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Abstract
We investigate the possibility of deriving metric trace semantics in a coalgebraic framework. First,
we generalize a technique for systematically lifting functors from the category Set of sets to the
category PMet of pseudometric spaces, by identifying conditions under which also natural trans-
formations, monads and distributive laws can be lifted. By exploiting some recent work on an
abstract determinization, these results enable the derivation of trace metrics starting from coalge-
bras in Set. More precisely, for a coalgebra in Set we determinize it, thus obtaining a coalgebra
in the Eilenberg-Moore category of a monad. When the monad can be lifted to PMet, we can
equip the final coalgebra with a behavioral distance. The trace distance between two states of
the original coalgebra is the distance between their images in the determinized coalgebra through
the unit of the monad. We show how our framework applies to nondeterministic automata and
probabilistic automata.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, D.2.4 Software/Program Verification
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1 Introduction

When considering the behavior of state-based system models embodying quantitative in-
formation, such as probabilities, time or cost, the interest normally shifts from behavioral
equivalences to behavioral distances. In fact, in a quantitative setting, it is often quite
unnatural to ask that two systems exhibit exactly the same behavior, while it can be more
reasonable to require that the distance between their behaviors is sufficiently small (see,
e.g., [10, 7, 23, 1, 5, 6, 8]).

Coalgebras [18] are a well-established abstract framework where a canonical notion of
behavioral equivalence can be uniformly derived. The behavior of a system is represented
as a coalgebra, namely a map of the form X → HX, where X is a state space and H is a
functor that describes the type of computation performed. For instance nondeterministic
automata can be seen as coalgebras X → 2× P(X)A: for any state we specify whether it is
final or not, and the set of successors for any given input in A. Under suitable conditions
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36 Towards Trace Metrics via Functor Lifting

a final coalgebra exists which can be seen as minimized version of the system, so that two
states are deemed equivalent when they correspond to the same state in the final coalgebra.

In a recent paper [2] we faced the problem of devising a framework where, given a
coalgebra for an endofunctor H on Set, one can systematically derive pseudometrics which
measure the behavioral distance of states. A first crucial step is the lifting of H to a functor
H on PMet, the category of pseudometric spaces. In particular, we presented two different
approaches which can be viewed as generalizations of the Kantorovich and Wasserstein
pseudometrics for probability measures. One can prove that the final coalgebra in Set can
be endowed with a metric, arising as a solution of a fixpoint equation, turning it into the
final coalgebra for the lifting H. Since any coalgebra X → HX can be seen as a coalgebra in
PMet by endowing X with the discrete metric, the unique mapping into the final coalgebra
provides a behavioral distance on X.

The canonical notion of equivalence for coalgebras, in a sense, fully captures the behavior
of the system as expressed by the functor H. As such, it naturally corresponds to bisimulation
equivalences already defined for various concrete formalisms. Sometimes one is interested in
coarser equivalences, ignoring some aspects of a computation, a notable example being trace
equivalence where the computational effect which is ignored is branching.

In this paper, relying on recent work on an abstract determinization construction for
coalgebras in [20, 13, 14], we extend the above framework in order to systematically derive
trace metrics. The mentioned work starts from the observation that the distinction between
the behavior to be observed and the computational effects that are intended to be hidden
from the observer, is sometimes formally captured by splitting the functor H characterizing
system computations in two components, a functor F for the observable behavior and a
monad T describing the computational effects, e.g., lifting 1 +−, the powerset functor P or
the distribution functor D provides partial, nondeterministic or probabilistic computations,
respectively. For instance, the functor for nondeterministic automata 2×P(X)A can be seen
as the composition of the functor FX = 2×XA, describing the transitions, with the powerset
monad T = P, capturing nondeterminism. Trace semantics can be derived by viewing
a coalgebra X → 2 × P(X)A as a coalgebra P(X) → 2 × P(X)A, via a determinization
construction. Similarly probabilistic automata can be seen as coalgebras of the form X →
[0, 1]×D(X)A, yielding coalgebras D(X)→ [0, 1]×D(X)A via determinization.

On this basis, [14] develops a framework for deriving behavioral equivalences which only
considers the visible behavior, ignoring the computational effects. The core idea consists
in “incorporating” the effect of the monad also in the set of states X, which thus becomes
TX, by means of a construction that can be seen as an abstract form of determinization.
For functors of the shape FT , this can be done by lifting F to a functor F̂ in EM(T ), the
Eilenberg-Moore category of T , using a distributive law between F and T . In fact, the final
F -coalgebra lifts to the final F̂ -coalgebra in EM(T ). The technique works, at the price of
some complications, also for functors of the shape TF [14].

Here, we exploit the results in [14] for systematically deriving metric trace semantics for
Set-based coalgebras. The situation is summarized in the diagram at the end of Subsection 5.1.
As a first step, building on our technique for lifting functors from the category Set of sets
to the category PMet of pseudometric spaces, we identify conditions under which also
natural transformations, monads and distributive laws can be lifted. In this way we obtain
an adjunction between PMet and EM(T ), where T is the lifted monad. Via the lifted
distributive law we can transfer a functor F : PMet → PMet to an endofunctor F̂ on
EM(T ). By using the trivial discrete distance, coalgebras of the form TX → FTX can
now live in EM(T ) and can be equipped with a trace distance via a map into the final
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coalgebra. This final coalgebra is again obtained by lifting the final F -coalgebra, i.e. a
coalgebra equipped with a behavioral distance, to EM(T ).

The trace distance between two states of the original coalgebra can then be defined as
the distance between their images in the determinized coalgebra through the unit of the
monad. We illustrate our framework by thoroughly discussing two running examples, namely
nondeterministic automata and probabilistic automata. We show that it allows us to recover
known or meaningful trace distances such as the standard ultrametric on word languages for
nondeterministic automata or the total variation distance on distributions for probabilistic
automata.

