

Edinburgh Research Explorer

Trace Inclusion for One-Counter Nets Revisited

Citation for published version:
Hofman, P & Totzke, P 2014, Trace Inclusion for One-Counter Nets Revisited. in J Ouaknine, I Potapov & J
Worrell (eds), Reachability Problems: 8th International Workshop, RP 2014, Oxford, UK, September 22-24,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8762, Springer International Publishing, Cham,
pp. 151-162. DOI: 10.1007/978-3-319-11439-2_12

Digital Object Identifier (DOI):
10.1007/978-3-319-11439-2_12

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Reachability Problems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/43719545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-11439-2_12
https://www.research.ed.ac.uk/portal/en/publications/trace-inclusion-for-onecounter-nets-revisited(172dbc6c-d3ec-49f8-bd3c-4f44bebadf12).html

Trace Inclusion for One-Counter Nets Revisited

Piotr Hofman1 and Patrick Totzke2

1 University of Bayreuth, Germany
2 LaBRI, Univ. Bordeaux & CNRS, France

Abstract. One-counter nets (OCN) consist of a nondeterministic finite
control and a single integer counter that cannot be fully tested for zero.
They form a natural subclass of both One-Counter Automata, which
allow zero-tests and Petri Nets/VASS, which allow multiple such weak
counters. The trace inclusion problem has recently been shown to be
undecidable for OCN. In this paper, we contrast the complexity of two
natural restrictions which imply decidability.
We show that trace inclusion between a OCN and a deterministic OCN is
NL-complete, even with arbitrary binary-encoded initial counter-values
as part of the input. Secondly, we show that the the trace universality
problem of nondeterministic OCN, which is equivalent to checking trace
inclusion between a finite and a OCN-process, is Ackermann-complete.

1 Introduction

A fundamental question in formal verification is if the behaviour of one process
can be reproduced by – or equals that of – another given process. These inclu-
sion and equivalence problems, respectively have been studied for various notions
of behavioural preorders and equivalences and for many computational models.
Trace inclusion/equivalence asks if the set of traces, all emittable sequences of
actions, of one process is contained in/equal to that of another. Other than for
instance Simulation preorder, trace inclusion lacks a strong locality of failures,
which makes this problem intractable or even undecidable already for very lim-
ited models of computation.

We consider one-counter nets, which consist of a finite control and a single
integer counter that cannot be fully tested for zero, in the sense that an empty
counter can only restrict possible moves. They are subsumed by One-counter
automata (OCA) and thus Pushdown Systems, which allow explicit zero-tests
by reading a bottom marker on the stack. At the same time, OCN are a subclass
of Petri Nets or Vector Addition Systems with states (VASS): they are exactly
the one-dimensional VASS and thus equivalent to Petri Nets with at most one
unbounded place.

Related work. Valiant and Paterson [16] show the decidability of the trace
equivalence problem for deterministic one-counter automata (DOCA). This prob-
lem has recently been shown to be NL-complete by Böhm, Göller, and Jančar
[2], assuming fixed initial counter-values. The equivalence of deterministic push-
down automata is known to be decidable [12] and primitive recursive [13, 8], but
the exact complexity is still open.

2 Piotr Hofman and Patrick Totzke

Valiant [15] proves the undecidability of both trace inclusion for DOCA and
universality for nondeterministic OCA. Jančar, Esparza, and Moller [10] consider
trace inclusion between Petri Nets and finite systems and prove decidability in
both directions. Jančar [9] showed that trace inclusion becomes undecidable if
one compares processes of Petri Nets with at least two unbounded places. In [7],
the authors show that trace inclusion is undecidable already for (nondetermin-
istic) one-counter nets. Simulation preorder however, is known to be decidable
and PSPACE-complete for this model [1, 11, 6], which implies a PSPACE upper
bound for trace inclusion on DOCN as trace inclusion and simulation coincide
for deterministic systems.

Higuchi, Wakatsuki, and Tomita [5] compare the classes of languages defined
by DOCN with various acceptance modes and consider the respective inclusion
problems. They derive procedures that exhaustively search for a bounded witness
that work in time and space polynomial in the size of the automata if the initial
counter-values are fixed. We show that for monotone relations like trace inclusion
or the inclusion of languages defined by acceptance with final states, it suffices
to search for witnesses in a particular compact representation.

Our contribution. We fix the complexity of two well-known decidable decision
problems regarding the traces of one-counter processes. We show that trace
inclusion between deterministic OCNs is NL-complete. Our upper bound holds
even if only the supposedly larger process is deterministic and if (binary encoded)
initial counter-values are part of the input. We use short certificates for the
existence of (possibly long) distinguishing traces. The sizes of certificates are
polynomial in the number of states of the finite control and they can be verified
in space logarithmic in the binary representation of the initial counter-values.

Our second result is that trace universality of nondeterministic OCN is
Ackermann-complete. This problem is (logspace) inter-reducible with checking
trace inclusion between a finite process and a process of a OCN.

2 Background

We write N for the set of non-negative integers. For any set A, let A∗ denote the
set of finite strings over A and ε ∈ A∗ the empty string.

Definition 1 (One-Counter Nets). A one-counter net (OCN) is given as
triple N = (Q,Act , δ) where Q is a finite set of control states, Act is a finite set
of action labels and δ ⊆ Q × Act × {−1, 0, 1} × Q is a set of transitions, each

written as p
a,d−→p′. A process of N consists of a state p ∈ Q and a counter-value

m ∈ N. We will simply write pm for such a pair. Processes can evolve according
to the transition rules of the net: For any a ∈ Act, p, q ∈ Q and m,n ∈ N there

is a step pm
a−→qn iff there exists (p

a,d−→q) ∈ δ such that

n = m+ d ≥ 0. (1)

The net N is deterministic (a DOCN) if for every p ∈ Q and a ∈ Act, there
is at most one transition (p, a, d, q) ∈ δ. It is complete if for every p ∈ Q and
a ∈ Act at least one transition (p, a, d, q) ∈ δ exists.

Trace Inclusion for One-Counter Nets Revisited 3

Definition 2 (Traces). Let pm be a process of the OCN N . The traces of pm
are the elements of the set

TN (pm) = {a1a2 . . . ak ∈ Act∗ | ∃qn pm a0−→ ◦ a1−→ ◦ · · · ◦ ak−→qn}.

We will omit the index N if it is clear from the context. Trace inclusion is the
decision problem that asks if TA(pm) ⊆ TB(p′m′) holds for given processes pm
and p′m′ of nets A and B, respectively. Trace universality asks if Act∗ ⊆ T (pm)
holds for a given process pm.

An important property of one-counter nets is that the step relation and
therefore also trace inclusion is monotone with respect to the counter:

Lemma 1 (Monotonicity). If pm
a−→p′m′ then p(m+ 1)

a−→p′(m′+ 1). This
in particular means that T (pm) ⊆ T (p(m+ 1)) holds for any OCN-process pm.

Remark 1. In this paper we consider what are sometimes called realtime au-
tomata, in which no silent (ε-labelled) transitions are present. This is no restric-
tion: the usual syntactic requirement for DPDA, that no state with outgoing
ε-transition may have outgoing transitions labelled by a 6= ε, together with the
monotonicity of steps in OCN, implies that all states on ε-cycles are essentially
deadlocks. One can thus eliminate ε-labelled transitions in logarithmic space.

We will w.l.o.g. assume input nets in a certain form, justified by the next
lemma. A pair A,B of OCNs is in normal form if A is deterministic and B is
complete. The proof is a simple construction and can be found in Appendix A.

Lemma 2 (Normal Form). Given OCNs A and B with state sets N and M ,
one can in logarithmic space construct nets A′,B′ in normal form, with states
N and M ′ ⊇M , respectively, such that for all (p, n, q,m) ∈ N × N×M × N

TA(pm) ⊆ TB(qn) ⇐⇒ TA′(pm) ⊆ TB′(qn). (2)

Moreover, the constructed net B′ is deterministic if the original net B is.

Due to the undecidability of trace inclusion for OCN [7], a direct consequence
of Lemma 2 is that TA(pm) ⊆ TB(qn) is already undecidable if we allow the net
B to be nondeterministic. Unless otherwise stated, we will from now on assume
a DOCN A = (QA,Act , δA) and a complete DOCN B = (QB ,Act , δB).

3 Trace Inclusion for Deterministic One-Counter Nets

We characterize witnesses for non-inclusion TA(pm) 6⊆ TB(qn), starting with
some notation to express paths and their effects.

