203 research outputs found

    Towards Trace Metrics via Functor Lifting

    Get PDF
    We investigate the possibility of deriving metric trace semantics in a coalgebraic framework. First, we generalize a technique for systematically lifting functors from the category Set of sets to the category PMet of pseudometric spaces, showing under which conditions also natural transformations, monads and distributive laws can be lifted. By exploiting some recent work on an abstract determinization, these results enable the derivation of trace metrics starting from coalgebras in Set. More precisely, for a coalgebra on Set we determinize it, thus obtaining a coalgebra in the Eilenberg-Moore category of a monad. When the monad can be lifted to PMet, we can equip the final coalgebra with a behavioral distance. The trace distance between two states of the original coalgebra is the distance between their images in the determinized coalgebra through the unit of the monad. We show how our framework applies to nondeterministic automata and probabilistic automata

    Coalgebraic Behavioral Metrics

    Get PDF
    We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra α ⁣:XHX\alpha\colon X \to HX for a functor H ⁣:SetSetH \colon \mathrm{Set}\to \mathrm{Set}, we define a framework for deriving pseudometrics on XX which measure the behavioral distance of states. A crucial step is the lifting of the functor HH on Set\mathrm{Set} to a functor H\overline{H} on the category PMet\mathrm{PMet} of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. If HH has a final coalgebra, every lifting H\overline{H} yields in a canonical way a behavioral distance which is usually branching-time, i.e., it generalizes bisimilarity. In order to model linear-time metrics (generalizing trace equivalences), we show sufficient conditions for lifting distributive laws and monads. These results enable us to employ the generalized powerset construction

    Trace semantics via determinization

    Get PDF
    This paper takes a fresh look at the topic of trace semantics in the theory of coalgebras. The first development of coalgebraic trace semantics used final coalgebras in Kleisli categories, stemming from an initial algebra in the underlying category (see notably~\cite{HasuoJS07}). This approach requires some non-trivial assumptions, like dcpo enrichment, which do not always hold, even in cases where one can reasonably speak of traces (like for weighted automata). More recently, it has been noticed (see~\cite{SBBR10}) that trace semantics can also arise by first performing a determinization construction. In this paper, we develop a systematic approach, in which the two approaches correspond to different orders of composing a functor and a monad, and accordingly, to different distributive laws. The relevant final coalgebra that gives rise to trace semantics does not live in a Kleisli category, but more generally, in a category of Eilenberg-Moore algebras. In order to exploit its finality, we identify an extension operation, that changes the state space of a coalgebra into a free algebra, which abstractly captures determinization of automata. Notably, we show that the two different views on trace semantics are equivalent, in the examples where both approaches are applicable.We are grateful to the anonymous referees for valuable comments. The work of Alexandra Silva is partially funded by the ERDF through the Programme COMPETE and by the Portuguese Foundation for Science and Technology, project Ref. FCOMP-01-0124-FEDER-020537 and SFRH/BPD/71956/2010

    Coalgebraic Infinite Traces and Kleisli Simulations

    Full text link
    Kleisli simulation is a categorical notion introduced by Hasuo to verify finite trace inclusion. They allow us to give definitions of forward and backward simulation for various types of systems. A generic categorical theory behind Kleisli simulation has been developed and it guarantees the soundness of those simulations with respect to finite trace semantics. Moreover, those simulations can be aided by forward partial execution (FPE)---a categorical transformation of systems previously introduced by the authors. In this paper, we give Kleisli simulation a theoretical foundation that assures its soundness also with respect to infinitary traces. There, following Jacobs' work, infinitary trace semantics is characterized as the "largest homomorphism." It turns out that soundness of forward simulations is rather straightforward; that of backward simulation holds too, although it requires certain additional conditions and its proof is more involved. We also show that FPE can be successfully employed in the infinitary trace setting to enhance the applicability of Kleisli simulations as witnesses of trace inclusion. Our framework is parameterized in the monad for branching as well as in the functor for linear-time behaviors; for the former we mainly use the powerset monad (for nondeterminism), the sub-Giry monad (for probability), and the lift monad (for exception).Comment: 39 pages, 1 figur
    corecore