
Thesis for The Degree of Licentiate of Engineering

Understanding Variability-Aware Analysis in
Low-Maturity Variant-Rich Systems

Mukelabai Mukelabai

Division of Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/326728699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Understanding Variability-Aware Analysis in Low-Maturity Variant-
Rich Systems

Mukelabai Mukelabai

Copyright ©2020 Mukelabai Mukelabai
except where otherwise stated.
All rights reserved.

Technical Report No 209L
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Software Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2020.

ii

“Our knowledge can only be finite, while our ignorance must
necessarily be infinite.”

- Karl Popper

Abstract
Context: Software systems often exist in many variants to support varying
stakeholder requirements, such as specific market segments or hardware con-
straints. Systems with many variants (a.k.a. variant-rich systems) are highly
complex due to the variability introduced to support customization. As such,
assuring the quality of these systems is also challenging since traditional single-
system analysis techniques do not scale when applied. To tackle this complexity,
several variability-aware analysis techniques have been conceived in the last two
decades to assure the quality of a branch of variant-rich systems called software
product lines. Unfortunately, these techniques find little application in practice
since many organizations do not use product-line engineering techniques, but
instead rely on low-maturity clone&own strategies to manage their software
variants. For instance, to perform an analysis that checks that all possible vari-
ants that can be configured by customers (or vendors) in a car personalization
system conform to specified performance requirements, an organization needs
to explicitly model system variability. However, in low-maturity variant-rich
systems, this and similar kinds of analyses are challenging to perform due to
(i) immature architectures that do not systematically account for variability,
(ii) redundancy that is not exploited to reduce analysis effort, and (iii) missing
essential meta-information, such as relationships between features and their
implementation in source code.
Objective: The overarching goal of the PhD is to facilitate quality assurance in
low-maturity variant-rich systems. Consequently, in the first part of the PhD
(comprising this thesis) we focus on gaining a better understanding of quality
assurance needs in such systems and of their properties.
Method: Our objectives are met by means of (i) knowledge-seeking research
through case studies of open-source systems as well as surveys and interviews
with practitioners; and (ii) solution-seeking research through the implementa-
tion and systematic evaluation of a recommender system that supports recording
the information necessary for quality assurance in low-maturity variant-rich
systems. With the former, we investigate, among other things, industrial needs
and practices for analyzing variant-rich systems; and with the latter, we seek to
understand how to obtain information necessary to leverage variability-aware
analyses.
Results: Four main results emerge from this thesis: first, we present the state-
of-practice in assuring the quality of variant-rich systems, second, we present
our empirical understanding of features and their characteristics, including
information sources for locating them; third, we present our understanding
of how best developers’ proactive feature location activities can be supported
during development; and lastly, we present our understanding of how features
are used in the code of non-modular variant-rich systems, taking the case of
feature scattering in the Linux kernel.
Future work: In the second part of the PhD, we will focus on processes for
adapting variability-aware analyses to low-maturity variant-rich systems.

Keywords
Variant-rich Systems, Quality Assurance, Low Maturity Software Systems,
Recommender System

Acknowledgment

I would like to thank my research supervisors Thorsten Berger and Jan-Phillip
Steghöfer for their patient guidance and enthusiastic encouragement through out
my research work. Both have taught me many things with regard to research,
teaching in higher education, and career development. In particular, Thorsten,
as my main Supervisor, has been very instrumental in providing me with
several opportunities such as, international collaboration with top researchers
in my field, peer review experience for several venues, and participating in
locally organizing the 22nd International Systems and Software Product Line
conference in the role of Proceedings Chair. These opportunities have not
only enhanced my academic prowess but have also been useful in letting me
gain an understanding of the broad spectrum of research problems in my field.
In addition, Thorsten has organized several social outings for our research
group, such as kayaking in Gothenburg, hiking in the islands of Saltholmen,
and taking tree climbing obstacle courses in Partille; these were fun and helped
relieve stress many times. On the other hand, the advice and feedback given
by my co-supervisor Jan-Phillip was very helpful in both the various research I
undertook and in balancing my academic and social life.

I am extremely grateful and honored to be working at the Software Engi-
neering division comprising such an internationally-rich combination of talented
academic and administration personnel. Without such a friendly and conducive
working environment, this research work would not have been possible. I would
like to thank colleagues in the EASE research lab at the Software Engineering
division, Daniel Strüber and Jakob Krüger for their collaboration. I also thank
colleagues I share my office with, Wardah Mahmood, Khaled Al, and previously
Abdullar Mamoon and Hiva, for their support and social moments shared.

Lastly, but not the least, I also extend special thanks to my wife, Amanda
Hims Mukelabai, for her support and understanding through out my work,
and to my God through whose providence and sustenance I have been able to
conduct my research.

This research was partially supported by the ITEA project REVaMP2

funded by Vinnova Sweden (2016-02804) and by the Swedish Research Council
Vetenskapsrådet (257822902).

vii

List of Publications

Appended publications
This thesis is based on the following publications:

[A] M. Mukelabai, D. Nešić, S. Maro, T. Berger, J. Steghöfer “Tackling
Combinatorial Explosion: A Study of Industrial Needs and Practices for
Analyzing Highly Configurable Systems”
Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pp. 155-166. 2018.

[B] J. Krüger, M. Mukelabai, W. Gu, H. Shen, R. Hebig, T. Berger “Where is
my Feature and What is it About? A Case Study on Recovering Feature
Facets”
Journal of Systems and Software 152 (2019): 239-253.

[C] M. Mukelabai, T. Berger, J. Steghöfer “FeatRacer: Locating Features
Through Assisted Traceability”
Planned to be submitted for publication.

[D] L. Passos, R. Queiroz, M. Mukelabai, T. Berger, S. Apel, K. Czarnecki,
J. Padilla “A Study of Feature Scattering in the Linux Kernel”
IEEE Transactions on Software Engineering (2018).

ix

x

Other publications
The following publications were published during my PhD studies, or are
currently in submission/under revision. However, they are not appended to this
thesis, due to contents overlapping that of appended publications or contents
not related to the thesis.

[a] M. Mukelabai, B. Behringer, M. Fey, J. Palz, J. Krüger, T. Berger “Multi-
View Editing of Software Product Lines with PEoPL.”
IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion), pp. 81-84. 2018.

[b] M. Mukelabai “Verification of Migrated Product Lines.”
Proceedings of the 22nd International Systems and Software Product Line
Conference-Volume 2, pp. 87-89. 2018.

[c] D. Strüber, M. Mukelabai, J. Krüger, S. Fischer, L. Linsbauer, J. Martinez,
T. Berger “Facing the Truth: Benchmarking the Techniques for the
Evolution of Variant-rich Systems.”
Proceedings of the 23rd International Systems and Software Product Line
Conference-Volume A, pp. 177-188. 2019.

[d] J. Krüger, W. Gu, H. Shen, M. Mukelabai, R. Hebig, T. Berger “Towards
a Better Understanding of Software Features and Their Characteristics:
a Case Study of Marlin.”
Proceedings of the 12th International Workshop on Variability Modelling
of Software-Intensive Systems, pp. 105-112. 2018.

[e] T. Thüm, L. Teixeira, K. Schmid, E. Walkingshaw, M. Mukelabai,
M. Varshosaz, G. Botterweck, I. Schaefer, T. Kehrer “Towards Effi-
cient Analysis of Variation in Time and Space.”
Proceedings of the 23rd International Systems and Software Product Line
Conference-Volume B, pp. 57-64. 2019.

Research Contribution
The following were my contributions to each paper, listed according to the
Contributor Roles Taxonomy (CRediT)1. Where necessary, the degree of con-
tribution is specified as ‘lead’, ‘equal’, or ‘supporting’.

In Paper A, I led the design of the methodology, formal analysis of the survey
and interview data, validation (reproducibility), and visualization (presentation)
of the data. I participated equally in the collection of interview data but led
the survey data collection. I also participated equally in writing the original
draft but led the review and editing of the paper.

In Paper B I led the investigation of our subject systems, participated
equally in the design of the methodology and formal analysis of the data, and
played a supporting role in writing of the original draft.

In Paper C I developed the recommender system, led in the roles of data
collection, formal analysis, writing the original draft, and participated equally
in the design of the methodology and validation of the results.

Lastly, in Paper D, I participated equally in the formal analysis of the
survey and interview data, led the writing process for both the original draft
and the review, and was responsible for data curation.

1https://casrai.org/credit/

https://casrai.org/credit/

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Background . 5

1.1.1 Quality Assurance for Variant-rich Systems 5
1.1.2 Maturity of Variant-rich Systems 7
1.1.3 Feature Location and Traceability in Low-Maturity Variant-

Rich Systems . 8
1.1.4 Recommender Systems and Multi-label Classification . . 10

1.2 Methodology . 12
1.3 Summary of Papers . 13

1.3.1 Paper A . 13
1.3.2 Paper B . 14
1.3.3 Paper C . 15
1.3.4 Paper D . 16

1.4 Results . 17
1.5 Threats to Validity . 25

1.5.1 Construct Validity . 26
1.5.2 Internal Validity . 26
1.5.3 External Validity . 27
1.5.4 Conclusion Validity . 27

1.6 Conclusion . 28
1.7 Outlook to the Second Part of the PhD Project 28

Bibliography 31

xiii

Chapter 1

Introduction

Software often needs to be customized to address varying stakeholder require-
ments, such as specific market segments or hardware constraints. To achieve
this, organizations create variants of their systems, resulting in a portfolio of
software variants that need to be maintained. Each variant in the portfolio
is distinguished by the set of features comprising it. Developers commonly
use features to communicate and manage functional and quality aspects of
their software as well as to reuse and adapt existing variants to new require-
ments [1,2]. In practice, variant-rich systems are of varying maturity levels with
regard to how they are engineered and managed; from ad hoc clone&own to
integrated configurable systems.

Variant-rich systems pervade and greatly enhance modern life; as such,
customers demand high quality for these systems as well as they do for software
products resulting from traditional single-system development. However, the
complexity of variant-rich systems demands quality assurance techniques that
take into account variability. Thus, over the last decades, hundreds of dedicated
variability-aware analysis techniques [3, 4] have been conceived, many of which
are able to analyze system properties for all possible variants, as opposed to
traditional, single-system analyses. Unfortunately, these techniques target well
established integrated platforms (right side of Figure 1.1) that have variability
concepts, such as feature models and feature-to-asset traceability, implemented
and formally specified. Yet, many industrial variant-rich systems are still
immature [5, 6] and can hardly use these analysis techniques. Hence, to
facilitate their adoption, different challenges need to be addressed; for instance,
features comprising different variants need to be explicitly documented and
traced to software assets that implement them.

Figure 1.1 illustrates two contrasting approaches to engineering and man-
aging variants of a system. The first and most commonly used is called
clone&own (left side of Figure 1.1) in which developers clone an existing project
and adapt it to new requirements to create a new variant. This method is
convenient and requires little upfront investment, hence its wide adoption in
industry [5,6]. However, ad hoc clone&own imposes significant maintenance
overheads as the number of variants grows; for instance, when fixing bugs
in multiple variants. The second and most mature approach is to use a con-
figurable and integrated platform (right side of Figure 1.1) that uses software

1

2 CHAPTER 1. INTRODUCTION

ad hoc clone & own product-line engineering

project 1

project 2

integrated platform
(shared reusable assets)

No features
No consistency
Redundancy
Missing meta information
(traceability)

Variability model
Configuration
Features
Traceability

project 3

Figure 1.1: Ad hoc clone&own strategy vs configurable and integrated platform
strategy

product line engineering (SPLE) [1,7,8] methods to engineer and automatically
derive variants. With this approach, rather than independently developing
variants, reusable assets are engineered and configured to generate desired
variants based on selected features. Examples of variant-rich systems developed
using the product-line approach include highly configurable systems, such as
the Linux kernel and software product lines found in the avionics, automotive,
industrial automation, and telecommunications domains. While this approach
offers several advantages over clone&own, such as better product quality and
faster time to market, it is difficult to adopt in practice, because, firstly, it may
be difficult for an organization to foresee market needs a priori, and secondly,
it requires a substantial upfront investment for the organization to make its
code-base configurable and implement variability concepts such as feature
modeling [2] and asset-to-feature traceability. Thus, most organizations begin
with clone&own and later migrate gradually to a configurable platform, albeit
the migration is costly and risky [9–11].

The overarching goal of the PhD is to facilitate variability-aware quality
assurance in low-maturity variant-rich systems. To work towards this goal,
in this thesis we aim to gain a better understanding of variability-aware
analysis in low-maturity variant-rich systems. To that effect, we conduct three
knowledge seeking studies and one solution-seeking study, whose contributions
are summarized in Figure 1.2. As a first step, we investigate the state-of-practice
w.r.t analysis of variant-rich systems, using the following research question:

3

Goal: understanding variability-aware
analysis in low-maturity variant-rich systems

empirical evidence for industrial
analysis practices (Paper A)

empirical understanding of
features and their usage in

code (Paper B,D)

understanding of how best to
support developer’s proactive

feature location activities (Paper C)

provide increase

improve

improve

Figure 1.2: Summary of paper contributions to achieving the aim of the thesis

RQ1: What are industrial practices for assuring the quality of variant-rich
systems and what properties are assured? (Paper A)

As stated above, several variability-aware analysis techniques have been
proposed over the last two decades. We seek to understand whether these
techniques are adopted in practice, whether they address actual needs, and
what strategies practitioners actually apply to analyze variant-rich systems.
The results of this investigation are reported in Paper A and form the basis for
corresponding research questions.

Our findings from RQ1 reveal that many organizations still need more
systematic and explicit variability management to be able to apply state-of-
the-art variability-aware analysis techniques. Furthermore, features play a
pivotal role in variability-aware analysis since they are commonly used to
communicate and manage both common and variable functionalities of variant-
rich systems: For instance, activities such as change-impact analysis, selection
of test cases targeting specific features, and tracing failed test cases to affected
variants or features, all require explicit feature documentation. In a variant-
rich system, maintenance tasks, such as bug fixing, that may be easier to
perform in single systems, are complicated on account of variability and require
analysis techniques that can, for instance, indicate to a developer which feature
combinations or variants are affected by a specific bug. Yet, in low-maturity
variant-rich systems, this information necessary for analysis is missing; features
and their locations in source code assets are poorly documented and developers
often recover them retroactively— a.k.a., feature location— when faced with
maintenance tasks such as bug fixing (see Section 1.1.3). In fact, feature location
is considered one of the most common activities of software developers [12–15].
Hence, in our second and third research questions, we look into providing this
missing information, mainly features and their locations. We formulate the
second research question as:
RQ2: What information sources are useful for recovering and locating features
and their characteristics–feature facets? (Paper B)

With RQ2, we seek an empirical understanding of features and how to
recover them from source-code assets. Several automated techniques have
been proposed to recover features and their locations [15–17]. However, these
techniques generally exhibit low accuracy, need substantial effort to suit specific
projects, and often only exploit a single source of information, such as execution
traces or code comments. Moreover, recovering feature characteristics (hence-

4 CHAPTER 1. INTRODUCTION

forth referred to as facets), such as rationale or architectural responsibility of a
feature, is even more difficult, since their corresponding information sources
are largely unknown and developers may have varying understanding of these
facets. Hence, in Paper B we seek an empirical understanding of information
sources we can utilize to locate features and their facets, and strategies to
exploit these information sources. This knowledge can prove useful for improv-
ing automated feature location techniques and consequently variability-aware
analysis techniques.