The paper is structured as follows. In Section 2 we will introduce our notation and quickly
recall the basics of our lifting framework from [2]. Then, in Section 3, we tackle the question
of compositionality, i.e. we investigate whether based on liftings of two functors we can
obtain a lifting of the composed functor. The lifting of natural transformations and monads
is treated in Section 4. Equipped with these tools, we show as main result in Section 5
how to obtain trace pseudometrics in the Eilenberg-Moore category of a lifted monad. We
conclude our paper with a discussion on related and future work (Section 6). Proofs can be
found in the extended version [arXiv:1505.08105].

2 Preliminaries

In this section we recap some basic notions and fix the corresponding notation. We also
briefly recall the results in [2] which will be exploited in the paper.

We assume that the reader is familiar with the basic notions of category theory, especially
with the definitions of functor, product, coproduct and weak pullbacks.

For a function f : X → Y and sets A ⊆ X, B ⊆ Y we write f [A] := {f(a) | a ∈ A} for the
image of A and f−1[B] = {x ∈ X | f(x) ∈ B} for the preimage of B. Finally, if Y ⊆ [0,∞]
and f, g : X → Y are functions we write f ≤ g if f(x) ≤ g(x) for all x ∈ X.

A probability distribution on a given set X is a function P : X → [0, 1] satisfying∑
x∈X P (x) = 1. For any set B ⊆ X we define P (B) =

∑
x∈B P (x). The support of

P is the set supp(P ) := {x ∈ X | P (x) > 0}.
Given a natural number n ∈ N and a family (Xi)ni=1 of sets Xi we denote the projections

of the (cartesian) product of the Xi by πi :
∏n
i=1 Xi → Xi. For a source (fi : X → Xi)ni=1 we

denote the unique mediating arrow to the product by 〈f1, . . . , fn〉 : X →
∏n
i=1 Xi. Similarly,

given a family of arrows (fi : Xi → Yi)ni=1, we write f1 × · · · × fn = 〈f1 ◦ π1, . . . , fn ◦
πn〉 :

∏n
i=1 Xi →

∏n
i=1 Yi.

For > ∈ (0,∞] and a set X we call any function d : X2 → [0,>] a (>-)distance on X
(for our examples we will use > = 1 or > = ∞). Whenever d satisfies, for all x, y, z ∈ X,
d(x, x) = 0 (reflexivity), d(x, y) = d(y, x) (symmetry) and d(x, y) ≤ d(x, z) + d(z, y) (triangle
inequality) we call it a pseudometric and if it additionally satisfies d(x, y) = 0 =⇒ x = y we
call it ametric. Given such a function d on a setX, we say that (X, d) is a pseudometric/metric
space. By de : [0,>]2 → [0,>] we denote the ordinary Euclidean distance on [0,>], i.e.,
de(x, y) = |x− y| for x, y ∈ [0,>] \ {∞}, and – where appropriate – de(x,∞) =∞ if x 6=∞
and de(∞,∞) = 0. Addition is defined in the usual way, in particular x +∞ = ∞ for
x ∈ [0,∞]. We call a function f : X → Y between pseudometric spaces (X, dX) and (Y, dY )
nonexpansive and write f : (X, dX) 1→ (Y, dY ) if dY ◦ (f × f) ≤ dX . If equality holds we call
f an isometry.

By choosing a fixed maximal element > in our definition of distances, we ensure that
the set of pseudometrics over a fixed set with pointwise order is a complete lattice (since
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[0,>] is) and we obtain a complete and cocomplete category of pseudometric spaces and
nonexpansive functions, which we denote by PMet. Given a functor F on Set, we aim at
constructing a functor F on PMet which is a lifting of F in the following sense.

I Definition 2.1 (Lifting). Let U : PMet→ Set be the forgetful functor which maps every
pseudometric space to its underlying set. A functor F : PMet→ PMet is called a lifting of
a functor F : Set→ Set if it satisfies UF = FU .

Similarly to predicate lifting of coalgebraic modal logic [19], lifting to PMet can be
conveniently defined once a suitable (evaluation) function from F [0,>] to [0,>] is fixed.

I Definition 2.2 (Evaluation Function & Evaluation Functor). Let F be an endofunctor on
Set. An evaluation function for F is a function evF : F [0,>]→ [0,>]. Given such a function,
we define the evaluation functor to be the endofunctor F̃ on Set/[0,>], the slice category1
over [0,>], via F̃ (g) = evF ◦ Fg for all g ∈ Set/[0,>]. On arrows F̃ is defined as F .

A first lifting technique leads to what we called the Kantorovich pseudometric, which
is the smallest possible pseudometric dF on FX such that, for all nonexpansive functions
f : (X, d) 1→ ([0,>], de), also F̃ f : (FX, dF ) 1→ ([0,>], de) is again nonexpansive.

I Definition 2.3 (Kantorovich Pseudometric & Kantorovich Lifting). Let F : Set→ Set be a
functor with an evaluation function evF . For every pseudometric space (X, d) the Kantorovich
pseudometric on FX is the function d ↑F : FX × FX → [0,>], where for all t1, t2 ∈ FX:

d ↑F (t1, t2) := sup
{
de

(
F̃ f(t1), F̃ f(t2)

)
| f : (X, d) 1→ ([0,>], de)

}
.

The Kantorovich lifting of the functor F is the functor F : PMet → PMet defined as
F (X, d) = (FX, d ↑F ) and Ff = Ff .

This definition is sound, i.e., d ↑F is guaranteed to be a pseudometric so that we indeed
obtain a lifting of the functor. A dual way for obtaining a pseudometric on FX relies on
ideas from probability and transportation theory. It is based on the notion of couplings,
which can be understood as a generalization of joint probability measures.

