97 research outputs found

    Overview of frequency diverse array in radar ECCM applications

    Get PDF

    Maritime Moving Target Detection, Tracking and Geocoding Using Range-Compressed Airborne Radar Data

    Get PDF
    Eine regelmäßige und großflächige überwachung des Schiffsverkehrs gewinnt zunehmend an Bedeutung, vor allem auch um maritime Gefahrenlagen und illegale Aktivitäten rechtzeitig zu erkennen. Heutzutage werden dafür überwiegend das automatische Identifikationssystem (AIS) und stationäre Radarstationen an den Küsten eingesetzt. Luft- und weltraumgestützte Radarsensoren, die unabhängig vom Wetter und Tageslicht Daten liefern, können die vorgenannten Systeme sehr gut ergänzen. So können sie beispielsweise Schiffe detektieren, die nicht mit AIS-Transpondern ausgestattet sind oder die sich außerhalb der Reichweite der stationären AIS- und Radarstationen befinden. Luftgestützte Radarsensoren ermöglichen eine quasi-kontinuierliche Beobachtung von räumlich begrenzten Gebieten. Im Gegensatz dazu bieten weltraumgestützte Radare eine große räumliche Abdeckung, haben aber den Nachteil einer geringeren temporalen Abdeckung. In dieser Dissertation wird ein umfassendes Konzept für die Verarbeitung von Radardaten für die Schiffsverkehr-überwachung mit luftgestützten Radarsensoren vorgestellt. Die Hauptkomponenten dieses Konzepts sind die Detektion, das Tracking, die Geokodierung, die Bildgebung und die Fusion mit AIS-Daten. Im Rahmen der Dissertation wurden neuartige Algorithmen für die ersten drei Komponenten entwickelt. Die Algorithmen sind so aufgebaut, dass sie sich prinzipiell für zukünftige Echtzeitanwendungen eignen, die eine Verarbeitung an Bord der Radarplattform erfordern. Darüber hinaus eignen sich die Algorithmen auch für beliebige, nicht-lineare Flugpfade der Radarplattform. Sie sind auch robust gegenüber Lagewinkeländerungen, die während der Datenerfassung aufgrund von Luftturbulenzen jederzeit auftreten können. Die für die Untersuchungen verwendeten Daten sind ausschließlich entfernungskomprimierte Radardaten. Da das Signal-Rausch-Verhältnis von Flugzeugradar-Daten im Allgemeinen sehr hoch ist, benötigen die neuentwickelten Algorithmen keine vollständig fokussierten Radarbilder. Dies reduziert die Gesamtverarbeitungszeit erheblich und ebnet den Weg für zukünftige Echtzeitanwendungen. Der entwickelte neuartige Schiffsdetektor arbeitet direkt im Entfernungs-Doppler-Bereich mit sehr kurzen kohärenten Verarbeitungsintervallen (CPIs) der entfernungskomprimierten Radardaten. Aufgrund der sehr kurzen CPIs werden die detektierten Ziele im Dopplerbereich fokussiert abgebildet. Wenn sich die Schiffe zusätzlich mit einer bestimmten Radialgeschwindigkeit bewegen, werden ihre Signale aus dem Clutter-Bereich hinausgeschoben. Dies erhöht das Verhältnis von Signal- zu Clutter-Energie und verbessert somit die Detektierbarkeit. Die Genauigkeit der Detektion hängt stark von der Qualität der von der Meeresoberfläche rückgestreuten Radardaten ab, die für die Schätzung der Clutter-Statistik verwendet werden. Diese wird benötigt, um einen Detektions-Schwellenwert für eine konstante Fehlalarmrate (CFAR) abzuleiten und die Anzahl der Fehlalarme niedrig zu halten. Daher umfasst der vorgeschlagene Detektor auch eine neuartige Methode zur automatischen Extraktion von Trainingsdaten für die Statistikschätzung sowie geeignete Ozean-Clutter-Modelle. Da es sich bei Schiffen um ausgedehnte Ziele handelt, die in hochauflösenden Radardaten mehr als eine Auflösungszelle belegen, werden nach der Detektion mehrere von einem Ziel stammende Pixel zu einem physischen Objekten zusammengefasst, das dann in aufeinanderfolgenden CPIs mit Hilfe eines Bewegungsmodells und eines neuen Mehrzielverfolgungs-Algorithmus (Multi-Target Tracking) getrackt wird. Während des Trackings werden falsche Zielspuren und Geisterzielspuren automatisch erkannt und durch ein leistungsfähiges datenbankbasiertes Track-Management-System terminiert. Die Zielspuren im Entfernungs-Doppler-Bereich werden geokodiert bzw. auf den Boden projiziert, nachdem die Einfallswinkel (DOA) aller Track-Punkte geschätzt wurden. Es werden verschiedene Methoden zur Schätzung der DOA-Winkel für ausgedehnte Ziele vorgeschlagen und anhand von echten Radardaten, die Signale von echten Schiffen beinhalten, bewertet