Definition 3 (OCN Paths). Let N = (Q,Act , δ) be a OCN and t = (p, a, d, p′) ∈
δ. We write source(t) = p, target(t) = p′ and ∆(t) = d for its source and target
states and effect, respectively. A path in N is a sequence π = t0t1 . . . tk ∈ δ∗

4 Piotr Hofman and Patrick Totzke

of transitions where target(ti) = source(ti+1) for every i < k. Let iπ denote its
prefix of length i. The effect ∆(π) and guard Γ(π) of π are

∆(π) =

k∑
i=0

∆(ti) and Γ(π) = −min{∆(iπ) | 0 ≤ i ≤ k}.

The path π is enabled in process pm (write pm
π−→) if Γ(π) ≤ m. We write

pm
π−→p′m′ if π takes pm to p′m′, i.e., if pm

π−→, target(π) = p′ and m′ =
m+∆(π).

The guard Γ(π) is the minimal counter-value that is sufficient to traverse
the path π while maintaining a non-negative counter-value along the way. This
value is always non-negative. Notice that the absolute values of the effect and
guard of a path are bounded by its length. We consider the synchronous product
of the control graphs of two given deterministic one-counter nets.

Definition 4 (Products). The product of nets A and B is the finite graph
with nodes V = QA × QB and (Act × {−1, 0, 1} × {−1, 0, 1})-labelled edges E,
where

(p, q)
a,dA,dB−−−−−→ (p′, q′) ∈ E iff p

a,dA−−−→ p′ ∈ δA and q
a,dB−−−→ q′ ∈ δB.

A path in the product is a sequence π = T0T1 · · ·Tk ∈ E∗ and defines paths πA
and πB in nets A and B, respectively. It is enabled in (pm, qn) if πA and πB are

enabled in pm and qn, respectively. In this case we write (pm, qn)
π−→(p′m′, q′n′)

to mean that pm
πA−→p′m′ and qn

πB−→q′n′. We lift the definitions of source and
target nodes to paths in the product: source(π) = (source(πA), source(πB)) ∈
V , target(π) = (target(πA), target(πB)) ∈ V . Moreover, write ∆A(π), ∆B(π),
ΓA(π) and ΓB(π) for the effects and guards of π in nets A and B, respectively.

Since both A and B are deterministic and B is complete, Due to our normal
form assumption, a trace w ∈ TA(pm) uniquely determines a path from state
(p, q) in their product. We therefore identify witnesses for non-inclusion with the
paths they induce in the product.

Definition 5 (Witnesses). Assume TA(pm) 6⊆ TB(qn) for processes pm and
qn of A and B. A witness for (pm, qn) is a path π in the product of A and B
such that (pm, qn)

π−→(p′m′, q′n′) and for some a ∈ Act, p′m′
a−→ but q′n′ 6 a−→ .

Every witness π for (pm, qn) completely exhausts the counter in the process of

B: (pm, qn)
π−→(p′m′, q′0). This is because a process of a complete net can only

not make an a-step in case the counter is empty.

Example 1. Consider two nets given by self-loops p
a,0−→p and q

a,−1−→q, respec-

tively. Their product is the cycle L = (p, q)
a,0,−1−−−−→ (p, q) with effects ∆A(L) =

0 and ∆B(L) = −1. The only witness for (pm, qn) for initial counter-values
m,n ∈ N is Ln, which has length polynomial in the sizes of the nets and the
initial counter-values, but not in the sizes of the nets alone.

Trace Inclusion for One-Counter Nets Revisited 5

The previous example shows that if binary-encoded initial counter-values are
part of the input, we can only bound the length of shortest witnesses exponen-
tially. However, we will see that it suffices to consider witnesses of a certain
regular form only. This leads to small certificates for non-inclusion, which can
be stepwise guessed and verified in space logarithmic in the size of the nets.

A crucial ingredient for our characterization is the monotonicity of witnesses,
a direct consequence of the monotonicity of the steps in OCNs (Lemma 1):

Lemma 3. If π is a witness for (pm, qn) then for all m′ ≥ m and n′ ≤ n some
prefix of π is a witness for (pm′, qn′).

The intuition behind the further characterization of witnesses is that in order
to show non-inclusion, one looks for a path that is enabled in the process of A
and moreover exhausts the counter in the process of B. Since any sufficiently long
path will revisit control states in the product, we can compare such paths with
respect to their effect on the counters and see that some are “better” than others.
For instance, a cycle that only increments the counter in B and decrements the
one in A is surely suboptimal considering our goal to find a (shortest) witness.
The characterization Theorem 1 essentially states that if a witness exists, then
also one that, apart from short paths, combines only the most productive cycles.

Definition 6 (Loops). A non-empty path π in the product is called a cycle if
source(π) = target(π). Such a cycle is a loop if none of its proper subpaths is
a cycle. The slope of loop π is the ratio S(π) = ∆A(π)/∆B(π), where for n > 0
and k ∈ Z we let n/0 = ∞ > k, 0/0 = 0 and −n/0 = −∞ < k. Based on
the effect of a loop we distinguish four types of loops: (<,<), (>,≥), (≤,≥), and
(≥, <). The type of π is Type(π) = (J,I) iff ∆A(π) J 0 and ∆B(π) I 0.

Note that no loop is longer than |V | because it visits exactly one node twice.

Example 2. Consider two DOCN such that their product is the graph depicted
below, where we identify transitions with their action labels for simplicity and

v0

v1 v2

v3

t0, 1, 1

t1, 1, 0

t2, 1, 0

t3, 1, 1t4, 1, 0

v4
t5, 0, 0

t6,−1,−1

October 9, 2013 1

let v0 = (p, p′) ∈ V . The paths t0t1t2, t3t4
and t6 are loops with slopes 3/1, 2/1 and
1/1 and types (>,≥), (>,≥) and (<,<), re-
spectively. The path (t0t1t2)(t3t4)9t5(t6)20

is a witness for (p0, p′10) of length 42. By
replacing 8 occurrences of the loop (t3t4)
with (t0t1t2)8 we derive the longer witness
(t0t1t2)9(t3t4)t5(t6)20, which has essentially
the same structure but is more efficient in
the sense that for the same effect on B it achieves a higher counter-effect on A.

Theorem 1. Fix a DOCN A, a complete DOCN B, and let K ∈ N be the num-
ber of nodes in their product. There is a bound c ∈ N that depends polynomially
on K, such that the following holds for any two processes pm and qn of A and B.
If T (pm) 6⊆ T (qn), then there is a witness for (pm, qn) that is either no longer
than c or has one of the following forms:

6 Piotr Hofman and Patrick Totzke

1. π0L
l0
0 π1, where L0 is a loop of type (≥, <) and π0, π1 are no longer than c,

2. π0L
l0
0 π1L

l1
1 π2, where L0 and L1 are loops of type (>,≥) and (<,<) with

S(L0) > S(L1) and π0, π1, π2 are no longer than c,
3. π0L

l0
0 π1, where L0 is a loop of type (<,<) and π0, π1 are no longer than c,

where in all cases, the number of iterations l0, l1 ∈ N are polynomial in K and
the initial counter-values m and n of the given processes.

Proof (sketch). The overall idea of the proof is to explicitly rewrite witnesses
into one of the canonical forms of Theorem 1. More specifically, we introduce a
system of path-rewriting rules which simplify witnesses by removing, reducing or
changing some loops as in Example 2. We show that the rules preserve witnesses
and any sequence of successive rule applications must eventually terminate with
a normalized path, to which none of the rules is applicable. Such a witness can
be decomposed as

π = π0L
l0
0 π1L

l1
1 . . . πkL

lk
k πk+1 (3)

where the Li are (pairwise different) loops and the πi are short, i.e. polynomially
bounded in K. Moreover the rules are designed in such a way that almost all li
are polynomially bounded. By almost all we mean except one in the first and
third form of the witness or two in the witness of the second form. This means
that unravelling of those loops with polynomially bounded li and glueing them
with surrounding πi to get paths π0, π1, π2 does not blow up of the length of
π0, π1, π2 above polynomial bound c. ut

Notice that the bound c in the claim of Theorem 1 depends only on the
number of states. We now derive a decision procedure for trace inclusion that
works in logarithmic space. The NL lower bound already holds for the trace
inclusion problem of DFA, which can be shown by a streightforward reduction
from s-t-connectivity.