Furthermore, considering the inaccuracy of automated feature location
techniques and inefficiency of retroactive manual feature location [18,19], we
seek to understand how best developer’s feature location activities can be
supported during development. To that effect, we formulate the following
research question:
RQ3: How best can developers’ feature location activities be pro-actively sup-
ported during development? (Paper C)

Given that retroactive manual feature location recovery has been shown to be
effort-heavy even for small systems ranging from 2k to 73k LOC [18], and that
automated techniques are unreliable in practice, an alternative approach [20,21]
has been proposed that allows developers to actively record feature locations
within software assets by annotating them with feature names. Particularly,
the technique by Ji et al. [20] was shown, in a simulation study [20], to have
low maintenance effort, and that the benefits of annotating assets outweigh
the costs thereof, especially for variant-rich systems with many cloned variants.
However, for very large systems, even this approach can potentially overwhelm
developers, leading them to sometimes forget to annotate assets. Thus, in Paper
C, we seek to understand how best developers can be supported in feature
location activities by means of embedded annotations and a recommender
system.

Lastly, considering that many variant-rich systems use non-modular mecha-
nisms, such as preprocessor directives (e.g., #ifdef), to implement variability in
source code, we seek to understand how features are used in such systems. In
particular, we focus on one instance of variability-aware analysis of the source
code that measures how feature code is spread across the code base— a.k.a.,
feature scattering. Consequently, we formulate the following research question:
RQ4: How does feature scattering evolve and what are practices and circum-
stances leading to it? (Paper D)

Scattered features significantly increase system maintenance efforts [1, 22],
since they hinder program comprehension, can lead to ripple effects and require
frequent developer synchronization, which challenges parallel development.
By understanding how features are used in code w.r.t. scattering, our study
presented in Paper D aims to play a role in creating a widely accepted set
of practices to govern feature scattering and eventually serve as a guide to
practitioners–for instance, in identifying implementation decay [23], and assess-
ing the maintainability of a system [24].

We proceed by discussing the background on maturity of variant-rich
systems, quality assurance and feature traceability in Section 1.1, followed by
the methodology in Section 1.2. We summarize the four papers comprising this
thesis in Section 1.3. We then discuss our main findings in Section 1.4, threats
to validity in Section 1.5, and present the conclusion in Section 1.6 and future

1.1. BACKGROUND 5

work in Section 1.7 .

1.1 Background
In this section we briefly introduce concepts of quality assurance for variant-rich
systems, maturity levels, feature location and traceability, as well as machine
learning.

1.1.1 Quality Assurance for Variant-rich Systems
Software quality assurance is a broad term that refers to a set of validation
and verification activities carried out during the software engineering process
to ensure that the resulting software products meet and comply with the
quality standards of an organization [25]. Quality assurance activities target
both software products and their related artifacts such as documentation for
requirements, configuration, design, and tests [26]. Quality properties assured
may include performance, security, maintainability, reliability, and consistency,
depending on an organization’s priorities, while methods of quality assurance
range from dynamic analyses such as testing [25] to static analysis such as
manual code inspections [27].

Nowadays, most software systems are large and complex, consisting of
millions of lines of code. This complexity is even greater in variant-rich
systems, since organizations do not only work with one but several variants.
Consequently, quality assurance for variant-rich systems demands analysis
techniques that account for their variability; for instance, that all possible
variants that can be configured by customers (or vendors) conform to specified
performance requirements. To this end, several such variability-aware analyses
[3, 28,29] have been conceived in the past few decades.

In general, variability-aware analyses for variant-rich systems target four
main aspects of their general architecture: Figure 1.3 illustrates this architecture
together with categories of typical quality properties that can be assured. The
features distinguishing the variants of the system are declared in a feature
specification— a.k.a., variability model (here a feature model [2, 30], but could
also be a textual configuration or properties file). The feature specification may
also describe relationships between the features, for instance, here, selecting
feature ACPI requires that PCI and PM are also selected. For a configurable
variant-rich system, the code base is mapped to the feature specification by
means of configuration mechanisms (here, preprocessor directives, e.g., #ifdef)
that determine which parts of the code base constitute a given variant based
on the selected set of features. However, recall that for an organization using
clone&own, variants are not realized through configuration mechanisms but
through version-control techniques such as forking and branching.

With this overall architecture, quality properties to assure for variant-rich
systems relate to:
General system properties for the whole system and its variants.
Similar to traditional single systems, all possible variants of a system must
comply with set quality criteria for properties such as behavioral correctness,
security, reliability, safety and performance. These qualities can be assured

6 CHAPTER 1. INTRODUCTION

through dynamic analyses such as testing [4,31,32] or static analysis such as
model checking [33] and deductive verification [34]. Even though, traditional
single-system analysis techniques may be used on individual variants (e.g.,
for optimization) when the system is configured by the system vendor, these
analyses are not sufficient to detect errors that pertain to all possible variants
(in a configurable variant-rich system), especially when customers configure
it (e.g., a customer selecting features for their car). Thüm et al. [3] present a
survey of a class of static analyses, called variability-aware analyses, that target
variant-rich systems typically by lifting single-system analyses. These analyses
can assure properties such as type-safety [35], performance [36], or absence of
unwanted feature interactions [37, 38] for the whole system, individual variants
or features.
The feature specification. Used to describe both the common and variable
features of a system as well as relationships among them, a feature specification
can be informal (e.g., a listing of features in a spreadsheet) or formal (e.g.,
a feature model [2]). A vast amount of analyses have been proposed in the
literature for formal feature specifications, especially feature models; Benavides
et al. [29] present a survey of over 30 such analyses targeting feature models.
These analyses can check, for instance, that the specification is satisfiable (i.e.,
at least one valid variant exists given the feature dependencies and constraints),
or that any given variant satisfies feature constraints (i.e., a variant does not
contain invalid combinations e.g., a car should either be manual or automatic
transmission but not both). Our study in Paper A is complementary to
Benavides et al.’s survey, since we match these analyses to industrial needs.
The code base. Source code exhibits several structural properties [39, 40]
that can be assured. Such properties include, for instance, scattering degrees
of features (to what extent a feature’s implementation is spread across the
code base), coding standards, layout/style guides, and deep nesting of condi-
tional statements such as if statements or preprocessor macros such as #ifdef.
These properties, if not quality-assured, have potential to hinder program com-
prehension and challenge parallel development, thus, substantially increasing
maintenance efforts. Our study presented in Paper D investigates one of these
properties— feature scattering— to provide insights on circumstances leading
to it and developer practices for coping with it.
The mapping. To prevent inconsistencies between the feature specification
and implementation artifacts, several consistency-related analyses [41, 42] have
been proposed. Consistency checks include, for instance, that the feature
specification is consistent with the code (e.g., that all features have related
code or vice versa); that constraints in the source code are consistent with
feature constraints (e.g., that there is no dead code [43]); or that the feature
specification is consistent with requirements. Some of the proposed analysis
techniques use SAT solvers to check for consistency, while a few others rely on
model checking [44] and theorem proving [45]. However, due to lack of formal
specifications for some artifacts, e.g., requirements, manual inspections are also
widely used.

Unlike Thüm et al’s [3] and Benavides et al.’s [29] surveys, which identify
the state-of-the art, our study presented in Paper A investigates the state-
of-practice— offering insights about the adoption and potential challenges
when using existing variability-aware analyses for the above four aspects of

1.1. BACKGROUND 7

void __init
init_IRQ(void)
{
#ifdef CONFIG_ACPI
acpi_boot_ini();
#endif
ia64_register_ipi();
register_percpu_
irq(...);

1

consistency properties

code properties
fe

at
ur

e
sp

ec
ifi

ca
tio

n
pr

op
er

tie
s

mapping
IA64

ACPI PCI PM
ACPI → PCI ∧ PM

general system properties

feature specification codebase

Figure 1.3: Architecture of a configurable variant-rich system and categories of
typical properties to assure

variant-rich systems.
The above analysis techniques presuppose the existence of formally specified

features, configurable source-code, and established traceability links between
features and implementation artifacts. Yet, most variant-rich systems are
developed using ad hoc clone&own, with poorly documented features.

1.1.2 Maturity of Variant-rich Systems
Variant-rich systems are portfolios (or families) of related software products
targeting different market segments or requirements. On account of how
variability is managed and how products are derived, variant-rich systems differ
in maturity; from less mature systems using ad hoc clone&own to mature ones
using software product-line engineering methods to engineer and derive variants.
Despite the benefits of the product-line approach, often, a ‘big bang’ transition
from clone&own to a configurable platform is perceived costly and risky [9–11].
Hence, incremental migration is more desirable. Antkiewicz et al. [46] propose
six governance levels, illustrated in Figure 1.4, that would allow an organization
to make such a transition in a minimally invasive way. Moreover, these levels
are also indicative of the maturity of a variant-rich system since advancing from
one level to the next is considered an incremental realization of a configurable
platform with incremental benefits and investment. At level 0, the organization
uses ad hoc clone&own with no notion of features or reuse; only a single variant
is derived from each project. At level 1, clone&own is used with provenance;
development teams record provenance information about original projects
and per cloned asset, e.g., that assetB is a cloneOf assetA. This information
facilitates change propagation and bug fixes among cloned assets. At level 2,
clone&own is used with features; teams declare features and map them to assets
that implement them— a.k.a asset-to-feature traceability. The use of features
provides for functional decomposition of projects and reasoning about their
co-evolution. At level 3, the organization uses clone&own with configuration in
which case teams can introduce constraints among features to exclude invalid

8 CHAPTER 1. INTRODUCTION

L6: fully integrated platform

L5: platform with cloning

L4: cloning with variability model

L3: cloning with configuration

L2: cloning with features

L1: cloning with provenance

L0: ad hoc clone & own (no features
or reuse)

ris
e

in
 m

at
ur

ity

Figure 1.4: Maturity levels of variant-rich systems [46]

combinations as well as disable or enable specific features for individual projects
and derive variants based on selected subset of features. This level minimizes
cloning while maximizing reuse potential. At level 4, clone&own is used with
a central feature model that teams use as a reference point for creating new
projects and propagating changes, while taking into account feature constraints.
At level 5 the organization uses product-line engineering with a platform to
configure and derive new variants but at the same time supports merging
of existing cloned projects into the platform. Existing projects are used to
harvest features that may be integrated into the platform. Lastly, at level
6, the organization uses a fully integrated platform from which variants are
automatically derived. Level 6 is a superset of all the previous levels and is the
target of many quality assurance techniques for variant-rich systems.

1.1.3 Feature Location and Traceability in Low-Maturity
Variant-Rich Systems

Developers commonly use features to define, manage, and communicate func-
tionalities of a system. Unfortunately, the locations of features in code and
other characteristics of features (a.k.a., facets), relevant for evolution and
maintenance, are often poorly documented. When a system evolves over time,
the knowledge about features, their facets, and their locations often fades and
has to be recovered— an activity known as feature location. In fact, feature
location is considered one of the most common activities of developers [12–15].

Owing to poor documentation, developers recover features retroactively
when need arises; for instance, during a maintenance task such as bug fixing or
when integrating clones. Manual feature location [12,47] is time consuming,
takes substantial effort, and has been empirically demonstrated [12] to be
inefficient even for small systems with sizes ranging from 2k–73k lines of code .
To this end, several studies have been conducted, applying different techniques

1.1. BACKGROUND 9

to automatically retrieve feature locations. Rubin et al. [15] present a survey
of 24 automated feature location techniques whose underlying methods include
formal concept analysis [48], latent semantic indexing [49], term frequency–
inverse document frequency (tf-idf), and hyper-link induced topic search (HITS)
[50]. In general, these techniques exhibit low accuracy when used in practice,
and often exploit only one source of information such as code comments or
execution traces. Our study presented in Paper B aims to improve feature
location and recovery techniques by providing an empirical understanding of
information sources we can utilize for these purposes, strategies to exploit these
information sources, and the facets of features.

Organizations can establish traceability between features and their cor-
responding software assets in either of two ways: either they record feature
traceability information during the development of the features (the eager
strategy), or they retroactively recover such information when needed (the lazy
strategy) [20]. In the former, developers record feature traces actively while
memory of such information is still fresh (e.g., when performing tasks related to
a feature or shortly after), while in the latter, developers retroactively recover
feature locations by reading through the code or applying automated tech-
niques. As indicated above, the lazy strategy is inefficient or inaccurate whether
done manually or automatically. When using the eager strategy, organizations
can either store traceability information externally, e.g., in a database, or
internally together with the assets. Using external storage is challenging [51]
since it requires a universal way of addressing locations and also relies on tools
(such as FEAT [22]) to alleviate the burden of constantly updating the feature
locations as the code base evolves. On the other hand, using internal storage
requires a mechanism for embedding [20,21] and a mechanism for extracting
and visualizing [52] the traceability information inside the software assets.

In Paper C, we present a study in which we seek to understand how best
to support developer’s traceability efforts, using the embedded annotation
technique proposed by Ji et al. [20]. Figure 1.5 illustrates this technique
using code examples from our implementation of FeaTracer — our FEAture
TRACEability Recommender system. The annotation technique comprises
i) a textual feature model (feature specification) giving a hierarchical list
of all features; with indentation indicating hierarchy (part 1); ii) textual
mapping files that annotate files (part 4) and folders (part 5) and are put
into the folder hierarchy of a project (part 2); and iii) fragment (block) or
line-level feature annotations that are put as comments into source code,
irrespective of the programming language (part 5). Using this annotation
system, the developer is able to trace the locations of features, which can later
be useful for several maintenance tasks such as bug fixing, refactoring or even
integration of clones. Furthermore, these annotations can be exploited by tools,
such as FeatureDashboard [52], to provide several code and feature metrics
relevant for maintenance and quality assurance. Some of these metrics include
scattering degree (extent to which a feature’s implementation is spread across
the code base), tangling degree (extent to which a feature’s implementation is
mixed with implementation of other features) of features, and nesting depth of
annotations [53]. Documenting features and their locations immediately and
continuously during development benefits from the developers’ fresh knowledge
and using the embedded annotation approach provides that annotations co-

10 CHAPTER 1. INTRODUCTION

feature model file structure

fragment and line mapping

1 2

3

4

5

file mapping

folder mapping

Figure 1.5: Embedded feature annotations

evolve with assets, for instance, when assets are cloned or moved to different
locations within the project [20]. However, despite being cheap and robust, this
approach requires developers to annotate assets continuously and that they do
not forget too many annotations [20]. Moreover, for large systems, developers
may get overwhelmed and tend to forget to annotate their source code. To
understand how best developers can be supported to trace features during
develpment, we implemented and systematically evaluated a recommender
system (FeaTracer) that catches cases when annotations are missed during
commit revisions, and reminds developers to annotate by suggesting the missed
feature locations. FeaTracer uses state-of-art machine learning algorithms to
analyze commit change-sets and make recommendations. In this case, each asset
can be mapped to multiple features, hence, the machine learning classification
algorithms we apply are capable of multi-label learning.

