
Systematic Review

Managed Evolution of Automotive Software Product Line
Architectures: A Systematic Literature Study

Christoph Knieke 1,*, Andreas Rausch 1, Mirco Schindler 1, Arthur Strasser 1 and Martin Vogel 1

����������
�������

Citation: Knieke, C.; Rausch, A.;

Schindler, M.; Strasser, A; Vogel, M.

Managed Evolution of Automotive

Software Product Line Architectures:

A Systematic Literature Study.

Preprints 2022, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

1 Clausthal University of Technology, Institute for Software and Systems Engineering, Clausthal-Zellerfeld,
Germany

* Correspondence: christoph.knieke@tu-clausthal.de (C.K.)

Abstract: The rapidly growing number of software-based features in the automotive domain as well
as the special requirements in this domain ask for dedicated engineering approaches, models, and
processes. Nowadays, software development in the automotive sector is generally developed as
product line development, in which major parts of the software are kept adaptable in order to enable
reusability of the software in different vehicle variants. In addition, reuse also plays an important
role in the development of new vehicle generations in order to reduce development costs. Today,
a high number of methods and techniques exist to support the product line driven development
of software in the automotive sector. However, these approaches generally consider only partial
aspects of development. In this paper we present an in-depth literature study based on a conceptual
model of artifacts and activities for the managed evolution of automotive software product line
architectures. We are interested into the coverage of the particular aspects of the conceptual model
and, thus, the fields covered in current research and research gaps, respectively. Furthermore, we
aim to identify the methods and techniques used to implement automotive software product lines in
general, and their usage scope in particular. As a result, the in-depth review reveals that none of the
studies represents a holistic approach for managed evolution of automotive software product lines.
In addition, approaches from agile software development are of growing interest in this field.

Keywords: Automotive Software Engineering; Software Product Lines; Systematic Literature Study

1. Introduction

The automobile has become the technically most complex consumer product [1]. The
fulfillment of increasing customer requirements and strict legal requirements with regard to
the reduction of fuel consumption and pollutant emissions, as well as the higher demands
on safety and new driver assistance systems resulted in a steady increase in the deployment
of onboard electronics systems and software. Software-intensive systems and functions
are the major drivers for innovations in cars today [2]. In premium vehicles software is
responsible for up to 80% of the innovation [3]. Electronics and software account for up to
40% of the production costs of a car [4].

The requirements for automotive electronics differ significantly from other areas of
consumer electronics (cf., e.g., [5], [6]). For automotive functions hard real-time require-
ments exist while the storage and computational power on ECUs has to be kept as small
as possible. Systems in an automobile must be reliable, safe and secure in all situations as
system failures can endanger human life. In addition, long product life cycles exist: the
OEM has the duty to offer service and spare parts for at least 15 years after the purchase of
a vehicle due to the long product life cycles. In contrast, software is changed at compar-
atively short intervals. During the production period and even during the development
phase, many new versions of a piece of software are developed. As a consequence of short
innovation and long life cycles a huge number of versions and configurations exist, which
inter alia makes maintenance very difficult.

In order to reduce software development costs, the automotive industry aims for a
high degree of software reuse. Reuse is achieved both through cross-product development
for different vehicle variants and through reuse in subsequent products. However, the

https://www.mdpi.com//1/1/0?type=check_update&version=1
https://doi.org/10.3390/1010000


2 of 37

increasing complexity and variability of automotive software systems is making it increas-
ingly difficult to reuse and extend these systems. From one vehicle generation to the next,
functionality differs mostly not more than 10%, while much more than 10% of the software
is rewritten [6]. This has led to a growing interest in software product line approaches to
automotive systems [7].

Since the 1990s software product lines have been introduced as a major addition to
existing reuse approaches [8–11]. Clements et al. [11] define a software product line (SPL)
as a family of systems that share a common set of core technical assets, with preplanned
extensions and variations to address the needs of specific customers or market segments.

In general, software product line engineering consists of two key processes, domain
engineering and application engineering [12]. The aim of the domain engineering process
is to define and realize the commonality and the variability of the software product line.
The process of application engineering is responsible for deriving product line applications
from the platform established in domain engineering by exploiting the variability of the
software product line [12].

Nowadays, many challenges in the area of automotive software product line devel-
opment are mentioned in literature [7,13] (see Section 2.1.1). Motivated by the huge set
of challenges in this domain, many studies exist proposing particular methods and tech-
niques to support the product line driven development of software in the automotive
sector (see, e.g., [13]). However, these approaches generally consider only partial aspects of
development. An overview on the set of available methods and techniques would help
researchers and practitioners in the field of automotive software product line engineering.
As Raatikainen et al. [14] state in their study, there is a need for a combination of existing
solutions in the area of software product lines rather than for novel approaches. This study
examines existing approaches with respect to a holistic model, so that one gets an order
along a process view (which is domain specific). For the introduction of a software product
line approach it is crucial to know which activities (process steps) are supported by it and
which are not.

Moreover, existing studies either focus on the domain of automotive software engi-
neering in general, or they address the whole field of software product line engineering
without regarding the specific requirements of the automotive domain. Thus, a study
providing a holistic view on software product line engineering in the automotive domain
is still missing.

1.1. Research Approach and Contribution

In this paper we present an in-depth literature review based on a conceptual model
of artifacts and activities for the managed evolution of automotive software product line
architectures.

Our study is grounded in [13]. For this, following Kitchenham et al. [15] and Petersen
et al. [16,17], we use [13] as a so-called scoping study that we utilize to investigate a specific
topic in more detail. Since the study in [13] only considers papers until 2015, we have
additionally included relevant papers from 2016-2021 in our study.

We aim at collecting information about current state-of-the-art in holistic approaches
for managed evolution of automotive software product lines and use our conceptual model
as a reference model to evaluate the state-of-the-art. We are interested into the coverage
of the particular aspects of the conceptual model and, thus, the fields covered in current
research and research gaps, respectively. Furthermore, we aim to identify the methods
and techniques used to implement automotive software product lines in general, and
their usage scope in particular. The paper supports engineers to get an overview on
existing methods and techniques in automotive software product line engineering and
helps researchers to find research gaps.



3 of 37

1.2. Outline

The paper is organized as follows: Section 2 provides a conceptual model of artifacts
and activities on automotive software product line engineering and summarizes the related
work. In Section 3, we describe our research design, and present the results of our study in
Section 4. We conclude the paper in Section 5.

2. Related Work & Background
2.1. Related Work

In this section, we give an overview on the related work. We regard existing surveys
on automotive software engineering and software product lines in general. Subsequently,
we define a conceptual model on managed evolution of software product line architectures
as a basis for our systematic literature study.

2.1.1. Automotive Software Engineering

Haghighatkhaha et al. [13] published a systematic mapping study that analyzes and
classifies the literature related to the field of automotive software engineering. This review
includes 679 articles from multiple research sub-areas, published between 1990 and 2015.
They analyze research activities, topics, types, and methods and reveal research gaps in
automotive software engineering. A classification of the 679 articles is listed in an excel
sheet including general information for each article like abstract, title, year, authors, and
research topic.

Pretschner et al. [6] provided a comprehensive overview on the state of the art
in automotive software engineering. They identified research challenges in automotive
software engineering, in particular the integration, evolution, maintenance, and reuse, and
explored potential benefits of a seamless model-based development process as a possible
solution. Furthermore, the study provides a roadmap for research in this area.

Clarke et al. [18] identified important areas in software engineering that will have a
significant impact on future automotive systems. The authors introduced global software
development, software product lines, service-oriented architectures, and mathematical
approaches applied to software engineering as possible future research directions for the
automotive domain.

Grimm [19] discussed major challenges of automotive software engineering and
the most important technological core competencies required to meet these challenges.
Amongst other things, future work will focus on the following fields: Elaboration of a
software product line approach for future in-vehicle software architectures, model-based
development of distributed systems, and integration of processes, methods and tools from
the different areas of mechanical, electrical, and software engineering.

Gruszczynski [20] gave an overview on software engineering technologies in the
automotive industry and identified future research directions. Fabbrini et al. [21] provided
a picture of the achievements and the open issues in the European automotive industry
and suggested future research directions.

Thiel et al. [7] presented some challenges that automotive engineering faces today and
discuss contributions software product line approaches could make to provide solutions
for these challenges.

Antinyan, in his paper “Revealing the Complexity of Automotive Software” [22] iden-
tified four aspects that an approach to automotive software evolution must mitigate. These
are the complexity of the requirements, the complexity of source code, the architecture
complexity, and the complexity in creating variants. All these areas are represented by the
conceptual model (see Section 2.2), which serves as the baseline of this study.

2.1.2. Software Product Line Engineering

Since the 1990s software product lines have been introduced as a major addition to
existing reuse approaches [8] [9] [10] [11]. Clements et al. [11] define a software product
line (SPL) as a family of systems that share a common set of core technical assets, with



4 of 37

preplanned extensions and variations to address the needs of specific customers or market
segments.

Pohl et al. [12] propose a holistic approach on software product line engineering
consisting of two key processes, domain engineering and application engineering. Domain
engineering process aims at defining and realizing the variability and commonality of the
software product line. The process of application engineering aims at deriving product
line applications from the platform established in domain engineering by exploiting the
variability of the software product line [12].

An important activity in software product line engineering constitutes variability
management [11,12]. Most existing approaches in variability management can be classi-
fied as feature modeling and decision modeling [23]. The main difference between both
approaches is that feature modeling supports both commonality and variability modeling,
whereas decision modeling focuses exclusively on variability modeling [24].

In the following, we present surveys on various topics of SPL:
Harman et al. [25] presented a survey on Search Based Software Engineering (SBSE)

for SPLs and highlighted some directions for future work. They identified the most active
areas in SBSE for SPLs: SPL testing, SPL feature selection, product line architecture (PLA)
improvement, and SPL feature extraction.

