39,959 research outputs found

    Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond

    Full text link
    We present a graphical and dynamic framework for binding and execution of business) process models. It is tailored to integrate 1) ad hoc processes modeled graphically, 2) third party services discovered in the (Inter)net, and 3) (dynamically) synthesized process chains that solve situation-specific tasks, with the synthesis taking place not only at design time, but also at runtime. Key to our approach is the introduction of type-safe stacked second-order execution contexts that allow for higher-order process modeling. Tamed by our underlying strict service-oriented notion of abstraction, this approach is tailored also to be used by application experts with little technical knowledge: users can select, modify, construct and then pass (component) processes during process execution as if they were data. We illustrate the impact and essence of our framework along a concrete, realistic (business) process modeling scenario: the development of Springer's browser-based Online Conference Service (OCS). The most advanced feature of our new framework allows one to combine online synthesis with the integration of the synthesized process into the running application. This ability leads to a particularly flexible way of implementing self-adaption, and to a particularly concise and powerful way of achieving variability not only at design time, but also at runtime.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Potential Errors and Test Assessment in Software Product Line Engineering

    Full text link
    Software product lines (SPL) are a method for the development of variant-rich software systems. Compared to non-variable systems, testing SPLs is extensive due to an increasingly amount of possible products. Different approaches exist for testing SPLs, but there is less research for assessing the quality of these tests by means of error detection capability. Such test assessment is based on error injection into correct version of the system under test. However to our knowledge, potential errors in SPL engineering have never been systematically identified before. This article presents an overview over existing paradigms for specifying software product lines and the errors that can occur during the respective specification processes. For assessment of test quality, we leverage mutation testing techniques to SPL engineering and implement the identified errors as mutation operators. This allows us to run existing tests against defective products for the purpose of test assessment. From the results, we draw conclusions about the error-proneness of the surveyed SPL design paradigms and how quality of SPL tests can be improved.Comment: In Proceedings MBT 2015, arXiv:1504.0192

    Managed Evolution of Automotive Software Product Line Architectures: A Systematic Literature Study

    Get PDF
    The rapidly growing number of software-based features in the automotive domain as well as the special requirements in this domain ask for dedicated engineering approaches, models, and processes. Nowadays, software development in the automotive sector is generally developed as product line development, in which major parts of the software are kept adaptable in order to enable reusability of the software in different vehicle variants. In addition, reuse also plays an important role in the development of new vehicle generations in order to reduce development costs. Today, a high number of methods and techniques exist to support the product line driven development of software in the automotive sector. However, these approaches generally consider only partial aspects of development. In this paper, we present an in-depth literature study based on a conceptual model of artifacts and activities for the managed evolution of automotive software product line architectures. We are interested in the coverage of the particular aspects of the conceptual model and, thus, the fields covered in current research and research gaps, respectively. Furthermore, we aim to identify the methods and techniques used to implement automotive software product lines in general, and their usage scope in particular. As a result, this in-depth review reveals that none of the studies represent a holistic approach for the managed evolution of automotive software product lines. In addition, approaches from agile software development are of growing interest in this field

    Evaluation of Variability Concepts for Simulink in the Automotive Domain

    Get PDF
    Modeling variability in Matlab/Simulink becomes more and more important. We took the two variability modeling concepts already included in Matlab/Simulink and our own one and evaluated them to find out which one is suited best for modeling variability in the automotive domain. We conducted a controlled experiment with developers at Volkswagen AG to decide which concept is preferred by developers and if their preference aligns with measurable performance factors. We found out that all existing concepts are viable approaches and that the delta approach is both the preferred concept as well as the objectively most efficient one, which makes Delta-Simulink a good solution to model variability in the automotive domain.Comment: 10 pages, 7 figures, 6 tables, Proceedings of 48th Hawaii International Conference on System Sciences (HICSS), pp. 5373-5382, Kauai, Hawaii, USA, IEEE Computer Society, 201