1.1.4 Recommender Systems and Multi-label Classifica-
tion

Recommendation systems are widely used in several domains such as e-
commerce and entertainment to suggest, for instance, items to purchase or
movies to rent; but also in the field of software engineering [54, 55], they
are used for tasks such as suggesting bug-fixes, code snippets, and associated
requirements. Underlying these systems are machine learning algorithms that
either predict continuous (regression) or discrete (classification) values. The
algorithms can either be supervised (i.e., need training examples to predict new
instances) or un-supervised (i.e., use clustering). For supervised machine learn-
ing, a training dataset consists of example instances with their characteristics
(a.k.a features, metrics, or attributes) mapped to target classification labels
or regression values. In our study (Paper D), we use classification algorithms:
the instances to be classified are source-code assets such as folders, files, code
fragments, and lines of code, and their target class-labels are the software
features that they implement. For instance, in Figure 1.5, files ProjectData.java
and ProjectReader.java are both mapped to feature ProjectReader. Hence
in a training dataset consisting of files as training examples, the target class
labels for both file-instances would be ProjectReader. Similarly, a training
dataset with code fragments as instances would have the block of code, line

1.1. BACKGROUND 11

Table 1.1: Example dataset with four attributes and three labels

CSM SLD NEA COMM server client bubbleGraph
E1 0.5678 0.5 4 5 1 0 1
E2 0.2346 1 2 4 1 0 0
E3 0.9678 0.6 4 8 0 1 0
...

En 0.452 0.354 2 5 ? ? ?

last three columns are the labels (software features mapped to instances)

349 to 354 in file ProjectReader.java, mapped to target label Statistics. These
instances exhibit several characteristics (classification metrics) which are used
by the learning algorithms to predict a feature location for an asset that is
not annotated. Examples of these metrics include the cosine similarity of the
text within each asset, and the structural location distance between assets
of the same feature. Intuitively, the set of metric values (a.k.a feature vector
in machine learning terminology) for each unlabeled asset instance is used as
input to the learning algorithm to predict the set of software features (class
labels) that the asset should be annotated with, based on patterns learned
from the metric values of the training examples previously presented to the
learning algorithm.

Thus, formally, in supervised machine learning, a classification task involves
learning from examples associated with one or more labels and later making
predictions of labels for unknown instances. Let D be a multilabel dataset
(MLD) composed of N examples Ei = (xi, Yi), i = 1..N . Each example Ei is
associated with a feature vector xi = (xi1, xi2, ..., xiM) described by M features
(metrics) Xj , j = 1..M , and a subset of labels Yi ⊆ L, where L = {y1, y2, ...yq}
is the set of q labels. Table 1.1 presents an example MLD with labels from
one of our subject systems studied in Paper C— Clafer Web tools; with the
feature vector x = (CSM, SLD, NEA, COMM) and the set of labels L =
{server, client, bubbleGraph}. Here, each learning example (Ei) could be a
folder, file, fragment, or line of code, depending on the chosen abstraction level
of the dataset. Example E1 has for its feature vector x1 = (0.5678, 0.5, 4, 5)
and its labelset Y1 = {server, bubbleGraph}. In this scenario, the multi-label
classification task comprises generating a classifier H which, given an unseen
instance E = (x, ?) (c.f, En in Table 1.1), is capable of accurately predicting
its subset of labels Y , i.e., H(E)→ Y . The classification task is called binary
if the output is YES/NO, multi-class, if, from the set of labels L, only one
can be associated with the unseen instance (i.e., |Y | = 1), and multi-label if
|Y | ≥ 1. Multi-label learning finds its application in several domains, such as
text mining [56], protein analysis [57], and media classification through pattern
recognition [58].

There are two approaches to accomplishing a Multi-label classification
task: problem transformation and algorithm adaptation. The former works
by producing, from a MLD, a group of datasets that can be processed with
traditional single-label classifiers, while the latter aims to extend existing algo-
rithms to handle multi-label classification problems [59]. Examples of problem
transformation approaches include Binary Relevance and Label Powerset, while
Instance-based Logistic Regression and Multi-label k-Nearest Neighbors are
some examples of learning algorithms adapted for multi-label problems. Our

12 CHAPTER 1. INTRODUCTION

study uses classifiers from both approaches.
For any given unknown instance, a multi-label classifier outputs either i)

a bipartition of relevance for each label (i.e. TRUE for relevant and FALSE
for not relevant), or ii) a ranking of labels according to their relevance for the
instance, or iii) both. All the classifiers used in our study are capable of giving
both outputs.

1.2 Methodology
In this section we detail the methodology we used to address the research
questions formulated for this thesis.

As stated above, the overarching goal of this thesis is to better understand
variability-aware analysis in low-maturity variant-rich systems. To accomplish
this, we worked in close collaboration with industry to gain insights into state-
of-practice, challenges and needs, and also engineered solutions meeting our
objectives.

For Paper A, we conducted an empirical assessment of the needs and
practices for assuring variant-rich systems— highly configurable systems in
particular. We combined a survey with 27 employees of companies from
8 countries with in-depth interviews of 15 of the survey participants. The
company sizes ranged from less than ten to over 200 employees working on
highly configurable systems ranging from less than 25,000 lines of code to over
one million lines of code, containing between ten to over 10,000 features. Our
study design relied on categorizing analysis techniques from the literature and
identifying properties analyzed by them (c.f Figure 1.3); we used these to elicit
the need for and the criticality of analyzing the properties. We also elicited
industrial practices. Since it is intrinsically difficult to objectively understand
the real practices and map them to the state of research, we triangulated
results from the survey and interviews, steering the latter based on the survey
responses, and carefully analyzing the results iteratively.

For Paper B we aimed at understanding what information sources are
available and suitable for recovering feature locations and facets. To address
this, we conducted an exploratory study on two open-source systems: Marlin, a
variability-rich 3D printer firmware, and Bitcoin-wallet, an Android application
for bitcoins, both of which comprise several information sources and variability
mechanisms.

For Paper C we aimed at understanding how best to support developers
in tracing feature locations during development using a recommender sys-
tem— FeaTracer. To this end we followed the design science approach [60]
to design, develop and validate FeaTracer through several internal iterations.
We evaluated several multi-label classification algorithms and metrics through
different experiments and configurations using five open-source systems with
feature-annotated source code. The five systems comprised the four clones of
Clafer Web tools [61] (ClaferMooVisualizer, ClaferConfigurator, ClaferIDE,
and CommonPlatformUITools) and Marlin1 3D-printer firmware. Even though
Marlin uses only variability annotations (i.e., preprocessor directives that wrap
only optional features) and not the embedded feature annotation approach

1http://marlinfw.org

http://marlinfw.org

1.3. SUMMARY OF PAPERS 13

that traces all features whether mandatory or optional (see Section 1.1.3), still,
our study leading to Paper B revealed that Marlin’s development process is
mostly feature-oriented and that the majority of its features is optional, hence
developers wrap them with preprocessor macros. Thus, in the absence of more
systems using the embedded annotation approach, we considered Marlin to be
a suitable subject system to evaluate FeaTracer.

For Paper D we aimed at understanding how features are used in non-
modular variant-rich systems. Particularly, we focused on understanding what
circumstances lead to feature scattering and how developers cope with it. For
this we conducted a case study of the Linux kernel— one of the longest-lived
highly configurable systems with over 13,000 features and over 10 millions
SLOC. We first conducted a longitudinal analysis of the source code covering
almost eights years of evolution of the kernel to investigate trends of feature
scattering (from version 2.6.12 to 3.9). We then complemented this analysis
with a survey involving 74 kernel developers and maintainers, and interviews
with 9 of them. The survey and interviews were focused on understanding
developer practices, circumstances, and perceptions of feature scattering.

1.3 Summary of Papers
We now present a summary of each of the papers comprising this thesis by
briefly stating its aim and contributions.

1.3.1 Paper A
To address varying stakeholder requirements, organizations often create sev-
eral variants of their systems. These variants are either realized through the
clone&own approach or by means of a configurable platform. The latter con-
stitutes a group of variant-rich systems that are highly configurable, such as
software product lines [62,63] and personalization-capable systems— especially
in the automotive, avionics, telecommunication or power-electronics domain.
Highly configurable systems are complex pieces of software that exhibit thou-
sands of configuration options (features), leading to almost infinite configuration
spaces (possible number of variants). One such example is the Linux kernel [64]
boasting of around 15,000 configuration options, supporting different hardware
architectures, software features or runtime environments ranging from Android
phones to large supercomputer clusters. Thus, engineering highly configurable
systems is challenging due to variability— the number of configurations and
system variants grows exponentially with the number of configuration options.

Over the last decades, many development techniques for highly configurable
systems have been conceived, mainly in the field of product line engineering.
While its development concepts have been well adopted in industrial practice—
consider the product line hall of fame (splc.net/hall-of-fame) and case studies
[65, 66]— this is much less clear for product-line analysis techniques. However,
hundreds of dedicated analysis techniques have been conceived, many of which
are able to analyze system properties for all possible system variants, as
opposed to traditional, single-system analyses. Unfortunately, it is largely
unknown whether these techniques are adopted in practice, whether they

http://splc.net/hall-of-fame

14 CHAPTER 1. INTRODUCTION

address actual needs, or what strategies practitioners actually apply to analyze
highly configurable systems.

We present a study of analysis practices and needs in industry. It relied
on a survey with 27 practitioners engineering highly configurable systems and
follow-up interviews with 15 of them, covering 18 different companies from eight
countries. We confirm that typical properties considered in the literature (e.g.,
reliability) are relevant, that consistency between feature specifications and
artifacts is critical, but that the majority of analyses for feature specifications
(a.k.a., variability model analysis) is not perceived as needed. We identified
rather pragmatic analysis strategies, including practices to avoid the need for
analysis. For instance, testing with experience-based sampling is the most
commonly applied strategy, while systematic sampling is rarely applicable. We
discuss analyses that are missing and synthesize our insights into suggestions
for future research.

Our main contributions comprise: (i) empirical data on the needs and
state-of-practice of analyzing configurable systems, (ii) synthesized insights
organized in categories inspired by the architecture of highly configurable
systems (Figure 1.3) and a classification of existing analyses from the literature,
(iii) a discussion of our study results and their implications for researchers and
practitioners, and (iv) a replication package with further study details in an
online appendix [67].

1.3.2 Paper B
Developers commonly use features to define, manage, and communicate func-
tionalities of a system [1,2]. Unfortunately, the locations of features in code and
other characteristics (feature facets), relevant for evolution and maintenance,
are often poorly documented [68]. Since developers change and knowledge
fades with time, such information often needs to be recovered. In fact, fea-
ture location [16,69–72] is one of the most common and expensive activities
in software engineering [12–14,20]. Several automated techniques have been
proposed to recover features and their locations [16,17,71,73]. Unfortunately,
these techniques generally exhibit a low accuracy, need substantial effort (e.g.,
calibration and adaptation for specific projects), and often only exploit a single
source of information, such as execution traces or code comments. Other
feature facets, such as the rationale or architectural responsibility of a feature,
are even more difficult to extract, as corresponding information sources are
largely unknown and developers may have varying understandings of these
facets.

Hence, to improve techniques for feature location and for recovering feature
facets, we need to improve our empirical understanding of features. This
includes knowledge about information sources we can utilize for these purposes,
about strategies to exploit these information sources, and about the facets
of features. Particularly interesting are modern open-source projects that are
developed on software-hosting platforms, such as GitHub and BitBucket, which
provide additional capabilities for maintaining and documenting a project.
Such platforms boast a richness of different information sources (e.g., pull
requests, change logs, release logs, commits, Wikis, issue trackers) from which
such information can be recovered— and that can be present in similar form

1.3. SUMMARY OF PAPERS 15

in industrial settings.
However, it is largely unknown from what information sources features,

their locations, and their facets can be recovered. We present an exploratory
study on identifying such information in two popular, variant-rich, and long-
living systems: The 3D-printer firmware Marlin and the Android application
Bitcoin-wallet. Besides the available information sources, we also investigated
the projects’ communities, communications, and development cultures. Our
results show that a multitude of information sources (e.g., commit messages
and pull requests) is helpful to recover features, locations, and facets to different
extents. Pull requests were the most valuable source to recover facets, followed
by commit messages, and the issue tracker. As many of the studied information
sources are, so far, rarely exploited in techniques for recovering features and
their facets, we hope to inspire researchers and tool builders with our results.

Overall, we contribute: (i) an analysis of the development process of the
open-source systems Marlin and Bitcoin-wallet; (ii) a set of consolidated search
patterns to identify and locate features; (iii) empirical data on the facets of the
identified features in both systems; and (iv) an online appendix2 containing
the feature fact sheets, feature models, and annotated code bases.

1.3.3 Paper C
Our study in Paper A showed that one major reason why quality assurance
of low-maturity variant-rich systems is challenging is that essential meta-
information, such as relationships between features and their implementation
in source code, is often missing. To recover this information, developers
carry out an activity called feature location in which they retroactively trace
features to their implementation. Feature location is one of the most common
activities in software engineering [16,69–72]. Unfortunately, it is also a very
expensive activity when performed manually [12–14,20]. Even though several
automated techniques have been proposed to recover features from source
code, feature location remains a challenging problem in software evolution and
maintenance since the proposed techniques are often inaccurate when used in
practice, or demand much effort from developers [16,17,71,73]. We argue that
features are very domain-specific entities; each project uses its own notion, and
developers have a different understanding of features and use them differently
across projects [68]. Hence, to effectively trace them to their implementation,
developers have to record feature-asset traceability information themselves; but
one question remains: how to record this information.

We propose a new technique and tool (FeaTracer) to tackle the feature
location problem, relying on some core ideas: (i) embedded annotations [20,
21] that wrap source-code assets with feature names; these annotations are
easy to apply and known to naturally co-evolve with software assets, thus
reducing maintenance effort [20], (ii) continuous recording of annotations by
developers during development, and (iii) learning from those recordings to
support developers in tracing feature implementation while the knowledge is
still fresh in their minds.

We conducted several experiments aimed at understanding how best FeaTracer can
support developers’ feature location activities through machine-learning-based

2https://bitbucket.org/rhebig/jss2018/

https://bitbucket.org/rhebig/jss2018/

16 CHAPTER 1. INTRODUCTION

recommendations. Our study relies on running our prediction experiments on
the revision history of repositories with annotated source code assets. Our
first subject system is a set of four cloned projects, collectively called Clafer-
WebTools [74], whose development history has been simulated [20] by adding
embedded annotations of features at each revision. The four projects are
ClaferMooVisualizer (viz), ClaferIDE (ide), ClaferConfigurator (config), and
ClaferCommonPlatformUITools (tools); the last project being an integration
of the first three. ClaferWebTools is predominantly JavaScript-based. Our sim-
ulation experiments cover 3 years of its development (2012-2014), comprising a
total of 742 commits. However, we only generated datasets for commits with
annotated assets— 351 commits. The second system is Marlin— a 3D printer
firmware exhibiting rich variability through preprocessor annotations. Even
though Marlin does not use embedded annotations that wrap both mandatory
and variable features, but uses preprocessor annotations (e.g., #ifdef) that
wrap only variable features, our study in Paper B found that Marlin’s develop-
ment process and culture is feature oriented and that most of its features are
optional, hence developers wrap them with preprocessor directives. Thus, in
the absence of many systems with embedded annotated assets, we deem Marlin
a suitable candidate for evaluating FeaTracer. In Marlin’s case, we focused only
on boolean features. Our analysis covers 2 years of its development (2011-2012),
comprising 500 commits authored by 36 developers.