Furthermore, several surveys on product-line testing have been conducted: Engström
and Runeson [26] presented a systematic mapping study on SPL testing. The main chal-
lenges identified in the paper are the large number of tests, the balance between effort
for reusable components and concrete products, and handling variability. Lee et al. [27]
surveyed the current SPL testing approaches and highlight the challenges and key research
perspectives in SPL testing. They defined a reference SPL testing processes as survey
framework. Oster et al. [28] also addressed SPL testing and presented a survey on the
state-of-the-art of model-based testing (MBT) approaches for SPL. They defined a concep-
tual process model for SPL testing which is used for a comparison of the different testing
approaches. Furthermore, they highlighted the challenges and open research topics in SPL
testing.

Thüm et al. [29] proposed a classification of SPL analyses and survey and classify 123
existing approaches for the analysis of SPL. They also provided a research agenda to guide
future research on SPL analyses.

Chen et al. [30] discussed the findings from a systematic literature review in variability
management in SPL. They presented the chronological backgrounds of various approaches
in variability management and identified certain gaps that need to be filled by future
research: Amongst other things, they concluded, that only a few approaches address
systematic process support for variability management and that there is only limited
support for evolution of variability. In addition, they stated the inability of most approaches
to scale to large and complex product lines.

Schobbens et al. [31] presented a survey on existing feature diagram variants. Based
on the regarded feature diagram variants, they proposed a generic formalization of the
syntax and semantics of feature diagrams.

Also recent systematic literature studies [32], [33] and [14] are still identifying research
gaps. Chacón-Luna et al. [32] criticize the accuracy of empirical studies in particular
and the fact that most of the approaches are evaluated on artificial scenarios. Marques et
al. [33] also note that while case studies are prevalent, only a few industry studies of an
appropriate size are publicly available. Furthermore, SPL approaches cannot be compared
due to a lack of consensus regarding their formalization. Raatikainen et al. [14] suggest
that the goal must be not to develop new and novel SPL methods in the future but to make
better use of the existing ones in terms of actionability, context-sensitivity, and evidence
and quality in the resulting syntheses.



5 of 37

2.2. Conceptual Model for Managed Evolution of Automotive Software Product Line Architectures

As discussed in [34] classical holistic approaches on software product line engineering,
like [12], have to be adapted to the special requirements of the automotive domain: In the
automotive sector, it is not possible to carry out all further developments within the product
line. Rather, there may be further developments that do not take place in the product line
but at the level of the individual products. The reasons for this may be the high time and
cost pressure, but also the fact that sophisticated further developments are initially to be
tested within the scope of a prototype implementation. These further developments, which
are separate from the product line, have to be transferred into product line development at
a later stage. This goes beyond the classical domain/application engineering approaches,
like [12].

In addition, we are often facing an eroded software architecture. Thus, we first have
to repair the architecture as discussed by Cool et al. [35]. Architecture repair typically
involves the two approaches recovery and discovery. Recovery is based on reverse engineer-
ing techniques by which the implemented architecture is extracted from source artifacts
whereas discovery hypothesizes its intended architecture [36].

A challenge is to minimize architecture erosion in the long term: The product line
architecture is designed initially and develops over time. Further development must ensure
that the product architecture remains consistent with the product line architecture. Thus,
in order to prevent architecture erosion in the future, architecture conformance checking is
required for all further developments.

Based on these prerequisites we use a conceptual model with activities for managed
evolution of automotive software product line architectures (cf. [35] and [34]) as shown
in Figure 1. Figure 1 depicts in the left part the activity of discovery and recovery. This
activity aims at repairing an initially eroded software architecture. It is performed once
before the long-term development cycle can begin. The long term evolution cycle consists
of two layers: The cycle Product line (PL) (see Figure 1) contains the activities for
the development of the product line. Cycle Product (P) includes the activities for the
development on the product specific level. These two cycles enable a parallel development,
and even the activities within one cycle can be performed independently. The dependencies
of an activity on artifacts of the previous activity are indicated by the circular arrow in
the middle of the two cycles. Despite this, a parallel execution of single activities is also
possible: A new PLA can be developed in activity PL-Design while an implementation
is realized in activity PL-Implement An external decision-making process is necessary to
start a new prototyping or to transfer a prototype implementation back to the product line.
Therefore, we have introduced the large, blue arrows between the two layers.

Eroded
Software

Product line (PL)

PL-Design PL-Plan

PL-Check PL-Implement

PL-Requirements

P to PL

PL to P

P-Requirements

Recovery & 
Discovery

Product (P)

P-Design P-Plan

P-Check P-Implement

Figure 1. Conceptual model for managed evolution



6 of 37

Next, we will briefly introduce the activities of the conceptual model in Figure 1.
Table 1 (cf. [35] and [34]) summarizes the objectives of the 13 activities, including input
and output artifacts.

Table 1: Explanation of the activities in Figure 1.

Activity Objective Input/Output

Recovery & Discovery Recovery of the implemented PLA
from the source artifacts (developed
products) and discovery of the in-
tended PLA.

Input: Source artifacts (developed
products).
Output: Implemented and intended
PLA.

PL-Requirements Specification and validation of soft-
ware system and software component
requirements by requirements engi-
neering.

Input: Requirements.
Output: Software system and software
component requirements.

PL-Design Further development of PLA with
consideration of design principles.
Application of measuring techniques
to assess quality of PLA.

Input: Software system / compo-
nent requirements and documenta-
tion from product development.
Output: New PLA (called “PLA vi-
sion”).

PL-Plan Planning of a set of iterations of fur-
ther development toward the PLA vi-
sion taking all affected projects into
account.

Input: PLA vision.
Output: Development plan including
the planned order of module imple-
mentations and the planned related
projects.

PL-Implement Implementation including testing as
specified by the development plan for
product line development.

Input: Development plan for product
line.
Output: Implemented module ver-
sions.

PL-Check Minimization of product architecture
erosion by architecture conformance
checking based on architecture rules.

Input: Architecture rules and set of
implemented modules to be checked.
Output: Check results.

PL to P Defining a project plan by selecting a
project from the the product line.

Input: Development plan for product
line.
Output: Project plan.

P-Requirements Specification of special requirements
for a certain vehicle product including
vehicle related parameter settings.

Input: Requirements in particular
from calibration engineers.
Output: Vehicle related requirements.

P-Design Designing product architecture and
performing architecture adaptations
taking product specific requirements
into account. Compliance checking
with PLA to minimize erosion.

Input: Project plan and product spe-
cific requirements.
Output: Planned product architecture.

P-Plan Definition of iterations to be per-
formed on product level toward the
planned product architecture.

Input: Product architecture.
Output: Development plan for prod-
uct development.

P-Implement Product specific implementations in-
cluding testing as specified by the de-
velopment plan for product develop-
ment.

Input: Development plan for product
development.
Output: Implemented module ver-
sions.

P-Check Architecture conformance checking
between PLA and PA.

Input: Architecture rules and set of
implemented modules to be checked.
Output: Check results.

P to PL Providing product related informa-
tion of developed product for integra-
tion into product line development.

Input: Developed product.
Output: Product documentation and
implementation artifacts of developed
products.

The cycle for the product line architecture needs as input the requirements from
requirements engineering (PL-Requirements) and all the artifacts developed on product
level. Activities PL-Plan and PL-Design serve to design, plan and evolve the PLA.

In PL-Implement the planned implementation artifacts are implemented on level
of the product line, whereas in P-Implement the implementation of the product specific
artifacts takes place. To create a fully functional software status for a particular vehicle



7 of 37

project, the project plan is transferred (PL to P), which contains module descriptions and
descriptions of the integration plan of the logical product architecture with the associated
module versions.

Furthermore, special requirements for a particular project are taken into account
(P-Requirements). To build a new product, we start with an initially planned PA derived
from the product line (P-Design). Iterations to be performed are planned in P-Plan. An
iteration contains the planned implementations and the elements of the PA.

Each planned project refers to a set of implementation artifacts, called modules con-
stituting the product architecture (PA). P-Check and PL-Check minimize PA erosion by
architecture conformance checking. In P-Design, we apply architecture conformance
checking to check conformance between the planned PA and the PLA.

3. Research Design

In this section, we describe our research design. Section 3.1 describes our overall
approach, followed by the research questions in Section 3.2. Section 3.3 describes the data
collection procedures. Finally, in Section 3.4, we describe the analysis procedures and
discuss the validity procedures implemented.

3.1. Research Method

The study at hand presents an in-depth literature study, which is grounded in [13]. For
this, following Kitchenham et al. [15] and Petersen et al. [16,17], we use [13] as a so-called
scoping study that we utilize to investigate a specific topic in more detail. Since the study in
[13] only considers papers unit 2015, we have additionally included relevant papers from
2016-2021 in our study. To investigate our research questions (Section 3.2), we implemented
the following procedure:

Step 1 In the first step, we analyzed the scoping study [13] and carried out a data cleaning
based on the inclusion/exclusion criteria resulting from the research questions.

Step 2 In the second step, we removed multiple occurrences of papers in the data set
following the steps described in [37].

Step 3 On order to include further relevant papers from 2016-2021, we collected papers by
defining an applying a search string. Similar to steps 1 and 2, we carried out a data
cleaning on the collected papers.

Step 4 In the fourth step, we read the papers and applied the rigor-relevance model as
proposed by Ivarsson and Gorschek [38].

Step 5 The fifth step comprised a quality assessment following the approach described in
[39] (see also App. B).

Step 5 In the sixth step, we prepared the in-depth review. In this regard, we used a refined
conceptual model for software product lines [34], which we used to further classify
the papers in the data set.

Step 7 Finally, we used the aforementioned conceptual model and the categorized papers
to conduct the in-depth review to answer the research questions.

The research approach above was implemented in a team of researchers with well-defined
task distribution to improve the validity of the findings.