I Definition 2.4 (Coupling). Let F : Set→ Set be a functor and n ∈ N. Given a set X and
ti ∈ FX for 1 ≤ i ≤ n we call an element t ∈ F (Xn) such that Fπi(t) = ti a coupling of the
ti (with respect to F ). We write ΓF (t1, t2, . . . , tn) for the set of all these couplings.

Based on these couplings we are now able to define an alternative distance on FX.

I Definition 2.5 (Wasserstein Distance & Wasserstein Lifting). Let F : Set→ Set be a functor
with evaluation function evF . For every pseudometric space (X, d) the Wasserstein distance
on FX is the function d ↓F : FX × FX → [0,>] given by, for all t1, t2 ∈ FX,

d ↓F (t1, t2) := inf
{
F̃ d(t) | t ∈ ΓF (t1, t2)

}
.

If d ↓F is a pseudometric for all pseudometric spaces (X, d), we define the Wasserstein lifting
of F to be the functor F : PMet→ PMet, F (X, d) = (FX, d ↓F ), Ff = Ff .

1 The slice category Set/[0,>] has as objects all functions g : X → [0,>] where X is an arbitrary set.
Given g as before and h : Y → [0,>], an arrow from g to h is a function f : X → Y satisfying h ◦ f = g.
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The names Kantorovich and Wasserstein used for the liftings derive from transportation
theory [25]. Indeed we obtain a transport problem if we instantiate F with the distribution
functor D (see also Theorem 2.9 below). In order to measure the distance between two
probability distributions s, t : X → [0, 1] it is useful to think of the following analogy: assume
that X is a collection of cities (with distance function d between them) and s, t represent
supply and demand (in units of mass). The distance between s, t can be measured in two
ways: the first is to set up an optimal transportation plan with minimal costs (also called
coupling) to transport goods from cities with excess supply to cities with excess demand. The
cost of transport is determined by the product of mass and distance. In this way we obtain
the Wasserstein distance. A different view is to imagine a logistics firm that is commissioned
to handle the transport. It sets prices for each city and buys and sells for this price at every
location. However, it has to ensure that the price function (here, f) is nonexpansive, i.e., the
difference of prices between two cities is smaller than the distance of the cities, otherwise it
will not be worthwhile to outsource this task. This firm will attempt to maximize its profit,
which can be considered as the Kantorovich distance of s, t. The Kantorovich-Rubinstein
duality informs us that these two views lead to the exactly same result.

In Theorem 2.5 we are not guaranteed, in general, that d ↓F is a pseudometric. This is
the case if we require F to preserve weak-pullbacks and impose the following restrictions on
the evaluation function.

I Definition 2.6 (Well-Behaved). Let F be a functor with an evaluation function evF . We
call evF well-behaved if it satisfies the following conditions:
W1. F̃ is monotone, i.e., for f, g : X → [0,>] with f ≤ g, we have F̃ f ≤ F̃ g.
W2. For each t ∈ F ([0,>]2) it holds that de(evF (t1), evF (t2)) ≤ F̃ de(t) for ti := Fπi(t).
W3. ev−1

F [{0}] = Fi[F{0}] where i : {0} ↪→ [0,>] is the inclusion map.

While condition W1 is quite natural, for W2 and W3 some explanations are in order.
Condition W2 ensures that F̃ id[0,>] = evF : F [0,>]→ [0,>] is nonexpansive once de is lifted
to F [0,>] (recall that for the Kantorovich lifting we require F̃ f to be nonexpansive for any
nonexpansive f). Condition W3 requires that exactly the elements of F{0} are mapped to 0
via evF . This is necessary for reflexivity of the Wasserstein pseudometric. Indeed, with this
definition at hand we were able to prove the desired result.

I Proposition 2.7 ([2]). If F preserves weak pullbacks and evF is well-behaved, then d ↓F is
a pseudometric for any pseudometric space (X, d).

From now on, whenever we use the Wasserstein lifting d ↓F , we implicitly assume to be in
the hypotheses of Theorem 2.7. It can be shown that, in general, d ↑F ≤ d ↓F . Whenever
equality holds we say that the functor and the evaluation function satisfy the Kantorovich-
Rubinstein duality. This is helpful in many situations (e.g., in [24] it allowed to reuse an
efficient linear programming algorithm to compute behavioral distance) but it is usually
difficult to obtain.

We now recall two examples which will play an important role in this paper. First, we
consider the following finitary variant of the powerset functor.

I Example 2.8 (Finite Powerset). The finite powerset functor Pfin assigns to each set X the
set PfinX = {S ⊆ X | |S| <∞} and to each function f : X → Y the function Pfinf : PfinX →
PfinY , Pfinf(S) := f [S]. This functor preserves weak pullbacks and the evaluation function
max: Pfin([0,∞]) → [0,∞] with max ∅ = 0 is well-behaved. The Kantorovich-Rubinstein
duality holds and the resulting distance is the Hausdorff pseudometric which, for any
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40 Towards Trace Metrics via Functor Lifting

pseudometric space (X, d) and any X1, X2 ∈ PfinX, is defined as

dH(X1, X2) = max
{

max
x1∈X1

min
x2∈X2

d(x1, x2), max
x2∈X2

min
x1∈X1

d(x1, x2)
}
.

Our second example is the following finite variant of the distribution functor.

I Example 2.9 (Finitely Supported Distributions). The probability distribution functor D
assigns to each set X the set DX = {P : X → [0, 1] | |supp(P )| <∞, P (X) = 1} and to
each function f : X → Y the function Df : DX → DY , Df(P )(y) =

∑
x∈f−1[{y}] P (x) =

P (f−1[{y}]). It preserves weak pullbacks and the evaluation function evD : D[0, 1]→ [0, 1],
evD(P ) =

∑
r∈[0,1] r · P (r) is well-behaved. For any pseudometric space (X, d) we obtain the

Wasserstein pseudometric which, for any P1, P2 ∈ DX, is defined as

d ↓D(P1, P2) = min

 ∑
x1,x2∈X

d(x1, x2) · P (x1, x2)

∣∣∣∣∣∣ P ∈ ΓD(P1, P2)

 .