To align our evaluation with a real development scenario, we simulated
development by training classifiers on data generated from each nth commit
and made predictions for all assets that were changed in the subsequent
n + 1th commit. For instance, we trained using the first commit, and predicted
in the second, then trained in the second commit and made predictions for all
changed assets in the third commit, and so on. The predictions were made
at four different granularity levels (folder, file, fragment (multiple consecutive
lines), and line-level). We then analyzed the performance of the classifiers and
selected the best performing for each granularity level.

Overall, we contribute: (i) a technique and tool called FeaTracer to alleviate
the feature-location problem, (ii) empirical data on what multi-label learning
algorithm and classification metrics best support feature location for what
source code granularity level, and (iii) a replication package with further study
details in an online appendix [67].

1.3.4 Paper D
Scattering of feature code is commonly perceived as an undesirable situation
[75–78]. Scattered features are not implemented in a modular way, but are
spread over the code base, possibly across subsystems. The tangling of scattered
features with different implementation parts can lead to ripple effects and require
frequent developer synchronization, which challenges parallel development.
Scattered features may significantly increase system maintenance efforts [22,79].
Yet, feature scattering is common in practice [39,40,80] as it allows developers to
overcome design limitations when extending a system in unforeseen ways [22]
or when circumventing modularity limitations of programming languages,
which impose a dominant decomposition [81–83]. In other cases, the cost
of modularizing features might be initially prohibitive or simply too difficult

1.4. RESULTS 17

to be handled in practice [84]. In contrast, feature scattering requires little
upfront investment [79], although maintenance costs may rise as the system
evolves. Many long-lived and large-scale software systems have shown that
it is possible to achieve continuous evolution while accepting some extent of
feature scattering. Examples span different domains, such as operating systems,
databases, and text editors [39,80,85].

Surprisingly, there are no empirical studies investigating feature scattering
in large and long-lived software systems. Such studies are key in creating a
widely accepted set of practices to govern feature scattering and may eventually
contribute to a general scattering theory, which could serve as a guide to
practitioners— for instance, in identifying implementation decay [86], assessing
the maintainability of a system [24], identifying scattering patterns [87] or
setting practical scattering thresholds [80].

To contribute to a deeper understanding of feature scattering and its evo-
lution, we present a case study of one of the largest and longest-living software
systems in existence today: the Linux kernel. Its features are manifested as
compile-time configuration options that users select when deriving customized
kernel images. The Linux kernel is the operating system kernel upon which
free and open-source software operating system distributions, such as Ubuntu,
OpenSUSE, Fedora and Android, are built. Its deployment goes beyond tradi-
tional computer systems, such as personal computers and servers, to embedded
devices, such as routers, wireless access points, and smart TVs, as well as to
mobile devices. Introduced in 1991, the Linux kernel boasts over twenty-seven
million source lines of code (mostly written in C), and 12,000 contributors
from more than 200 companies. Our analysis covers evolution, practices, and
circumstances leading to feature scattering. We first conducted a longitudinal
analysis of the source code to obtain feature scattering trends and followed up
with a survey of 74 kernel developers and interviews with 9 of them.

Due to the sheer size of the kernel, we scoped our longitudinal analysis to
features of the driver subsystem, which we identified as the largest and fastest
growing kernel subsystem. We analyzed the scattering of driver features within
and across the device-driver subsystem and followed up with developers and
maintainers through a survey and interviews, to understand their practices,
circumstances, and perceptions of feature scattering. To obtain a broader set
of opinions on general issues of scattering, the survey and interviews were not
limited to the driver subsystem.

Our contributions comprise: (i) a dataset covering almost eight years of the
evolution of feature code scattering extracted from the Linux kernel repository
(from version 2.6.12 to 3.9). It serves as a replication package, as a benchmark
for tools, and for further analyses; (ii) Empirical data from a survey and
interviews aimed at understanding the state of practice of feature scattering
in the Linux kernel; (iii) An online appendix [67] with further details on our
dataset, scripts to analyze the data, and additional statistics.

1.4 Results
We now answer our research questions based on our contributions.

RQ1: What are industrial practices for assuring the quality of

18 CHAPTER 1. INTRODUCTION

variant-rich systems and what properties are assured? (Paper A)
To answer this question, we conducted a survey with 27 practitioners and

followed up with interviews with 15 of them. We elicited the perceived severity
and reasons for analyzing the properties we identified from the literature (in
the categories shown in Figure 1.3) and those expressed by the practitioners.
Furthermore, We asked our participants about established (textbook) analysis
tools and techniques, and additional practices they apply. We also dug deeper
into specific ones to understand them qualitatively.

The subject systems represented by our survey respondents and interviewees
were from a wide range of domains, mainly automotive, industrial automation,
and aerospace and defense. Their sizes ranged from less than 25,000 lines
of code to over one million lines of code, containing between ten to over
10,000 features. This can be seen as very typical and substantial cases of
industrial highly-configurable systems from diverse domains and of varying
scales. While their main characteristics, including the configuration mechanisms
and technologies they use, largely resemble those of systems used in empirical
studies or evaluations of analysis techniques (e.g., open-source systems software),
we observed a mismatch between typical assumptions made in the literature
and the actual practitioners’ needs. Certain development structures and
system characteristics— often abstracted away when proposing new analysis
technologies— appear to hinder many of the more sophisticated analysis
techniques.
Properties assured. With regard to properties that are assured, first, the
severity that our practitioners express for the common properties suggested
in the literature confirms their relevance for highly configurable systems. For
instance, reliability, performance, behavioral correctness, and safety are the top
properties perceived highly critical to assure (possibly influenced by domains of
our subject systems). However, most of the analyses targeting properties of the
feature specification are not seen as important by our practitioners. Figure 1.6
shows survey responses indicating which of the top 8 feature specification
analyses from Benavides et al.’s survey [29], including three change-impact
analyses on feature specifications [88], are perceived critical by our survey
respondents. As indicated, only two of those eight properties are considered
critical to assure, the first being whether the specification is satisfiable (at least
one valid variant exists given feature constraints) and the second being that any
given configuration (variant) is valid (i.e., satisfies constraints). Furthermore,
the proposed change-impact analyses are not seen as sufficient, because they
are confined to the model and its configuration space, not providing holistic
insights on impacts on implementation artifacts. Assuring consistencies between
artifacts (especially between the feature specification and source code) is
considered highly critical, as well as identifying unwanted feature interactions.
Practices. With regard to practices, we observed (as expected) testing as
the dominant practice. Interestingly, the configuration sampling criteria that
are necessary for testing primarily rely on experience. Hardly any systematic
sampling or random sampling is used. Our results also suggest that the latter
are not even applicable given the configuration spaces that would still leave
too many irrelevant variants. Furthermore, hardly any formal method is used
(apart from limited model checking). Besides testing, manual work, such as
code reviews, is exercised, because often the feature specifications required

1.4. RESULTS 19

●

●

●

●

●

●

●

●

●

●

●

Edit is a generalization Edit is a refactoring

Absence of false−optional options Explanation for problems Edit is a specialization

List of all possible configurations Absence of redund. dependencies Absence of dead options

Var. model is satisfiable Configuration is valid No. of configuration options

1 2 3 1 2 3

1 2 3

Legend: 1−not necessary, 2−nice to have, 3−critical

Figure 1.6: Importance of assuring various properties of the feature specification

for more sophisticated analyses do not exist or are not expressed in a form
that can be used as an input. The lack of integrated tool chains is also a
factor, since artifacts required for performing analyses are managed in different
tools. Interestingly, the experience of the developers and rules, such as coding
standards, but also engineering practices such as modularization of code, often
alleviate the need for sophisticated analyses of the highly configurable system.

RQ2: What information sources are useful for recovering and
locating features and their characteristics–feature facets? (Paper B)

To address this question we conducted an exploratory study (Paper B)
on Marlin, a variability-rich 3D printer firmware, and on Bitcoin-wallet, an
Android application for bitcoins, both of which comprise several information
sources and variability mechanisms. First we studied the feature-development
processes exercised by the Marlin and Bitcoin-wallet developers, to understand
how features are developed in the two systems and communities. Next we
systematically investigated what information sources help locating features, and
to what extent. To this end, we focused on the differences between optional and
mandatory features, as especially mandatory features are challenging to locate—
variability annotations, such as #ifdef, only wrap optional features. Next,
we manually analyzed the Marlin and Bitcoin-wallet Github documentation,
such as release logs, and source code to investigate what search strategies
help recovering features. As we adapted similar search strategies for each
information source, we consolidated these into common patterns. Lastly, we
investigated what information sources help identifying feature facets, and to
what extent.
Development process. Marlin has a well-defined and structured development
process for features and bug fixes. Several steps are concerned with quality
assurance and, while everyone can contribute an issue or implement it, a
subset of contributors is responsible for accepting them. Besides ensuring
quality, this process also serves as detailed documentation and allows tracking
changes and decision-making processes. We found that the primary means of
communication are issue trackers and pull requests. Moreover, pull requests

20 CHAPTER 1. INTRODUCTION

0

10

20

30

Cod
e A

na
lys

is

Dom
ain

 K
no

wled
ge

G-C
od

e
Ifd

ef

Rele
as

e L
og

Information Source

L
oc

at
ed

 F
ea

tu
re

s

Mandatory

Optional

Figure 1.7: Information sources used to locate features in Marlin.

are linked to the release log, in which developers track development, quality
improvements, and bug fixes of each release. Interestingly, pull requests are
labeled and categorized by Marlin’s developers, for example, as PR:Bugfix,
PR:Coding Standard, and PR:New Feature. This illustrates the potential for
improving automation for feature location and for recovering feature facets
based on such modern information sources. Still, while we found a common
notion of features for the Marlin community around which the communication
is structured, this may not be the case for other systems.

It seems interesting to test techniques based on natural language processing
to connect artifacts, such as source code, commits, and discussions— aiming
to identify and locate features as well as their facets. If a common terminology
is established in projects, this may allow to considerably improve automated
analyses of legacy systems. Marlin has been developed for more than seven
years (excluding its predecessors) and comprises more than 4,600 forks. Thus,
this development process (and terminology) seems to be established and en-
sures constant, qualitative implementation of new features, while allowing the
integration of third-party developers.

Our analysis of Bitcoin-wallet indicates that the same process is not applied
on all open-source projects. However, Bitcoin-wallet has far fewer contributors,
forks, and issues, indicating less popularity compared to Marlin. Thus, the
differences in the development processes may not be due to a strict hierarchy
or a developer keeping all responsibility, but simply due to the different scales.
Information sources and search strategies. Due to the existing notion of
features being optional, Marlin’s developers do not provide much information
about mandatory features on the software-hosting platform or the release
log. Consequently, these information sources are not suitable for locating this

1.4. RESULTS 21

type of features. Besides the actual source code and its elements, mainly
domain knowledge helped to identify mandatory features of Marlin— in our
case heavily based on constructing the actual hardware. As a result, we
argue that feature-location techniques can be improved by considering different
types of documentation while analyzing the source code. Especially comments
seem interesting, as they are directly connected to the corresponding source
code in most cases. However, several questions arise, for example, how to
ensure that the used documentation is maintained simultaneously with the
code [89,90]. Other domain-specific information sources may be helpful, such
as the G-Code3 commands in our study, but also require domain knowledge to
identify them. Ultimately, we found five complementary information sources
that were helpful to identify and locate features in projects that are maintained
on software-hosting platforms, which we show in Figure 1.7:

• Domain knowledge (e.g., building two printers)
• Release log (i.e., pull requests, commits)
• Code analysis (i.e., comments, dependencies)
• #ifdefannotations
• G-Code commands

Using these information sources and a combination with other artifacts, such
as models or requirements, can facilitate identifying and locating both types of
features. In particular, we experienced that domain knowledge is necessary to
identify features and to find their locations.

Unfortunately, Bitcoin-wallet does not provide such a rich set of entry points
for feature location. Especially the missing linkage between the release log
and code, the limited variability representation, and missing notion of features
made it challenging to analyze the code. Unsurprisingly, we found it more
challenging to track information for most features in Bitcoin-wallet compared
to Marlin.

Our analysis indicates that different information sources require adapted
search strategies, but can then facilitate the analysis. Consequently, we also
have to adapt automated techniques accordingly. Regarding the artifacts we
considered, this is rather unsurprising: Source code is differently structured
and provides additional sources compared to the release log and its connected
artifacts, except for the code differences stored in each commit. Still, the release
log proved to be an effective and cheap way to identify and locate optional
features in Marlin.
Feature facets. We investigated information sources for seven facets [68]
namely: rationale (why a feature is introduced) , architectural responsibility
(what part of the system a feature belongs to), definition and approval (how a
feature is defined and approved for consideration), binding time and mode (when
the feature is determined to be included in a variant, e.g., statically through
preprocessor directives), responsibility (responsible developer), evolution (e.g.,
releases in which the feature is included), and quality and performance (quality
properties targeted by the feature).

Overall, we found that different information sources can be helpful for
each feature facet. Most of these information sources are only available in

3https://marlinfw.org/meta/gcode/

https://marlinfw.org/meta/gcode/

22 CHAPTER 1. INTRODUCTION

modern software-hosting platforms, but provide good opportunities to improve
automated techniques to recover feature facets. Still, as comparing Marlin
and Bitcoin-wallet illustrates, the usability of each information source for a
facet depends heavily on its usage, the development process, community, and
domain of the system.

RQ3: How best can developers’ feature location activities be pro-
actively supported during development? (Paper C)We addressed this re-
search question by designing and evaluating a recommender system (FeaTracer)
that offers suggestions for missed feature locations when developers forget to
annotate assets during development. We evaluated FeaTracer using two open-
source systems: a web-based application for managing cloned variants called
ClaferWebTools (JavaScript-based), and a 3D-printer firmware called Marlin
(C/C++-based). Our goal was to understand (i) which of the four source-code
granularity levels (folder, file, fragment, and line-level) is more reliable when
offering suggestions for missed feature locations, (ii) what multi-label learning
algorithm is more accurate when predicting feature locations, and (iii) which
language-independent metrics best characterize assets of a given feature to offer
more accurate recommendations? To characterize features and their related
assets, FeaTracer uses four metrics: cosine similarity (CSM) that compares how
similar the textual content of assets belonging to a given feature is; source-code
location distance (SLD) that measures how close to each other assets of a
given feature are; number of existing annotations (NEA) that counts the total
number of features implemented by each asset belonging to a given feature;
and, number of commits (COMM) in which each asset belonging to a given
feature has been changed—this measures how often assets of a given feature
are changed.