Theorem 2. Let pm and qn be processes of OCN A and DOCN B, respectively,
where m,n are given in binary. There is a nondeterministic algorithm that de-
cides T (pm) ⊆ T (qn) in logarithmic space.

Proof. Let A = (QA,Act , δA) and B = (QB,Act , δB), and let K ∈ N be the
number of states in their product. By Lemma 2, we can assume w.l.o.g. that A
is deterministic and B is complete and deterministic and so Theorem 1 applies.

If the initial counter-values are m = n = 0, Theorem 1 implies a polyno-
mial bound on the length of shortest witnesses. In that case, one can simply
stepwise guess and verify a witness, explicitly storing the intermediate processes
with binary encoded counter-values in logarithmic space. Such a procedure is
impossible with arbitrary initial counter-values as part of the input, because one
does not even have the space to memorize them.

For the general case, we argue that one can nondeterministically guess a
template (consisting of short paths) and verify in logspace that there is indeed
some witness that fits this template. Theorem 1 allows us to either guess a short
(≤ c ∈ poly(K)) witness or one of forms 1,2 or 3, together with matching short

Trace Inclusion for One-Counter Nets Revisited 7

paths πi, Li. The effect and guard of these paths are bounded by their lengths
and hence by c. This means O(logK) space suffices to stepwise compute the
binary representation of these values and verify that the conditions the form
imposes on the types and slopes of the loops are met. It remains to check if
exponents l0, l1 ∈ N exist, that complete the description of a witness π. To see
why these checks can be implemented in logarithmic space, first recall that one
can verify inequalities of the form

m ·A+B ≥ n · C +D (4)

in O(log(A+B+C+D)) space, if m,n ∈ N are given in binary (see Appendix B).
For templates of the first two forms, it suffices to check if m ≥ ΓA(π0L0),

because the type of L0 implies that ΓA(π0L
l
0) ≤ ΓA(π0L0) for all 1 < l ∈ N. This

means that the process pm of A can go to, and repeat the loop L0 arbitrarily
often. In case its effect in B is negative (in templates of form 1), this immediately
implies the existence of a suitable l0. For templates of form 2) the existence of
l0, l1 ∈ N completing the description of a witness is guaranteed because the slope
of the first loop is bigger than that of the second.

For templates of the third kind recall that, because B is complete, a path
π = π0L

l0
0 π1 is a witness iff there is some edge T in the product such that

∆B(T) = −1 and both m ≥ ΓA(πT) and n + ∆B(πT) = −1. Equivalently, we
can write this as

m+∆A(π0L
l0
0) = m+∆A(π0) +∆A(L0) · l0 ≥ ΓA(π1T) and (5)

n+ 1 = −∆B(πT) = −∆B(π0)−∆B(L0) · l0 −∆B(π1T). (6)

Eliminating l0, we see that this is true iff

m+∆A(π0) +∆A(L0) · ∆B(π0) +∆B(π1) + n

−∆B(L0)
≥ ΓA(π1). (7)

Simplifying further we can bring this into the form m · A − n · B ≥ C where
A,B,C are polynomial in c. The condition can be checked in O(logK) space. ut

4 Universality of Nondeterministic One-Counter Nets

To contrast the result of the previous section we now turn to the problem of
checking trace inclusion between a finite process and a nondeterministic OCN.
This problem is known to be decidable, even for general Petri nets [10] and it
can be easily seen to be (logspace) inter-reducible with the trace universality
problem, because OCNs are closed under products with finite systems.

For OCN, trace universality can be decided using a simple well-quasi-order
based saturation method that determinizes the net on the fly. We will see that
this procedure is optimal: The problem is Ackermannian, i.e. it is non-primitive
recursive and lies exactly at level ω of the Fast Growing Hierarchy [4].

Let N⊥ be the set of non-negative integers plus a special least element ⊥
and let max be the total function that returns the maximal element of any

8 Piotr Hofman and Patrick Totzke

nonempty finite subset and ⊥ otherwise. Consider a set S ⊆ Q×N of processes
of a OCN N = (Q,Act , δ). We lift the definition of traces to sets of processes in
the natural way: the traces of S are T (S) =

⋃
qn∈S T (qn). By the monotonicity

of trace inclusion (Lemma 1), the traces of a finite set of processes are determined
only by the traces of its maximal elements.

Definition 7. Let Q = {q1, q2, . . . , qk} be the states-set of some OCN. For a
finite set S ⊆ Q × N define the macrostate as the vector MS ∈ Nk⊥ where
for each 0 < i ≤ k, MS(i) = MS(qi) = max{n | qin ∈ S}. In particular,
the macrostate for a singleton set S = {qin} is the vector with value n at the
i-th coordinate and ⊥ on all others. The norm of a macrostate M ∈ Nk⊥ is

|M |∞ = max{M(i) | 0 < i ≤ k}. We define a step relation
a

=⇒ for all a ∈ Act
on the set of macrostates as follows:

(n1, n2, . . . , nk)
a

=⇒(m1,m2, . . . ,mk) (8)

iff mi = max{n | ∃nj 6= ⊥. qjnj
a−→qin} for all 0 < i ≤ k. The traces of

macrostate M are T (M) =
⋃

0<i≤k T (qiM(i)), where T (q⊥) = ∅. For two
macrostates M,N we say M is covered by N and write M v N , if it is point-
wise smaller, i.e., M(i) ≤ N(i) for all 0 < i ≤ k. For convenience, we will
write {q1 = n1, q2 = n2, . . . , ql = nl} for the macrostate with value M(i) = ni
whenever qi = ni is listed and ⊥ otherwise.

Steps on macrostates correspond to the classical powerset construction and
each macrostate represents the finite set of possible processes the OCN can be
in, where all non-maximal ones (w.r.t. their counter-value) are pruned out.

The next lemma directly follows from these definitions and monotonicity
(Lemma 1).

Lemma 4.

1. The covering-order v is a well-quasi-order on Nk⊥, the set of all macrostates.
Moreover, M v N implies T (M) ⊆ T (N).

2. If M
a

=⇒N then |N |∞ ≤ |M |∞ + 1.
3. For any finite set S ⊆ Q× N it holds that T (S) = T (MS).

Dealing with macrostates allows us to treat universality as a reachability
problem: By point 3 of Lemma 4 we see that a process qn is not trace universal,
Act∗ 6= T (qn), if and only if M{qn}=⇒∗ (⊥,⊥, . . . ,⊥). We take the perspective

of a pathfinder, whose goal it is to reach (⊥)k.
We can decide universality by stepwise guessing a shortest terminating path

from the initial macrostate, and thus a witness for non-universality. Whenever
we see a macrostate that covers one of its predecessors, we can safely discard
this candidate, because omitting the intermediate path would result in a shorter
witness by Lemma 4.1.

We show non-primitive recursiveness by reduction from the control state
reachability problem for incrementing counter machines [3, 4].

Trace Inclusion for One-Counter Nets Revisited 9

Definition 8 (Counter machines). A (Minsky)-counter machine (CM) is an
automaton with a finite set of states Q, finitely many counters C1, C2, . . . , Ck,
and transitions are of the form Q × Act × Q where Act is {inc,dec, ifz} ×
{1, 2, . . . , k}. A configuration of such a CM consists of a state and a valuation
of the counters. Performing a transition (p, (op, i), q) changes a configuration
precisely: the state changes from p to q and we make operation op on the counter
ci, where inc,dec and ifz mean increment, decrement and zero-test, respectively.
Such a step is forbidden if the requested operation is dec and the value of ci is
0, or if ci > 0 and the operation is ifz.

An incrementing counter machine (ICM) is a CM in which counters can
spontaneously increment without performing any transitions. Such increments
we call incrementing errors. Control state reachability is the decision problem
that asks if there is a run of a given CM from an initial configuration to some
given state qf ∈ Q.

Our reduction is based on the following simple observation. Consider a OCN

N = (Q,Act , δ) that contains a universal state u: it has self-loops u
a,0−→u ∈ δ

for every action a ∈ Act . A Pathfinder who wants to prove non-universality
must avoid macrostates with M(u) 6= ⊥, because no continuation of a path
leading to such a macrostate can be a witness. We can use this idea to construct
macrostates that prevent Pathfinder from making certain actions.

Definition 9 (Obstacles). Let S ⊆ Act be a set of actions in a OCN that

contains a universal state u. A state q ∈ Q is called an S-obstacle if q
a,0−→u ∈ δ

for all actions a ∈ S. We say q ignores S, if q
a,0−→q ∈ δ for all a ∈ S.