3.2. Research Questions

With the paper at hand, we aim to understand the current state-of-the-art in holistic
approaches for a managed evolution of software product line architecture in automotive
software engineering. Specifically, we define our working hypothesis as follows: There is no
holistic approach for a managed evolution of automotive software product lines.



8 of 37

Table 2: Research questions addressed with the study at hand.

Research question and rationale

RQ1 What is the current state-of-the-art in holistic approaches for managed evolution of automotive
software product lines?
We aim at collecting information about such holistic approaches and use our conceptual
model (cf. Section 2.2) as a reference model to evaluate the current state-of-the-art.
Specifically, we are interested into the coverage of the particular aspects of the con-
ceptual model and, thus, the fields covered in current research and research gaps,
respectively.

RQ2 What particular methods and techniques are used to implement a managed evolution of automo-
tive software product lines?
We aim to identify the methods and techniques used to implement automotive software
product lines in general, and their usage scope in particular. For this, we analyze the
available literature and categorize and evaluate the contributions found according to a
given schema (Section 2.2).

3.3. Data Collection Procedures

In this section, we describe the data collection procedures. The data collection is based
on a previously conducted study [13], which we use as a scoping study. In the following,
we provide a brief summary of the scoping study’s contribution in Section 3.3.1, before
we describe the selection process of papers relevant to the study at hand in Section 3.3.2.
In addition, we describe how we included papers from 2016-2021 3.3.3, as the conducted
study in [13] only considers papers until 2015. Finally, in Section 3.3.4, we describe how we
selected the final set of papers for analysis.

3.3.1. Overview of the Scoping Study

As basic data source, we use the scoping study [13] and the complementing published
dataset. The scoping study has collected papers on Automotive Software Engineering,
which were categorized into the seven research areas listed in Table 3.

In total, the scoping study [13] includes 679 papers, which were categorized into seven
research areas and, finally, were found add rings 14 specific research topics. This dataset
served as input for the data collection, which is explained in detail in the following sections.

3.3.2. Study Selection from the Scoping Study

As introduced in Section 3.2, the scope of the study at hand is the field of software
product lines. For this, we used the scoping study and applied a multi-staged selection
procedure for studies of interest:

1. Analyze the scoping study’s data and identify all papers on software product lines
(incl. synonyms):

(a) Selection of papers based on title and abstract
(b) Selection based on keywords1 (incl. variants, upper-/lower case, etc.): SPL,

family, reference architecture, variability, variant model, variability manage-
ment, feature model, feature tree, feature-oriented, derivate

(c) Result: This stage resulted into 87 paper (candidates); most of the papers
selected are in the REU group (Table 3)

2. Rating of the study candidates (Section 3.3.2)

(a) Application of the rigor-relevance model [38]
(b) Definition of a Threshold and selection of papers
(c) Final data cleaning and preparation of the in-depth analysis

1 While testing the selection criteria, we decided to exclude the keywords reusability, reuse, derive, and feature, since they generated too many false
positives.



9 of 37

Table 3: Automotive Software Engineering research areas according to ISO/IEC 12207 PRM
as found in [13].

Research area and topics Studies per area

Agreement Processes (AGR)

• Agreement Support Group

5

Organizational Project-Enabling Processes (ORG)

• Organizational Project-Enabling Support Group

48

Project Processes (PRO)

• Project Support Group

14

Technical and Software Implementation Processesa (ENG/DEV)

• System/Software Architecture and Design (131 studies).
• System/Software Qualification Testing (127 studies)
• Software Implementation (62 studies).
• System/Software Integration (44 studies)
• System/Software Requirement Engineering (35 studies).
• Software Construction (22 studies).
• Software Maintenance (18 studies).

439

Software Support Processes (SUP)

• Software Verification and Validation (71 studies).
• Software Quality Assurance and Review (48 studies).
• Software Documentation and Configuration Management (3

studies).

122

Software Reuse Processes (REU)

• Software Reuse

72

a SUMMARIZED

3. In-depth analysis (Section 3.4)

3.3.3. Collection and selection of papers from 2016-2021

To include papers in this work that were published after 2015, we performed another
search for relevant papers. For this purpose, we defined a suitable search string and applied
it to Google Scholar. In particular, we performed the following steps:

1. Definition of a suitable search string.
2. Result: "automotive software" AND "software product line".
3. Application of the search string to Google Scholar for the years 2016-2021.
4. Result: This stage resulted in 263 papers (candidates).
5. Selection of papers based on title and abstract, done by two reviewers.
6. Result: This stage resulted in 20 papers (candidates).

To distinguish the papers from the scoping study [13] and the selected papers from
2016-2021, we gave the prefix P to the ID of the scoping study’s papers and the prefix E to
the papers of the extended search.

3.3.4. Final Paper Selection

In the final paper selection, we analyzed the 107 selected candidate studies and, in
a first step, applied the rigor-relevance model as proposed by Invarsson and Gorschek
[38]. This model grades papers on the two parameters rigor (FROM-TO) and relevance



10 of 37

(FROM-TO). To select the studies of interest, we defined the threshold rigor + relevance ≥ 2
to ensure that:

1. All high-quality papers (i.e., high-scored papers) are in the result set
2. Papers that have a high relevance score but a poor rigor score are included
3. Medium-scored but balanced papers are included

Applying the rigor relevance model to the candidate studies, we selected 56 studies. These
studies were (again) checked with a particular focus on multiple occurrences. In order to
finally clean the dataset, we decided to prefer journal papers to conference papers, as we
assume follow-up special issue papers to have a higher maturity/quality. Eventually, we
selected 51 primary studies for inclusion into the data analysis. The final evaluation and
classification of the different studies is summarized in Table 4.

3.4. Analysis and Validity Procedures

The analysis procedures applied to the final dataset of 51 papers also followed a
multi-staged approach. In our analysis procedure, we applied a number standard analyses
on the data already provided by the original scoping study [13]. In particular, we used
the provided data for analyzing the research type facets [78] and the contribution type facets
[16,17]. Furthermore, we applied the rigor-relevance model [38] for implementing study
selection (Section 3.3.4) and further data analyses.

Grounded in these basic measures, we used the conceptual model for a managed
evolution from Section 2.2 as a classification schema. Five researchers classified the papers
according to the conceptual model from Section 2.2, which we used as a classification
schema. For each element in the classification schema, the individual researcher had to
state whether or not a study makes a major contribution to a specific element, e.g., product
line design or product implementation. The results were integrated and checked for agreement
using Fleiss’ κ [92]; the overall agreement in the studies’ classification was 0.72 (substantial
agreement). This classification resulted into three categories:

Category 1 This category includes those papers for which all five researchers agreed that a
study has a major contribution in a specific category. Finally, 8 papers were assigned
to this category.

Category 2 This category includes those papers for which three or four researchers agreed
that a study has a major contribution in a specific category. Finally, 30 papers were
assigned to this category.

Category 3 This category includes those papers for which one or two researchers only
agreed that a study has a major contribution in a specific category. Finally, 13 papers
were assigned to this category.

The categories above are used in further in-depth analyses to, notably, evaluate the specific
contributions and the maturity of the contributions of the individual studies. Finally, we
used the classification schema from Section 2.2 and the researchers’ rating to generate a
mapping table, which guides the in-depth content analysis.

As we reused an already published dataset resulting from an independently conducted
scoping study [13], we implemented several measures to improve the validity of our
findings. First and foremost, we relied on researcher triangulation, i.e., we always ensured
that one researcher from the team was not involved in a task and performed the quality
assurance of that very task, e.g., in the rating of the contributions of the study (Section 3.4),
five researchers evaluated the studies and a sixth researcher checked the evaluations and
computed the agreement levels. Furthermore, we shuffled the teams, e.g., data collection,
quality assessment, and data analysis were performed by different teams of two to three
researchers.

4. Study Results & Discussion

This section summarizes the results of our analysis. First, we provide general demo-
graphic information about the dataset, before we answer the individual research questions.



11 of 37

Table 4: Evaluation and classification of the primary studies selected for analysis.

Id Ref RTFa CTFb Rigor Relevance

P8 [40] Evaluation Model 1.0 2.0

P22 [41] Solution Proposal Framework/Method/Technique 1.5 2.0

P43 [42] Evaluation Lessons Learned 3.0 3.0

P71 [43] Evaluation Framework/Method/Technique 1.5 2.0

P72 [44] Evaluation Lessons Learned 3.0 3.0

P79 [45] Evaluation Framework/Method/Technique 1.0 2.0

P86 [46] Evaluation Lessons Learned 2.0 4.0

P90 [47] Evaluation Model 2.0 3.0

P94 [48] Evaluation Framework/Method/Technique 1.0 2.0

P100 [49] Validation Framework/Method/Technique 2.5 1.0

P129 [50] Evaluation Model 2.0 4.0

P173 [51] Evaluation Framework/Method/Technique 1.0 2.0

P215 [52] Evaluation Lessons Learned 2.5 4.0

P218 [53] Experience Paper Lessons Learned 0.5 2.0

P220 [54] Experience Paper Lessons Learned 0.5 2.0

P221 [55] Experience Paper Lessons Learned 0.5 2.0

P223 [56] Experience Paper Framework/Method/Technique 1.0 2.0

P279 [57] Evaluation Framework/Method/Technique 1.0 3.0

P281 [58] Validation Guideline 1.0 2.0

P285 [59] Evaluation Framework/Method/Technique 1.5 4.0

P289 [60] Evaluation Framework/Method/Technique 1.0 2.0

P300 [61] Evaluation Lessons Learned 1.0 2.0

P310 [62] Evaluation Framework/Method/Technique 1.0 2.0

P332 [63] Evaluation Framework/Method/Technique 1.0 1.0

P343 [64] Evaluation Framework/Method/Technique 1.0 2.0

P365 [65] Evaluation Framework/Method/Technique 1.0 1.0

P377 [66] Solution Proposal Framework/Method/Technique 1.0 1.0

P404 [67] Evaluation Lessons Learned 0.5 2.0

P468 [68] Experience Paper Lessons Learned 1.0 3.0

P493 [69] Experience Paper Framework/Method/Technique 2.0 3.0

P503 [70] Experience Paper Lessons Learned 0.0 2.0

P580 [71] Solution Proposal Framework/Method/Technique 1.0 3.0

P588 [72] Evaluation Framework/Method/Technique 1.0 3.0

P589 [73] Evaluation Framework/Method/Technique 1.0 2.0

P660 [74] Evaluation Framework/Method/Technique 1.0 2.0

P580 [71] Solution Proposal Framework/Method/Technique 1.0 3.0

P588 [72] Evaluation Framework/Method/Technique 1.0 3.0

P589 [73] Evaluation Framework/Method/Technique 1.0 2.0

P660 [74] Evaluation Framework/Method/Technique 1.0 2.0

E8 [75] Evaluation Framework/Method/Technique 1.0 2.0

E53 [76] Evaluation Framework/Method/Technique 1.0 3.0

E59 [77] Evaluation Lessons Learned 2.0 4.0

aResearch type facet, according to [78]
bContribution type facet, according to [16,17]