To investigate which granularity level is more reliable, we generated training
and test datasets at four granularity levels (folder, file, fragment, and line level)
and evaluated the performance of different classifiers on predictions made at
each level. We also analyzed characteristics of the different datasets, such as
number of learning examples, average number of labels per instance (a.k.a, label
cardinality), and imbalance ratio (i.e., ratio between the most frequent and rare
labels). To investigate the most accurate multi-label algorithm for predicting
feature locations, we evaluated the performance of 5 multi-label classification
algorithms from the MULAN Java library, namely, Binary relevance (BR),
Label Powerset (LP), Instance-Based Logistic Regression (IBLR), Multi-label k-
Nearest Neighbors (MLkNN), and Random k-Labelsets of disjoint sets (RAkEL-
d). We arrived at these five after an exploratory stage in which we filtered out
others, e.g., those classifiers that could not work due to exceptions we could
not fix, or were too slow to fit our recommendation scenario which requires
fast feedback to the developer. Since our aim is to support developers with
recommendations whenever they commit changes to their repositories, we did
not perform cross-validation but instead based our evaluation of the classifiers
on actual predictions for all assets changed in every n + 1th commit, using
training data from the nth commit. Lastly, we applied feature (metric) selection
techniques to understand which metrics best characterize features and their
related assets to offer more accurate recommendations. We used multi-label
feature selection methods proposed by Spolaôr et al. [91], which rely on the
filter approach [92]. Filter methods are widely used in research related to multi-

1.4. RESULTS 23

label learning [93]. They use general characteristics of the dataset to select
some features and exclude others, independently of the learning algorithm. As
such, they may not choose the best features for specific learning algorithms.
For each pair of the training and test dataset, we alternated the combination
of metrics and evaluated the performance of our selected classifiers.

Overall, we found that line-level predictions are more accurate and reliable
since lines of code offer more learning examples for FeaTracer than fragments,
files and folders. For instance, in one of our evaluation projects (ClaferMooVi-
sualizer), the average number of fragments in a training dataset was 9, over
a course of 192 commits, while that of lines was 248, and that of files was
2. Nonetheless, FeaTracer offers recommendations for all granularity levels.
Furthermore, we observed that file and folder level datasets had the lowest
imbalance ratios (we recorded zero imbalance ratio for all ClaferWebTools),
and that line-level datasets were more imbalanced than fragment-level datasets.
Of all our evaluation projects, ClaferMooVisualizer was the least imbalanced;
which could explained why we had higher accuracy scores here than in other
projects. With regard to best performing classifier, we found that different
classifiers are best suited for the different granularity levels. For instance, Label
Powerset is more suited for file and folder level predictions (achieving an average
accuracy of 81% in ClaferMooVisualizer), while Binary Relevance (BR) and
Random k-Labelsets of disjoint sets (RAkELd) are more suited for fragment
and line level predictions (achieving an average recall of 61% and precision of
57% on line level predictions), and were found to be the most robust against
few learning examples. This result indicates that no one classifier is best for all
granularity levels and that FeaTracer may benefit from ensemble approaches
that combine different classifiers. The use of feature selection methods did not
yield significant benefits, except in one project (ClaferIDE) where there was a
30% increase in accuracy when we used the top two metrics instead of all four.
In general, however, we found that the best results were obtained when all four
metrics were used. Our metric selection technique showed CSM and SLD to be
the top two metrics for folder, file and fragment-level datasets, while NEA and
SLD were ranked the top two metrics for line-level datasets.

As shown Figure 1.8, we observed certain developer practices that affect
the accuracy of FeaTracer, these being either refactorings that significantly
changed characteristics of the learned assets, or the addition of several new
assets outnumbering existing assets. For instance, in the line-level datasets
for Marlin (Figure 1.8b), we observed that from the 4th commit to the 13th
commit, the number of annotated lines of code is steady between 99 and 172.
However, from the 14th commit the number rises to 774. From the 19th
commit, there is another sharp rise from 727 to 4,904 annotated lines added,
hence, the noticeable sharp drops in prediction accuracy we observed. We
observed similar patterns in ClaferWebTools as shown for ClaferMooVisualizer
in Figure 1.8a. This development pattern is expected since developers often
refactor code, clone, or import files into their projects, hence, we believe our
accuracy values are within reasonable range to be able to support developers
in tracing features to their implementation.

RQ4: How does feature scattering evolve and what are practices
and circumstances leading to it?(Paper D) We addressed this research
question in Paper D by empirically investigating the impact of feature scattering

24 CHAPTER 1. INTRODUCTION

BR

0 50 100 150 200

0.00

0.25

0.50

0.75

1.00

commit

fscore precision recall

(a) Line-level predictions in ClaferMooVisualizer

RAkELd

0 100 200 300 400 500
0.00
0.25
0.50
0.75
1.00

commit

fscore precision recall

(b) Line-level predictions in Marlin

Figure 1.8: Trends of line-level predictions

on the maintenance of a large and long-lived software system— the Linux
kernel. The first part of our study (longitudinal study) targeted analysis of the
kernel’s code to investigate trends of feature scattering (how feature scattering
evolves with the evolution of the kernel), and the second part, as a follow-up to
the first, targeted developers of the Linux kernel to investigate their perception
of feature scattering and its impact on maintenance effort of the kernel, and
how they cope with it.

For the longitudnal analysis, we covered almost eight years of evolution of

1.5. THREATS TO VALIDITY 25

the kernel, from verison 2.6.12 to 3.9, in which period the kernel saw steady
growth from 4,752 features to 13,165 features. As stated above (Section 1.3.3),
we scoped our analysis to the source code of driver subsystem, which is the
largest subsystem of the kernel. To understand how feature scattering evolves,
first, we analyzed the relative and absolute growths of scattered and non-
scattered driver features— for instance, to understand whether the proportion
of scattered features is increasing, decreasing or stable. Next, we analyzed
how the growth of locally scattered features differs from globally scattered
features. To this end we analyzed the relative and absolute growths of driver
features that are scattered (i) within the driver subsystem only (local scattering)
and (ii) across, at least, another subsystem (global scattering). We aimed at
understanding how scattering is related to the kernel’s architecture. Lastly,
we investigated the extent to which feature code scattering evolves over time.
Here, we analyzed the extent (degree) of the scattering of feature code, aiming
at understanding the underlying distribution and possible thresholds, as well
as how this degree relates to local and global scattering.

For the follow-up study with kernel developers, first, we investigated both
possible causes and circumstances leading to feature scattering by analyzing
the survey and interview data. We also identified and asked the interviewees
about examples of scattered code that they developed and that we identified
as such in the kernel’s codebase. Furthermore, we studied whether certain
kinds of features are more likely to be scattered. Second, we analyzed the
survey respondents’ and interviewees’ reported practices for coping with feature
scattering and whether developers consciously maintain a scattering threshold
for the number of scattered features or for the features’ scattering degrees.

Overall, we found that: First, the majority of driver features can actually be
introduced without causing scattering and that the number of scattered features
remains proportionally nearly constant throughout the kernel’s evolution. We
also found that scattering is not limited to subsystem boundaries and that
the implementation of the majority of scattered driver features is scattered
across a moderate number of four to eight locations in the code. Second,
that developers introduce scattering in the Linux kernel, among other reasons,
to avoid code duplication and to support hardware variability, backwards
compatibility, and code optimization. We also learned that the features that
are most prone to scattering are those relating to platform devices— devices
that cannot be discovered by the CPU as opposed to hotplugging ones. And
third, that developers try to avoid feature scattering mostly by adhering to
coding guidelines that alleviate the problems of preprocessor use (e.g., use of
static in-line functions) and refactoring existing code to, for instance, improve
system architecture, but the majority do not consciously maintain a scattering
threshold.

1.5 Threats to Validity

In this section we discuss threats to the validity of our research based on
definitions by Wohlin et al. [94].

26 CHAPTER 1. INTRODUCTION

1.5.1 Construct Validity
For RQ1, we used concepts and terms that our survey participants and in-
terviewees could understand to mitigate potential misinterpretations. For
instance, we used the concept of highly configurable system to ensure that
all practitioners could describe their practices without the need to adopt a
specific terminology and we used terms such as configuration option to refer to
the concept of feature, configuration specification to refer to variability model,
and provided short explanations for non-trivial questions. We also iteratively
developed our questionnaire and our interview guide using pilot runs with
industrial participants. To ensure completeness, participants could provide
additional information.

For RQ4, our measurement of feature scattering in code relied on a simple
metric (SD), that is low level and measures the parts related to feature code
as specified by the original developers (using pre-processor directives). Hence
we consider it as a reliable measurement of feature scattering.

1.5.2 Internal Validity
For RQ1, we selected the participants based on their industrial and techni-
cal experience. This experience paired with the combination of survey and
interviews provided both general perspectives on analysis techniques and on
assured properties, as well as specific insights with respect to how analyses
are performed and what the needs are. All subjects were very open about
their current limitations and had no incentive to present their current practices
in a better light. Even though the interviews were conducted by different
researchers, the recordings were exchanged for transcription and for coding to
avoid potential biases.

For RQ2, since we did not involve original system developers to perform
feature location tasks, we mitigated the risk of potential bias by having two
authors become domain experts for each system; for instance, by assembling
two different kinds of 3D printers (i.e., Delta, Cartesian) for Marlin, which
differ in their mechanics and algorithms. We also performed domain, system,
and community analyses, during which different authors extensively read
documentations (e.g., about G-Code commands) and meta-data (e.g., issue
tracker) available in the GitHub repositories. The source code was also analyzed
in pairs, which includes cross-checking of the code understanding and of the
locations.

For RQ3, to mitigate the risk that bugs in FeaTracer impact results, we per-
formed extensive reviews to ensure that metrics and related accuracy measures
are calculated as expected. All three authors held several meetings to review
the implementation of FeaTracer and results obtained from the evaluation.

For RQ4, firstly, we performed extensive code reviews to mitigate the threat
of bugs in our custom-made tool impacting our results for the longitudinal code
analysis. Secondly, to avoid limiting conclusions to individual perspectives, the
survey covers a broad range of roles of respondents that contribute to more
than one subsystem of the Linux kernel. In addition, owing to the substantial
technical and industrial experience of our interviewees, our work provides both
a general perspective on feature scattering as well as in-depth insights on
technical issues.

1.5. THREATS TO VALIDITY 27

1.5.3 External Validity

For RQ1, all our study participants work with highly configurable systems
of varying sizes and maturity, covering a wide range of domains. The needs
we elicited and the insights we derived can be applied to highly configurable
systems in similar domains. Some needs and practices reported are dependent
on a concrete system, but we identified these and marked them accordingly if
they were mentioned.

For RQ2, we only considered two systems (Marlin and Bitcoin-wallet),
which may differ from others. However, Marlin is a substantial case, and
as an embedded system, it shares characteristics with many other embedded
systems. In fact, preprocessors are used similarly in almost all open-source
and industrial C/C++ systems [95]. Similarly, Bitcoin-wallet is an Android
application that shares common characteristics with others and, thus, should
also be representative.

For RQ3, even though our evaluation relies on two systems from two
domains— web application development with JavaScript (ClaferWebTools),
and embedded systems development with C/C++ (Marlin)— FeaTracer’s
feature location approach is language independent and can be applied to any
project in any domain. Since each system and domain is different, FeaTracer
can easily be adapted to each specific project by letting it learn the annotations
of the project and use them for feature location recommendations. For systems
with large numbers of labels, FeaTracer can be configured to use more scalable
classifiers only, such as RAkELd, instead of Binary Relevance or others that
may not be appropriate.

For RQ4, our study had only one subject system (the Linux kernel). Still, it
is one of the largest open-source projects in existence today. Furthermore, our
focus on device drivers is justified by the insight that it is the largest and most
vibrant subsystem of the Linux kernel. Despite this focus, we study scattering
not only within this subsystem, but also investigate how device-driver features
affect the other subsystems of the kernel. Furthermore, the majority (66%)
of our survey respondents and interviewees work as professional developers
in different companies besides contributing to the Linux kernel. Hence the
insights they provided on feature scattering may not be specific only to the
Linux kernel but may be applicable to other systems.

1.5.4 Conclusion Validity

For RQ1, our qualitative analysis depends on our interpretation. However,
we mitigated bias by collaboratively coding the interviews using open coding,
cross-checking the codes, refining the codes, and conducting a coding workshop
by all authors. We used triangulation and carefully formulated and verified
insights and conclusions to enhance our study’s validity.

To enhance the repeatability and reliability of our study answering RQ2,
we provide the data set with feature locations and all other data in an online
appendix.2 We argue that other researchers can replicate our study, but may
derive other results. For example, due to Marlin’s evolution, they may categorize
features differently, or include additional information sources (e.g., developers).

28 CHAPTER 1. INTRODUCTION

1.6 Conclusion
This thesis aims at understanding variability-aware analysis in low-maturity
variant-rich systems. To fulfill this goal, we conducted a combination of three
knowledge-seeking studies and one solution seeking study. Firstly, we present an
investigation of industrial practices and needs for analyzing variant-rich systems
(particularly, highly configurable systems), to improve our understanding of
how and whether existing analysis techniques are applied in practice. This
study reveals that most existing variability-aware analysis techniques can not
be applied in industrial practice because feature specifications required for such
analyses do not exist or are not expressed in a form that can be used as input.
Secondly, we present information sources and search strategies that can be
useful for recovering feature locations and feature facets, thereby contributing
to a better empirical understanding of features that is relevant for developers
and automated feature location techniques. This study reveals that several
information sources, such as commit messages and pull requests, are helpful
to recover features, locations, and facets to different extents. However, pull
requests are a most valuable source to recover facets, followed by commit
messages, and the issue tracker. Thirdly, we present results of our investigation
to understand how best developers can be supported when tracing feature
locations during development by means of a recommender system. We show
that lines of code are more reliable for recommendations since they offer more
learning examples for classification algorithms than fragments or files do. We
also show that different classifiers perform best for different granularity levels;
for instance that Label Powerset performs better for file and folder levels while
Binary Relevance performs better for predicting line-of-code annotations. Hence
the use ensembles may improve results. Furthermore, some practices, such as
commit policy (sizes of change-sets), can negatively impact prediction accuracy.
Lastly, using a case study of feature scattering in the Linux kernel, we present
our understanding of how features are used in non-modular variant-rich systems.
We show that, even though full modularity is difficult to achieve, still, even in
large and long-lived systems, such as the Linux kernel, the majority of features
is introduced without causing scattering, and that developers scatter feature
code to address a performance-maintenance tradeoff (alleviating complicated
APIs), hardware design limitations, and avoid code duplication.

1.7 Outlook to the Second Part of the PhD
Project

As stated above, several variability-aware analysis techniques have been pro-
posed that either operate statically [3, 33] (e.g., type checking, model checking,
and theorem proving) or dynamically [4, 31,32] (e.g., testing). Many of these
techniques are single-system analysis that have been lifted (made variability-
aware) to operate on product lines (level 6 of Figure 1.4). Different strategies
have been applied by each technique to reduce analysis effort when considering
variants of a product line. Thüm et al. [3] present a survey of and discuss these
different analysis strategies. For instance, some techniques (a.k.a., family-based)
apply the analysis to the whole product line by analyzing domain artifacts

1.7. OUTLOOK TO THE SECOND PART OF THE PHD PROJECT 29

(reusable software assets) and take into account feature constraints from the
variability model (formal feature specification), while others (a.k.a product-
based) analyze individual generated products. Depending on the strategy used,
some of these analysis can be adapted to low-maturity variant-rich systems.
For instance, level 0 (ad hoc clone&own) variant-rich systems might benefit
from product-line analysis techniques that use the product-based strategy and
incorporate techniques for exploiting redundancy and improving scalability.
However, it is unclear how this can be done since all these analyses target
configurable platforms with formal feature specifications.