Note that if a macrostate contains an S-obstacle, then Pathfinder must avoid
all actions of S. In order to remove an obstacle, Pathfinder must play an action
that is not the label of any of its incoming transitions.

Theorem 3. Trace universality for OCN is not primitive recursive.

Proof. By reduction (using logspace) from the control state reachability problem
for ICM, which has non-primitive recursive complexity [3]. We construct a OCN-
process Init(0) that is not universal iff a given ICM reaches a final state from its
initial configuration. The idea is to enforce a faithful simulation of the ICM by
pathfinder, who wants to show non-universality of the OCN by stepwise rewriting
the initial macrostate {Init = 0} to the all-bottom-macrostate ⊥l.

We construct a OCN N which has a unique action for every transition of the
ICM, as well as actions τi that indicate incrementing errors for every counter ci,
and actions] and $ to mark the beginning and end of a run, respectively. This
way we make sure there is a strict correspondence between words and ICM-runs.
The states of N are

– a new initial state Init and a universal state u,
– a state qi for every state qi of the ICM,
– a state Ci for every counter ci of the ICM,

10 Piotr Hofman and Patrick Totzke

– a state z, which ignores every action but the end marker $. State z will be
used to access the constant 0.

A configuration q(c1, c2, . . . , ck) of the ICM is represented by a macrostate
{q = 0, z = 0, C1 = c1, C2 = c2, . . . , Ck = ck}. We will define the transitions of
N such that the only way for Pathfinder to reach ⊥l is by rewriting the initial
macrostate {Init = 0} to the one representing the initial ICM configuration and
then to stepwise announce the transitions of an accepting run of the ICM. Using
the idea of obstacles, we define the rules of the net N so that the only way
Pathfinder can avoid the universal state u and reach the macrostate ⊥l is by
first transforming the initial macrostate {Init = 0} to the one that represents
the initial ICM configuration and then announcing transitions (as well as actions
demanding increment errors) of a valid and accepting run of the ICM.

Initialization. To set up M0 = {q0 = 0, z = 0, C0 = 0, C1 = 0, . . . , Ck = 0},
representing the initial ICM configuration, we add]-labelled transitions with
effect 0 from Init to q0, z and Ci for all 0 ≤ i ≤ k. Moreover, we make Init an
obstacle for every action but]. This way, Pathfinder has to play] as the first
move (and set up M0) in order to avoid a universal macrostate.

Finite control. For any transition t = q
(a,i)−→q′ of the ICM, we add a transition

q
t,0−→q′ to N that, in a macrostate-step, will replace the value 0 in dimension

q by ⊥ and introduce value 0 in dimension q′. Moreover, we make every state
q an obstacle for all actions announcing ICM-transitions not originating in q.
This prevents Pathfinder from announcing transitions from q unless the current
macrostate has M(q) = 0 and M(qi) = ⊥ for all qi 6= q.

Simulation of the Counters. Every transition operates on one of the counters
ci for 0 ≤ i ≤ k. Below we list the corresponding transitions in the OCN N
for this counter. Every state of N not explicitly mentioned ignores the action in
question. In the macrostate, the values of these states are therefore unchanged.

increments For ICM-transitions t that increase the ith counter, N contains a
t-labelled transition from state Ci to Ci with effect +1. Additionally, to deal
with spontaneous increment errors, there is a τi-labelled increasing self-loop
in state Ci. All other states ignore the τi.

decrements For ICM-transitions t that decrease the ith counter, N contains a
t-labelled transition from state Ci to Ci with effect −1.
This means that the next macrostate M could lose the value for this counter
and have M(Ci) = ⊥ if previously, the value was 0. In that case, the decre-
menting step from value 0 to value 0 is valid in the ICM because it can
first (silently) increment and then do the (visible) decrement step. In order
to avoid losing the state Ci in the macrostate, the OCN contains a tran-

sition z
t,0−→Ci from the constant-zero state z to state Ci. Recall that z is

present in the macrostate because z ignores every action except end marker
$. Consequently, no correctly set up macrostate will set M(Ci) = ⊥.

Trace Inclusion for One-Counter Nets Revisited 11

zero-tests For ICM-transitions t that test the ith counter for 0, we add a t-

labelled transition Ci
t,−1−→u from state Ci to the universal state. This prevents

Pathfinder from using these actions if the current macrostate has M(Ci) > 0
because it would make the next macrostate universal. If however M(Ci) = 0,
such a step is safe because the punishing transition is not enabled in the
OCN-process Ci0.

Lastly, we only add transitions to N so that the final state qf is the only
original ICM-state which is not an obstacle for $. This prevents Pathfinder from
playing the end-marker $ unless the simulation has reached the final state. ut

In order to estimate an upper bound, we recall a recent result of Figueira,
Figueira, Schmitz, and Schnoebelen [4], that allows us to provide the exact com-
plexity of the OCN trace universality problem in terms of its level in the Fast-
Growing Hierarchy. The main idea is to estimate the maximal length of a path
in the well quasi order based algorithm using bounds on the difference of sizes
of consecutive configurations. The proof of the following theorem can not be
presented due to space limitations; it can be found in Appendix D.

Theorem 4. Trace universality of OCN is Ackermannian (Complete for Fω).

5 Conclusion

We have shown NL-completeness of the trace inclusion problem for deterministic
one-counter nets, where initial counter-values are part of the input. Our proof
is based on a characterization of the shape of possible witnesses in terms of a
small number of polynomially-sized templates. Realizability of such templates
can be verified in space logarithmic only in the size of the underlying state
space. Our procedure is therefore independent of the number of action symbols
and transitions in the input nets. To prove the characterization theorem we
use witness rewriting rules, the correctness of which crucially depends on the
monotonicity of trace inclusion w.r.t. counter-values. In fact, we only make use
of this property in the net on the left but similarly one can define rules that
exploit only the monotonicity in the process on the right. With some additional
effort one can extend this argument also for trace inclusion between DOCN and
DOCA or vice versa (see [14]).

The second part of the paper explores the complexity of the universality prob-
lem for nondeterministic OCN, and trace inclusion between finite systems and
OCN that easily reduces to OCN universality. Here we show that the simplest
known algorithm which uses a well-quasi-order based saturation technique has
already optimal complexity: The problem is Ackermannian, i.e., not primitive
recursive.

Acknowledgement. We thank Mary Cryan, Diego Figueira and Sylvain Schmitz
for helpful discussions and the anonymous reviewers of an earlier draft for their
constructive feedback. Piotr Hofman acknowledges a partial support by the Pol-
ish MNiSW grant N N206 567840.

12 REFERENCES

References

[1] A. Abdulla and K. Čerāns. “Simulation Is Decidable for One-Counter
Nets”. In: CONCUR. 1998, pp. 253–268.

[2] S. Böhm, S. Göller, and P. Jančar. “Equivalence of Deterministic One-
Counter Automata is NL-complete”. In: STOC. 2013, pp. 131–140.

[3] S. Demri and R. Lazić. “LTL with the freeze quantifier and register au-
tomata”. In: ACM Trans. Comput. Logic 10.3 (Apr. 2009), 16:1–16:30.

[4] D. Figueira, S. Figueira, S. Schmitz, and P. Schnoebelen. “Ackermannian
and Primitive-Recursive Bounds with Dickson’s Lemma”. In: LICS. 2011,
pp. 269–278.

[5] K. Higuchi, M. Wakatsuki, and E. Tomita. “Some Properties of Determin-
istic Restricted One-Counter Automata”. In: IEICE E79-D.8 (July 1996),
pp. 914–924.

[6] P. Hofman, S. Lasota, R. Mayr, and P. Totzke. “Simulation Over One-
counter Nets is PSPACE-Complete”. In: FSTTCS. 2013, pp. 515–526.

[7] P. Hofman, R. Mayr, and P. Totzke. “Decidability of Weak Simulation on
One-Counter Nets”. In: LICS. 2013, pp. 203–212.

[8] P. Jančar. “Equivalences of Pushdown Systems Are Hard”. English. In:
FoSSaCS. Vol. 8412. LNCS. 2014, pp. 1–28.

[9] P. Jančar. “Undecidability of Bisimilarity for Petri Nets and Some Related
Problems”. In: TCS 148.2 (1995), pp. 281–301.

[10] P. Jančar, J. Esparza, and F. Moller. “Petri Nets and Regular Processes”.
In: J. Comput. Syst. Sci. 59.3 (1999), pp. 476–503.