    Experimental demonstration of ship target detection in GNSS-based passive radar combining target motion compensation and track-before-detect strategies

    Get PDF
    This work discusses methods and experimental results on passive radar detection of moving ships using navigation satellites as transmitters of opportunity. The reported study highlights as the adoption of proper strategies combining target motion compensation and track-before-detect methods to achieve long time integration can be fruitfully exploited in GNSS-based passive radar for the detection of maritime targets. The proposed detection strategy reduces the sensitivity of long-time integration methods to the adopted motion models and can save the computational complexity, making it appealing for real-time implementations. Experimental results obtained in three different scenarios (port operations, navigation in open area, and river shipping) comprising maritime targets belonging to different classes show as this combined approach can be employed with success in several operative scenarios of practical interest for this technology

    Ground moving target indication with synthetic aperture radars for maritime surveillance

    Get PDF
    The explosive growth of shipping traffic all over the World, with around three quarters of the total trade goods and crude oil transported by sea, has raised newly emerging concerns (economical, ecological, social and geopolitical). Geo-information (location and speed) of ocean-going vessels is crucial in the maritime framework, playing a key role in the related environmental monitoring, fisheries management and maritime/coastal security. In this scenario space-based synthetic aperture radar (SAR) remote sensing is a potential tool for globally monitoring the oceans and seas, providing two-dimensional high-resolution imaging capabilities in all-day and all-weather conditions. The combination of ground moving target indication (GMTI) modes with multichannel spaceborne SAR systems represents a powerful apparatus for surveillance of maritime activities. The level of readiness of such a technology for road traffic monitoring is still low, and for the marine scenario is even less mature. Some of the current space-based SAR missions include an experimental GMTI mode with reduced detection capabilities, especially for small and slow moving targets. In this framework, this doctoral dissertation focuses on the study and analysis of the GMTI limitations of current state-of-the-art SAR missions when operating over maritime scenarios and the proposal of novel and optimal multichannel SAR-GMTI architectures, providing subclutter visibility of small (reduced reflectivity) slow moving vessels. This doctoral activity carries out a transversal analysis embracing system-architecture proposal and optimization, processing strategies assessment, performance evaluation, sea/ocean clutter characterization and adequate calibration methodologies suggestion. Firstly, the scarce availability of multichannel SAR-GMTI raw data and the related restrictions to access it have raised the need to implement flexible simulation tools for SAR-GMTI performance evaluation and mission. These simulation tools allow the comparative study and evaluation of the SAR-GMTI mode operated with current SAR missions, showing the reduced ability of these missions to detect small and slow boats in subclutter visibility. Improved performance is achieved with the new multichannel architecture based on non-uniformly distributed receivers (with external deployable antennas), setting the ground for future SAR-GMTI mission development. Some experimental multichannel SAR-GMTI data sets over the sea and acquired with two instruments, airborne F-SAR and spaceborne TerraSAR-X (TSX) platforms, have been processed to evaluate their detection capabilities as well as the adequate processing strategies (including channel balancing). This doctoral activity presents also a preliminary characterization of the sea clutter returns imaged by the spaceborne TSX instrument in a three-level basis, i.e., radiometric, statistical and polarimetric descriptions using experimental polarimetric data. This study has shown that the system-dependent limitations, such as thermal noise and temporal decorrelation, play a key role in the appropriate interpretation of