    MARKETING EVOLUTION: E-MARKETING - QUALITATIVE AND QUANTITATIVE RESEARCH TECHNIQUES

    Get PDF
    E-marketing is a generally accepted concept, due to its advantages compared to other marketing mechanisms: it is faster, more efficient, more intelligent and less expensive. The option for e-marketing is also enforced by its flexibility with which it addresses potential clients. Moreover, e-marketing is the environment which leads to quick results, allowing complex calculus in order to analyze request and market evolution as pertinent as possible. Access to new market segments and gaining the existing clients’ trust and loyalty through the products’ quality and price is mostly due to the e-marketing campaigns.e-marketing, market research, Internet, e-marketing campaigns

    Nothing New in the (North) East? Interpreting the Rhetoric and Reality of Japanese Corporate Governance

    Get PDF
    As Japan emerges from a lost decade of economic stagnation, attention is also focusing on its corporate governance system. Shareholders are gaining ground vis--vis other stakeholders. This is also evident in a plethora of legislative reforms culminating in the consolidated Company Law of 2005, leading some to proclaim the Americanisation of Japanese Law. Part I of this paper outlines two pairs of views. It confirms significant but gradual transformation towards a more market-driven system, involving some modes of change paralleled elsewhere. In assessing change more broadly, Part II urges care in selecting the temporal timeframe and countries to compare, balancing blackletter law and wider socio-economic context, disclosing normative preferences, and focusing on processes as well as outcomes.Corporate governance, Japan

    Understanding Variability-Aware Analysis in Low-Maturity Variant-Rich Systems

    Get PDF
    Context: Software systems often exist in many variants to support varying stakeholder requirements, such as specific market segments or hardware constraints. Systems with many variants (a.k.a. variant-rich systems) are highly complex due to the variability introduced to support customization. As such, assuring the quality of these systems is also challenging since traditional single-system analysis techniques do not scale when applied. To tackle this complexity, several variability-aware analysis techniques have been conceived in the last two decades to assure the quality of a branch of variant-rich systems called software product lines. Unfortunately, these techniques find little application in practice since many organizations do use product-line engineering techniques, but instead rely on low-maturity \clo~strategies to manage their software variants. For instance, to perform an analysis that checks that all possible variants that can be configured by customers (or vendors) in a car personalization system conform to specified performance requirements, an organization needs to explicitly model system variability. However, in low-maturity variant-rich systems, this and similar kinds of analyses are challenging to perform due to (i) immature architectures that do not systematically account for variability, (ii) redundancy that is not exploited to reduce analysis effort, and (iii) missing essential meta-information, such as relationships between features and their implementation in source code.Objective: The overarching goal of the PhD is to facilitate quality assurance in low-maturity variant-rich systems. Consequently, in the first part of the PhD (comprising this thesis) we focus on gaining a better understanding of quality assurance needs in such systems and of their properties.Method: Our objectives are met by means of (i) knowledge-seeking research through case studies of open-source systems as well as surveys and interviews with practitioners; and (ii) solution-seeking research through the implementation and systematic evaluation of a recommender system that supports recording the information necessary for quality assurance in low-maturity variant-rich systems. With the former, we investigate, among other things, industrial needs and practices for analyzing variant-rich systems; and with the latter, we seek to understand how to obtain information necessary to leverage variability-aware analyses.Results: Four main results emerge from this thesis: first, we present the state-of-practice in assuring the quality of variant-rich systems, second, we present our empirical understanding of features and their characteristics, including information sources for locating them; third, we present our understanding of how best developers\u27 proactive feature location activities can be supported during development; and lastly, we present our understanding of how features are used in the code of non-modular variant-rich systems, taking the case of feature scattering in the Linux kernel.Future work: In the second part of the PhD, we will focus on processes for adapting variability-aware analyses to low-maturity variant-rich systems.Keywords:\ua0Variant-rich Systems, Quality Assurance, Low Maturity Software Systems, Recommender Syste
    corecore