[11] P. Jančar, A. Kučera, and F. Moller. “Simulation and Bisimulation over
One-Counter Processes”. In: STACS. 2000, pp. 334–345.

[12] G. Sénizergues. “L(A) = L(B)?” In: ENTCS 9 (1997), p. 43.
[13] C. Stirling. “Deciding DPDA Equivalence Is Primitive Recursive”. In:

ICALP. 2002, pp. 821–832.
[14] P. Totzke. “Inclusion Problems for One-Counter Systems”. PhD thesis.

LFCS, University of Edinburgh, 2014.
[15] L. Valiant. “Decision Procedures for Families of Deterministic Pushdown

Automata”. PhD thesis. University of Warwick, 1973.
[16] L. Valiant and M. S. Paterson. “Deterministic One-Counter Automata”.

In: JCSS 10.3 (1975), pp. 340 –350.

REFERENCES 13

A Normal-Form Assumption

We consider here what is sometimes called realtime automata, in which no silent
(ε-labelled) transitions are present. In the absence of zero-tests, the usual syn-
tactic restriction for deterministic Pushdown Automata, (no state with outgoing
ε-transition may have outgoing transitions labelled by a 6= ε) and the lack of an
explicit zero-test in our model implies that all states on ε-cycles are essentially
deadlocks. A process in such a state can either silently exhaust the counter and
deadlock or divert into an infinite ε loop. With respect to their traces, those pro-
cesses are equivalent. This means one can eliminate ε-transitions by removing
ε-cycles and replacing the remaining short paths by direct steps (and normalize
the effects of single transitions back to {−1, 0, 1}). Such a reduction works in
O(log n) space. Allowing ε-transitions thus leaves the complexity of trace inclu-
sion invariant.

Lemma 2 (Normal Form). Given OCNs A and B with state sets N and M ,
one can in logarithmic space construct nets A′,B′ in normal form, with states
N and M ′ ⊇M , respectively, such that for all (p, n, q,m) ∈ N × N×M × N

TA(pm) ⊆ TB(qn) ⇐⇒ TA′(pm) ⊆ TB′(qn). (2)

Moreover, the constructed net B′ is deterministic if the original net B is.

Proof. Let A = (N,Act , δA) and B = (M,Act ′, δB). If A is not already deter-
ministic, we can make it so by uniquely re-labeling all its transitions t by actions
at and adding corresponding transitions (p′, at, d′, q′) to the other net B for any
existing (p′, a, d′, q′) ∈ δB , where a is the original label of t ∈ δA. So assume A
is deterministic and pick a new action label $ 6∈ Act. We add $-labelled cycles
with effect 0 to all states of A: The new net A′ = (N,Act ∪ {$}, δA) has tran-
sitions δA = δA ∪ {(s, $, 0, s)|s ∈ N}. To compensate this, we add $-cycles to
all states of B in the same way. We add a sink state L (for losing), which has
counter-decreasing cycles for all actions, and connect all states without outgoing
a-transitions to L by a-labelled transitions. B′ = (M ∪{L},Act ∪{$}, δB) where

δB = δB ∪ {(s, $, 0, s) | s ∈M}

∪ {(s, a, 0, L) | a ∈ Act and s
a−→s′ 6∈ δ for any s′ ∈M)}

∪ {(L, a,−1, L | a ∈ Act ∪ {$}}.

We see that if a word w of length k witnesses non-inclusion TA(qn) 6⊆ TB(q′n′)
then there is a word that witnesses non-inclusion TA′(qn) 6⊆ TB′(q′n′) To see
this, observe that in this case, any w-labelled path in B′ that starts in state q′

must end in state L. This means any such path takes the initial process q′n′ to
some process Ln′′ where n′′ ≤ n′ + k and now by playing n′′ times a label $ we
get a new witness. Conversely, if there is a witness w for TA′(qn) 6⊆ TB′(q′n′)
then the shortest such witness must be of the form w = w′$k where w′ does not
contain actions $ because as $-labelled steps leave any process not in state L
unchanged. This means w′ witnesses TA(qn) 6⊆ TB(q′n′). ut

14 REFERENCES

B Checking Weighted Inequalities in Logspace

Lemma 5. Inequalities of the form m ·A+B ≥ n ·C +D where all coefficients
are non-negative integers given in binary can be verified in O(log(A+B+C+D))
deterministic space.

Proof. Assume w.l.o.g. that the bit-representations of m and n are of the same
length, as are those of A,B,C and D, and we have the least significant bit on
the right.

To check m ≥ n, we can stepwise read their binary representation from right
to left, flipping an “output” bit Out on the way: Initially, Out := 1; in every
step set Out := 0 if the current bit in m is strictly smaller than that in n; set
Out := 1 if the current bit in m is strictly bigger than that in n and otherwise
proceed without touching Out. The inequality holds iff Out = 1 after completely
reading the input.

To check the weighted variant, we use the same algorithm but multiply m ·
A, and n · C on the fly, using standard long binary multiplication. We use a
scratchpad to store the intermediate sums, starting with values B and D. In a
step that reads the ith bit m[i] of m, we want to add A · 2i to the intermediate
sum if m[i] = 1. We can do that by shifting the binary representation of A left i
times and adding the result to the current scratchpad. We see that none of the
bits up to i−1 in the scratchpad are affected by this operation. We can therefore
discard (and use for the comparison in our simple algorithm above) the rightmost
bit of the scratchpad in every step. The claim now follows from the observation
that the necessary size of the scratchpad is bounded by B +A+ 1. ut

REFERENCES 15

C Proof of Theorem 1

We show that it is safe to consider only witnesses in a reduced form, and derive
bounds on the length of certain subpaths. For this, we introduce path rewriting
rules that exchange occurrences of some loops by others. We then show (in
Lemma 6) that these rules preserve witnesses and (Lemma 7) cannot be applied
indefinitely. For reduced witnesses, those to which no rules are applicable, we
derive (Lemma 8) bounds on the multiplicities of loops that are less productive
than others, which will enable us to prove Theorem 1.

For the rest of this section let V and E be the sets of nodes and edges in the
product of A and B.

We start with an easy observation: Because no loop L is longer than |V |, we
conclude that (∆A(L), ∆B(L)) ∈ {−V . . . V } × {−V . . . V }, so there are F0 :=
(2 · |V | + 1)2 different values the pair ∆A(L), ∆B(L) can have. Moreover, if a
witness exists, then also one that does not contain different loops with the same
effects: if π0L0π1L1π2 is a witness where |π1| > 0 and L0, L1 are two loops with
∆(L0) = ∆(L1), then either some prefix of π0L

2
0π1π2 (if ∆A(L0) ≥ 0) or some

prefix of π0π1L
2
1π2 (if ∆A(L0) < 0) must also be a witness by Lemma 3. We can

therefore consider w.l.o.g. only sane paths, which are of the form

π = π0L
l0
0 π1L

l1
1 . . . πrL

lr
r πr+1 (9)

where r ≤ F0, all πi are acyclic and all loops have pairwise different effects.

Definition 10 (Path Rewriting Rules). Consider the rules given below.

UUL
π = π0L

l0
0 π1L

l1
1 π2

Type(L0) = (>,≥)
Type(L1) = (>,≥)
∆B(L0) · x = ∆B(L1) · y
S(L0) ≥ S(L1)
l1 − y > 0
ρ = π0L

l0+x
0 π1L

l1−y
1 π2

UUR
π = π0L

l0
0 π1L

l1
1 π2

Type(L0) = (>,≥)
Type(L1) = (>,≥)
∆B(L0) · x = ∆B(L1) · y
S(L0) < S(L1)
l0 − x > |π1L1|
ρ = π0L

l0−x
0 π1L

l1+y
1 π2

UD
π = π0L

l0
0 π1L

l1
1 π2

Type(L0) = (>,≥)
Type(L1) = (<,<)
∆B(L0)·x = −∆B(L1)·y
S(L0) ≤ S(L1)
l0 − x ≥ |π1|
l1 − y > 0 ∧ l0 − x > 0
ρ = π0L

l0−x
0 π1L

l1−y
1 π2

DDL
π = π0L

l0
0 π1L

l1
1 π2

Type(L0) = (<,<)
Type(L1) = (<,<)
∆B(L0) · x = ∆B(L1) · y
S(L0) < S(L1)
l1 > |L0| · x+ 2|π1|
l1 − y > 0
ρ = π0L

l0+x
0 π1L

l1−y
1 π2

DDR
π = π0L

l0
0 π1L

l1
1 π2

Type(L0) = (<,<)
Type(L1) = (<,<)
∆B(L0) · x = ∆B(L1) · y
S(L0) ≥ S(L1)
l0 − x > 0
ρ = π0L

l0−x
0 π1L

l1+y
1 π2

Each rule consists of conditions (lines above the bar) and a conclusion ρ,
which is a path, below the bar. Their names indicate which type of loops are

16 REFERENCES

handled: E.g., UUL exchanges loops of type (>,≥) (up) for others of the same
type on the left.

