7,358 research outputs found

    Trace Inclusion for One-Counter Nets Revisited

    Get PDF
    One-Counter nets (OCN) consist of a nondeterministic finite control and a single integer counter that cannot be fully tested for zero. They form a natural subclass of both One-Counter Automata, which allow zero-tests and Petri Nets/VASS, which allow multiple such weak counters. The trace inclusion problem has recently been shown to be undecidable for OCN. In this paper, we contrast the complexity of two natural restrictions which imply decidability. First, we show that trace inclusion between an OCN and a deterministic OCN is NL-complete, even with arbitrary binary-encoded initial counter-values as part of the input. Secondly, we show Ackermannian completeness of for the trace universality problem of nondeterministic OCN. This problem is equivalent to checking trace inclusion between a finite and a OCN-process

    Verification for Timed Automata extended with Unbounded Discrete Data Structures

    Full text link
    We study decidability of verification problems for timed automata extended with unbounded discrete data structures. More detailed, we extend timed automata with a pushdown stack. In this way, we obtain a strong model that may for instance be used to model real-time programs with procedure calls. It is long known that the reachability problem for this model is decidable. The goal of this paper is to identify subclasses of timed pushdown automata for which the language inclusion problem and related problems are decidable

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    The Context-Freeness Problem Is coNP-Complete for Flat Counter Systems

    Get PDF
    International audienceBounded languages have recently proved to be an important class of languages for the analysis of Turing-powerful models. For instance, bounded context-free languages are used to under-approximate the behav-iors of recursive programs. Ginsburg and Spanier have shown in 1966 that a bounded language L ⊆ a * 1 · · · a * d is context-free if, and only if, its Parikh image is a stratifiable semilinear set. However, the question whether a semilinear set is stratifiable, hereafter called the stratifiability problem, was left open, and remains so. In this paper, we give a partial answer to this problem. We focus on semilinear sets that are given as finite systems of linear inequalities, and we show that stratifiability is coNP-complete in this case. Then, we apply our techniques to the context-freeness problem for flat counter systems, that asks whether the trace language of a counter system intersected with a bounded regular language is context-free. As main result of the paper, we show that this problem is coNP-complete

    Hang With Your Buddies to Resist Intersection Attacks

    Full text link
    Some anonymity schemes might in principle protect users from pervasive network surveillance - but only if all messages are independent and unlinkable. Users in practice often need pseudonymity - sending messages intentionally linkable to each other but not to the sender - but pseudonymity in dynamic networks exposes users to intersection attacks. We present Buddies, the first systematic design for intersection attack resistance in practical anonymity systems. Buddies groups users dynamically into buddy sets, controlling message transmission to make buddies within a set behaviorally indistinguishable under traffic analysis. To manage the inevitable tradeoffs between anonymity guarantees and communication responsiveness, Buddies enables users to select independent attack mitigation policies for each pseudonym. Using trace-based simulations and a working prototype, we find that Buddies can guarantee non-trivial anonymity set sizes in realistic chat/microblogging scenarios, for both short-lived and long-lived pseudonyms.Comment: 15 pages, 8 figure

    Sequentiality vs. Concurrency in Games and Logic

    Full text link
    Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic.Comment: 35 pages, appeared in Mathematical Structures in Computer Scienc

    Determinization of One-Counter Nets

    Get PDF
    One-Counter Nets (OCNs) are finite-state automata equipped with a counter that is not allowed to become negative, but does not have zero tests. Their simplicity and close connection to various other models (e.g., VASS, Counter Machines and Pushdown Automata) make them an attractive model for studying the border of decidability for the classical decision problems. The deterministic fragment of OCNs (DOCNs) typically admits more tractable decision problems, and while these problems and the expressive power of DOCNs have been studied, the determinization problem, namely deciding whether an OCN admits an equivalent DOCN, has not received attention. We introduce four notions of OCN determinizability, which arise naturally due to intricacies in the model, and specifically, the interpretation of the initial counter value. We show that in general, determinizability is undecidable under most notions, but over a singleton alphabet (i.e., 1 dimensional VASS) one definition becomes decidable, and the rest become trivial, in that there is always an equivalent DOCN
    corecore