12 of 37

Id Ref RTFa CTFb Rigor Relevance

E66 [79] Evaluation Framework/Method/Technique 2.0 2.0

E127 [80] Evaluation Framework/Method/Technique 1.0 4.0

E130 [81] Evaluation Framework/Method/Technique 1.0 4.0

E132 [82] Evaluation Framework/Method/Technique 2.0 2.0

E173 [83] Experience Paper Guideline 3.0 2.0

E175 [84] Experience Paper Lessons Learned 2.5 2.0

E177 [85] Experience Paper Lessons Learned 2.0 2.0

E178 [86] Experience Paper Lessons Learned 2.0 2.0

E179 [87] Evaluation Framework/Method/Technique 1.0 1.0

E183 [88] Solution Proposal Framework/Method/Technique 1.0 3.0

E187 [89] Evaluation Lessons Learned 1.0 2.0

E224 [90] Solution Proposal Framework/Method/Technique 2.0 1.0

E230 [91] Experience Paper Lessons Learned 2.5 2.0

aResearch type facet, according to [78]
bContribution type facet, according to [16,17]

Finally, we discuss our findings in Section 4.4 and discuss the threats to validity in Section
4.5.

4.1. Result Overview

After the study selection, 51 papers remained in the result set. Figure 2 illustrates the
publication frequency including the 3-year trend (red line) and the 5-year trend (black line).
The general publication frequency shows a growing interest in the research on automotive
software product lines starting in 2011.

Figure 2. Overview of the publication frequency including publication trend.

Based on the initial classification from the scoping study [13], we evaluated the
remaining 51 papers for their research- and contribution type classification, which is
illustrated in Figure 3. This classification shows the majority of the papers contributing
frameworks, methods and techniques, and that most studies are classified as evaluation
research. It has to be noted that the papers from our result set have been filtered using the
rigor-relevance model (see also Table 4). Hence, due to the selection procedure as described
in Section 3.3.4, we expected mostly papers of type evaluation research, and result set
contains 32 papers of type evaluation research, which we consider an indication towards
practically relevant contributions. Furthermore, 12 more papers from the result set have
been classified as experience paper, i.e., practical experience regarding automotive software
product lines have been reported.

In a nutshell, we argue that our paper selection strategy resulted in a dataset that
comprises those studies reporting practical relevant knowledge about automotive software
product lines, which we investigate in more detail in the following sections.



13 of 37

Figure 3. Classification of the result set according to research type facets and contribution type facets.

4.2. State of the Art in Holistic Approaches for Managed Evolution of Automotive Software
Product Lines

In this section, we aim to answer research question RQ1 (Table 2). As described in
Section 3.4, five researchers classified the papers according to the conceptual model from
Section 2.2. The classification was used to generate a mapping table for the in-depth content
analysis. Based on this mapping table, Figure 4 shows the assignment of the papers to the
conceptual model from Section 2.2. In Figure 4 a paper is annotated to an element if at least
two researchers state that the paper makes a major contribution to that specific element. A
paper can be assigned to more than one element if it contributes to several activities of the
conceptual model.

Figure 4. Assignments of the finally selected primary studies to the classification schema (Section 2.2)
to prepare the in-depth content analysis.

Table 5 shows the assignments of the selected primary studies to the activities of our
classification schema. According to our schema, none of the analyzed studies presents a
holistic approach for managed evolution of automotive software product lines. Yet, some
studies provide a certain coverage. For instance, study P377 [66] has been assigned to nine



14 of 37

categories thus covering three quadrants of our schema. It has also to be mentioned that
this study only received a score of 1.0 in the rigor-relevance evaluation (Table 4), i.e., it
has barely received the minimum score required for inclusion in the result set (cf. Section
3.3.4). The two primary studies P22 [41] and P129 [50] have been assigned four times each,
and studies P218 [53], P365 [65], and P493 [69] have been assigned thrice. The remaining
studies have been assigned once or twice only. In the subsequent Section 4.3 we will regard
all studies proposing an “overall approach/process” in detail.

To facilitate the evaluation we count the assignments of studies to activities of the
classification schema and display the percentages of counts in Table 5. In total, there are 92
assignments to the 13 activities of the classification schema, i.e., a study has been assigned
on average to two activities. Two studies (P343 [64], P589 [73]) have been assigned to
category “Rest (unassigned)”. Here, none of the 13 activities in our classification schema
has received at least two assignments for the corresponding study.

Table 5 reveals that the contribution of the studies concentrate on PL-Design (32%),
followed by Recovery & Discovery (13%), PL-Plan (10%), PL-Requirements (9%), and PL
to P (8%). Based on the accumulation of studies on the initial activities of the schema we
hypothesize that the studies in question are primarily concerned with the development of
new SPL rather than the long-term evolution of the product line. For example, architecture
conformance checking related activities required to prevent architecture erosion in the long
term is underrepresented in the studies: Only four studies (P72 [44], P100 [49], P365 [65],
P493 [69]) can be found which our researchers have mapped to this appropriate fields.

Table 5: Assignments of the finally selected primary studies to the activities of the classifi-
cation schema (Section 2.2) and the percentages of counts.

Activity Papers %

Recovery & Discovery [40,48,50,51,53,59,60,70,75,79,82,89] 13

PL-Requirements [41,45,53,54,65,66,77,82] 9

PL-Design [40–43,45–47,50–53,55–59,61,63,65–67,69–
72,74,75,77,83]

32

PL-Plan [47,50,52,66,68,71,75,88,90] 10

PL-Implement [56,62,66,69,72,76,77,88–90] 11

PL-Check [49,65,69,76] 4

PL to P [41,54,57,59,61,66,88] 8

P-Requirements [66] 1

P-Design [50,66,67] 3

P-Plan [66] 1

P-Implement [62,66,76,88] 4

P-Check [44,76] 2

P to PL [41,48] 2

Rest (unassigned) [64,73,84–86]

Remarkably few studies address the product specific development cycle (application
engineering) and only study P72 [44] exclusively addresses the product specific devel-
opment cycle. One reason for this could be that no specific methods and techniques are
required for the product specific development cycle and, as in the classic SPL approach (cf.
[12]), product development is carried out exclusively by derivation from the product line.

4.3. Methods and Techniques to Implement Automotive Software Product Lines

In this section, we aim to answer research question RQ2 (Table 2). Specifically, we
identify the methods and techniques used to implement automotive software product lines
in general, and their application scope in particular. Table 6 provides a categorization,
which is built based on the in-depth content analysis (see Table 8). Furthermore, the table



15 of 37

provides an overview of the different studies and how their major contributions are applied,
i.e., in the scope of the product line as such and in the context of particular products derived
from that product line. In the following, we first provide an overview before we provide
the details structured following the categories listed in Table 6.

4.3.1. Overview of Methods and Techniques used for Automotive Software Product Lines

From the content analysis of the 51 selected primary studies (see Appendix B, Table 8),
we derived 13 categories—each representing a cluster of methods and/or techniques. As
already discussed in Section 4.2, on the one hand, most of the papers propose one method
or technique and provide—if at all—a scoped evaluation only. On the other hand, most of
the proposed methods and techniques are subject of only one paper. That is, Table 6 lists the
topics of interest and, at the same time, provides some information about topics of interest
in automotive software product line research, however, based on the result set, we can only
derive a “fragmented” picture as several aspects are studies, yet in a fairly isolated manner.
Nonetheless, the result set shows that some topics are studied from different perspectives,
which indicates the variety of the subject field.

In the following sections, we discuss the different method/technique clusters individ-
ually and in more detail.

Table 6: Methods and or techniques of the papers included in this study.

No. Methods and/or techniques Papers PLa Pb

1 Architecture evolution process [46,50,52] x x

2 Cost/effort estimation [43,48,51,74] x

3 Safety analysis [44,71–73,90] x

4 Description languages [67,76] x x

5 Architecture reengineering [60] x

6 Model transformation [49,56,58,59,61,79,87] x

7 Model-based requirements engineering [41,45] x x

8 Overall approach/process [50,53,59,66,70,75,77] x x

9 Reference architectures [42,47,50,53,83] x x

10 SPL merging [48,51,55,82,87] x

11 Testing / Verification [62,64,88,89] x x

12 Variability management [40,54,57,63,65,68,69,71–73,80,91] x x

13 Agile software development [80,81,84–86,88] x

aActivities related to product line development (domain engineering) including Recovery & Discovery
bActivities related to product development (application engineering)

4.3.2. Architecture Evolution Process

This section discusses the studies P86 [46], P129 [50] and P215 [52], which were found
addressing the architecture evolution process category—notably the maintenance and the
long-term evolution of software product line architectures.