We say a rule is applicable to a sane path π if there are 0 < x, y, l0, l1 ∈ N
and two different loops L0 and L1 such that all conditions are satisfied. In this
case the rule can rewrite π to ρ, its conclusion and we say ρ is the result of
applying the rule to π.

Example 3. Consider Example 2 again: The substitution suggested there is an
application of the rule UUL to the path π = (t0t1t2)(t3t4)9t5(t6)20, where
L0 = (t0t1t2), L1 = (t3t4) and x = y = 8. The result is a reduced witness
for (p0, p′10) of length 50. Shorter reduced witnesses for (p0, p′10) exist, for ex-
ample (t0t1t2)6t5t

16
6 , but because of their different loop structure, these cannot

be obtained from π by applying rewriting rules, as these do not change the struc-
ture, i.e., which loops occur and in which order, of a path. This means that our
rules do not necessarily preserve minimality of witnesses.

In the next two Lemmas 6 and 7, we show that the rewriting rules preserve
witnesses and that continuous rule application must eventually terminate.

Lemma 6. If π is a sane witness for (pm, p′m′) and ρ is the result of applying
one of the rules to π, then ρ is also a sane witness for (pm, p′m′).

Proof. Each rule only modifies the number of times some loops are iterated, and
never completely removes a loop. Therefore, sane paths are always rewritten to
other sane paths.

Let’s say we rewrite π = π0L
l0
0 π1L

l1
1 π2 to ρ. The key observation is that the

conditions of the rule imply that we can always decompose the paths π and ρ into
π = αγ and ρ = βγ, s.t. ∆B(α) = ∆B(β) and ∆A(α) ≤ ∆A(β). By monotonicity
(Lemma 1) and the assumption that π is a witness, it is therefore sufficient
to show that the result ρ is still enabled in the initial position (pm, p′m′). We
proceed by case distinction for the used rule.

UUL. Since π is a witness, its prefix α = π0L
l0
0 π1L

l1
1 must be enabled in

(pm, p′m′) and because Type(L0) = (>,≥), so is the prefix β = π0L
l0+x
0 π1L

l1−y
1

of the result ρ. Assume that (pm, p′m′)
α−→(qn, q′n′) and (pm, p′m′)

β−→(qn̂, q′n′).
The condition S(L0) ≥ S(L1) of the rule implies that n̂ ≥ n ≥ Γ(π2) and there-
fore that ρ is enabled in (pm, p′m′).

UUR. The prefix π0L
l0−x
0 of π must be enabled and since the last condition

of the rule demands that l0 − x > |π1L1|, so is the path π0L
l0−x
0 π1L1. The

fact that Type(L1) = (>,≥), means that also π0L
l0−x
0 π1L

l1+y
1 and therefore the

result ρ is enabled in (pm, p′m′).
UD . Type(L1) = (<,<) implies S(L1) <∞. Since S(L0) < S(L1), we know

that S(L0) < ∞ and hence ∆B(L0) > 0. The path π0L
l0−x
0 is a prefix of π and

is therefore enabled in (pm, p′m′). As l0 − x ≥ |π1| by assumption, we get that

m+∆A(π0L
l0−x
0) ≥ l0 − x ≥ |π1| ≥ Γ(π1) (10)

REFERENCES 17

and similarly, by ∆B(L0) > 0,

m′ +∆B(π0L
l0−x
0) ≥ l0 − x ≥ |π1| ≥ Γ ′(π1). (11)

This means that the prefix β = π0L
l0−x
0 π1 of ρ is enabled in (pm, p′m′). Let

us now consider the prefix α = π0L
l0−x
0 Lx0π1L

y
1 of π. Because ∆B(L0) · x =

−∆B(L1) ·y we get ∆B(α) = ∆B(β). By S(L0) < S(L1) we obtain that ∆A(α) ≤
∆A(β). Because π = αLl1−y1 π2 is a witness for (pm, p′m′), we can apply Lemma 1

to conclude ρ = βLl1−y1 π2 must be a witness for (pm, p′m′).
DDL. We know that m+∆A(π0L

l0
0)+∆A(π1) ≥ Γ(Ll11), because π is enabled

in (pm, p′m′). As L1 is a type (<,<) loop we also know that ∆A(L1) < 0.
Therefore, Γ(Ll11) ≥ l1 and

m+∆A(π0L
l0
0) ≥ l1 −∆A(π1). (12)

Assume towards a contradiction that m + ∆A(π0L
l0
0) < Γ(Lx0π1). This means

that
m+∆A(π0L

l0
0) < Γ(Lx0) + |π1| ≤ |L0| · x+ |π1|. (13)

This, together with Eq. (12) yields l1 −∆A(π1) < |L0| · x + |π1| and thus l1 <
|L0| · x+ 2|π1| which contradicts the condition that l1 > |L0| · x+ 2|π1|. Hence,
m+∆A(π0L

l0
0) ≥ Γ(Lx0π1). By the same argument we get that m′+∆B(π0L

l0
0) ≥

Γ ′(Lx0π1). So the prefix β = π0L
l0+x
0 π1 of ρ is enabled in (pm, p′m′). Consider

the prefix α = π0L
l0
0 π1L

y
1 of π. By the assumption that ∆B(Lx0) = ∆B(Ly1) we

get that ∆B(α) = ∆B(β). Because of S(L0) < S(L1) we get ∆A(Lx0) ≥ ∆A(Ly1)
and therefore that ∆A(α) ≤ ∆A(β). By Lemma 1 we conclude that the path

ρ = βLl1−y1 π2 is a witness for (pm, p′m′).
DDR. Let α = π0L

l0
0 π1 and let (pm, p′m′)

α−→(qn, q′n′). Due to the type
of L0 and because π is a witness, we know that the prefix β = π0L

l0−x
0 π1L

y
1

of ρ is enabled in (pm, p′m′). Since ∆B(L0) · x = ∆B(L1) · y, we get that

(pm, p′m′)
β−→(qn̂, q′n′) for some n̂ ∈ N. The condition S(L0) ≥ S(L1) of the rule

implies that ∆A(Lx0) ≤ ∆A(Ly1) < 0, and therefore that n̂ ≥ n. We conclude that

the path Ll11 π2 is enabled in (qr, q′r′) and therefore that ρ = π0L
l0−x
0 π1L

l1+y
1 π2

is enabled in (pm, p′m′) as required. ut

Lemma 7. Any sequence of successive applications of rules to a given path π
must eventually terminate.

Proof. Consider a π to wich we apply the rewriting rules. W.l.o.g. assume π is
sane, as otherwise no rule is applicable by definition. The decomposition of π is
the sequence

Dec(π) = (π0, L0, l0)(π1, L1, l1) . . . (πk, Lk, lk)πk+1 (14)

in (E∗×E∗×N)∗E∗ such that π = π0L
l0
0 π1L

l1
1 . . . πkL

lk
k πk+1, where k ≤ F0 and

for all indices 0 ≤ i ≤ k,

18 REFERENCES

1. Li is a loop,
2. πi is acyclic,
3. for any two transitions t ∈ πi and t′ ∈ Li with target(t) = target(t′) holds

that target(Li) = target(t).

The last condition demands that any loop Li shares exactly one node with the
acyclic path πi it succeeds and thus ensures that the decomposition of a path is
unique.

As no application of a rule completely removes all occurrences of loops nor
introduces new ones nor touches the intermediate paths, we observe that rule
applications only change the exponents li in the decomposition of the path.

Based on the order of loops in the decomposition of π, and their potential for
rule application, we now define a notion of weights for paths, and show that these
weights have to strictly decrease along a well-order whenever a rule is applied.

Let (L0, L1, . . . , Lk) be the sequence of loops that occur in the decomposition
of π. Let us fix some linear order≺ on {L0, L1, . . . , Lk} that satisfies the following
conditions for any two different loops Li, Lj with i < j.

