11 research outputs found

    New technologies for 3D realization in Art and Design practice

    Get PDF
    As digital design technologies become ever more widespread, CAD-CAM, virtual and rapid prototyping techniques are increasingly being exploited by creative practitioners working in areas outside the industrial design and engineering contexts in which these technologies are currently predominantly employed. This review paper aims to critically examine work by artists, craft practitioners, and designer-makers who creatively engage with these new and rapidly emerging technologies and, by doing so, extend their own practice and push at the boundaries of art and design disciplines. Historic precedents for new 3D technologies in the fine and applied arts are identified, and writing by Heidegger, Baudrillard, and Virilio informs the critical review of work by art and design practitioners in sculpture, metalwork, jewellery, and ceramics. The discussion reflects on relationships between art and technology and physical and virtual making, and concludes by pointing to the possibility of new “hybrid” forms of practice which bridge the gap between physical and virtual design worlds. The paper closes by suggesting that the notion of “truth to materials” in the arts and crafts might now be extended to one of “truth to virtual materials”, as practitioners creatively negotiate relationships between digital cause and physical effect

    Expressive cutting, deforming, and painting of three-dimensional digital shapes through asymmetric bimanual haptic manipulation

    Get PDF
    Practitioners of the geosciences, design, and engineering disciplines communicate complex ideas about shape by manipulating three-dimensional digital objects to match their conceptual model. However, the two-dimensional control interfaces, common in software applications, create a disconnect to three-dimensional manipulations. This research examines cutting, deforming, and painting manipulations for expressive three-dimensional interaction. It presents a cutting algorithm specialized for planning cuts on a triangle mesh, the extension of a deformation algorithm for inhomogeneous meshes, and the definition of inhomogeneous meshes by painting into a deformation property map. This thesis explores two-handed interactions with haptic force-feedback where each hand can fulfill an asymmetric bimanual role. These digital shape manipulations demonstrate a step toward the creation of expressive three-dimensional interactions

    A System for Designing Digital Creatures Based on Rules of Vertebrate Skeletal Structure

    Get PDF
    Concept Designers are often required to create digital creatures that do not actually exist in real-life. These fantasy creatures are often inspired by animals that do exist, combining component body parts to create new, chimera-like forms. While these forms can look believable in stationary positions, their construction may yield awkward looking performances while in motion. This awkwardness can often be attributed to the different body parts not being connected correctly, making it impossible for the creature to be articulated in a believable way. This paper defines a set of rules, guided by study in comparative anatomy, for achieving more believable connections of body parts. This paper then details the process by which these rules are automated through a Maya script, allowing them to be integrated into a more artistic creature design process. In conclusion, it is found that the defined rules are successful in guiding believable connections. However, the implementation of the automated solution requires additional work to be a useful tool in the creature design process

    Six-degree of freedom device for natural model creation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2007.Includes bibliographical references (p. 75-78).This thesis presents a novel input device, called SP3X, for the creation of digital models in a semi-immersive environment. The goal of SP3X is to enable novice users to construct geometrically complex three-dimensional objects without extensive training or difficulty. SP3X extends the ideas of mixed reality and partial physical instantiation while building on the foundation of tangible interfaces. The design of the device reflects attention to human physiologic capabilities in manual precision, binocular vision, and reach. The design also considers cost and manufacturability. This thesis presents prior and contributing research from industry, biology, and interfaces in academia. A study investigates the usability of the device and finds that it is functional and easily learned, and identifies several areas for improvement. Finally, a Future Work section is provided to guide researchers pursuing this or similar interfaces. The SP3X project is a result of extensive collaboration with Mahoro Anabuki, a visiting scientist from Canon Development Americas, and could not have been completed without his software or his insight.Richard Henry Whitney, III.S.M

    Sculpture virtuelle par système de particules

    Get PDF
    3D is emerging as a new media. Its widespread adoption requires the implementation of userfriendly tools to create and manipulate three-dimensional shapes. Current softwares heavily rely on underlying shape modeling, usually a surfacic one, and are then often counter-intuitive orlimiting. Our objective is the design of an approach alleviating those limitations and allowing the user to only focus on the process of creating forms. Drawing inspiration from the ancient use of clay,we propose to model a material in a lagrangian description. A shape is described by a particles system, where each particle represents a small fraction of the total volume of the shape. In this framework, the Smoothed Particle Hydrodynamics method enables to approximate physical values anywhere in space. Relying on this method, we propose a modeling of material with two levels, one level representing the topology and the other one describing local geometry of the shape.The SPH method especially enables to evaluate a density of matter. We use this property todefine an implicit surface based on the physical properties of the particles system to reproduce the continuous aspect of matter. Those virtual materials can then be manipulated locally through interactions reproducing the handling of dough in the real world or through global shape deformation. Our approach is demonstrated by several prototypes running either on typical desktop workstation or in immersive environment system.La 3D s'impose comme un nouveau média dont l'adoption généralisée passe par la conception d'outils, accessibles au grand public, de création et de manipulation de formes tridimensionnelles quelconques. Les outils actuels reposent fortement sur la modélisation sous-jacente des formes, généralement surfacique, et sont alors peu intuitifs ou limitatifs dans l'expressivité offerte à l'utilisateur.Nous souhaitons, dans ces travaux, définir une approche ne présentant pas ces défauts et permettant à l'utilisateur de se concentrer sur le processus créatif. En nous inspirant de l'utilisation séculaire de l'argile, nous proposons une approche modélisant la matière sous forme lagrangienne.Une forme est ainsi décrite par un système de particules, où chaque particule représente un petit volume du volume global.Dans ce cadre lagrangien, la méthode Smoothed Particle Hydrodynamics (SPH) permet l'approximation de grandeurs physiques en tout point de l'espace. Nous proposons alors une modélisation de matériaux à deux couches, l'une décrivant la topologie et l'autre décrivant la géométrie du système global.La méthode SPH permet, entre autres, d'évaluer la densité de matière. Ceci nous permet de définir une surface implicite basée sur les propriétés physiques du système de particules pour redonner un aspect continu à la matière.Ces matériaux peuvent alors être manipulés au moyen d'interactions locales reproduisant le maniement de la pâte à modeler, et de déformations globales. L'intérêt de notre approche est démontrée par plusieurs prototypes fonctionnant sur des stations de travail standard ou dans des environnements immersifs

