from the two sensors. Levinson and

Thrun [112] uses a series of corresponding laser scans and camera images to estimate

the calibration parameters. Work by [113] uses similar mutual information metrics

between the two sensors’ data by measuring the statistical dependence between the

data [114].

Pandey, [113], proposed a theoretical derivation that estimates the kernel density of

the probability distribution of the sensor data. Scott [114] proposed an approach

for automatic calibration using diligently selected natural scenes. This algorithm

searches over the chosen locations to extract models and yields better results. One

advantage of this approach is that it requires no knowledge of the physical world and

continuously finds scenes that constraints the optimization parameters. One recent

and exciting approach by Jeong [115] exploits known features such as road markings.

These features are captured by both the Lidar and the stereo sensors and use a

multiple cost function for robust optimization even with rough initial values. Work
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by Jeong [115] uses the road as a reference for computing transformation. However,

it is required to be done in a controlled environment. It is also time-consuming and

requires significant effort to obtain the transformation parameters.

In this work, we propose a simple process to perform the Lidar and camera calibration

using a checkerboard calibration target. Our work is similar to the work presented by

[116], where we compute the plane coefficients using the data from both the Lidar and

the camera data. Later on, these coefficients are used to construct a well-structured

set of 3D points residing in that plane. We use our own proposed Correntropy Sim-

ilarity Matrix (CoSM ICP) approach to align the constructed set of 3D points and

compute the relative transformation between the sensors. In essence, the significant

contributions of our work are outlined as follows:

• We develop our algorithm to find planes of the checkerboard pattern acquired

from both the Lidar and the camera sensor’s data.

• We propose to compute the plane coefficients separately from both the sensor’s

data.

• From the plane coefficients acquired from both the sensors, we determine the

plane’s location and populate the plane with structured data points.

• Our proposed algorithm only needs to populate a limited number of points for

the plane to plane matching.
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• We leverage our CoSM ICP approach to perform the alignment and find the

relative transformation.

8.3 Proposed Methodology

In this section, we describe the steps involved in our Lidar-camera calibration. We

perform different steps corresponding to the data acquired from the 3D Lidar sensor

and the camera data. The overall procedure involved in our work is similar to the

work as mentioned in the previous chapter in Fig. 7.2. However, we only use the data

from the left camera to generate the 3D points. We acquire only a single frame of the

Lidar’s 3D data and the camera’s 2D image data, which contains the calibration target

in its view. For the 3D Lidar sensor, we manually select the region containing the

3D points corresponding to the calibration target (checkerboard). For the camera’s

2D data, we assume that the camera is calibrated, which means that the camera’s

intrinsic parameters are already known. We project the 2D corner points to 3D

points in the world frame. We discuss this process more in subsection 8.3.2. It

was convenient for us to use the same calibration target for performing the camera

calibration as well. Again, the key point is to determine the plane coefficients acquired

from Lidar’s 3D data and the camera’s projected 3D points. We compute the plane

coefficients for the manually selected region of the Lidar data using Random Sample

Consensus (RANSAC). Using the camera’s data, we compute the corner points of the

checkerboard. We project the corner points in 3D space in the world frame using the
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intrinsic and extrinsic parameters, and we compute the plane coefficients of these 3D

projected corner points. We construct a well-structured set of points using the plane

coefficients computed independently from the Lidar and the camera data. We use

our CoSM ICP approach to compute the transformation between these constructed

point sets. The transformation computed by the CoSM ICP returns the relative

transformation between the Lidar and the camera sensors.

8.3.1 Lidar data processing

Using a single calibration target is relatively easy and intuitive for an extrinsic cali-

bration between multiple sensors. As mentioned earlier, the first step of our process

is to capture the 3D points of the Lidar data. From the 3D data, we manually pick

the region containing the points corresponding to the calibration target and ignore

the rest. This selected data contains points of the calibration target, which is effec-

tively a plane. Other automatic approaches, like distance filtering, can be used for

this process, but we let the user pick the region for complete control. Now, from this

’selected’ point set, we intend to get the corresponding plane coefficients. RANSAC

is our choice for this process, which determines the best-fit plane of 3D points using

inliers. We use the following steps for our work.

• Randomly selects 3 points from the ‘selected’ 3D Lidar points.

• Compute the plane equation using these 3 points.

• Compute inliers using the computed plane with all other 3D points.
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• Repeat the process with the highest inlier ratio.

For this setup, we set the maximum iterations for our RANSAC algorithm as 1000. 3D

points that are within 10mm from the plane are considered inliers. The inlier ratio,

which crosses 90% or more, is considered as a best-fit plane. The plane equation

computed from the Lidar points is given as alx+ bly+ clz+ dl = 0, where al,bl,cl and

dl represent the coefficients of the plane.