the data and so should be properly included in the physical backscattering models of the sea. Current and most of the upcoming SAR missions are based on active phase array antennas (APAA) technology for the operation of multiple modes of acquisitions. The related calibration is a complex procedure due to the high number of different beams to be operated. Alternative internal calibration methodologies have been proposed and analyzed in the frame of this doctoral thesis. These approaches improved the radiometric calibration performance compared to the conventional ones. The presented formulation of the system errors as well as the proposed alternative strategies set the path to extrapolate the analysis for multichannel SAR systems.L'increment continu del tràfic marítim arreu del món, amb gairebé tres quartes parts del total de mercaderies i cru transportats per mar, porta associats uns impactes canviants a nivell econòmic, ambiental, social i geopolític. La geo-informació (localització i velocitat) dels vaixells té un paper fonamental en el monitoratge ambiental, la gestió de la pesca i la seguretat marítima/costanera. Els radars d'obertura sintètica (SAR, sigles en anglès) embarcats en satèl·lits són una eina molt potent per al monitoratge global dels oceans i dels mars, gràcies a la seva capacitat de generar imatges d'alta resolució amb independència de les condicions meteorològiques i de la llum solar. La detecció de blancs mòbils terrestres (GMTI, sigles en anglès) combinada amb sistemes multicanal SAR és fonamental per a la vigilància de les activitats marítimes. El nivell de maduresa d'aquesta tecnologia per monitorar tràfic rodat és baix, però per al cas marítim encara ho és més. Algunes missions SAR orbitals inclouen el mode GMTI, però amb unes capacitats de detecció reduïdes, especialment per a blancs petits i lents. En aquest marc, la tesi doctoral es centra en l'estudi i anàlisi de les limitacions GMTI dels actuals sistemes SAR operant en entorns marítims, proposant noves configuracions SAR-GMTI multicanal optimitzades per a la detecció de vaixells petits (emmascarats pels retrons radar del mar) i que es mouen lentament. La present dissertació doctoral du a terme un estudi transversal que abasta des de la proposta i optimització de sistemes/configuracions, passant per l'avaluació de les tècniques de processat, fins a l'estudi del rendiment de la missió, caracterització del mar i la valoració de noves metodologies de calibratge. En primer terme, diverses eines de simulació flexibles s'han implementat per poder avaluar les capacitats GMTI de diferents missions tenint en compte la poca disponibilitat de dades multicanal SAR-GMTI. Aquests simuladors permeten l'estudi comparatiu de les capacitats GMTI de les missions SAR orbitals actuals, demostrant les seves reduïdes opcions per identificar vaixells emmascarats pels retorns del mar. En el marc de l'activitat de recerca s'han processat dades experimentals SAR-GMTI multicanal de sistemes aeris (F-SAR) i orbitals (TerraSAR-X), per tal d'avaluar les seves capacitats de detecció de blancs mòbils sobre entorns marítims, proposant les estratègies de processat i calibratge més adients. Com a part de l'activitat de recerca doctoral, s'ha portat a terme una caracterització preliminar dels retorns radar del mar adquirits amb el sensor orbital TerraSAR-X, amb tres nivells d'anàlisi (radiomètric, estadístic i polarimètric). Aquest estudi demostra que aspectes com el soroll tèrmic i la decorrelació temporal, dependents del propi sensor i de l'entorn dinàmic del mar, poden limitar la correcta interpretació de les dades, i per tant, s'han d'incloure en els models físics dels mecanismes de dispersió del mar. Les missions SAR tant actuals com futures es basen en l'explotació de la tecnologia de les agrupacions d'antenes de fase activa (APAA) per operar diferents modes d'adquisició. El procés de calibratge associat és molt complex atès el gran nombre de feixos que es poden utilitzar. En el marc de la tesi doctoral s'han proposat i avaluat metodologies alternatives de calibratge intern per aquests sistemes, amb un millor rendiment en comparació amb les tècniques convencionals. Aquestes estratègies de calibratge, juntament amb la corresponent formulació dels errors de sistema, estableixen les bases per a l'estudi i avaluació en sistemes multicanal SA