The Kantorovich-Rubinstein duality [25] holds from classical results in transportation theory.

While these two functors can be nicely lifted using the theory developed so far, there are
other functors that require a more general treatment. For instance, consider the endofunctor
F = B×_ (left product with B) for some fixed B. Notice that for t1, t2 ∈ FX = B×X with
ti = (bi, xi) a coupling exists iff b1 = b2. As a consequence, when b1 6= b2, irrespectively of
the evaluation function we choose and of the distance between x1 and x2 in (X, d), the lifted
Wasserstein pseudometric will always result in d ↓F (t1, t2) = >. This can be counterintuitive,
e.g., taking B = [0, 1], X 6= ∅ and t1 = (0, x) and t2 = (ε, x) for a small ε > 0 and an x ∈ X.
The reason is that we think of B = [0, 1] as endowed with a non-discrete pseudometric, like
e.g. the Euclidean metric de, plugged into the product after the lifting. This intuition can be
indeed formalized by considering the lifting of the product seen as a functor from Set× Set
into Set. More generally, it can be seen that the definitions and results introduced so far
for endofunctors on Set straightforwardly extend to multifunctors on Set, namely functors
F : Setn → Set on the product category Setn for a natural number n ∈ N. For ease of
presentation we will not spell out the details here (they can be found in [2]), but just provide
an important example of a bifunctor (i.e. n = 2).

I Example 2.10 (Product Bifunctor). The weak pullback preserving product bifunctor
F : Set2 → Set maps two setsX1, X2 to F (X1, X2) = X1×X2 and two functions fi : Xi → Yi
to the function F (f1, f2) = f1×f2. In this paper we will use the well-behaved evaluation func-
tions evF : [0, 1]2 → [0, 1] presented in the table below. Therein we also list the pseudometric
(d1, d2)F : (X1 ×X2)2 → [0,>] we obtain for pseudometric spaces (X1, d1), (X2, d2).

Parameters evF (r1, r2) (d1, d2)F ((x1, x2), (y1, y2))
c1, c2 ∈ (0, 1] max {c1r1, c2r2} max {c1d1(x1, y1), c2d2(x2, y2)}

c1, c2 ∈ (0, 1], c1 + c2 ≤ 1 c1x1 + c2x2 c1d1(x1, y1) + c2d2(x2, y2)

For c1 = c2 = 1, the first evaluation map yields exactly the categorical product in PMet. In
both cases the Kantorovich-Rubinstein duality holds and the supremum [infimum] of the
Kantorovich [Wasserstein] pseudometric is always a maximum [minimum].

3 Compositionality for the Wasserstein Lifting

Our first step is to study compositionality of functor liftings, i.e., we identify some sufficient
conditions ensuring F G = FG. This technical result will be often very useful since it allows
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us to reason modularly and, consequently, to simplify the proofs needed in the treatment of
our examples. We will explicitly only consider the Wasserstein approach which is the one
employed in all the examples of this paper.

Given evaluation functions evF and evG, we can easily construct an evaluation function
for the composition FG by defining evFG := F̃ evG = evF ◦ FevG. Our first observation is
that, whenever F and G preserve weak pullbacks, well-behavedness is inherited.

I Proposition 3.1 (Well-Behavedness of Composed Evaluation Function). Let F , G be endo-
functors on Set with evaluation functions evF , evG. If both functors preserve weak pullbacks
and both evaluation functions are well-behaved then also evFG = evF ◦ FevG is well-behaved.

In the light of this result and the fact that FG certainly preserves weak pullbacks if
F and G do, we can safely use the Wasserstein lifting for FG. A sufficient criterion for
compositionality is the existence of optimal couplings for G.

I Proposition 3.2 (Compositionality). Let F,G be weak pullback preserving endofunctors on
Set with well-behaved evaluation functions evF , evG and let (X, d) be a pseudometric space.
Then d ↓FG ≥ (d ↓G) ↓F . Moreover, if for all t1, t2 ∈ GX there is an optimal G-coupling, i.e.
γ(t1, t2) ∈ ΓG(t1, t2) such that d ↓G(t1, t2) = G̃d(γ(t1, t2)), then d ↓FG = (d ↓G) ↓F .

This criterion will turn out to be very useful for our later results. Nevertheless it provides
just a sufficient condition for compositionality as the next example shows.

I Example 3.3. We consider the finite powerset functor Pfin of Theorem 2.8 and the
distribution functor D of Theorem 2.9 with their evaluation functions. Let (X, d) be a
pseudometric space.
1. We have d ↓DD =

(
d ↓D

) ↓D, by Theorem 3.2, because optimal couplings always exist.
2. We have d ↓PfinPfin =

(
d ↓Pfin

) ↓Pfin although Pfin-couplings do not always exist.

Note that when we lift the functor Pfin we do not have couplings in the case when we
determine the distance between an empty set ∅ and a non-empty set Y ⊆ X, since there
exists no subset of X ×X that projects to both.

Compositionality can be defined analogously for multifunctors. Again, we will not spell
this out completely but we will use it to obtain the machine bifunctor. Before we can do
that, we first need to define another endofunctor.