    Design for rapid manufacture : developing an appropriate knowledge transfer tool for industrial designers

    Get PDF
    Numerous works have been produced on the topic of Design for Manufacturing (DFM) to better educate the designers of products as to various methods of manufacturing and their specific requirements. It is the common aim of these works to eliminate so called "over the wall" product development in which procedurally ignorant designers pass largely un-producible design concepts to manufacturers, who are then required to make necessary refinements and changes. When applied correctly, DFM results in the efficient and economical production of well-designed products, whose forms have been attuned to the particular requirements of their final method of production at an early stage of development. However, one aspect of using such approaches is that design intent is frequently compromised for the sake of manufacturability and innovative design concepts are often dismissed as being unfeasible. Recent advances in additive manufacturing technologies and their use in the direct manufacture of end-use products from digital data sources has brought about a new method of production that is known as Rapid Manufacturing (RM). Unlike conventional subtractive machining processes, such as milling and turning which generate forms by removing material from a stock billet, RM parts are grown from an empty part bed using the controlled addition of specialised build materials. Additive manufacturing requires no forming tools, is unrestricted by many conventional process considerations and is capable of producing practically any geometry. The freedoms that are associated with this technology facilitate the design and realisation of product concepts that would be unachievable with any other method of production. This promotes an almost boundless design philosophy in which innovative product solutions can be designed to best meet the needs of specification criteria, rather than the production process with which they are to be made. However, unlike other forms of manufacturing, the newness of this technology means that there is no proven aid or tool to assist industrial designers in exploiting the freedoms that it offers. Using information that was collated in the literature review and case study projects, a systematic design approach was proposed and then tested in a series of user trials with groups of industrial design students and practicing industrial design professionals. The results of these trials are discussed, showing a common acknowledgement from both groups that the proposed DFRM tool was of assistance and that it had an influence upon their design work. However, whilst the student group were generally receptive toward tool uptake, the experienced designers showed more of a reluctance to abandon their own "tried and tested" methods in favour of the unknown and unproven approach. It is concluded that this attitude would be fairly representative of wider opinion and that the future uptake of any such tool would be reliant upon sufficient evidence of its successful application. Hence, suggestions are made for future work to continue tool development and for more validation trials to be conducted with its intended user group.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Knowledge in the making: Prototyping and human-centred design practice.

    Get PDF
    This thesis presents an enquiry into the nature and role of prototyping within human-centred design practice, examining the capabilities and limitations of emerging prototyping technologies within this context. A contextual review explores the significance of the human element in design. This leads to the proposal of a paradigm statement for human-centred design which informs the theoretical and practical research activity undertaken in the course of this investigation. A critical review of literature aimed at the design and engineering professions identifies a rhetoric celebrating the virtualisation of design processes. Here, advocates of emerging virtual prototyping technologies argue computer-based simulation techniques may reduce or replace physical prototype iterations, thereby greatly increasing the speed and efficiency of new product development processes. This thesis questions the extent to which virtual prototyping can replace physical human input in design. A counter argument to the designer's total immersion in the virtual design world is that valuable creative opportunities may be revealed through discovery-oriented physical prototyping. Furthermore, it may not be possible to adequately describe all aspects of a design proposal using virtual methods alone. This is demonstrated in practical investigations in which designers sought to exploit tactile qualities as essential features in design, and also in cases involving complex structural behaviour. Despite significant advances in virtual prototyping technologies, there remain some types of design problem which may only be identified and addressed through the making and testing of physical models. Moreover, this thesis argues that the valuable practical knowledge which may be derived through hands-on engagement and manipulation of physical prototypes and materials must be retained as an essential human element in design

    Towards Virtual Clay

    No full text
    Providing the user with an intuitive sculpting system similar to real clay is one of the most challenging goals of interactive shape modeling. A user should ideally be able to deform, add and remove material freely in real time, without any geometric or topological constrains on the modeled shape.This chapter reviews and compares three techniques that bring virtual shape modeling closer to this objective. The two first ones rely on a specific representation of the sculpted shape, namely the iso-surface of a scalar field stored in a grid. Because this representation conveniently captures topological changes, adding and removing material is straightforward. Based on this representation, we compare a geometric versus a physically-based method for handling local and global shape deformations that make the model closer to virtual clay. We also discuss solutions for providing users with an intuitive interface with haptic feedback. A third and very different approach is to define the deformations of the sculpted model as spatial deformations, such that the operation is applicable to a wide range of shape representations. We show that the extension of sweepers (presented in the space deformation chapter of this tutorial) to constant volume "swirling-sweepers" produces an intuitive clay-like behavior of the modeled shape. This technique provides a very good alternative to physically-based virtual clay when preserving the shape's topology is desirable
    corecore