    Space-based GMTI radar system using separated spacecraft interferometry

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2000.Includes bibliographical references (p. 153-156).The development of a model to assess the radar performance capabilities of a sparse aperture space-based GMTI radar system is presented. Airborne radars have provided reliable detection of moving targets for many years. Recent technological advancements have allowed the deployment of radar systems in space to improve global coverage. Additional radar performance benefits from space-based platforms are made possible with clusters of collaborative microsatellites. Using quantitative capability metrics, specifically the probability of detection and the minimum detectable velocity, the performance of the radar system can be modeled to enable effective and unbiased comparison of candidate system architectures. A design study based on the space-based GMTI radar reference mission for the Air Force's TechSat 21 program was conducted to identify viable system design configurations that satisfy specific radar performance requirements. A comprehensive analysis of the cost, reliability, and performance considerations for the complete TechSat 21 system is proposed.by Troy L. Hacker.S.M

    A Priori Knowledge-Based Post-Doppler STAP for Traffic Monitoring with Airborne Radar

    Get PDF
    Die Verkehrsüberwachung gewinnt aufgrund des weltweiten Anstiegs der Verkehrsteilnehmer immer mehr an Bedeutung. Sicherer und effizierter Straßenverkehr erfordert detaillierte Verkehrsinformationen. Häufig sind diese lediglich stationär, räumlich stark begrenzt und meist nur auf Hauptverkehrsstraßen verfügbar. In dieser Hinsicht ist ein Ausfall des Telekommunikationsnetzes, beispielsweise im Falle einer Katastrophe, und der damit einhergehende Informationsverlust als kritisch einzustufen. Flugzeuggetragene Radarsysteme mit synthetischer Apertur (eng. Synthetic Aperture Radar - SAR) können für dieses Szenario eine Lösung darstellen, da sie großflächig hochauflösende Bilder generieren können, unabhängig von Tageslicht und Witterungsbedingungen. Sie ermöglichen aufgrund dieser Charakteristik die Detektion von Bewegtzielen am Boden (eng. ground moving target indication – GMTI). Moderne GMTI-Algorithmen und -Systeme, die prinzipiell für die Verkehrsüberwachung verwendbar sind, wurden in der Literatur bereits diskutiert. Allerdings ist die Robustheit dieser Systeme oft mit hohen Kosten, hoher Hardwarekomplexität und hohem Rechenaufwand verbunden. Diese Dissertation stellt einen neuartigen GMTI-Prozessor vor, der auf dem Radar-Mehrkanalverfahren post-Doppler space-time adaptive processing (PD STAP) basiert. Durch die Überlagerung einer Straßenkarte mit einem digitalen Höhenmodell ist es mithilfe des PD STAP möglich, Falschdetektionen zu erkennen und auszuschließen sowie die detektierten Fahrzeuge ihren korrekten Straßenpositionen zu zuordnen. Die präzisen Schätzungen von Position, Geschwindigkeit und Bewegungsrichtung der Fahrzeuge können mit vergleichsweise geringerer Hardware-Komplexität zu niedrigeren Kosten durchgeführt werden. Ferner wird im Rahmen dieser Arbeit ein effizienter Datenkalibrierungsalgorithmus erläutert, der das Ungleichgewicht zwischen den Empfangskanälen sowie die Variation des Dopplerschwerpunkts über Entfernung und Azimut korrigiert und so das Messergebnis verbessert. Darüber hinaus werden neue und automatisierte Strategien zur Erhebung von Trainingsdaten vorgestellt, die für die Schätzung der Clutter-Kovarianzmatrix wegen ihres direkten Einflusses auf die Clutter-Unterdrückung und Zieldetektion essentiell für PD STAP sind. Der neuartige PD STAP Prozessor verfügt über drei verschiedene Betriebsarten, die für militärische und zivile Anwendungen geeignet sind, darunter ein schneller Verarbeitungsalgorithmus der das Potential für eine zukünftige Echtzeit-Verkehrsüberwachung hat. Alle Betriebsarten wurden erfolgreich mit Radar-Mehrkanaldaten des flugzeuggetragenen F-SAR-Radarsensors des DLR getestet