Gustavsson and Eklund [46] discuss the architects’ work approach concerning the
maintenance in the context of an evolving/changing product line architecture (PLA). Authors
conducted a series of expert interviews with architects from Scania and Volvo Car. They
found that the process for managing changes of the PLA is very similar and that the found
processes from both companies can be mapped to a generic process, which consists of the
five steps need, impact analysis, solution, decision, and validation. All of these findings are
based on conclusions concerning the interviews and are not verified by a further case study.

The work of Lind and Heldal [50] is primarily focused on reference architectures, but
also addresses the evolution of architectures. They distinguish between revolutionary
and evolutionary architecture processes, which are both discussed in [50]. In particular,



16 of 37

authors argue that reference architectures have to be continuously maintained, notably, it
is necessary to evaluate reference architectures continuously to identify bottlenecks, which
is key to initiate refactoring and to support the architecture’s evolution. Hence, Lind and
Heldal present an empirically-grounded reference architecture development process, which
contains activities that are primarily performed for evolutionary architecting, e.g., activities
“Synthesize, Evaluate, and Verify & Validate Architecture”. Such activities describe the
architecture design, the measurement of architecture quality, and the validation against the
requirements in the context of an evolving architecture.

Axelsson [52] discusses revolutionary architecture process (RAP) and evolutionary archi-
tecture processes (EAP). The specifically author focuses on the interplay of both processes
and how the EAP is performed in practice. In an empirical study, reasons for changes in an
architecture are discussed, complemented by a discussion of affected attributes, technical
aspects involved, and decisions made. The study shows that RAP and EAP differ signifi-
cantly. Also, Axelsson states that most literature mainly describes RAP, whereas EAP lack
studies and evidence.

In summary, the primary studies assigned to this category use similar activities for an-
alyzing/describing the evolution of (automotive) software product line architectures. Key
is the process-support of the architecture processes, notably for architecture development
and maintenance/evolution. A cross-company analysis conducted by Gustavsson and
Eklund [46] did reveal similarities, which underpin the usefulness of a generalized/holistic
concept.

4.3.3. Cost-/Effort Estimation

This section discusses the studies P71 [43], P94 [48], P173 [51], and P660 [74], which
were found addressing the cost-/effort estimation category. A number of studies consider
the cost-/effort estimation a key activity, especially in the course of planning a product line
development endeavor.

Kiebusch et al. [43] propose metrics to measure the size of an automotive software
product line. They argue that neither of the existing methods adequately measures the
(unadjusted) size nor estimates the cost of process-oriented automotive software product
lines. For this, authors propose the Process-Family-Points (PFP) analysis method to allow
for size measurement and effort estimation.

Yoshimura et al. [48,51] address effort estimation methods with two studies: The
approach proposed in [48] describes a software clone analysis approach, and the approach
discussed in [51] proposes an estimation process based on the return on investment (ROI).
Both approaches are integrated into a process for merge potential assessment of existing
variants, i.e., how to (economically) reintegrate variants back into the product line. In [51],
authors discuss an application of this approach and present lessons learned and open issues.
As lessons learned they discuss, e.g., that software cloning may not be a good way to realize
product line engineering, and that ROI predictions can strongly motivate the management
to invest in product line engineering, and that architecture-centric clone analysis is a useful
and practical approach to assess the merge potential of the existing systems. Open issues
are, e.g., clone visualization, clone refactoring, and clone error reduction.

Gustavsson and Axelsson [74] provide a method of evaluating system designs with
the purpose of enabling practitioners to systematically think about the future development
of a system. For this, they use the Real Options Theory [93,94] that adds the possibility to
put an economic value on the system adaptability attribute and, thus, motivates architects
to also anticipate the actual value of future developments of an architecture.

In summary, the studies [43,51,74] use different methods to perform cost- and effort
estimation actives in the course of planning software product line development. Further-
more, the studies provide process models for practically applying these methods, and the
studies present evaluations of the respective approaches.



17 of 37

4.3.4. Safety Analysis

This section discusses the studies P72 [44], P580 [71], P588 [72], P589 [73], and [90]
which were found addressing the safety analysis category.

Three studies address safety analysis for the development of safety-critical automotive
software product lines. Rana et al. [44] address the problem of selecting the appropriate
Software Reliability Growth Model (SRGM) of more than 100 currently existing SRGMs.
Growth models are used for evaluating the maturity or release readiness of a software
before its release and, respectively, for an optimal allocation of the test resources required.
Rana et al. use a statistical model to identify the distribution of defects, which helps
selecting an appropriate growth model. A case study conducted at Volvo Car Group
is utilized to evaluate the proposed approach. They evaluate six standard distributions
on defect inflow data from four large software projects and show that beta distribution
provides the best fit to the defect inflow data. Second, Käßmeyer et al. [71] present an
improved safety engineering approach for software product line development. Their
approach provides an integrated change impact analysis by combining their approach
with variability management. They apply their approach to an industrial example, a
small part of an Advanced Driver Assistant System (ADAS), to illustrate the benefits. As
demonstrated by the example, changes are propagated in one model for both variant
management and safety engineering. Pett et al. [90] apply a risk-based change-impact
analysis on an automotive architecture, combining risk-based testing, product sampling,
and configuration prioritizing. They use information of the changes applied in a software
update to prioritize relevant system variants for checking compatibility of an update to
existing variants in the field. The approach is evaluated on five versions of a Body Comfort
System.

De Oliveira et al. [72] propose an approach to support the generation of fault trees and
FMEA analyses for products derived from a software product line. Their approach aims
at reducing the effort required for performing safety analyses for the products. The study
proposes a process model for model-based safety analysis, which starts with a product line
hazard analysis, followed by a process step “Augmentation of PLA with failure logic” that
describes how product line architecture design elements, i.e., product line components,
can fail and how they contribute to the occurrence of hazards. Further steps include the
definition of software product line configuration knowledge, product derivation, and
safety assessment. In [73], de Oliveira et al. propose an approach to support the automated
construction of modular product line safety cases. The approach uses different techniques
like architecture failure modeling, functional failure modeling, and component failure
modeling. Note, that the three studies [71–73] are also assigned to the category variability
management (Section 4.3.13) in which we provide a further discussion.

4.3.5. Description Languages

This section discusses the studies P404 [67] and E53 [76], which were categorized in
the description languages category. For the development of a software product line, a
suitable description technique is key for supporting the specification of variability. Kim
et al. [67] propose a concept to support the functional view (software behavior) in the
component-based software development (CBSD). The approach introduces “signal flows”
and “mode-dependent signal flows” for the specification of a component. In this regard,
important information is provided at the component level to support the understanding of
the software’s behavior and to also understand dependencies among software components
when reusing and adapting software components. The approach is proposed in the context
of product line development in the automotive sector. However, the study does not provide
extensive details concerning the degree of appropriateness of the approach for product line-
driven development. The approach rather addresses a more general problem of software
development in the automotive sector. The study [76] introduces the so called EMAB
architecture description language. The EMAB meta model consists of two views on the
architecture: the logical architecture (design layer) and the technical software architecture



18 of 37

(implementation layer). For both layers, mappings between the elements can be defined.
The description language serves as a basis for an architecture conformance checking
approach, also described in the study. The goal is to minimize software architecture erosion
in the long-term. The benefits of the approach are demonstrated on a real world case study,
brake servo unit (BSU) software system from automotive software engineering.

4.3.6. Architecture Reengineering

This section discusses the study P289 [60]), which addresses the architecture reengi-
neering. Architecture erosion has become a major challenge in automotive software en-
gineering, which results in a considerable effort for maintenance and software system
evolution. Furthermore, architecture erosion is a major problem affecting software reuse
[35]. In this context, Strasser et al. [60] propose an approach for reengineering an eroded
software product line architecture. First, all relevant variation points and the associated
functional requirements of a component are identified. A variability analysis is performed
by the Product Line UML-based Software Engineering (PLUS; [95]) approach, which is also
used to describe appropriate variability models. Based on the analysis results of the product
line extraction process, architecture components are identified and designed in the next
step. This approach can also be assigned to the recovery & discovery activity.

4.3.7. Model Transformation

This section discusses the studies P100 [49], P223 [56], P281 [58], P285 [59], P300 [61],
E66 [79] and E179 [87], which were assigned to the model transformation category. Several
studies utilize model transformation techniques to transform artifacts of software product
line development into different models, such that techniques, e.g., for model analysis can
be applied.

For instance, White et al. [49] propose an approach to debugging feature model
configurations and automating configuration evolution, called CURE (Configuration Un-
derstanding and REmedy). Configurations and feature models can be transformed into
constraint satisfaction problems (CSP) to automatically diagnose errors and repair invalid
feature selections.

Merschen et al. [56] present a prototypical framework for the analysis of embedded
software product lines. They analyze artifacts by transforming them into models, which are
used in an analysis process based on model transformation languages. The automated pre-
processing is implemented as model transformations in ATLAS Transformation Language
(ATL) and Epsilon Transformation Language (ETL).

Leitner et al. [58] introduce EAST-ADL2 in an automotive software product line
including a transformation from AUTOSAR to EAST-ADL2. Basic variability information
can be automatically extracted during the transformation step. Different mapping strategies
are analyzed to generate a correct model and to reduce losses in the transformation process.
Furthermore, they describe the implementation of the transformation process.

Polzer et al. [59] present a framework for model-based product lines of embedded
systems. The framework supports the (semi-)automated extraction of models from existing
requirement-, test-, and implementation artifacts.

Wille et al. [79] propose a variability mining procedure that semi-automatically identi-
fies variability information in a set of related models that were realized by clone-and-own
approaches. They generate a delta language automatically based on the results of the
variability mining. The procedure is evaluated using IBM Rational Rhapsody state charts
from an SPL and MATLAB/Simulink models from an industrial case study.