As a motivating example, we consider the study of Sattler et al. [96] in which
they lift traditional data-flow analysis approaches to analyze and represent
data flows of all possible combinations of apps for purposes of detecting privacy
data leaks. Considering that mobile apps often process private data that may
be leaked to untrusted parties, data-flow analyses are conducted to detect
such leaks in the communication between components within an app and
across apps. Certain combinations of apps, however, potentially create data-
flows that are hard to detect when analyzing individual apps. Even though
sophisticated tools exist that can analyze data-flows within individual apps
(e.g., IccTA [97]) and across apps (e.g., DidFail [98]), none of them scale
to large combinations of apps. This limitation mainly lies in the data-flow
representation— the tools do not exploit redundancies (i.e., common parts
of the graph such as commonly used intents) and do not consider variability,
e.g., that an app can be installed or not. As such, both IccTA and DidFail
rely on the assumption that the set of app components is known, invariable,
and rather small [96]. To overcome this limitation, Sattler et al. used the
concept of presence conditions [99], borrowed from product-line analysis [3]
as well as variational data structures [100], to compress the data-flow graph
and make it variational such that its generation and analysis scales better
than its non-variational form (e.g., as used in DidFail). In this case, presence
conditions were used to predicate the presence or absence of apps in a data-flow.

We believe that by investigating approaches used by studies such as Sattler
et al.’s and other existing lifted product-line analysis techniques, we can devise
common principles to guide the application of these variability-aware analyses
(or their strategies) to low-maturity variant-rich systems. Therefore, for our
future work we aim to (i) investigate the principles governing the adaptation of
existing variability-aware analysis techniques from single system analysis, and
(ii) devise a process (or proof-of-concept framework) on how these principles
can be applied to low maturity variant-rich systems. With this framework, we
can describe, for instance, what process can be used by organizations at level 0
(no reuse), or level 2 (cloning with features), etc., to adopt specific analyses. As
such, the framework can serve as a guide to practitioners and tool developers
as well as drive further research. While a plethora of variability-aware analysis
techniques exist, our plan is not to design an adoption process framework for
all, but rather focus on the most commonly used techniques— with industrial
relevance. For instance, our study in Paper A found that testing is widely used,
followed by static analysis, and that model checking and theorem proving are
hardly used at all.

Furthermore, we also plan to integrate FeaTracer as a plug-in for a real-world
IDE, such as IntelliJ IDEA or Eclipse, and evaluate its performance through

30 CHAPTER 1. INTRODUCTION

experiments with human subjects over an extended development period (e.g.,
one month). In addition, we will also investigate developer practices when
using the embedded feature annotation approach to record feature locations,
and thus gain deeper insights on practicality as well as possible enhancements.

Bibliography

[1] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines. Springer, 2013.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-Oriented Domain Analysis (FODA) Feasibility Study,” Software
Engineering Institute Carnegie-Mellon University, Tech. Rep. CMU/SEI-
90-TR-21, 1990.

[3] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A classifica-
tion and survey of analysis strategies for software product lines,” ACM
Computing Surveys, vol. 47, no. 1, pp. 6:1–6:45, Jun. 2014.

[4] E. Engström and P. Runeson, “Software product line testing—a system-
atic mapping study,” Information and Software Technology, vol. 53, no. 1,
pp. 2–13, 2011.

[5] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki, “An exploratory study of cloning in industrial software product
lines,” in CSMR. IEEE, 2013.

[6] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
and A. Wasowski, “A survey of variability modeling in industrial practice,”
in VAMOS, 2013.

[7] L. Northrop, Software Product Lines: Practices and Patterns. Addison-
Wesley, 2002.

[8] U. P. Schultz and M. Flatt, Eds., Generative Programming: Concepts
and Experiences, GPCE’14, VÃďsterÃěs, Sweden, September 15-16, 2014.
ACM, 2014. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2658761

[9] F. Stallinger, R. Neumann, R. Schossleitner, and S. Kriener, “Migrating
towards evolving software product lines: Challenges of an SME in a core
customer-driven industrial systems engineering context,” in PLEASE,
2011.

[10] H. P. Jepsen, J. G. Dall, and D. Beuche, “Minimally invasive
migration to software product lines,” in Software Product Lines,
11th International Conference, SPLC 2007, Kyoto, Japan, September
10-14, 2007, Proceedings, 2007, pp. 203–211. [Online]. Available:
http://dx.doi.org/10.1109/SPLINE.2007.30

31

http://dl.acm.org/citation.cfm?id=2658761
http://dl.acm.org/citation.cfm?id=2658761
http://dx.doi.org/10.1109/SPLINE.2007.30

32 BIBLIOGRAPHY

[11] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
and A. Egyed, “Reengineering legacy applications into software product
lines: A systematic mapping,” Empirical Software Engineering, vol. 22,
no. 6, pp. 2972–3016, 2017.

[12] J. Wang, X. Peng, Z. Xing, and W. Zhao, “How Developers Perform
Feature Location Tasks: A Human-Centric and Process-Oriented Ex-
ploratory Study,” Journal of Software: Evolution and Process, vol. 25,
no. 11, pp. 1193–1224, 2013.

[13] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Ra-
jlich, “Feature location using probabilistic ranking of methods based on
execution scenarios and information retrieval,” IEEE Trans. Softw. Eng.,
vol. 33, no. 6, pp. 420–432, Jun. 2007.

[14] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept
assignment problem in program understanding,” in ICSE, 1993.

[15] J. Rubin and M. Chechik, “A survey of feature location techniques,” in
Domain Engineering. Springer, 2013, pp. 29–58.

[16] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature Location in
Source Code: A Taxonomy and Survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[17] A. Olszak and B. N. Jorgensen, “Understanding Legacy Features with
Featureous,” in Working Conference on Reverse Engineering, ser. WCRE.
IEEE, 2011, pp. 435–436.

[18] J. Wang, X. Peng, Z. Xing, and W. Zhao, “How developers perform
feature location tasks: a human-centric and process-oriented exploratory
study,” Journal of Software: Evolution and Process, vol. 25, no. 11, pp.
1193–1224, 2013.

[19] J. Krüger, T. Berger, and T. Leich, “Features and How to Find Them:
A Survey of Manual Feature Location,” in Software Engineering for
Variability Intensive Systems: Foundations and Applications. LLC/CRC
Press, 2019, pp. 153–172.

[20] W. Ji, T. Berger, M. Antkiewicz, and K. Czarnecki, “Maintaining Feature
Traceability with Embedded Annotations,” in International Systems and
Software Product Line Conference, ser. SPLC. ACM, 2015, pp. 61–70.

[21] M. Seiler and B. Paech, “Using tags to support feature management
across issue tracking systems and version control systems,” in REFSQ,
2017.

[22] M. P. Robillard and G. C. Murphy, “Representing Concerns in Source
Code,” ACM Transactions on Software Engineering and Methodology,
vol. 16, no. 1, 2007.

[23] L. Passos, K. Czarnecki, S. Apel, A. Wąsowski, C. Kästner, and J. Guo,
“Feature-Oriented Software Evolution,” in International Workshop on
Variability Modelling of Software-Intensive Systems, ser. VaMoS, 2013.

BIBLIOGRAPHY 33

[24] E. Figueiredo, C. Sant’Anna, A. Garcia, T. T. Bartolomei, W. Cazzola,
and A. Marchetto, “On the maintainability of aspect-oriented software:
a concern-oriented measurement framework,” in CSMR, 2008.

[25] J. Tian, Software quality engineering: testing, quality assurance, and
quantifiable improvement. John Wiley & Sons, 2005.

[26] H. M. Sneed and A. Mérey, “Automated software quality assurance,”
IEEE Transactions on Software Engineering, no. 9, pp. 909–916, 1985.

[27] D. L. Parnas and M. Lawford, “The role of inspection in software quality
assurance,” IEEE Transactions on Software engineering, vol. 29, no. 8,
pp. 674–676, 2003.

[28] D. S. Batory, D. Benavides, and A. R. Cortés, “Automated analysis of
feature models: challenges ahead,” Communications of the ACM, vol. 49,
no. 12, pp. 45–47, 2006.

[29] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Information Systems,
vol. 35, no. 6, pp. 615–636, 2010.

[30] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki,
“Variability modeling in the systems software domain,” Tech. Rep.,
2012, gSDLAB-TR 2012-07-06, University of Waterloo; superseded by
the IEEE TSE journal publication "A Study of Variability Models
and Languages in the Systems Software Domain". [Online]. Available:
http://gsd.uwaterloo.ca/sites/default/files/vm-2012-berger.pdf

[31] J. Lee, S. Kang, and D. Lee, “A survey on software product line testing,”
in SPLC, 2012.

[32] P. A. d. M. S. Neto, I. do Carmo Machado, J. D. McGregor, E. S.
De Almeida, and S. R. de Lemos Meira, “A systematic mapping study
of software product lines testing,” Information and Software Technology,
vol. 53, no. 5, pp. 407–423, 2011.

[33] K. Lauenroth, K. Pohl, and S. Toehning, “Model checking of domain
artifacts in product line engineering,” in ASE, 2009.

[34] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel, “Family-based deductive
verification of software product lines,” in GPCE, 2012.

[35] C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type checking annotation-
based product lines,” ACM Transactions on Software Engineering and
Methodology, vol. 21, no. 3, pp. 14:1–14:39, Jul. 2012.

[36] J. Guo, D. Yang, N. Siegmund, S. Apel, A. Sarkar, P. Valov, K. Czar-
necki, A. Wasowski, and H. Yu, “Data-efficient performance learning for
configurable systems,” Empirical Software Engineering, vol. 23, no. 3, pp.
1826–1867, 2018.

[37] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer, “Detection
of feature interactions using feature-aware verification,” in ASE, 2011.

http://gsd.uwaterloo.ca/sites/default/files/vm-2012-berger.pdf

34 BIBLIOGRAPHY

[38] S. Apel, A. von Rhein, T. Thüm, and C. Kästner, “Feature-interaction
detection based on feature-based specifications,” Computer Networks,
vol. 57, no. 12, pp. 2399–2409, 2013.

[39] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis
of the variability in forty preprocessor-based software product lines,” in
ICSE, 2010.

[40] J. Liebig, C. Kästner, and S. Apel, “Analyzing the discipline of prepro-
cessor annotations in 30 million lines of C code,” in AOSD, 2011.

[41] D. M. Le, H. Lee, K. C. Kang, and L. Keun, “Validating consistency
between a feature model and its implementation,” in ICSR, 2013.

[42] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Mining configuration
constraints: Static analyses and empirical results,” in ICSE, 2014.

[43] R. Tartler, J. Sincero, C. Dietrich, W. Schröder-Preikschat, and
D. Lohmann, “Revealing and Repairing Configuration Inconsistencies in
Large Scale System Software,” International Journal on Software Tools
for Technology Transfer, vol. 14, no. 5, pp. 531–551, 2012.

[44] T. K. Satyananda, D. Lee, and S. Kang, “Formal verification of con-
sistency between feature model and software architecture in software
product line,” in ICSEA, 2007.

[45] J. Greenyer, A. M. Sharifloo, M. Cordy, and P. Heymans, “Features meet
scenarios: modeling and consistency-checking scenario-based product line
specifications,” Requirements Engineering, vol. 18, no. 2, pp. 175–198,
2013.

[46] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Lämmel,
È. Stănciulescu, A. Wąsowski, and I. Schaefer, “Flexible product line
engineering with a virtual platform,” in ICSE. ACM, 2014.

[47] J. Krüger, T. Berger, and T. Leich, Features and how to find them: a
survey of manual feature location. LLC/CRC Press, 2018.

[48] B. Ganter and R. Wille, Formal concept analysis: mathematical founda-
tions. Springer Science & Business Media, 2012.

[49] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent
semantic analysis,” Discourse processes, vol. 25, no. 2-3, pp. 259–284,
1998.

[50] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM (JACM), vol. 46, no. 5, pp. 604–632, 1999.

[51] S. Winkler and J. von Pilgrim, “A survey of traceability in require-
ments engineering and model-driven development,” Software & Systems
Modeling, vol. 9, no. 4, pp. 529–565, 2010.

[52] B. Andam, A. Burger, T. Berger, and M. R. V. Chaudron, “Florida:
Feature location dashboard for extracting and visualizing feature traces,”
in VaMoS, 2017.

BIBLIOGRAPHY 35

[53] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis
of the variability in forty preprocessor-based software product lines,” in
ICSE, 2010.

[54] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation systems
for software engineering,” IEEE software, vol. 27, no. 4, pp. 80–86, 2009.

[55] U. Pakdeetrakulwong, P. Wongthongtham, and W. V. Siricharoen, “Rec-
ommendation systems for software engineering: A survey from software
development life cycle phase perspective,” in The 9th International Con-
ference for Internet Technology and Secured Transactions (ICITST-2014).
IEEE, 2014, pp. 137–142.

[56] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Multilabel text classification
for automated tag suggestion,” in Proceedings of the ECML/PKDD,
vol. 18, 2008, p. 5.

[57] S. Diplaris, G. Tsoumakas, P. A. Mitkas, and I. Vlahavas, “Protein
classification with multiple algorithms,” in Panhellenic Conference on
Informatics. Springer, 2005, pp. 448–456.

[58] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label
scene classification,” Pattern recognition, vol. 37, no. 9, pp. 1757–1771,
2004.

[59] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
International Journal of Data Warehousing and Mining (IJDWM), vol. 3,
no. 3, pp. 1–13, 2007.

[60] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS quarterly, pp. 75–105, 2004.

[61] K. Bąk, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wąsowski,
“Clafer: unifying class and feature modeling,” Software & Systems Model-
ing, vol. 15, no. 3, pp. 811–845, 2016.

[62] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[63] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines. Springer, 2013.

[64] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “A study of
variability models and languages in the systems software domain,” IEEE
Transactions on Software Engineering, vol. 39, no. 12, pp. 1611–1640,
2013.

[65] F. J. van der Linden, K. Schmid, and E. Rommes, Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering.
Springer, 2007.

[66] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and
S. Ferber, “Introducing pla at bosch gasoline systems: Experiences and
practices,” in SPLC, 2004.

36 BIBLIOGRAPHY

[67] The Authors, “Online Appendix,” https://sites.google.com/view/
planalysis/, 2018.

[68] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki, “What is a Feature? A Qualitative
Study of Features in Industrial Software Product Lines,” in International
Conference on Software Product Line, ser. SPLC. ACM, 2015, pp. 16–25.

[69] A. Lozano, “An Overview of Techniques for Detecting Software Variability
Concepts in Source Code,” in Advances in Conceptual Modeling. Recent
Developments and New Directions. Springer, 2011, pp. 141–150.