I Example 3.4 (Input Functor). Let A be a fixed finite set of inputs. The input functor
F = _A : Set → Set maps a set X to the exponential XA and a function f : X → Y to
fA : XA → Y A, fA(g) = f ◦ g. This functor preserves weak pullbacks. The two evaluation
functions listed below are well-behaved and yield the given Wasserstein pseudometric on XA

for any pseudometric space (X, d).

evF (s) d ↓F (s1, s2)
maxa∈A s(a) maxa∈A d

(
s1(a), s2(a)

)∑
a∈A

s(a)
∑

a∈A
d
(
s1(a), s2(a)

)
By composing this functor with the product bifunctor we obtain the machine bifunctor

which we will use to obtain trace semantics.

I Example 3.5 (Machine Bifunctor). Let A be a finite set of inputs, I = _A the input
functor of Theorem 3.4, Id the identity endofunctor on Set and P be the product bifunctor
of Theorem 2.10. The machine bifunctor is the composition M := P ◦ (Id × I) i.e. the
bifunctor M : Set2 → Set with M(B,X) := B ×XA. Since for Id and I there are unique
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(thus optimal) couplings we have compositionality. Depending on the choices of evaluation
function for P and I (for Id we always take id[0,1]) we obtain the following well-behaved
evaluation functions evM : [0, 1]× [0, 1]A → [0, 1].

Parameters evP (r1, r2) evI(s) evM (o, s)

c1, c2 ∈ (0, 1] max {c1r1, c2r2} maxa∈A s(a) max
{

c1o, c2 maxa∈A s(a)
}

c1, c2 ∈ (0, 1], c1 + c2 ≤ 1 c1x1 + c2x2 |A|−1∑
a∈A

s(a) c1o + c2|A|−1∑
a∈A

s(a).

Let (B, dB), (X, d) be pseudometric spaces. For any t1, t2 ∈ M(B,X) with ti = (bi, si) ∈
B ×XA there is a unique and therefore necessarily optimal coupling t := (b1, b2, 〈s1, s2〉).
Depending on the evaluation function, we obtain for the first case (dB , d) ↓M (t1, t2) =
max {c1dB(b1, b2), c2 ·maxa∈A d(s1(a), s2(a))} and for the second case (dB , d) ↓M (t1, t2) =
c1dB(b1, b2) + c2|A|−1∑

a∈A d(s1(a), s2(a)).

Usually we will fix the first argument (the set of outputs) of the machine bifunctor and
consider the obtained machine endofunctor MB := M(B,_). However, for the same reasons
as explained above for the product bifunctor, we need to consider it as bifunctor. One notable
exception is the case where B = 2, endowed with the discrete metric. Then we have the
following result.

I Example 3.6. Consider the machine endofunctorM2 := M(2,_) = 2×_A with evaluation
function evM2 : 2× [0, 1]A, (o, s) 7→ c · evI(s) where c ∈ (0, 1] and evI is one of the evaluation
functions for the input functor from Theorem 3.4. If d2 is the discrete metric on 2 and
c = c2 (where c2 is the parameter for the evaluation function of the machine bifunctor as
in Theorem 3.5) then the pseudometric obtained via the bifunctor lifting coincides with
the one obtained by endofunctor lifting i.e. for all pseudometric spaces (X, d) we have
(d2, d) ↓M = d ↓M2 . Moreover, although couplings for M2 do not always exist we have
d ↓PfinM2 =

(
d ↓M2

) ↓Pfin .

4 Lifting of Natural Transformations and Monads

Recall that a monad on an arbitrary category C is a triple (T, η, µ) where T : C → C is
an endofunctor and η : Id⇒ T , µ : T 2 ⇒ T are natural transformations called unit (η) and
multiplication (µ) such that the two diagrams below commute.

T T 2 T T 3 T 2

T T 2 T

ηT Tη

µ

µT

Tµ µ
µ

If we have a monad on Set, we can of course use our framework to lift the endofunctor T to a
functor T on pseudometric spaces. A natural question that arises is, whether we also obtain
a monad on pseudometric spaces, i.e., if the components of the unit and the multiplication
are nonexpansive with respect to the lifted pseudometrics. In order to answer this question,
we first take a closer look at sufficient conditions for lifting natural transformations.

I Proposition 4.1 (Lifting of a Natural Transformation). Let F , G be endofunctors on Set
with evaluation functions evF , evG and λ : F ⇒ G be a natural transformation. Then the
following holds for all pseudometric spaces (X, d). For the Kantorovich lifting:
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1. If evG ◦ λ[0,>] ≤ evF then d ↑G ◦ (λX × λX) ≤ d ↑F , i.e. λX is nonexpansive.
2. If evG ◦ λ[0,>] = evF then d ↑G ◦ (λX × λX) = d ↑F , i.e. λX is an isometry.
while for the Wasserstein lifting:
3. If evG ◦ λ[0,>] ≤ evF then d ↓G ◦ (λX × λX) ≤ d ↓F , i.e. λX is nonexpansive.
4. If evG ◦ λ[0,>] = evF and the Kantorovich Rubinstein duality holds for F , i.e. d ↑F = d ↓F ,

then d ↓G ◦ (λX × λX) = d ↓F , i.e. λX is an isometry.

In the rest of the paper we will call a natural transformation λ nonexpansive [an isometry] if
(and only if) each of its components are nonexpansive [isometries] and write λ for the resulting
natural transformation from F to G. Instead of checking nonexpansiveness separately for
each component of a natural transformation, we can just check the above (in-)equalities
involving the two evaluation functions.

By applying these conditions on the unit and multiplication of a given monad, we can
now provide sufficient criteria for a monad lifting.

I Corollary 4.2 (Lifting of a Monad). Let (T, η, µ) be a Set-monad and evT an evaluation
function for T . Then the following holds.
1. If evT ◦ η[0,>] ≤ id[0,>] then η is nonexpansive for both liftings. Hence we obtain the unit

η : Id⇒ T in PMet.
2. If evT ◦ η[0,>] = id[0,>] then η is an isometry for both liftings.
3. Let dT ∈ {d ↑T , d ↓T }. If evT ◦ µ[0,>] ≤ evT ◦ TevT and compositionality holds for TT ,

i.e. (dT )T = dTT , then µ is nonexpansive, i.e. dT ◦ (µX × µX) ≤ (dT )T . This yields the
multiplication µ : T T ⇒ T in PMet.