1. If Type(Li) = Type(Lj) = (>,≥) and S(Li) ≥ S(Lj) then Li ≺ Lj .
2. If Type(Li) = Type(Lj) = (>,≥) and S(Li) < S(Lj) then Li � Lj .
3. If Type(Li) = Type(Lj) = (<,<) and S(Li) < S(Lj) then Li ≺ Lj .
4. If Type(Li) = Type(Lj) = (<,<) and S(Li) ≥ S(Lj) then Li � Lj .

Surely, such a linearization exists, as the conditions above only restrict≺ between
loops of the same type and slopes are linearly ordered. Consider the permutation
σ : N≤k → N≤k given by σ(i) < σ(j) ⇐⇒ Li ≺ Lj . The weight of π is

W (π) = (lσ(k), lσ(k−1), . . . , lσ(0)) ∈ Nk+1. (15)

The weight of π is the ordered tuple of exponents li of loops that occur in π.
Because rules do not change the order of loop occurrences, the path before and
after applying a rule have comparable weights. The very definition of weights
ensures that rule applications must strictly reduce the weight of a path.

Claim. If ρ is the result of applying a rewriting rule to π then W (ρ) @lex W (π)
where @lex is the lexicographic extension of the pointwise ordering of tuples of
naturals.

Assume the decompositions of π, ρ are

Dec(π) = (π0, L0, l0)(π1, L1, l1) . . . (πk, Lk, lk)πk+1 and

Dec(ρ) = (π0, L0, l
′
0)(π1, L1, l

′
1) . . . (πk, Lk, l

′
k)πk+1.

(16)

We show for every type of rule that if the occurrences of loop Li increase then
those of some loop Lj with Li ≺ Lj strictly decrease.

If the rule used to derive ρ was UUL then l′i = li+x and l′j = lj−y for some
i < j, 0 < x, y and type (>,≥) loops Li, Lj with S(Li) ≥ S(Lj). By condition
1) in the definition of ≺ we get Li ≺ Lj .

REFERENCES 19

For rule UUR we know l′i = li−x and l′j = lj +y for some 0 < x, y and type
(>,≥) loops Li, Lj with S(Li) < S(Lj). By condition 2) in the definition of ≺,
we get Li � Lj .

For rule DDL we know l′i = li+x and l′j = lj−y for type (<,<) loops Li, Lj
with S(Li) < S(Lj). By condition 3) in the definition of ≺, we know Li ≺ Lj .

For rule DDR we know l′i = li−x and l′j = lj +y for some 0 < x, y and type
(<,<) loops Li, Lj with S(Li) > S(Lj). So condition 4) in the definition of ≺,
implies Li � Lj .

Lastly, if the rule used to derive ρ was UD we immediately see that l′i < li
and l′j < lj , which implies the claim. ut

Lemmas 6 and 7 allow us to focus on witnesses that are reduced, i.e., which
are sane and to which none of the rewriting rules is applicable. We can now
derive bounds on the multiplicities of loops in reduced paths.

Lemma 8. Let π = π0L
l0
0 π1L

l1
1 π2 be a reduced path where L0, L1 are loops

occurring with multiplicities l0 > 0 and l1 > 0.

1. If Type(L0) = Type(L1) = (>,≥) and S(L0) ≥ S(L1) then l1 ≤ |V |
2. If Type(L0) = Type(L1) = (>,≥) and S(L0) < S(L1) then l0 ≤ |π1|+ 2|V |
3. If Type(L0) = Type(L1) = (<,<) and S(L0) < S(L1) then l1 < |V |2 + 2|π1|
4. If Type(L0) = Type(L1) = (<,<) and S(L0) ≥ S(L1) then l0 < |V |
5. If Type(L0) = (>,≥), Type(L1) = (<,<) and S(L0) ≤ S(L1) then l0 ≤
|π1|+ |V | or l1 ≤ |V |.

Proof. The fourth condition of any rule is satified e.g. by x = ∆B(L1) and
y = ∆B(L0). So if 0 < x, y ∈ N is the smallest satisfying pair we know x, y ≤ |V |.
The bounds are now easily derived by contradiction:

1. If l1 ≥ |V | then l1 − y ≥ l1 − |V | > 0 and rule UUL is applicable.
2. If l0 > |π1| + 2|V | then l0 − x > |π1| + 2|V | − x ≥ |π1| + |L1| ≥ |π1L1| and

therefore rule UUR is applicable.
3. If l1 ≥ |V |2 + 2|π1| then l1 ≥ |L0| · x + 2|π1| and l1 − y ≥ l1 − |V | > 0, so

rule DDL is applicable.
4. If l0 > |V | then l0 − x > 0, so rule DDR is applicable.
5. If l1 > |V | and l0 > |π1|+ |V |, then l1 − y > 0, l0 − x > 0 and l0 − x > |π1|,

so rule UD is applicable.

In each case we conclude that one of the rules is applicable, which contradicts
the assumption that π is reduced. ut

Finally, we are ready to prove Theorem 1.

Theorem 1. Fix a DOCN A, a complete DOCN B, and let K ∈ N be the num-
ber of nodes in their product. There is a bound c ∈ N that depends polynomially
on K, such that the following holds for any two processes pm and qn of A and B.
If T (pm) 6⊆ T (qn), then there is a witness for (pm, qn) that is either no longer
than c or has one of the following forms:

20 REFERENCES

1. π0L
l0
0 π1, where L0 is a loop of type (≥, <) and π0, π1 are no longer than c,

2. π0L
l0
0 π1L

l1
1 π2, where L0 and L1 are loops of type (>,≥) and (<,<) with

S(L0) > S(L1) and π0, π1, π2 are no longer than c,
3. π0L

l0
0 π1, where L0 is a loop of type (<,<) and π0, π1 are no longer than c,

where in all cases, the number of iterations l0, l1 ∈ N are polynomial in K and
the initial counter-values m and n of the given processes.

Proof. We show that we can sufficiently increase the bound c such that whenever
T (pm) 6⊆ T (qn) but no witness exists that is shorter than c or of forms 1) or 2),
then there must be a witness of form 3).

Assume T (pm) 6⊆ T (qn) and consider a reduced witness π, that is minimal in
length: no shorter witness is reduced. Recall that this also means that π is sane:
it is of form described in Eq. (9). By monotonicity (Lemma 3) and because π is of
minimal length among the reduced witnesses, we see that it cannot contain loops
of type (≤,≥). Moreover, because π is not of form 1), we can safely assume that
π it contains only loops of types (>,≥) and (<,<). This is because if a witness
contains two or more different type (≥, <) loops, then there exists another (sane)
witness, that only unfolds the first such loop. Relaxing the bound on the length
of paths between loops to F1 := F0(2|V |+ |V |2), we can write π as

π = π0L
l0
0 π1L

l1
1 . . . πkL

lk
k πk+1 (17)

where k ≤ F0, all |πi| < F1 and the number of iterations of loop Li is li > |V |.
Consider a block πpos = Llii πi+1L

li+1

i+1 πi+2 . . . πjL
lj
j that is part of the decom-

position above, such that all loops are type (>,≥). If for indices i ≤ x < y ≤ j
we have S(Lx) ≥ S(Ly), then by Lemma 8.1 we get ly ≤ |V |. Therefore, πpos
can be rewritten to the form

πpos = Llii πi+1L
li+1

i+1 πi+2 . . . πjL
lj
j πj+1 (18)

where the lengths of πi are bounded by F2 := F0 · (|V |2 + F1) and the slopes of
loops are strictly increasing: S(Lx) < S(Ly) for any two indices i ≤ x < y ≤ j.
By Lemma 8.2 this means that lx ≤ |πx+1| + 2|V | ≤ F2 + 2|V | =: F3. We

conclude that the prefix π′ = Llii πi+1L
li+1

i+1 πi+2 . . . πj−1L
lj−1

j−1 is no longer than
(j − i) · (|V | · F3 + F2) and therefore

πpos = π′Lljj πj+1 (19)

where |π′| is bounded by F4 := F0(|V | · F3 + F2) and |πj+1| by F2.
We continue to show by a similar argument that we can bound the number

of iterations of all but the most productive loop in a block consisting of only de-

creasing (type (<,<)) loops. Consider a block πneg = Llii πi+1L
li+1

i+1 πi+2 . . . πjL
lj
j

that is part of the decomposition in Eq. (17), where all loops are type (<,<).
If S(Lx) ≥ S(Ly) for some indices i ≤ x < y ≤ j, then by Lemma 8.4 we know
ly < |V |. This means that πneg is of the form