[70] W. K. G. Assunção and S. R. Vergilio, “Feature Location for Software
Product Line Migration: A Mapping Study,” in International Software
Product Line Conference, ser. SPLC. ACM, 2014, pp. 52–59.

[71] J. Rubin and M. Chechik, “A Survey of Feature Location Techniques,”
in Domain Engineering. Springer, 2013, pp. 29–58.

[72] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
and A. Egyed, “Reengineering Legacy Applications Into Software Product
Lines: A Systematic Mapping,” Empirical Software Engineering, vol. 22,
no. 6, pp. 2972–3016, 2017.

[73] A. Razzaq, A. Wasala, C. Exton, and J. Buckley, “The State of Empirical
Evaluation in Static Feature Location,” ACM Transactions on Software
Engineering and Methodology, vol. 28, no. 1, pp. 2:1–2:58, 2018.

[74] M. Antkiewicz, K. Bak, A. Murashkin, R. Olaechea, J. Hui, and K. Czar-
necki, “Clafer tools for product line engineering.” in SPLC Workshops,
2013, pp. 130–135.

[75] H. Spencer and G. Collyer, “#ifdef considered harmful, or portability
experience with C news,” in USENIX, 1992.

[76] G. Krone, M.; Snelting, “On the inference of configuration structures
from source code,” in ICSE, 1994.

[77] J.-M. Favre, “Preprocessors from an abstract point of view,” in ICSM,
1996.

[78] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier,
and J. Irwin, “Aspect-oriented programming,” in ECOOP, 1997.

[79] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-oriented software
product lines: Concepts and Implementation. Springer, 2013.

[80] R. Queiroz, L. Passos, M. T. Valente, C. Hunsen, S. Apel, and K. Czar-
necki, “The shape of feature code: an analysis of twenty c-preprocessor-
based systems,” Software & Systems Modeling, vol. 16, no. 1, pp. 77–96,
2017.

[81] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr., “N degrees of
separation: multi-dimensional Separation of Concerns,” in ICSE, 1999.

https://sites.google.com/view/planalysis/
https://sites.google.com/view/planalysis/

BIBLIOGRAPHY 37

[82] K. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari, and
H. Rajan, “Information hiding interfaces for aspect-oriented design,” in
ESEC/FSE, 2005.

[83] S. Apel, T. Leich, and G. Saake, “Aspectual feature modules,” IEEE
Transactions on Software Engineering, vol. 34, no. 2, pp. 162–180, 2008.

[84] C. Kästner, S. Apel, and K. Ostermann, “The road to feature modularity?”
in SPLC, 2011.

[85] L. Passos, L. Teixeira, N. Dintzner, S. Apel, A. Wąsowski, K. Czarnecki,
P. Borba, and J. Guo, “Coevolution of variability models and related
artifacts: a fresh look at evolution patterns in the Linux kernel,” Empirical
Software Engineering, 2015.

[86] L. Passos, K. Czarnecki, S. Apel, A. Wąsowski, C. Kästner, and J. Guo,
“Feature-oriented software evolution,” in VaMoS, 2013.

[87] E. Figueiredo, B. C. da Silva, C. Sant’Anna, A. F. Garcia, J. Whittle, and
D. J. Nunes, “Crosscutting Patterns and Design Stability: An Exploratory
Analysis,” in International Conference on Program Comprehension, ser.
ICPC. IEEE, 2009, pp. 138–147.

[88] T. Thum, D. Batory, and C. Kastner, “Reasoning about edits to feature
models,” in ICSE, 2009.

[89] B. Fluri, M. Wursch, and H. C. Gall, “Do Code and Comments Co-
Evolve? On the Relation Between Source Code and Comment Changes,”
in Working Conference on Reverse Engineering, ser. WCRE. IEEE,
2007, pp. 70–79.

[90] S. Nielebock, D. Krolikowski, J. Krüger, T. Leich, and F. Ortmeier,
“Commenting Source Code: Is it Worth it for Small Programming Tasks?”
Empirical Software Engineering, pp. 1–40, 2018.

[91] N. SpolaôR, E. A. Cherman, M. C. Monard, and H. D. Lee, “A comparison
of multi-label feature selection methods using the problem transformation
approach,” Electronic Notes in Theoretical Computer Science, vol. 292,
pp. 135–151, 2013.

[92] H. Liu and H. Motoda, Computational methods of feature selection. CRC
Press, 2007.

[93] N. Spolaôr, M. C. Monard, G. Tsoumakas, and H. D. Lee, “A systematic
review of multi-label feature selection and a new method based on label
construction,” Neurocomputing, vol. 180, pp. 3–15, 2016.

[94] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln,
Experimentation in Software Engineering. Springer, 2012.

[95] C. Hunsen, B. Zhang, J. Siegmund, C. Kästner, O. Leßenich, M. Becker,
and S. Apel, “Preprocessor-Based Variability in Open-Source and In-
dustrial Software Systems: An Empirical Study,” Empirical Software
Engineering, vol. 21, no. 2, pp. 449–482, 2016.

38 BIBLIOGRAPHY

[96] F. Sattler, A. von Rhein, T. Berger, N. S. Johansson, M. M. Hardø,
and S. Apel, “Lifting inter-app data-flow analysis to large app sets,”
Automated Software Engineering, no. 25, pp. 315–346, jun 2018.

[97] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1. IEEE,
2015, pp. 280–291.

[98] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program Analysis,
2014, pp. 1–6.

[99] K. Czarnecki and K. Pietroszek, “Verifying feature-based model tem-
plates against well-formedness ocl constraints,” in Proceedings of the
5th international conference on Generative programming and component
engineering, 2006, pp. 211–220.

[100] E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and E. Bodden, “Varia-
tional data structures: Exploring tradeoffs in computing with variability,”
in Proceedings of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software, 2014, pp.
213–226.

[101] T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki, A. Wasowski,
and S. She, “Variability mechanisms in software ecosystems,” Information
and Software Technology, vol. 56, no. 11, pp. 1520–1535, 2014.

[102] J. Bosch, “From software product lines to software ecosystems,” in SPLC,
2009.

[103] C. W. Krueger, “New methods in software product line practice,” Com-
munications of the ACM, vol. 49, no. 12, pp. 37–40, Dec. 2006.

[104] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki, “What is a feature? a qualitative study
of features in industrial software product lines,” in SPLC, 2015.

[105] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-oriented
domain analysis (FODA) feasibility study,” Tech. Rep. CMU/SEI-90-TR-
21, 1990.

[106] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of highly-
configurable systems in the presence of constraints,” in ISSTA, 2007.

[107] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Traon, “Automated
and scalable t-wise test case generation strategies for software product
lines,” in ICST, 2010.

[108] J. Midtgaard, C. Brabrand, and A. Wasowski, “Systematic derivation of
static analyses for software product lines,” in MODULARITY, 2014.

BIBLIOGRAPHY 39

[109] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Segura, “A survey on
the automated analyses of feature models,” in JISBD, 2006.

[110] A. Classen, P. Heymans, and P.-Y. Schobbens, “What’s in a feature: A
requirements engineering perspective,” in FASE, 2008.

[111] J. Krüger, W. Gu, H. Shen, M. Mukelabai, R. Hebig, and T. Berger, “To-
wards a better understanding of software features and their characteristics:
A case study of marlin,” in VaMoS, 2018.

[112] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. Wa-
sowski, “Three cases of feature-based variability modeling in industry,”
in MODELS, 2014.

[113] K. Schmid, R. Rabiser, and P. Grünbacher, “A comparison of decision
modeling approaches in product lines,” in VaMoS, 2011.

[114] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wąsowski,
“Cool features and tough decisions: A comparison of variability modeling
approaches,” in VAMOS, 2012.

[115] R. Bashroush, M. Garba, R. Rabiser, I. Groher, and G. Botterweck,
“Case tool support for variability management in software product lines,”
ACM Computing Surveys, vol. 50, no. 1, pp. 14:1–14:45, Mar. 2017.

[116] A. Reuys, S. Reis, E. Kamsties, and K. Pohl, “The scented method for
testing software product lines,” in Software Product Lines. Springer,
2006, pp. 479–520.

[117] S. Reis, A. Metzger, and K. Pohl, “A reuse technique for performance
testing of software product lines,” in SPLiT, 2006.

[118] A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin, and B. Baudry,
“Test them all, is it worth it? a ground truth comparison of configuration
sampling strategies,” arXiv preprint arXiv:1710.07980, 2017.

[119] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A com-
parison of 10 sampling algorithms for configurable systems,” in ICSE,
2016.

[120] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dorre, and C. Lengauer,
“Large-scale variability-aware type checking and dataflow analysis,” Tech.
Rep. MIP-1212, 2012.

[121] R. Queiroz, T. Berger, and K. Czarnecki, “Towards predicting feature
defects in software product lines,” in FOSD, 2016.

[122] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: Efficient verification of temporal proper-
ties in software product lines,” in ICSE, 2010.

[123] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Feature in-
teraction: a critical review and considered forecast,” Computer Networks,
vol. 41, no. 1, pp. 115–141, 2003.

40 BIBLIOGRAPHY

[124] P. Jayaraman, J. Whittle, A. M. Elkhodary, and H. Gomaa, “Model
composition in product lines and feature interaction detection using
critical pair analysis,” in MODELS, 2007.

[125] A. Knüppel, T. Thüm, S. Mennicke, J. Meinicke, and I. Schaefer, “Is
there a mismatch between real-world feature models and product-line
research?” in ESEC/FSE, 2017.

[126] T. Berger and J. Guo, “Towards system analysis with variability model
metrics,” in VAMOS, 2014.

[127] E. Bagheri and D. Gasevic, “Assessing the maintainability of software
product line feature models using structural metrics,” Software Quality
Journal, vol. 19, no. 3, pp. 579–612, 2011.

[128] A. R. Santos, R. P. de Oliveira, and E. S. de Almeida, “Strategies for
consistency checking on software product lines: A mapping study,” in
EASE, 2015.

[129] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Mining configuration
constraints: Static analyses and empirical results,” in ICSE, 2014.

[130] ——, “Where do configuration constraints stem from? an extraction
approach and an empirical study,” IEEE Transactions on Software Engi-
neering, vol. 41, no. 8, pp. 820–841, 2015.

[131] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat, “Feature
consistency in compile-time-configurable system software: Facing the
linux 10,000 feature problem,” in EuroSys, 2011.

[132] R. Tartler, J. Sincero, C. Dietrich, W. Schröder-Preikschat, and
D. Lohmann, “Revealing and repairing configuration inconsistencies in
large-scale system software,” International Journal on Software Tools for
Technology Transfer, vol. 14, no. 5, pp. 531–551, 2012.

[133] M. Vierhauser, P. Grünbacher, W. Heider, G. Holl, and D. Lettner,
“Applying a consistency checking framework for heterogeneous models
and artifacts in industrial product lines,” in MODELS, 2012.

[134] C. Kröher, S. El-Sharkawy, and K. Schmid, “Kernelhaven: An exper-
imentation workbench for analyzing software product lines,” in ICSE,
2018.

[135] B. Zhang, M. Becker, T. Patzke, K. Sierszecki, and J. E. Savolainen,
“Variability evolution and erosion in industrial product lines: A case
study,” in SPLC, 2013.

[136] J. Liebig, C. Kästner, and S. Apel, “Analyzing the discipline of prepro-
cessor annotations in 30 million lines of c code,” in AOSD, 2011.

[137] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, and G. Saake, “An
overview on analysis tools for software product lines,” in SPLat, 2014.

[138] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer,
“Scalable analysis of variable software,” in ESE/FSE, 2013.

BIBLIOGRAPHY 41

[139] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger, “Variability-aware parsing in the presence of lexical macros
and conditional compilation,” in OOPSLA, 2011.

[140] G. Chastek, P. Donohoe, K. C. Kang, and S. Thiel, “Product line analysis:
a practical introduction,” Tech. Rep. CMU/SEI-2001-TR-001, 2001.

[141] A. Strauss and J. Corbin, “Open Coding,” Basics of Qualitative Research:
Grounded Theory Procedures and Techniques, vol. 2, pp. 101–121, 1990.

[142] J. M. Corbin and A. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative sociology, vol. 13, no. 1, pp.
3–21, 1990.

[143] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki, “An exploratory study of cloning in industrial software product
lines,” in CSMR, 2013.

[144] L. Passos, J. Guo, L. Teixeira, K. Czarnecki, A. Wąsowski, and P. Borba,
“Coevolution of variability models and related artifacts: A case study
from the linux kernel,” in SPLC, 2013.

[145] L. Linsbauer, T. Berger, and P. GrÃĳnbacher, “A classification of varia-
tion control systems,” in GPCE, 2017.

[146] J. Krüger, J. Wiemann, W. Fenske, G. Saake, and T. Leich, “Do You
Remember This Source Code?” in International Conference on Software
Engineering, ser. ICSE. ACM, 2018, pp. 764–775.

[147] C. Gacek and M. Anastasopoules, “Implementing Product Line Variabili-
ties,” SIGSOFT Software Engineering Notes, vol. 26, no. 3, pp. 109–117,
2001.

[148] J. Krüger, W. Gu, H. Shen, M. Mukelabai, R. Hebig, and T. Berger,
“Towards a Better Understanding of Software Features and Their Char-
acteristics: A Case Study of Marlin,” in International Workshop on
Variability Modelling of Software-Intensive Systems, ser. VaMoS. ACM,
2018, pp. 105–112.

[149] A. Classen, P. Heymans, and P.-y. Schobbens, “What’s in a Feature: A
Requirements Engineering Perspective,” in Fundamental Approaches to
Software Engineering, ser. FASE. Springer, 2008, pp. 16–30.

[150] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi, “The
Love/Hate Relationship with the C Preprocessor: An Interview Study,”
in European Conference on Object-Oriented Programming, ser. ECOOP.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 495–518.

[151] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wa̧sowski,
“Cool Features and Tough Decisions: A Comparison of Variability Model-
ing Approaches,” in International Workshop on Variability Modelling of
Software-Intensive Systems, ser. VaMoS. ACM, 2012, pp. 173–182.

42 BIBLIOGRAPHY

[152] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “A Study
of Variability Models and Languages in the Systems Software Domain,”
IEEE Transactions on Software Engineering, vol. 39, no. 12, pp. 1611–
1640, 2013.

[153] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis
of the variability in 40 preprocessor-based software product lines,” in
ICSE, 2010.

[154] L. Passos, J. Padilla, T. Berger, S. Apel, K. Czarnecki, and M. T.
Valente, “Feature Scattering in the Large: A Longitudinal Study of Linux
Kernel Device Drivers,” in International Conference on Modularity, ser.
MODULARITY. ACM, 2015, pp. 81–92.

[155] M. Lillack, S. Stanciulescu, W. Hedman, T. Berger, and A. Wasowski,
“Intention-Based Integration of Software Variants,” in International Con-
ference on Software Engineering, ser. ICSE, 2019.

[156] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki, “An Exploratory Study of Cloning in Industrial Software Product
Lines,” in European Conference on Software Maintenance and Reengi-
neering, ser. CSMR. IEEE, 2013, pp. 25–34.