Kehrbusch at al. [87] propose an automated syntactical similarity analysis for software
component interfaces to support the software product line extraction and maintenance.
They want to identify identical or similar components under development and to be able
to extract a generic interface for the establishment of a generic component. This generic
component can then be reused in the different analyzed project contexts.



19 of 37

Finally, Wang [61] presents a study on the application of model transformation tech-
niques on the development of automotive software product lines. The paper aims at under-
standing the state-of-the-art techniques and to identify model transformation challenges in
product-line-based automotive software—notably to help developers choosing the model
transformation technique appropriate for the respective situation. Wang distinguishes
between model transformation at the same abstraction level and model transformation
across different abstraction levels. The transformations are implemented by using the
tool GReAT (Graph Rewrite And Transformation). Wang presents the results of a case
study with a simplified enhanced cruise control system (eCCS). As lessons learned, he
states that model transformations with well-design transformation rules yield consistent
implementations across vehicle variations and can thus reduce the efforts to create and
maintain the design variations for different vehicles. In addition, Wang reveals that current
transformation features partially meet the needs of derivative design, and still require
improvement.

In summary, the studies [49,56,58,59,61,79,87] show that model transformation tech-
niques play a key role in the development of automotive software product lines. By means
of model transformations, tools and techniques can be used in the different process steps.
The effort to create and maintain design variations, e.g., for different vehicles, can be
reduced. Well-design transformation rules are crucial for the effectiveness of a model
transformation.

4.3.8. Model-based Requirements Engineering

This section discusses the studies P22 [41] and P79 [45], which were assigned to
the model-based requirements engineering category. Requirements engineering requires
appropriate support by methods and techniques to capture and manage the requirements
for a software product line to maintain the high degree of variability.

For this, Gleirscher et al. [41] present an approach for integrating innovation manage-
ment with requirements and technology management. Requirements-based innovations
are usually motivated by newly elicited requirements or needs originating from mar-
ket research, whereas technology-based innovations are motivated by new or emerging
technologies (e.g., specific platform components and platform services). To identify innova-
tions, they use models of feature hierarchies, platform service hierarchies, and a platform
component models. Furthermore, to accomplish innovations they define activities for
requirements-based innovations and technology-based innovations.

Aoyama and Yoshino [45] present an aspect-oriented approach for the requirements
engineering in software product line development. Automotive systems often deal with a
wide spectrum of interwoven functional and nonfunctional requirements. They apply a
multi-dimensional aspect-oriented modeling and analysis to generate multiple software
product lines for automotive systems. The approach separates intersecting non-functional
requirements (NFR) into primitive concerns (aspects) and introduces quantitative metrics
of each NFR/aspect.

4.3.9. Overall Approach/Process

This section discusses the studies P285 [59], P377 [66], P503 [70], P129 [50], P218 [53],
E8 [75], E53 [76], and E59 [77], which were assigned to the overall approaches/processes
category. Several studies propose an overall approach and/or outline a process for automo-
tive software product line development. In some cases, specific methods and techniques
are proposed, such that the respective studies are also assigned to other categories in Table
6.

Polzer et al. [59] present a framework for model-based automotive software product
lines in which model transformations play an important role. The framework supports
the creation of context-specific views, which provide a detailed description of the domain
engineering and application engineering process tasks and artifacts. The approach also



20 of 37

addresses the recovery and discovery of an evolved product line using a model-extraction
process. Finally, authors define a product-derivation process for application engineering.

Hardung et al. [66] propose a framework to improve the reuse of automotive software.
Their framework is based on the Product Line Practice (PLP; [11]) process model. Authors
explain how to perform the modularization of the product line core assets which are
contained in a function repository. The process also defines how to develop products from
that function repository using a standard software core. Finally, authors list tools to support
the processes.

Tischer et al. [70] present experiences regarding the introduction of product lines at
Bosch Gasoline Systems. Their study outlines the different relevant areas for SPL-based
development, e.g., architecture development, product-line scoping and core asset develop-
ment, market-oriented development, measurement of product line success, and product
quality management. Furthermore, they discuss why the product line’s deployment at
Bosch has been delayed.

Lind and Heldal [50] and Eklund et al. [53] both propose an architecture-centered
development approach and present detailed process descriptions. One focus of both studies
is on reference architectures so that the studies are discussed in detail in category reference
architectures (Section 4.3.10).

Grewe et al. [75] propose an approach for extracting, designing, and managing ar-
chitecture concepts. First, they propose methods to extract initial architectures by recov-
ery/discovery techniques. Second, they show architecture design principles / pattern that
they worked out in their automotive domain projects. In addition, they suggest techniques
for measuring of architecture quality. The approach is evaluated on a real world example,
a longitudinal dynamics torque coordination.

Bilic et al. [77] identify and define a Product Line Engineering (PLE) process at the
engines control department of Volvo CE. For this purpose, they analyze the existing Model-
based Systems Engineering activities and discuss the implications of the migration from the
current development process to a Model-based PLE-oriented process. They also identify
hindering factors of the current development process, e.g., ambiguous and incomplete
information.

In summary, the studies of this category describe an overall development approach
for automotive software product line development, but at different levels of detail and
with different focal points: the studies [50] and [53] are architecture-centered and contain
more detailed process descriptions. In contrast, [70] remains fairly vague and does not
contain a process description; instead, it provides an experience report. [77] introduces
a model-driven process using languages like OVM and SysML. The other studies [59,66]
propose frameworks for software product line development: [59] focuses on model-based
development using techniques like model transformation. The framework proposed in
[66] allows for classifying software according to possible ways of reusing it, and it links
the development process to the environment, i.e., repositories and tools. However, specific
guidelines for developing automotive software product lines are not provided.

Compared to our classification schema (Section 2.2), neither approach [50,53,59,66,70,
77] covers all activities. For instance, recovery & discovery is only supported by [59]. Yet,
the framework in [59] does not address a product-specific development of implementation
artifacts. Instead, implementation is only performed during domain engineering and
serves as the basis for product derivation.

4.3.10. Reference Architectures

This section discusses the studies P43 [42], P90 [47], P129 [50], P218 [53], and E173
[83], which were assigned to the reference architecture category. Several studies propose
reference architectures as a key element for the development of software product lines.

Martínez-Fernández et al. [42] present a survey on the benefits and drawbacks of
using the software reference architecture AUTOSAR, an open industry standard for the
automotive software architecture between suppliers and manufacturers. They conducted



21 of 37

an online survey that addressed experienced AUTOSAR practitioners. They found stan-
dardization and reuse as most popular benefits, and complexity and initial investment as
most remarked drawbacks and risks of using AUTOSAR.

Eklund and Bosch [47] proposed a reference architecture for embedded open software
ecosystems consisting of 17 key decisions resulting in four architectural patterns. The
architectural patterns are: device abstraction, data and service provision, device and information
composition, and safety-critical, certified and open application access. These patterns have to be
instantiated as a product line architecture for platform design. Furthermore, they define
quality attributes for the reference architecture: composability, deployability of new functions,
stability over time, configurability, consistent user interface, and dependability. Their approach is
demonstrated with a prototypically implemented architecture that satisfies selected key
decisions and quality attributes.

Lind and Heldal [50] study the research question “How can a reference architecture for
automotive Systems be developed in a component-based setting, and how is it utilized in product
development to increase reuse?”. They focus on the definition of a development process with
a reference architecture as a core artifact. The process is divided into E/E architecture
development and E/E systems development. Their reference architecture is developed and
maintained during E/E architecture development and serves as the basis for developing a
product-specific architecture for E/E systems development. The proposed development
process has been validated in several steps by projects at Saab Automobile AB. The result
of the validation shows that the process works well at Saab.

Eklund et al. [53] propose an architecture-centered development process and describe
how reference architectures are used to improve the development process. Authors describe
the design, verification, dissemination, and maintenance of the reference architecture.
Based on their experiences, they conclude that dissemination and maintenance require
more resources than the development of the reference architecture. The proposed process
results on the experiences with architecture-centered development at Volvo Cars.

Oliinyk et al. [83] give guidance to practitioners how to structure automotive product
lines and their feature models. They analyse the strengths and weaknesses of alternatives
in structuring automotive product lines and their features and investigate to what degree
the selected structures are realizable with existing tool support.

Summarized, the studies [50] and [53] focus on the development process and how
reference architectures are embedded into the development process. In contrast, the
work of Eklund and Bosch [47] focus on the particular design of a reference architecture
grounded in design decisions and patterns. The study [83] give guidance how to structure
automotive product lines and their feature models. The benefits of drawbacks of the
AUTOSAR reference architecture are presented in [42]. As mentioned in [47], AUTOSAR
assumes an integration-centric approach in which all integration work concerning software
components is done by an OEM. Yet, authors of [47] argue that it is desirable to move
away from integration-centric development of software towards a development in a open
software ecosystem.

4.3.11. Software Product Line Merging

This section discusses the studies P94 [48], P173 [51], P221 [55], and E132 [82], which
were assigned to the SPL merging category. If independently developed systems, e.g.,
Diesel and Gasoline software systems, share a high degree of common functionalities,
merging those products into one product line is reasonable.

The two studies by Yoshimura et al. [48,51] primarily focus on effort estimation
techniques for software product line merging (as already discussed in the category cost/effort
estimation, Section 4.3.3). Both studies also outline merging strategies. However, details
about the actual process of performing the merge are missing in both studies.

Tischer et al. [55] present their experiences from merging two large-scale software
product line development projects (a Diesel and Gasoline software system), which was
motivated by the high synergy potential. The merge was performed at the different levels:



22 of 37

organization, software architecture, development environment, and processes and methods. The
study provides a comprehensive overview of the challenges and solutions chosen to merge
these large-scale systems.