8.3.2 Camera data processing

This section details the process of computing the 3D plane equations of the calibration

target using the 2D image data acquired from the camera. In this work, we assume

that the camera is already calibrated. We know the intrinsic parameters αx, αy, x0, y0,

where αx,αy represents the camera’s focal length in terms of pixel dimensions and

x0, y0 represent the principal point in the pixel dimensions. The parameters are

described in the matrix form and are denoted as K. We ignore the skew, radial, and

tangential distortion since we operate in a simulated environment. The chessboard

corners are computed using OpenCV findChessboardCorners function, which is

based on the algorithm by Duda and Frese [128]. After the corner point detection,

we use the well-known PnP algorithm to compute the pose of the calibration object

from 3D-2D point correspondences. The result of PnP gives us the rotation and the

translation components that transform a 3D point expressed in the object coordinate

frame to the camera coordinate frame. For this method, we use an iterative method

which is based on the Levenberg-Marquardt optimization method that minimizes the
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reprojection error. From the set of 3D computed corner points of the checkerboard

pattern, we select three random points and transform them from the object frame to

the camera frame using the rotation and the translation components computed from

the PnP method. Let the 3 randomly selected be p1 = {x1, y1, z1},p2 = {x2, y2, z2}

and p3 = {x3, y3, z3}. We compute the normal vector ~n as,

~n = (p2 − p1)× (p3 − p1) (8.1)

where, × is the cross product in Equ.(8.1). The coefficients of the plane is then

computed as,

ac = n.x,

bc = n.y,

cc = n.z,

dc = −(a ∗ p1.x+ b ∗ p1.y + c ∗ p1.z).

(8.2)

In Equ.(8.2), ∗ denotes multiplication and . represents the individual components in

a vector. The plane equation computed from the camera points is given as acx+bcy+

ccz + dc = 0, where ac, bc, cc and dc represent the coefficients of the plane.

8.3.3 Transformation estimation

We compute the transformation between these sensors from the plane equations cal-

culated from both the Lidar and the camera data. For this step, we use the calculated
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plane equations to populate the planes with a fixed number of points separated by a

known distance (e.g., 100 points). The point sets generated from this process can be

‘aligned.’ Fig.8.2 shows the structured set of points. The computed transformation

gives us the transformation between the Lidar and the camera sensor. The primary

reason for this process is that the number of points in the Lidar point set is different

from the number of points in the computed 3D points from the camera. Our CoSM

ICP needs to have an equal number of points for alignment. We describe our CoSM

ICP approach to compute the transformation between the Lidar and the camera data

points.

Figure 8.2: Green is the Source point cloud Ps (as computed from Lidar points).
Ps contains N points pj (j = 1, .., N), each of which is a 3D representation xj , yj , zj .
White is the Target point cloud Pt (as computed from camera data). Pt contains

N points qk (k = 1, .., N), each of which is a 3D representation xk, yk, zk.

8.4 Results

We performed our initial evaluation in a simulated environment provided by Open

Robotics[120]. To demonstrate our results, we start with a basic simulated dataset
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containing simulated Lidar data and a simulated camera setup (mounted on a sim-

ulated Prius model car) established in a simulated environment in Gazebo, which is

similar to our work in our previous chapter (Fig.7.3 (a) and (b) [121]). The primary

reason for selecting this simulation setup is to compare our results since we know

the ground truth. This setup contains other environmental complexities like build-

ings and cars (apart from the calibration card) and simulated lighting conditions.

Our experiments test the results with a linear transformation ranging from 0.05m

to 2.5m (along x, y, z axes). We set up a simple test case of Lidar-camera setup

where the stereo camera faces the calibration target and is placed near the Lidar

sensor under various configurations. (e.g., 5cm along the y axis of the Lidar sensor

or t = [0, 0.05, 0.0]). Here, we intend to calculate the transformation between the

camera (Cc) with respect to the Lidar’s frame Lc. The camera has a resolution of

1280 × 720, and since we use a simulated setup, we ignore the radial and tangential

distortion (both were set to 0). In this scenario, we can evaluate our approach on

multiple configurations where the ground truth is already known. So, in this case,

our problem statement is defined as finding the transformation between the Lidar(Lc)

and the camera(Cc) setup using our proposed methodology. This setup provides a

base test case to verify our algorithm. Thus it can extend to complex real-time test

cases.
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8.4.1 Evaluation on Simulated data

The various configurations under which we performed our experiments are shown in

Table 8.1. It shows the original ground truth transformations between the Lidar and

the camera sensor. We place the calibration target at an average distance of 2m to 3m

from the calibration target throughout our experiments (this distance is with respect

to the Lidar coordinate frame (Lc)).