πneg = πiL
li
i πi+1L

li+1

i+1 πi+2 . . . πjL
lj
j πj+1 (20)

REFERENCES 21

where all πi have lengths bounded by F2 and S(Lx) < S(Ly) for any two indices
i ≤ x < y ≤ j. By Lemma 8.3 we get ly ≤ |V |2 + 2|πx| ≤ |V |2 + 2F2 =: F ′3
and conclude that the suffix π′′ = πi+1L

li+1

i+1 πi+2 . . . πjL
lj
j πj+1 is no longer than

(j − i) · (|V | · F ′3 + F2). Therefore, πneg is of the form

πneg = πiL
li
i π
′′ (21)

where πi is bounded by F2 and π′′ by F ′4 := F0(|V | · F ′3 + F2).
Eqs. (19) and (21) characterize the form of maximal subpaths of the witness

π in Eq. (17), along which the type of loops does not change. They allow us to
write π as

π = π0L
l0
0 π1L

l1
1 π2 . . . πkL

lk
k πk+1 (22)

where for all indices 0 ≤ i < k:

1. πi is no longer than F5 := F3 + F ′3 + F4 + F ′4.
2. All li > |V |.
3. Consecutive loops Li and Li+1 have different types.
4. If loops Li, Lj for 0 ≤ i < j ≤ k have the same type then S(Li) < S(Lj).

In the remainder of this proof, we further increase the polynomial bound for the
gaps πi between the loops; this allows to conclude that π contains at least one
type (<,<) loop and finally, that π is of form 3).

Observe that if all loops Li in Eq. (22) are of type (>,≥) then the witness is
already of form π = π0L

lπ1 as in Eq. (19), where π0, π1 are short and L is the
most effective loop. In this case, consider the run

(pm, qn)
π0L

l

−→(p′m′, q′n′) (23)

induced by the prefix π0L
l. Because B is complete we know ∆B(π) = −n. to-

gether with ∆B(π1) ≤ |π1| ≤ F5 we get n′ ≤ F5. Because ΓA(π1) ≤ |π1|, we
know that l ≤ |π1| ≤ F5 as otherwise, fewer iterations l would result in a shorter
witness and we assumed π to be minimal in length. Hence, we could bound π
by F6 := F5 + |V | ·F5 +F5. So if we let c ≥ F6, our witness π must contain type
(<,<) loops as it is assumed not to be no shorter than c.

Finally, fix an index 0 ≤ x ≤ k such that in Eq. (22), Lx is a loop of type
(<,<) with most efficient decrease (minimal slope). That is, π is of form

π = π0L
lx
x π1. (24)

We now bound both π0 and π1 and thereby prove that π is of form 3). We start
with the suffix π1.

If Lx is the only loop of type (<,<), we are done as then |π1| ≤ F5. Suppose
we have two indices 0 ≤ y < y + 2 ≤ k, where both Ly and Ly+2 are type
(<,<). This means that Ly+1 is of type (>,≥) with S(Ly+1) < S(Ly+2). By
Lemma 8.5 and the fact that ly+2 > |V | we know that ly+1 < |πy+1|+ |V | ≤ F6.

So πy+1L
ly+1

y+1πy+2 is no longer than 2 ·F5 + |V | ·F6 =: F7. Applying Lemma 8.3

22 REFERENCES

to Ly and Ly+2 we get ly+2 ≤ |V |2 + 2 · F7 =: F8 and thus πy+1L
ly+1

y+1πy+2L
ly+2

y+2

is no longer than F9 := F5 + (|V | ·F6) +F5 + (|V | ·F8). Now the above argument
can be repeated for any successive pair of type (<,<) loops in π1 of which there
are at most F0. So, |π1| < F0 · F9.

To bound the prefix π0 in Eq. (24), we recall (point 3 above) that consecutive
loops in Eq. (22) have different types and therefore x ≤ 1. In case x = 0,
we immediately get |π0| ≤ F5. If x = 1, then L0 is a type (>,≥) loop with
S(L0) < S(Lx) and so by Lemma 8.5 and point 2), we get l0 ≤ |π1|+ |V | < F6.
This means |π0| ≤ 2F5 + |V | · F6 = F7.

We conclude that c := F9 · F0 is sufficient to ensure that any witness π,
longer than c which is not of form 1) or 2) must have form 3). This completes
our argument for the existence of witnesses in the claimed forms.

To see why l0 and l1 can always be bounded polynomially in |V | and m′ can
be seen by looking at the types of the loops involved. For paths of form 1 and 3,
L0 decreases the counter on the right at least once in every iteration. Since the
value m′+∆B(π0) before the first iteration is at most m′+c, we have l0 ≤ m′+c.

Paths of the second form can be decomposed into a prefix π0L
l0
0 and a suffix

π1L
l1
1 π2, which is a path of form 3. Let y0 ∈ N be minimal such that the effect

of the path γ0 = π0L
0
0π1L

y0
1 π2, in which L0 is not iterated at all is sufficient to

reduce the initial value m′ below 0. That is, we have m′+∆B(π0L
0
0π1L

y0
1 π2) ≤ 0.

Note that as for forms 1 and 3, we can bound y0 by m′+2c and therefore, |γ0| is
no larger than 3c+ |V | · (m′ + 2c). This path might not be a witness because it
is not enabled on the left side. However, because of the condition on the slopes,
there are x, y ≤ |V | such that the effect of the loops satisfy

∆B(L0) · x = −∆B(L1) · y and ∆A(L0) · x > −∆A(L1) · y. (25)

This means, increasing the iterations of the loops L0 and L1 by x and y, respec-
tively, does not change the effect of the path on the right, but strictly increases
the effect on the left. We increase the iterations (l0, l1) = (0, y0) in γ0 as sug-
gested above for Γ(γ0) < |γ0| < 3c + |V | · (m′ + 2c) times. The resulting path
γ1 = π0L

x1
0 π1L

y1
1 π2 is then surely witness, and iterates the loops not more than

x1 = 3c+ |V | · (m′ + 2c) and y1 = m′ + 5c+ |V | · (m′ + 2c) times. ut

REFERENCES 23

D Upper bound for OCN Universality

Definition 11 (Fast-Growing Hierarchy). Consider the family of functions
Fn : N→ N where for x, k ∈ N,

F0(x) = x+ 1 and Fk+1(x) = F x+1
k (x).

Here, F k denotes the k-fold application of F . Moreover, define Fω(x) = Fx(x)
for the first limit ordinal ω. For k ≤ ω, Fk denotes the least class of functions
that contains all constants and is closed under substitution, sum, projections,
limited recursion and applications of functions Fn for n ≤ k.

Already F2 contains all elementary functions and the union
⋃
k∈N Fk of all fi-

nite levels contains exactly the primitive-recursive functions. A function is called
Ackermannian if it is in Fω \

⋃
k∈N Fk.

A sequence x0, x1, . . . , xl of macrostates is called good if there are indices
0 ≤ i < j ≤ l such that xi v xj and bad otherwise. The sequence is t-controlled
by f : N→ N if |xi|∞ < f(i+ t) for every index 0 ≤ i ≤ l.

Theorem 5 ([4]). Let f : N → N be a monotone function in Fγ such that
f(x) ≥ max{1, x} for some γ ≥ 1. There is a function Lk,f (t) in Fk+γ−1 that
computes a bound on the maximal length of bad sequences in Nk⊥ that are t-
controlled by f .

Corollary 1. Trace universality of OCN is Ackermannian.

Proof. By Theorem 3, it suffices to show that the problem is in Fω. Recall the
procedure that, for a given process pm of a net with k control states, guesses
a shortest terminating path from the initial macrostate (a witness for non-
universality), and stops unsuccessfully if a macrostate covers one that has been
seen before. The time and space requirements of this procedure are bounded in
terms of the longest non-increasing (w.r.t. covering) sequence of k-dimensional
macrostates. These are bad sequences where the norm of the initial macrostate
is m, the counter-value of the process to check for universality. By point 2 of
Lemma 4, such sequences arem-controlled by the successor function f(x) = x+1,
which is in F1. By Theorem 5, computing the bound and running the procedure
above is in Fk. As k is part of the input, this yields a procedure in Fω. ut

	Trace Inclusion for One-Counter Nets Revisited