    Cognitive radar network design and applications

    Get PDF
    PhD ThesisIn recent years, several emerging technologies in modern radar system design are attracting the attention of radar researchers and practitioners alike, noteworthy among which are multiple-input multiple-output (MIMO), ultra wideband (UWB) and joint communication-radar technologies. This thesis, in particular focuses upon a cognitive approach to design these modern radars. In the existing literature, these technologies have been implemented on a traditional platform in which the transmitter and receiver subsystems are discrete and do not exchange vital radar scene information. Although such radar architectures benefit from these mentioned technological advances, their performance remains sub-optimal due to the lack of exchange of dynamic radar scene information between the subsystems. Consequently, such systems are not capable to adapt their operational parameters “on the fly”, which is in accordance with the dynamic radar environment. This thesis explores the research gap of evaluating cognitive mechanisms, which could enable modern radars to adapt their operational parameters like waveform, power and spectrum by continually learning about the radar scene through constant interactions with the environment and exchanging this information between the radar transmitter and receiver. The cognitive feedback between the receiver and transmitter subsystems is the facilitator of intelligence for this type of architecture. In this thesis, the cognitive architecture is fused together with modern radar systems like MIMO, UWB and joint communication-radar designs to achieve significant performance improvement in terms of target parameter extraction. Specifically, in the context of MIMO radar, a novel cognitive waveform optimization approach has been developed which facilitates enhanced target signature extraction. In terms of UWB radar system design, a novel cognitive illumination and target tracking algorithm for target parameter extraction in indoor scenarios has been developed. A cognitive system architecture and waveform design algorithm has been proposed for joint communication-radar systems. This thesis also explores the development of cognitive dynamic systems that allows the fusion of cognitive radar and cognitive radio paradigms for optimal resources allocation in wireless networks. In summary, the thesis provides a theoretical framework for implementing cognitive mechanisms in modern radar system design. Through such a novel approach, intelligent illumination strategies could be devised, which enable the adaptation of radar operational modes in accordance with the target scene variations in real time. This leads to the development of radar systems which are better aware of their surroundings and are able to quickly adapt to the target scene variations in real time.Newcastle University, Newcastle upon Tyne: University of Greenwich

    All-Weather Sense and Avoid (SAA) Radar Clutter Modeling and Control

    Get PDF
    The background of this thesis is related to the enhancement and optimization of the Pulsed-Doppler Radar sensor for the need of Detect and Avoid (DAA), or Sense and Avoid (SAA), for both weather and air-traffic (collision aircraft) detection and monitoring. Such radars are used in both manned and unmanned aircraft for the situation awareness of pilot navigation operations. The particular focus of this study is to develop a simulation model that is based on MATLAB's phased array toolbox and use that simulation model to predict the performance of an end-to-end radar signal processing chain for all-weather, multi-mission DAA. To achieve this goal, we developed an airborne system model based on MATLAB toolboxes, NASA’s airborne radar flight test data, and NEXRAD radar data. The measured data from airborne and ground-based radars are used as the “truth field” for the weather. During the modeling and verification process, we primarily investigated the impact of ground or surface clutters on the radar outputs and results, which include the testing of the constant-gamma model using actual measured radar data and improved system and sensor modeling based on the clutter geometry. Evaluation of various moving target indication (MTI) techniques were tested with the simulation model