Table 8.1: Configuration setups used in our experiments (or Ground Truth).

Setting tx(m) ty(m) tz(m) roll (rad) pitch(rad) yaw(rad)

1 0 0.4 0.0 0.0 0.0 0.0
2 0 0.1 0.0 0.0 0.0 0.0
3 0 0.05 0.0 0.0 0.0 0.0
4 0 0.6 0.0 0.0 0.0 0.0
5 0 1.2 0.0 0.0 0.0 0.0
6 0 2.2 0.0 0.0 0.0 0.0
7 0.5 0.5 0.0 0.0 0.0 0.0
8 −0.5 1.5 0.3 0.0 0.0 0.0
9 −0.5 0.5 0 0.0 0.0 −0.0
10 0.5 0.5 0 0 0 −0.523599
11 0.5 0.5 0.3 0 0.349066 −0.523599
12 0.3 0.6 0.4 0 0.349066 −0.523599
13 0.2 0.3 0.2 0.261799 0 −0.523599
14 0.7 0.2 0.9 0 0.349066 0

For further evaluation, we show the average error in multiple configurations as done

in the experiments. Fig.8.3 shows the average error of the individual components

of the rotation and translation components under various configurations. From the

experiments performed and from Fig. 8.3, we can see that under simple translation

along x, y, z axes, our algorithm performs well (with individual RMSE’s ∼ 0.01 along

with all the individual components). Even under small rotations, our approach re-

turns relatively close values (RMSE ∼ 0.02) compared to the ground truth. However,

when the transformation between Cc and Lc is significant (> 60 degrees or 1.0472
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radians), the overall RMSE increases, and the computed transformation is quite far

off from the ground truth values (RMSE > 6.891).
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Figure 8.3: Translation and Rotation errors of individual components (x, y, z and
roll,pitch and yaw) under various configurations compared to ground truth.

8.5 Summary

One of the critical observations here was to estimate 3D points computed from the

camera setup accurately. Throughout the experiments, we collected datasets for all

the individual configurations as mentioned in Table 8.1. We hand-picked each dataset

that had a good collection of 3D point sets with less visible outliers. However, we hope

that with further advancements in 3D depth estimation, we can get more accurate

and robust results.

Since it was a simulated setup, it could have been simple to have a Lidar sensor, a

camera setup, and a calibration target. However, one of our primary goals was to

have a calibration technique in various environments. We plan to evaluate our ap-

proach in real-time; however, valuating a Lidar and a camera set up under different

configurations is time-consuming. So, in our simulated environment, we add environ-

mental complexities and evaluate our approach. We let the user select the region in
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the 3D point sets corresponding to the calibration plane. Since it is essential for the

algorithm to have accurate plane coefficients, manual selection can provide complete

control.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

The goal of this work is to explore the concepts of Correntropy in various applications

of SLAM applied in modern robotics. Initially, we briefly described various SLAM

techniques and described the challenges faced by the modern SLAM framework when

the sensor data gets affected by non-Gaussian noise. We have attempted to clas-

sify the SLAM techniques in both Lidar-based odometry and Stereo-based odometry.

Handling non-Gaussian outliers have always been a challenge with reference to mod-

ern applications in robotics. We provide the conceptual background of Correntropy

and then explore its properties of Correntropy. Later on, we describe the simple

usage of Correntropy in KF, and through the results, we verify the effectiveness of
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Correntropy in handling non-Gaussian noise. We extend that to EKF with applica-

tion in fusing Lidar and stereo sensor odometry and verifying the robustness of the

system when one of the odometry returned is affected by a third-party attacker. The

highlight of the work is the application of using Correntropy in addressing the prob-

lem of Registration. We verify through results how well our application of using the

Correntropy matrix is useful in handling non-Gaussian noise as well as handling large

rotations and translation between the Source and Target datasets. This resulted in

the production of the CoSM ICP approach, which we later used in Lidar-Stereo and

Lidar Camera Calibration. In brief, the highlight of our work is described below.

• Review of SLAM techniques

– We reviewed various SLAM techniques that were tried and tested on au-

tonomous driving cars based on the KITTI dataset [57]. We risked an

attempt to classify various SLAM techniques, which are based on sensors

used for localization and the ability of the SLAM algorithms to detect a

loop closure.