Ignaim and Fernandes [82] show a practical evolution-based approach to migrate
and evolve a set of variants of a given product into an SPL. The approach starts with a
reverse engineering phase to synthesize the feature model (FM) The FM is then upgraded
and refined in the forward engineering phase. Here, the SPL is evolved by new customer
requirements in an incremental way.

Kehrbusch et al. [87] extract SPL by automated syntactical similarity analysis (see
category model transformation). The analysis supports the identification of similarities
between two interfaces and can also be applied to monitor the evolution of software
component interfaces.

4.3.12. Testing/Verification

This section discusses the studies P310 [62], P343 [64], E183 [88], and E187 [89], which
were assigned to the testing and verification category. Due to the high degree of variability
that results in a potentially huge number of products, testing and verification of a software
product line are challenging tasks.

Lochau et al. [62] present an approach of pairwise testing in the SPL context by
providing a mapping between feature models and a reusable test model in the form of
statecharts. Therefore, they investigate the relationship between feature-based coverage
criteria and model-based coverage criteria. A further contribution is a reasoning about the
applicability of this approach. The approach is validated by a case study from automotive
software engineering.

Scheidemann [64] proposes an incremental process using approximation algorithms
for minimizing the number of configurations needed to verify the completeness of the
configuration space. For this purpose, the author introduces the concept of “locality
sets” containing architectural elements that realize a functionality, which is concerned
with a particular requirement. The proposed algorithms either choose the minimum
set of configurations necessary to verify all requirements for all configurations, or to
maximize the verification coverage of the software product line as a whole by choosing the
“best” configurations. A further contribution is a technique for automatically determining
commonalities in architecture and requirements.

Ebert et al. [88] present methodology called TIGRE to reduce redundant testing effort
by intelligent planning and reporting of the test execution. The approach consists of two
phases: the initial identification and documentation of relevant data for product line testing
and a second phase focusing on the usage of this data for testing activities during each
agile sprint. The study also discusses the lessons learned from applying the methodology
in an industrial environment.

Shahin et al. [89] propose an approach to lifting behavior alteration analysis, including
configurable visualization of analysis results. They apply an existing declarative analysis
to a set of automotive software product lines from General Motors. Finally, they discuss
the lessons learned throughout the project.

4.3.13. Variability Management

This section discusses the studies P8 [40], P220 [54], P279 [57], P332 [63], P365 [65],
P468 [68], P493 [69], P580 [71], P588 [72], P589 [73], E127 [80], and E230 [91], which were
assigned to the (general) variability management category. Managing the variability within
a software product line constitutes a challenging task and is addressed by nearly one third
of the studies from the result set.

Jin Sun et al. [40] propose a component-based development process based on vari-
ability types. They identify several variability types that may occur in ECU-related devel-
opment: variability of software components, variability of logic components, variability
of sensor components, variability of actuator components, variability of setpoint genera-



23 of 37

tor components, variability of output device components, and variability of component
interfaces. Furthermore, they propose a process for developing ECUs that focusses on
managing the variability by using the introduced variability types.

Boutkova [54] present their experiences with variability management in the require-
ments specification process at Daimler passenger car development. Based on these experi-
ences, Boutkova proposes a new feature-based variability management (FBVM) approach.
This approach is extended by a decentralized variability modeling approach that supports
variability modeling of individual components and systems as well as modeling a product
as a whole.

Graf et al. [57] propose a graph-based approach for variant modeling and management.
The approach focuses on managing, modeling, and combining the different kinds of
knowledge in software product line development, i.e., combining local expert knowledge
with domain knowledge provided by application groups, and the integration of overall
management knowledge.

Brink et al. [63] propose an approach to link hardware and software variability models.
Their approach distinguishes between software and hardware variants using separate
variability models. They further distinguish two different kinds of dependencies between
hardware- and software product lines.

Millo and Ramesh [65] propose an approach to link the design-level variability with
the requirements-level variability. The requirements and designs are expressed as extended
finite state machines, so called Finite State Machines with Variability (FSMv). The variability
between designs and requirements is based on a conformance relation between design and
requirements models of the software product line features. An algorithm is proposed for
checking conformance between the models and is implemented on the verification tool
SPIN.

Manz et at. [68] propose an approach for enabling traceability, integrated configuration
of software variants, and links using integrated feature modeling. An integrated feature
model considers the different development phases, abstraction layers, and development
artifacts.

Kato and Yamaguchi [69] present an approach for variability management focused on
pair-wise feature interactions. They accumulate the occurrence of the feature interactions
for all past products using a feature interaction matrix to visualize feature interactions.

Käßmeyer et al. [71] propose a process for a model-based change impact analysis.
They use methods and techniques for safety analysis (see category safety analysis, Section
4.3.4) and configuration/variant management, and focus on the combination of both.

De Oliveira et al. [72] propose an approach to support safety analysis for software
product lines. Their approach provides guidelines regarding the use of model-based
development, safety analysis, and variability management tools. In [73], de Oliveira et
al. also address safety engineering in software product lines. They propose a method
to support automated construction of modular product line safety cases. The method
uses outputs provided by model-based development, safety analysis, and variability
management tools.

Hayashi and Aoyama [80] propose a structural analysis method of variability for
multiple product lines using an extended model of OVM (Orthogonal Variability Model).
The approach is applied to Agile Product Line Engineering (APLE) of their automotive
software systems (see category agile software development).

Wägemann et al. [91] conduct interviews with the automotive industry experts. They
want to investigate the usefulness (or necessity) of automated PLA design space exploration
for current industrial practice. The study derives a set of challenges for automated design
space exploration, and distinguishes between technical issues, domain issues, and end-user
issues.

Summarized, variability management is addressed by the selected studies in different
ways using different methods and techniques. Several studies deal with the modeling of
variability (e.g., [40,54,57,63,65,68,69,80] and with the tracing of variability information



24 of 37

across different levels of abstraction, like requirements and design [65], hardware and
software [63], or safety analysis assets and design assets [71–73]. Three studies focus on
the combination of variability management and safety analysis and are thus also classified
in category safety analysis [71–73] (Section 4.3.4).

4.3.14. Agile Software Development

This section discusses the studies E127 [80], E130 [81], E175 [84], E177 [85], E178 [86],
and E183 [88], which were assigned to the agile software development category. Agile
development is also gaining importance in the area of product lines and promises many
benefits.

Hayashi and Aoyama [80] (see category variability management) show how Software
Product Line Engineering and Agile Software Development can be integrated towards
Agile Product Line Engineering (APLE). After studying existing work, they see a lack of
variability management in the APLE and thus address this in their study. To demonstrate
their approach APLE is applied to the development of automotive system using ultrasonic
sensors at DENSO. In a further study [81], Hayashi et al. propose an agile development
method for multiple product lines by iteratively reusing process assets in application
engineering.

The three studies by Hohl et al. [84–86] investigate the mapping of agile development
to automotive software product lines: The challenges for the adoption of agile development
are mainly of organizational, technical, and social nature [84]. For example, dependencies
between departments and suppliers are challenging and must be considered [85]. How-
ever, agile software product line engineering is promising and can add value to existing
development approaches [86].

Ebert et al. [88] apply their TIGRE method (see category testing/verification) in an agile
development process. Here, they test the product line in agile sprints. As lessons learned,
the study shows that agile software development required agile tools for data management.

Summarized, all studies show attempts how to integrate agile development into the
field of automotive software product line engineering. It is also noticeable here that all
studies are from the last five years.

4.4. Discussion

We conducted this review with the objective to understand the current state-of-the-
art in holistic approaches for a managed evolution of software product line architecture
in automotive software engineering. Furthermore, we aimed to identify the methods
and techniques used to implement automotive software product lines in general, and
their usage scope in particular. To achieve these objectives, we performed an in-depth
review by using a refined conceptual model for automotive specific software product line
development [34] as well as the results of a scoping study [13] in the field of automotive
software engineering. In the following, we summarize the most important findings of this
review according to the research questions.

4.4.1. RQ1: What is the current state-of-the-art in holistic approaches for managed
evolution of automotive software product lines?

The in-depth review reveals that none of the studies represents a holistic approach for
managed evolution of automotive software product lines according to the classification
schema (Section 2.2). On average two activities of our classification schema are addressed
by the selected primary studies (see Table 5). In addition, according to the results of
Section 4.2 most studies refer to activities related to product line development (domain
engineering) including Recovery & Discovery (86%). The analysis of the methods and
techniques in Section 4.3 produces comparable results.



25 of 37

4.4.2. RQ2: What particular methods and techniques are used to implement a managed
evolution of automotive software product lines?

From the content analysis of the primary studies, we clustered the proposed methods
and techniques into 12 categories (see Table 6). Most of the papers propose one method or
technique and provide—if at all—a scoped evaluation only. Based on the result set, we can
only derive a “fragmented” picture as several aspects are studies, yet in a fairly isolated
manner. Nonetheless, the result set shows that some topics are studied from different
perspectives, which indicates the variety of the subject field.

Another finding is the accumulation of methods and techniques addressing the first
activities of the schema like the product line design (see Section 4.2). This indicates that
the focus is on how to build up a product line, which is called revolutionary architecture
process (RAP) in [52]. Axelsson [52] states that most literature mainly describes RAP,
whereas evolutionary architecture processes (EAP) lack studies and evidence (see Section 4.3).
Methods and techniques required for long term evolution (i.e., EAP according to [52]) like
architecture conformance checking are only addressed by few studies.

Remarkably, there is a low number of contributions concerning the product specific
development cycle, which may indicate a research gap or it may indicate, e.g., that only few
specific methods and techniques are required for product development within a product
line based development approach. However, further developments that are separate from
the product line, have to be transferred back into product line development at a later stage.
The corresponding activity P to PL of the conceptual model was solely subject of two
studies [41,48] according to the result of the categorization depicted in Table 5. But the
proposed methods and techniques of both studies [41,48] have another focus (see Section
4.3) and do not support the actual objective of activity P to PL. Here, we hypothesis
a further research gap which has to be addressed in future research towards a holistic
approach for managed evolution of automotive software product line architectures.