[157] Ş. Stănciulescu, S. Schulze, and A. Wąsowski, “Forked and Integrated
Variants in an Open-Source Firmware Project,” in International Confer-
ence on Software Maintenance and Evolution, ser. ICSME. IEEE, 2015,
pp. 151–160.

[158] J. Krüger, L. Nell, W. Fenske, G. Saake, and T. Leich, “Finding Lost
Features in Cloned Systems,” in International Systems and Software
Product Line Conference, ser. SPLC. ACM, 2017, pp. 65–72.

[159] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. Murphy,
N. Nagappan, and A. V. Aho, “Do Crosscutting Concerns Cause Defects?”
IEEE Transactions on Software Engineering, vol. 34, no. 4, pp. 497–515,
2008.

[160] M. P. Robillard and G. C. Murphy, “FEAT: A Tool for Locating, Describ-
ing, and Analyzing Concerns in Source Code,” in International Conference
on Software Engineering, ser. ICSE. IEEE, 2003, pp. 822–823.

[161] S. Krieter, J. Krüger, and T. Leich, “Don’t Worry About It: Manag-
ing Variability On-The-Fly,” in International Workshop on Variability
Modelling of Software-Intensive Systems, ser. VaMoS. ACM, 2018, pp.
19–26.

[162] H. Abukwaik, A. Burger, B. Andam, and T. Berger, “Semi-Automated
Feature Traceability with Embedded Annotations,” in International
Conference on Software Maintenance and Evolution, ser. ICSME. IEEE,
2018, pp. 529–533.

[163] M. Rosenmüller, “Towards Flexible Feature Composition: Static and Dy-
namic Binding in Software Product Lines,” Ph.D. dissertation, University
of Magdeburg, 2011.

BIBLIOGRAPHY 43

[164] J. Lee and D. Muthig, “Feature-Oriented Variability Management in
Product Line Engineering,” Communications of the ACM, vol. 49, no. 12,
pp. 55–59, 2006.

[165] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés, and M. Hinchey, “An
Overview of Dynamic Software Product Line Architectures and Tech-
niques: Observations from Research and Industry,” Journal of Systems
and Software, vol. 91, pp. 3–23, 2014.

[166] C. Prehofer, “Feature-Oriented Programming: A Fresh Look at Objects,”
in European Conference on Object-Oriented Programming, ser. ECOOP.
Springer, 1997, pp. 419–443.

[167] B. Ray and M. Kim, “A Case Study of Cross-System Porting in Forked
Projects,” in International Symposium on the Foundations of Software
Engineering, ser. FSE. ACM, 2012, pp. 53:1–53:11.

[168] “Interchangeable Variable Block Data Format for Positioning, Contour-
ing, and Contouring/Positioning Numerically Controlled Machines,” Elec-
tronic Industries Association, Standard, 1979.

[169] M. Antkiewicz, K. Bąk, A. Murashkin, R. Olaechea, J. H. J. Liang, and
K. Czarnecki, “Clafer Tools for Product Line Engineering,” in Interna-
tional Software Product Line Conference, ser. SPLC. ACM, 2013, pp.
130–135.

[170] J. Martinez, W. K. G. Assunção, and T. Ziadi, “ESPLA: A Catalog of
Extractive SPL Adoption Case Studies,” in International Systems and
Software Product Line Conference, ser. SPLC. ACM, 2017, pp. 38–41.

[171] C. W. Krueger, “Easing the Transition to Software Mass Customization,”
in International Workshop on Software Product-Family Engineering, ser.
PFE. Springer, 2002, pp. 282–293.

[172] J. Wang, X. Peng, Z. Xing, and W. Zhao, “An Exploratory Study of
Feature Location Process: Distinct Phases, Recurring Patterns, and Ele-
mentary Actions,” in International Conference on Software Maintenance,
ser. ICSM. IEEE, 2011, pp. 213–222.

[173] K. Damevski, D. Shepherd, and L. Pollock, “A Field Study of How Devel-
opers Locate Features in Source Code,” Empirical Software Engineering,
vol. 21, no. 2, pp. 724–747, 2016.

[174] N. Wilde, M. Buckellew, H. Page, V. Rajilich, and L. T. Pounds, “A Com-
parison of Methods for Locating Features in Legacy Software,” Journal
of Systems and Software, vol. 65, no. 2, pp. 105–114, 2003.

[175] H. Jordan, J. Rosik, S. Herold, G. Botterweck, and J. Buckley, “Manually
Locating Features in Industrial Source Code: The Search Actions of Soft-
ware Nomads,” in International Conference on Program Comprehension,
ser. ICPC. IEEE, 2015, pp. 174–177.

44 BIBLIOGRAPHY

[176] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (foda) feasibility study,” Carnegie-
Mellon Univ Pittsburgh Pa Software Engineering Inst, Tech. Rep., 1990.

[177] S. Apel and C. Kästner, “An overview of feature-oriented software devel-
opment.” Journal of Object Technology, vol. 8, no. 5, pp. 49–84, 2009.

[178] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. Wą-
sowski, “Three cases of feature-based variability modeling in industry,”
in International Conference on Model Driven Engineering Languages and
Systems. Springer, 2014, pp. 302–319.

[179] S. Winkler and J. von Pilgrim, “A survey of traceability in require-
ments engineering and model-driven development,” Software & Systems
Modeling, vol. 9, no. 4, pp. 529–565, 2010.

[180] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and
A. Wa̧sowski, “A Survey of Variability Modeling in Industrial Practice,”
in International Workshop on Variability Modelling of Software-Intensive
Systems, ser. VaMoS. ACM, 2013, pp. 1–8.

[181] J. Businge, M. Openja, S. Nadi, E. Bainomugisha, and T. Berger, “Clone-
based variability management in the android ecosystem,” in 2018 IEEE
International Conference on Software Maintenance and Evolution (IC-
SME). IEEE, 2018, pp. 625–634.

[182] L. Passos, R. Queiroz, M. Mukelabai, T. Berger, S. Apel, K. Czarnecki,
and J. Padilla, “A study of feature scattering in the linux kernel,” IEEE
Transactions on Software Engineering, 2018.

[183] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[184] A. Burger and S. Gruner, “Finalist 2: Feature identification, localization,
and tracing tool,” in SANER, 2018.

[185] S. Zhou, S. Stanciulescu, O. Leßenich, Y. Xiong, A. Wasowski,
and C. Kästner, “Identifying features in forks,” in Proceedings of
the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 105–116. [Online].
Available: https://doi.org/10.1145/3180155.3180205

[186] M. Seiler and B. Paech, “Documenting and exploiting software feature
knowledge through tags,” in The 31st International Conference on
Software Engineering and Knowledge Engineering, SEKE 2019, Hotel
Tivoli, Lisbon, Portugal, July 10-12, 2019., 2019, pp. 754–777. [Online].
Available: https://doi.org/10.18293/SEKE2019-109

[187] F. W. Warr and M. P. Robillard, “Suade: Topology-based searches for
software investigation,” in 29th International Conference on Software
Engineering (ICSE’07). IEEE, 2007, pp. 780–783.

https://doi.org/10.1145/3180155.3180205
https://doi.org/10.18293/SEKE2019-109

BIBLIOGRAPHY 45

[188] J. Krüger, G. Calıklı, T. Berger, T. Leich, and G. Saake, “Effects of
explicit feature traceability on program comprehension,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 338–349.

[189] S. Entekhabi, A. Solback, J.-P. Steghöfer, and T. Berger, “Visualization
of feature locations with the tool featuredashboard,” in Proceedings of
the 23rd International Systems and Software Product Line Conference-
Volume B, 2019, pp. 1–4.

[190] A. Pleuss, R. Rabiser, and G. Botterweck, “Visualization techniques for
application in interactive product configuration,” in Proceedings of the
15th International Software Product Line Conference, Volume 2, 2011,
pp. 1–8.

[191] C. Kästner, S. Trujillo, and S. Apel, “Visualizing software product line
variabilities in source code.” in SPLC (2), 2008, pp. 303–312.

[192] S. El-Sharkawy, N. Yamagishi-Eichler, and K. Schmid, “Metrics for
analyzing variability and its implementation in software product lines: A
systematic literature review,” Information and Software Technology, vol.
106, pp. 1–30, 2019.

[193] P. Bille, “A survey on tree edit distance and related problems,” Theoretical
computer science, vol. 337, no. 1-3, pp. 217–239, 2005.

[194] F. Rahman and P. Devanbu, “How, and why, process metrics are better,”
in 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 432–441.

[195] J. Krüger, M. Mukelabai, W. Gu, H. Shen, R. Hebig, and T. Berger,
“Where is my feature and what is it about? a case study on recovering
feature facets,” Journal of Systems and Software, vol. 152, pp. 239–253,
2019.

[196] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas, “Mulan:
A java library for multi-label learning,” Journal of Machine Learning
Research, vol. 12, pp. 2411–2414, 2011.

[197] F. Charte, A. Rivera, M. J. del Jesus, and F. Herrera, “Concurrence
among imbalanced labels and its influence on multilabel resampling
algorithms,” in International Conference on Hybrid Artificial Intelligence
Systems. Springer, 2014, pp. 110–121.

[198] F. Charte, A. J. Rivera, M. J. del Jesus, and F. Herrera, “Mlsmote:
Approaching imbalanced multilabel learning through synthetic instance
generation,” Knowledge-Based Systems, vol. 89, pp. 385–397, 2015.

[199] L. Passos, J. Padilla, T. Berger, S. Apel, K. Czarnecki, and M. T. Valente,
“Feature scattering in the large: a longitudinal study of Linux kernel
device drivers,” in MODULARITY, 2015.

46 BIBLIOGRAPHY

[200] P. Rothbauer, “Triangulation,” The SAGE encyclopedia of qualitative
research methods, vol. 1, pp. 892–894, 2008.

[201] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “A study
of variability models and languages in the systems software domain,”
Transactions on Software Engineering, vol. 39, no. 12, pp. 1611–1640,
2013.

[202] T. Berger, S. She, R. Lotufo, A. Wąsowski, and K. Czarnecki, “Variability
modeling in the real: a perspective from the operating systems domain,”
in ASE, 2010.

[203] Kbuild, “The kernel build infrastructure,” www.kernel.org/doc/
Documentation/kbuild, last seen: Feb. 14th, 2015.

[204] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “The
variability model of the Linux kernel,” in VaMoS, 2010.

[205] Hewlett-Packard Corp., Intel Corp., Microsoft Corp., Phoenix Technolo-
gies Ltd. and Toshiba Corp., “Advanced configuration and power interface
specification, revision 5.0,” http://www.acpi.info/spec50a.htm, last seen:
Feb. 14th, 2015.

[206] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk, “Is
the Linux Kernel a software product line?” in OSSPL, 2007.

[207] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski, “Evolution
of the Linux kernel variability model,” in SPLC, 2010.

[208] C. Dietrich, R. Tartler, W. Schröder-Preikshat, and D. Lohmann, “Under-
standing Linux feature distribution,” in Proceedings of the 2nd Workshop
on Modularity in Systems Software. ACM, 2012, pp. 15–20.

[209] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux device drivers,
3rd ed. O’Reilly, 2005.

[210] S. Venkateswaran, Essential Linux device drivers, 1st ed. Prentice Hall
Press, 2008.

[211] M. W. Godfrey and Q. Tu, “Evolution in open source software: a case
study,” in ICSM, 2000.

[212] C. Izurieta and J. Bieman, “The evolution of FreeBSD and Linux,” in
ESEM, 2006.

[213] D. G. Feitelson, “Perpetual development: a model of the Linux kernel
life cycle,” Journal of Systems and Software, vol. 85, no. 4, pp. 859–875,
2012.

[214] J. Corbet, G. Kroah-Hartman, and A. McPherson, “Linux kernel develop-
ment: how fast it is going, who is doing it, what they are doing, and who
is sponsoring it,” http://www.linuxfoundation.org/publications/

linux-foundation/who-writes-linux-2013, last seen: Feb. 14, 2015.

www.kernel.org/doc/Documentation/kbuild
www.kernel.org/doc/Documentation/kbuild
http://www.acpi.info/spec50a.htm
http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2013
http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2013

BIBLIOGRAPHY 47

[215] M. Eaddy, A. Aho, and G. C. Murphy, “Identifying, assigning, and
quantifying crosscutting concerns,” in ACoM, 2007.

[216] M. Kasunic, Designing an effective survey. Technical report, handbook
CMU/SEI-2005-HB-004. Software Engineering Institute, Carnegie Mel-
lon University, 2005.

[217] M. Hubert and E. Vandervieren, “An adjusted boxplot for skewed distri-
butions,” Computational Statistics & Data Analysis, vol. 52, no. 12, pp.
5186–5201, 2008.

[218] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, “Comparative analysis
of evolving software systems using the gini coefficient,” in ICSM, 2013.

[219] T. Berger, S. She, R. Lotufo, K. Czarnecki, and A. Wąsowski, “Feature-
to-code mapping in two large product lines,” in SPLC, 2010.

[220] M. T. Jones, “Anatomy of the Linux kernel,” IBM Developer Works,
2009.

[221] D. S. Moore, G. P. McCabe, and B. Craig, Introduction to the practice
of statistics, 6th ed. W. H. Freeman, 2009.

[222] S. Nadi and R. Holt, “The Linux kernel: a case study of build system
variability,” Journal of Software: Evolution and Process, vol. 26, no. 8,
pp. 730–746, 2014.

[223] T. Chaikalis, A. Chatzigeorgiou, and G. Examiliotou, “Investigating
the effect of evolution and refactorings on feature scattering,” Software
Quality Journal, pp. 1–27, 2013.

[224] B. Ganter and R. Wille, Formal concept analysis: mathematical founda-
tions, 1st ed. Springer, 1997.

[225] M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software
product lines: a case study using conditional compilation,” in CSMR.
IEEE, 2011, pp. 191–200.

[226] S. Paul, A. Prakash, E. Buss, and J. Henshaw, “Theories and techniques
of program understanding,” in CASCON. IBM Press, pp. 37–53.

[227] M. P. Robillard and G. C. Murphy, “Feat: a tool for locating, describing,
and analyzing concerns in source code,” in ICSE, Demonstrations Track,
2003.

[228] P. Oliveira, M. T. Valente, and F. P. Lima, “Extracting relative thresholds
for source code metrics,” in CSMR-WCRE, 2014.

[229] M. Voelter, J. Warmer, and B. Kolb, “Projecting a modular future,”
IEEE Software, vol. 32, no. 5, pp. 46–52, 2015.

[230] B. Behringer, J. Palz, and T. Berger, “Peopl: Projectional editing of
product lines,” in ICSE, 2017.

[231] M. Mukelabai, B. Behringer, M. Fey, J. Palz, J. Krüger, and T. Berger,
“Multi-view editing of software product lines with peopl,” in ICSE, Demon-
strations Track, 2018.

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Background
	Quality Assurance for Variant-rich Systems
	Maturity of Variant-rich Systems
	Feature Location and Traceability in Low-Maturity Variant-Rich Systems
	Recommender Systems and Multi-label Classification

	Methodology
	Summary of Papers
	Paper A
	Paper B
	Paper C
	Paper D

	Results
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion
	Outlook to the Second Part of the PhD Project

	Bibliography