We conclude this section with two examples of liftable monads.

I Example 4.3 (Finite Powerset Monad). The finite powerset functor Pfin of Theorem 2.8 can
be seen as a monad, with unit η consisting of the functions ηX : X → PfinX, ηX(x) = {x}
and multiplication given by µX : PfinPfinX → PfinX, µX(S) = ∪S. We show that our
conditions for the Wasserstein lifting are satisfied. Given r ∈ [0,∞] we have evT ◦ η[0,∞](r) =
max {r} = r and for S ∈ Pfin(Pfin[0,>]) we have evT ◦ µ[0,1](S) = max∪S = max∪S∈SS
and evT ◦ TevT (S) = max (evT [S]) = max {maxS | S ∈ S} and thus both values coincide.
Moreover, we recall from Theorem 3.3.2 that we have compositionality for PfinPfin. Therefore,
by Theorem 4.2 η is an isometry and µ nonexpansive.

I Example 4.4 (Distribution Monad). The probability distribution functor D of Theorem 2.9
can be seen as a monad: the unit η consists of the functions ηX : X → DX, ηX(x) = δXx
where δXx is the Dirac distribution and the multiplication is given by µX : DDX → DX,
µX(P ) = λx.

∑
q∈DX P (q) · q(x). We consider its Wasserstein lifting. Since [0, 1] = D2 we

can see that evD = µ2. Using this fact and the monad laws we have evD ◦ η[0,1] = µ2 ◦ ηD2 =
idDX = id[0,1] and also evD ◦ µ[0,1] = µ2 ◦ µD2 = µ2 ◦Dµ2 = evD ◦DevD. Moreover, since we
always have optimal couplings, we have compositionality for DD by Theorem 3.2. Thus by
Theorem 4.2 η is an isometry and µ nonexpansive.

5 Trace Metrics in Eilenberg-Moore

As mentioned in the introduction, trace semantics can be characterized by means of coalgebras
either over Kleisli [17, 11] or over Eilenberg-Moore [20, 14] categories. We focus on the latter
approach. We first recall the basic notions of Eilenberg-Moore algebras and distributive laws,
and discuss how the results in the paper can be used to “lift” the associated determinization
construction. This is then applied to derive trace metrics for nondeterministic automata and
probabilistic automata, by relying on suitable liftings of the machine functor.
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5.1 Generalized Powerset Construction
An Eilenberg-Moore algebra for a monad (T, η, µ) is a C-arrow a : TA→ A making the left
and middle diagram below commute. Given two such algebras a : TA→ A and b : TB → B,
a morphism from a to b is a C arrow f : A→ B making the right diagram below commute.

A TA T 2A TA TA TB

A TA A A B

ηA

a

µA

aTc

a

Tf

ba

f

Eilenberg-Moore algebras and their morphisms form a category denoted by EM(T ). A
functor F̂ : EM(T ) → EM(T ) is called a lifting of F : C → C to EM(T ) if UT F̂ = FUT ,
with UT : EM(T )→ C the forgetful functor. A natural transformation λ : TF ⇒ FT is an
EM-law (also called distributive law) if it satisfies:

F F T 2F TFT FT 2

TF FT TF FT

ηF Fη

λ

Tλ λT

µF

λ

Fµ

Liftings and EM-laws are related by the following folklore result (see e.g. [13]).

I Proposition 5.1. There is a bijective correspondence between EM-laws and liftings to
EM-categories.

EM-laws and liftings are crucial to characterize trace semantics via coalgebras. Given
a coalgebra c : X → FTX, for a functor F and a monad (T, η, µ) such that there is a
distributive law λ : TF ⇒ FT , one can build an F -coalgebra as

c] :=
(
TX TFTX FTTX FTX

)Tc λTX FµX

If there exists a final F -coalgebra ω : Ω → FΩ, one can define a semantic map for the
FT -coalgebra c into Ω. First let [[− ]] : TX → Ω be the unique coalgebra morphism from c].
Then take the map [[− ]] ◦ η : X → Ω.

X TX Ω

FTX TΩ

η [[− ]]

c ω

F [[− ]]

c]

One can readily check that c] is an algebra map from the T -algebra µX to F̂ µX , namely it is
an F̂ -coalgebra or, equivalently, a λ-bialgebra [21, 15]. Similarly for ω, Ω carries a T -algebra
structure obtained by finality and hence the final F -coalgebra ω can be lifted in order to
obtain the final F̂ -coalgebra (see [13, Prop. 4]).

This result holds for arbitrary categories and, in particular, we can reuse it for our
setting: we only need an EM-law on PMet. Note that Theorem 4.1 not only provides
sufficient conditions for monad liftings but also can be exploited to lift EM-laws. Indeed the
additional commutativity requirements for EM-laws trivially hold when all components are
nonexpansive.
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I Corollary 5.2 (Lifting of an EM-law). Let F,G be weak pullback preserving endofunctors
on Set with well-behaved evaluation functions evF , evG and λ : FG⇒ GF be an EM-law.
If the evaluation functions satisfy evG ◦ GevF ◦ λ[0,>] ≤ evF ◦ FevG and compositionality
holds for FG, then λ is nonexpansive and hence λ : F G⇒ GF is also an EM-law.

We will now consider EM-laws for nondeterministic and probabilistic automata. In
the first case, T is the powerset monad Pfin and F is the machine functor M2 = 2 × _A,
while in the second case T is the distribution monad D and F is the machine functor
M[0,1] = [0, 1] × _A. Note however that while in the first case Theorem 5.2 is directly
applicable, this is not true in the second case, since we need to deal with multifunctors.