    Space-time adaptive processing techniques for multichannel mobile passive radar

    Get PDF
    Passive radar technology has reached a level of maturity for stationary sensor operations, widely proving the ability to detect, localize and track targets, by exploiting different kinds of illuminators of opportunity. In recent years, a renewed interest from both the scientific community and the industry has opened new perspectives and research areas. One of the most interesting and challenging ones is the use of passive radar sensors onboard moving platforms. This may offer a number of strategic advantages and extend the functionalities of passive radar to applications like synthetic aperture radar (SAR) imaging and ground moving target indication (GMTI). However, these benefits are paid in terms of motion-induced Doppler distortions of the received signals, which can adversely affect the system performance. In the case of surveillance applications, the detection of slowly moving targets is hindered by the Doppler-spread clutter returns, due to platform motion, and requires the use of space-time processing techniques, applied on signals collected by multiple receiving channels. Although in recent technical literature the feasibility of this concept has been preliminarily demonstrated, mobile passive radar is still far from being a mature technology and several issues still need to be addressed, mostly connected to the peculiar characteristics of the passive bistatic scenario. Specifically, significant limitations may come from the continuous and time-varying nature of the typical waveforms of opportunity, not suitable for conventional space-time processing techniques. Moreover, the low directivity of the practical receiving antennas, paired with a bistatic omni-directional illumination, further increases the clutter Doppler bandwidth and results in the simultaneous reception of non-negligible clutter contributions from a very wide angular sector. Such contributions are likely to undergo an angle-dependent imbalance across the receiving channels, exacerbated by the use of low-cost hardware. This thesis takes research on mobile passive radar for surveillance applications one step further, finding solutions to tackle the main limitations deriving from the passive bistatic framework, while preserving the paradigm of a simple system architecture. Attention is devoted to the development of signal processing algorithms and operational strategies for multichannel mobile passive radar, focusing on space-time processing techniques aimed at clutter cancellation and slowly moving target detection and localization. First, a processing scheme based on the displaced phase centre antenna (DPCA) approach is considered, for dual-channel systems. The scheme offers a simple and effective solution for passive radar GMTI, but its cancellation performance can be severely compromised by the presence of angle-dependent imbalances affecting the receiving channels. Therefore, it is paired with adaptive clutter-based calibration techniques, specifically devised for mobile passive radar. By exploiting the fine Doppler resolution offered by the typical long integration times and the one-to-one relationship between angle of arrival and Doppler frequency of the stationary scatterers, the devised techniques compensate for the angle-dependent imbalances and prove largely necessary to guarantee an effective clutter cancellation. Then, the attention is focused on space-time adaptive processing (STAP) techniques for multichannel mobile passive radar. In this case, the clutter cancellation capability relies on the adaptivity of the space-time filter, by resorting to an adjacent-bin post-Doppler (ABPD) approach. This allows to significantly reduce the size of the adaptive problem and intrinsically compensate for potential angle-dependent channel errors, by operating on a clutter subspace accounting for a limited angular sector. Therefore, ad hoc strategies are devised to counteract the effects of channel imbalance on the moving target detection and localization performance. By exploiting the clutter echoes to correct the spatial steering vector mismatch, the proposed STAP scheme is shown to enable an accurate estimation of target direction of arrival (DOA), which represents a critical task in system featuring few wide beam antennas. Finally, a dual cancelled channel STAP scheme is proposed, aimed at further reducing the system computational complexity and the number of required training data, compared to a conventional full-array solution. The proposed scheme simplifies the DOA estimation process and proves to be robust against the adaptivity losses commonly arising in a real bistatic clutter scenario, allowing effective operation even in the case of a limited sample support. The effectiveness of the techniques proposed in this work is validated by means of extensive simulated analyses and applications to real data, collected by an experimental multichannel passive radar installed on a moving platform and based on DVB-T transmission
    corecore