– we have also attempted to describe the security vulnerabilities in the au-

tonomous driving systems as well as describe various types of attacks that

have been introduced and demonstrated by various researchers

• Correntropy Concepts
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– We describe the concepts of Correntropy and also give a brief description

of the properties of Correntropy.

– We explore the probabilistic concepts and geometric meaning of Corren-

tropy with reference to connection with M-estimation, ITL and kernel

methods.

– As a measure of similarity, we use Correntropy that directs the probability

density of how close are two random variables as well as show the advantage

of using Correntropy in non-gaussian signal processing.

• Correntropy with KF and EKF

– we extensively reviewed and discussed the KF to better understand how it

works and how it can be modified to take into account higher-order signal

statistics.

– This addition of Correntropy lets us use higher-order statistics to improve

state estimation. In a preliminary phase, we run a total of five simula-

tions in which, each time, we introduce a random shot noise to the lidar

measurements to prove that the standard formulation of the KF does not

behave as well as in the presence of Gaussian noise

– we have also attempted to provide a self-secure solution to an autonomous

system using the MCC-EKF approach. From the results, we have shown

how an autonomous system can be attacked by an attacker/hacker and
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change the system’s naturally estimated trajectory and how even a sim-

ple injection of false positions can affect the overall trajectory of the au-

tonomous system. In addition, we have also proposed that we can also get

a better estimate of the odometry by fusing the odometry data from two

different SLAM algorithms to obtain a better odometry estimate of the

autonomous system.

• Correntropy with Registration

– We have addressed is to find an accurate estimate of the transformation

between the Source and the Target point clouds under various rotations

and translations.

– We have verified our approach in various datasets, where the Source is

transformed from the Target using various randomly generated transfor-

mation matrices.

– We can see through the obtained results that our method has performed

better than the other state-of-the-art approaches. In addition, we also eval-

uate our approach when the Source dataset is affected by noise generated

with random intensity and affecting random data points.

– We have verified that our proposed approach has outperformed most of

the other state-of-the-art approaches where the ‘infected’ Source dataset

is transformed randomly from the Target dataset. We firmly insist that
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our readers evaluate our approach located in our Github repository under

the name of CoSM-ICP.

• Lidar-Stereo and Lidar-Camera calibration

– We have proposed a novel algorithm for an efficient lidar-stereo calibration

using a single frame of lidar data and the stereo camera data (3D points

estimated from the stereo camera).

– We estimate the plane coefficients from both the Lidar and the stereo

camera data, and from the computed plane coefficients (from both the

sensor’s data), we construct a well-spaced 3D point structure.

– We also propose to use our methodology CoSM ICP as described earlier to

compute the transformation between the ‘structured’ points, thereby ac-

complishing the purpose of lidar-stereo calibration. CoSM ICP maintains

one-to-one relationship between each point in the Source dataset and the

Target dataset. CoSM ICP is also robust to large rotations and transla-

tions, which makes it the right choice for this approach to be implemented

in this work.

9.2 Future Work

Regarding the security aspect of SLAM, our future work will focus on proposing a

solution where we can secure the system if the attacker chooses to inject false data on
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the sensor’s raw measurements. We also plan to extend this work to distributed MCC-

EKF security for vehicle to vehicle network in which multi-robot system research

[2, 61–75] can be utilized.

Regarding the calibration techniques we proposed, we intend to improve our approach

in Single frame Lidar-Camera calibration since the current results require further

tuning in terms of accuracy. In addition to evaluating our results in the simulated

datasets, we also focus on extending our work to real-time datasets. We further plan

to validate our approach for calibration under various lighting conditions in real-time.

Regarding Lidar Based SLAM, we also intend to extend our future research on im-

proving it using the CoSM ICP approach and then the graph-based SLAM approach

to optimize the map. Our work is focused on expanding to the well-known KITTI

dataset and other challenging datasets (both simulated and real-time). The graph-

based approach in SLAM provides better accuracy than the traditional Filtering based

strategies in SLAM at the cost of high computation. In addition to it, we also intend

to explore the idea of correntropy in the graph-based approaches and validate the

performance of including and validating the deep learning approach to SLAM since

it provides promising results for data analysis.
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putationally efficient stereo visual simultaneous localization and mapping for



Bibliography 144

autonomous unmanned aerial vehicles. Journal of Field Robotics, 35(4):578–

595, 2018. doi: 10.1002/rob.21762. URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/rob.21762.

[37] J. Engel, J. Stückler, and D. Cremers. Large-scale direct SLAM with stereo

cameras. In Int. Conf. on Intel. Robot Systems (IROS), 2015.
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