I Example 5.3 (EM-law for Nondeterministic Automata). Let (Pfin, η, µ) be the finite powerset
monad from Theorem 4.3. The EM-law λ : Pfin(2×_A)⇒ 2× Pfin(_)A is defined, for any
set X, as

λX(S) =
(
o, λa ∈ A. {s′(a) | (o′, s′) ∈ S}

)
, where o =

{
1 ∃s′ ∈ XA.(1, s′) ∈ S
0 else

.

This is exactly the one exploited for the standard powerset construction from automata
theory [20]. Indeed, for a nondeterministic automaton c : X → 2×Pfin(X)A, the map [[− ]]◦ηX
assigns to each state its accepted language. Theorem 5.2 ensures that it is nonexpansive (see
the extended version [arXiv:1505.08105] for a detailed proof).

I Example 5.4 (EM-law for Probabilistic Automata). Let (D, η, µ) be the distribution monad
from Theorem 4.4 and M be the machine bifunctor from Theorem 3.5. There is a known [20]
EM-law λ : D([0, 1]×_A)⇒ [0, 1]×DA given by the assignment

λX(P ) =

 ∑
r∈[0,1]

r · P (r,XA), λa ∈ A.λx ∈ X.
∑

s∈XA, s(a)=x

P ([0, 1], s)


Also this EM-law is nonexpansive, as shown in the extended version [arXiv:1505.08105].

Any FT -coalgebra c : X → FTX can always be regarded as an F T -coalgebra by equipping
X with the discrete metric assigning > to non equal states (in this way, c is trivially
nonexpansive). The consequence of the nonexpansiveness of the EM-law λ is the following:
the “generalized determinization” procedure for nondeterministic and probabilistic automata
can now be lifted to pass from F T -coalgebras to F̂ -coalgebras in EM(T ) by using the upper
adjunction in the diagram below (analogously to [13, 14]).

PMet EM(T )

Set EM(T )

U V

LT

UT

LT

UT

F

F

F̂

F̂

Since we can also lift the final F -coalgebra to EM(T ), we can use it to define trace distance.
This procedure is detailed in the next section.
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5.2 Final Coalgebra for the Lifted Machine Functor
If we fix the first component of the machine bifunctor M on Set we obtain an endofunctor
MB : Set→ Set, MB(X) = B×_A. It is known [16] that the final coalgebra for this functor
is κ : BA∗ → B×(BA∗)A with κ(t) = (t(ε), λa ∈ A.λw ∈ A∗.t(aw)). We employ an analogous
construction with our lifted machine bifunctor M on PMet, i.e. we fix a pseudometric space
(B, dB) of outputs and consider coalgebras of the functor M (B,dB) := M((B, dB),_). To
obtain the final coalgebra for this functor in PMet, we use the following result from [2].

I Proposition 5.5 ([2, Thm. 6.1]). Let F : PMet → PMet be a lifting of a functor
F : Set → Set which has a final coalgebra κ : Ω → FΩ. For every ordinal i we construct
a pseudometric di : Ω × Ω → [0,>] as follows: d0 := 0 is the zero pseudometric, di+1 :=
dFi ◦ (κ × κ) for all ordinals i and dj = supi<j di for all limit ordinals j. This sequence
converges for some ordinal θ, i.e., dθ = dFθ ◦ (κ× κ). Moreover κ : (Ω, dθ) 1→ (FΩ, dFθ ) is the
final F -coalgebra.

It is hence enough to do fixed-point iteration for the functor F on the determinized state
set TX in order to obtain trace distance. The lifted monad is ignored at this stage, but its
lifting is of course necessary to establish the Eilenberg-Moore category and its adjunction.

We now consider our two examples, where in both cases F is the machine functor MB

(for two different choices of B):

I Example 5.6 (Final Coalgebra Pseudometric). Let M be the machine bifunctor.
1. We start with nondeterministic automata where the output set is B = 2 and we use the

discrete metric d2 as distance on 2 as in Theorem 3.6. As maximal distance we take
> = 1 and as evaluation function we use evM (o, s) = c ·maxa∈A s(a) for 0 < c < 1.
For any pseudometric d on 2A∗ – the carrier of the final M2-coalgebra – we know
that for elements (o1, s1), (o2, s2) ∈ 2 × (2A∗)A we have the Wasserstein pseudomet-
ric d ↓F

(
(o1, s1), (o2, s2)

)
= max

{
d2(o1, o2), c ·maxa∈A d

(
s1(a), s2(a)

)}
. Thus the fixed-

point equation from Theorem 5.5 is, for L1, L2 ∈ 2A∗ ,

d(L1, L2) = max
{
d2
(
L1(ε), L2(ε)

)
, c ·max

a∈A
d
(
λw.L1(aw), λw.L2(aw)

)}
Now because d2 is the discrete metric with d2(0, 1) = 1 we see that d2A∗ as defined below
is indeed the least fixed-point of this equation and thus (2A∗

, d2A∗ ) is the carrier of the
final M2-coalgebra.

d2A∗ : 2A
∗
× 2A

∗
→ [0, 1], d2A∗ (L1, L2) = cinf{n∈N|∃w∈An.L1(w)6=L2(w)} .

A determinized coalgebra has as carrier set sets of states P(X). Each of these sets
is mapped to the language that it accepts and the distance between two languages
L1, L2 : A∗ → 2 can be determined by looking for a word w of minimal length which is
contained in one and not in the other. Then, the distance is computed as c|w|. This
corresponds to the standard ultrametric on words.

2. Next we consider probabilistic automata where B = [0, 1] equipped with the standard
Euclidean metric de.
Furthermore the remaining parameters are set as follows: let > = 1 and the evaluation
function is evM (o, s) = c1o+ c2|A|−1∑

a∈A s(a) for c1, c2 ∈ (0, 1) such that c1 + c2 ≤ 1
as in Theorem 3.5. This time, the machine functor must be lifted as a bifunctor in order
to obtain the appropriate distance (cf. the discussion before Theorem 2.10).
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For any pseudometric d on [0, 1]A∗ we know that for (r1, s1), (r2, s2) ∈ [0, 1]×([0, 1]A∗)A we
have d ↓F ((r1, s1), (r2, s2)) = c1|r1− r2|+ c2

|A| ·
∑
a∈A d(s1(a), s2(a)). Thus the fixed-point

equation from Theorem 5.5 is, for p1, p2 ∈ [0, 1]A∗ :

d(p1, p2) = c1|p1(ε)− p2(ε)|+ c2

|A|
·
∑
a∈A

d
(
λw.p1(aw), λw.p2(aw)

)
It is again easy to see that d[0,1]A∗ : [0, 1]A∗ × [0, 1]A∗ → [0, 1] as presented below is the
least fixed-point of this equation and therefore ([0, 1]A∗

, d[0,1]A∗ ) the carrier of the final
M ([0,1],de)-coalgebra.

d[0,1]A∗ (p1, p2) = c1 ·
∑
w∈A∗

(
c2

|A|

)|w|
|p1(w)− p2(w)| .

Here, a determinized coalgebra has as carrier distributions on states D(X). Each such
distribution is mapped to a function p : A∗ → [0, 1] assigning numerical values to words.
Then the distance, which can be thought of as a form of total variation distance with
discount, is computed by the above formula.
If instead of working in the interval [0, 1] we use [0,∞] with > = ∞, we can drop the
conditions c1, c2 < 1 and c1 + c2 ≤ 1. In this case we may set c2 := |A| and c1 := 1/2
and then the above distance is equal to the total variation distance, i.e.,

d[0,∞]A∗ (p1, p2) = 1
2 ·

∑
w∈A∗

|p1(w)− p2(w)| .

6 Conclusion, Related and Future Work

In the last years, an impressive amount of papers has studied behavioral distances for both
probabilistic and nondeterministic systems (see, e.g., [10, 7, 23, 1, 5, 6, 8]). The necessity of
a general understanding of such metrics is not a mere intellectual whim but it is perceived
also by researchers exploiting distances for differential privacy and quantitative information
flow (see for instance [4]). As far as we know, the first use of coalgebras for this purpose
dates back to [23], where the authors consider systems and distance for a fixed endofunctor
on PMet. In [2], we introduced the Kantorovich and Wasserstein approaches as a general
way to define “canonical liftings” to PMet and behavioral distances by finality. These are
usually branching-time, while many properties of interest for applications (see again [4])
are usually expressed by means of distances on set of traces. In this paper, we have shown
that the work developed in [2] can be fruitfully combined with [14] to obtain various trace
distances.

Among the several trace distances introduced in literature, it is worth to mention [1, 5, 6, 8].
Similar to the trace distance we obtain in Theorem 5.6 for probabilistic automata is the
one introduced in [1] for Semi-Markov chains with residence time. In [5, 6], both branching-
time and linear-time distances are introduced for metric transition systems, namely Kripke
structures where states are associated with elements of a fixed (pseudo-)metric space M ,
that would correspond to coalgebras of the form X → M × P(X). In [2], we have shown
an example capturing branching-time distance for metric transition systems, but for linear
distances we require a distributive law of the form P(M ×_)⇒M × P(_), for which we
would need at least M carrying an algebra for the monad P. We also plan to investigate
trace metrics in a Kleisli setting [11], where it might be easier to incorporate such examples.
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There are two other direct consequences of our work that we did not explain in the
main text, but that are important properties of the distances that we obtain (and, indeed,
are mentioned in [4] amongst the desiderata for “good” metrics). First, the behavioral
branching-distance for F T provides an upper bound to the linear-distance F , analogously to
the well-known fact that bisimilarity implies trace equivalence. To see this, it is enough to
observe that there is a functor from the category of F T -coalgebras to the one of F -coalgebras
mapping c : X → F TX into c] : TX → F TX.

Second, since the final map [[− ]] is a morphism in EM(T ), the behavioral distance for F
is nonexpansive w.r.t. the operators of the monad T . Nonexpansiveness with respect to some
operators is a desirable property which has been studied, for instance in [7], as a generalization
of the notion of being a congruence for behavioral equivalence. Several researchers are now
studying syntactic rule formats ensuring this and other sorts of compositionality (see e.g. [9]
and the references therein) and we believe that our Theorem 5.2 may provide some helpful
insights.

In this perspective, however, our results are still unsatisfactory if compared to what
happens in the case of behavioral equivalences. From a fibrational point of view, one has
a canonical lifting to Rel (the category of relations and relation preserving morphisms)
such that compositionality holds on the nose and distributive laws always lift [12, Exercise
4.4.6]. The forgetful functor U : PMet→ Set is also a fibration [2], but Kantorovich and
Wasserstein liftings are not always so well-behaved. Fibrations might be useful also to
guarantee soundness of up-to techniques [3] for behavioral distances that, hopefully, will lead
to more efficient proofs and algorithms.

Another interesting future work would be to show that Kantorovich and Wasserstein
liftings arise from some universal properties, i.e., that they are the smallest and largest metric
in some continuum of metrics with certain properties. Here we would like to draw inspiration
from [22] which characterizes the Giry monad via a universal property on monad morphisms.

Finally, we would like to have an abstract understanding of the Kantorovich-Rubinstein
duality. Preliminary attempts suggest that this is very difficult: indeed the proof for the
probabilistic case relies on specific properties of distributions.
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