4.5. Threats to Validity

Since the study at hand is an in-depth study grounded in a previously conducted
scoping study, the dataset we relied on suffers from potential selection bias introduced by
the main study. To improve the internal validity, we implemented a researcher triangulation
for the refinement of the dataset. For the team of researchers, we built sub-teams that
carried out specific tasks and the remaining researchers not involved in that very tasks
performed the quality assurance activities.

5. Conclusion

We prepared the in-depth review by using a refined conceptual model for automotive
specific software product line development as well as the results of a scoping study in
the field of automotive software engineering. First, we aimed at collecting information
about current state-of-the-art in holistic approaches for managed evolution of automotive
software product lines and used our conceptual model as a reference model to evaluate the
state-of-the-art. Specifically, we were interested into the coverage of the particular aspects
of the conceptual model and, thus, the fields covered in current research and research gaps,
respectively. The in-depth review reveals that none of the studies represents a holistic
approach for managed evolution of automotive software product lines according to the
used classification schema.

Next, we aimed to identify the methods and techniques used to implement automotive
software product lines in general, and their usage scope in particular. We clustered the
identified methods and techniques into 13 categories. On the one hand, most papers
propose one method or technique and provide limited, if any, evaluation. On the other
hand, most of the proposed methods and techniques are the subject of only one paper.
Based on the results, we can only draw a “fragmented” picture, since several aspects are
studied, but in a rather isolated way. Nevertheless, the set of results shows that some topics
are studied from different angles, indicating the diversity of the subject area. A further



26 of 37

finding is the accumulation of studies addressing the first activities of the schema like the
product line design and thus aiming at building up new software product lines. In contrast
to this, approaches for long term evolution are underrepresented and should be addressed
in future research.

It is evident from the study that the topic of applying agile software development to
automotive software product line development has become very important in recent years.
In the papers after 2016, more than every third paper addresses this topic. The results in
this field are promising and it can be assumed that the results from this field will soon find
their way into practice.

The small number of contributions dealing with the product-specific development
cycle is noticeable, which may indicate a research gap or, for example, that only a few
specific methods and techniques are required for product development within a product
line-based development approach. However, there may be further developments that do
not take place in the product line but at the level of the individual products. These further
developments that are separate from the product line must be transferred back into the
product line development at a later time. Here, we see a research direction for future work.

Furthermore, real industry examples should be increasingly used for future research
as the studies show that many approaches lack practicability and applicability. It has
been shown that the individual approaches always represent only a partial aspect, and
integration is usually not possible as different formalizations and no overall language
or model underlies them. Therefore, we see the formalization and modeling as a future
research area to achieve a seamless integration of the individual approaches.

Author Contributions: Conceptualization, C.K. and A.R.; methodology, C.K.; validation, C.K., A.R.,
M.S., A.S., and M.V.; investigation, C.K., A.R.; resources, C.K.; writing—original draft preparation,
C.K.; writing—review and editing, C.K., A.R., M.S., A.S., and M.V.; visualization, C.K.; supervision,
A.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:



27 of 37

ADAS Advanced Driver Assistant System
AGR Agreement Processes
AORE Aspect-Oriented Requirements Engineering
ATL ATLAS Transformation Language
CBSD Component-based Software Development
CSP Constraint Satisfaction Problems
CTF Contribution Type Facet
CURE Configuration Understanding and REmedy
DSE Design Space Exploration
EAP Evolutionary Architecture Processes
eCCS Enhanced Cruise Control System
ECU Electronic Control Unit
ETL Epsilon Transformation Language
FBVM Feature-based Variability Management
FMEA Failure Mode and Effects Analysis
FSMv Finite State Machines with Variability
GReAT Graph Rewrite And Transformation
MBT Model-based Testing
NFR Non-functional Requirements
OEM Original Equipment Manufacturer
ORG Organizational Project-Enabling Processes
P Product
PFP Process-Family-Points
PL Product Line
PLA Product Line Architecture
PLE Product Line Engineering
PLP Product Line Practice
PLUS Product Line UML-based Software Engineering
PRO Project Processes
RAP Revolutionary Architecture Processes
REU Software Reuse Processes
RG Research Question
ROI Return on Investment
RTF Research Type Facet
SBSE Search Based Software Engineering
SPL Software Product Line
SRGM Software Reliability Growth Model
SUP Software Support Processes

Appendix A Primary Studies

In this appendix, we provide an overview of the finally selected primary studies that
form our result set. A quick overview of the studies selected can be found in Table 7.



28 of 37

Table 7: Overview of the primary studies selected for in-depth data analysis.

Id Ref Title Summary

P8 [40] A component-based process
for developing automotive
ECU software

Definition of variability types and variation points for
ECUs and a component based development process for
developing ECUs.

P22 [41] A model-based approach to in-
novation management of auto-
motive control systems

Model based approach to innovation management of au-
tomotive systems focusing on requirements based inno-
vation, and on technology based innovation.

P43 [42] A Survey on the Benefits and
Drawbacks of AUTOSAR

Survey paper, which aims to gather evidence on AU-
TOSAR.

P71 [43] An unadjusted size measure-
ment of embedded software
system families and its valida-
tion

Metrics to measure the size of a system family oriented
software development for estimation of development
costs.

P72 [44] Analysing defect inflow distri-
bution of automotive software
projects

Approach for selecting the appropriate SRGM (Software
Reliability Growth Model) model from more than 100
possible SRGMs using statistical methods.

P79 [45] AORE (aspect-oriented re-
quirements engineering)
methodology for automotive
software product lines

AORE (Aspect-Oriented Requirements Engineering)
methodology to model functional and non-functional re-
quirements of automotive software systems of multiple
product lines aligned on a safety-critical distributed real-
time architecture.

P86 [46] Architecting automotive prod-
uct lines: Industrial practice

Study that shows how architects work with maintaining
and changing PLA.

P90 [47] Architecture for embedded
open software ecosystems

Open software ecosystems for embedded systems based
on architectural cornerstones and continuous integration;
reference architecture design.

P94 [48] Assessing merge potential of
existing engine control sys-
tems into a product line

Approach to assess potential to merge existing systems
into a product line. Procedure for performing the migra-
tion.

P100 [49] Automated diagnosis of fea-
ture model configurations

Constraint-based diagnostic approach for debugging er-
rors in feature model configurations, and which can also
be applied for software configuration evolution.

P129 [50] Automotive system develop-
ment using reference architec-
tures

Development process for E/E Architectures using refer-
ence architectures: The process describes how to create
and maintain the architecture and how to refine this into
a product-specific architecture in product development
projects.

P173 [51] Defining a strategy to intro-
duce a software product line
using existing embedded sys-
tems

Approach to assess potential to merge existing systems
into a product line.

P215 [52] Evolutionary architecting of
embedded automotive prod-
uct lines: An industrial case
study

Investigation of the evolutionary and revolutionary sys-
tem architecture process in practice and the interplay be-
tween both.

P218 [53] Experience of Introducing Ref-
erence Architectures in the
Development of Automotive
Electronic Systems

They describe the evolution of the architecture develop-
ment process at Volvo Cars. Specifically, they explain
the background to why they introduced an architecture
centred development process and how they apply this in
practice. The result of the process is a reference architec-
ture as a basis for the design of several projects.

P220 [54] Experience with variability
management in requirement
specifications

Feature based variability management (FBVM) approach:
The requirements are first mapped to features. Then, the
specification author defines the product variants by se-
lecting the relevant features. For a new specification doc-
ument, the set of relevant product variants now defines
all necessary requirements.

P221 [55] Experiences from a large scale
software product line merger
in the automotive domain

Experience report: Introduction of SPL approach at Bosch
Gasoline Systems.



29 of 37

Id Ref Title Summary

P223 [56] Experiences of applying
model-based analysis to
support the development of
automotive software product
lines

Prototypical framework for the analysis of embedded
systems product lines, including view-supported analyses
of Simulink models, evolution aspects of variability, and
traceability.

P279 [57] IVaM: Implicit variant model-
ing and management for auto-
motive embedded systems

Graph-based approach for the modeling and analysis of
functional variants. They apply design space exploration
(DSE) techniques and use knowledge based modeling
approaches.

P281 [58] Lightweight introduction of
EAST-ADL2 in an automotive
software product line

Introduction of EAST-ADL2 in an automotive SPL, includ-
ing mapping from AUTOSAR to EAST-ADL2, as well as
implementation of a single point of control with respect
to variability.

P285 [59] Managing complexity and
variability of a model-based
embedded software product
line

Framework for model-based product lines of embedded
systems, including the following methods: Creation of a
model-based PL from a historically grown product fam-
ily, analyze information by context-specific views, and
efficient product derivation.

P289 [60] Mastering Erosion of Software
Architecture in Automotive
Software Product Lines

Approach for architecture regeneration applied to a real
world example.

P300 [61] Model transformation for
high-integrity software devel-
opment in derivative vehicle
control system design

Study of applying model transformation to high-integrity
software development for derivative vehicle systems.

P310 [62] Model-based pairwise testing
for feature interaction cover-
age in software product line
engineering

Pairwise testing in the SPL context: Mapping between
feature models and a reusable test model in the form
of statecharts. Investigation of the relationship between
feature-based coverage criteria and model-based coverage
criteria.

P332 [63] On hardware variability and
the relation to software vari-
ability

Approach to relate a hardware variability and a software
variability model using properties (hierarchically ordered
name-value pairs) and a tool-based matching algorithm.

P343 [64] Optimizing the selection of
representative configurations
in verification of evolving
product lines of distributed
embedded systems

Method for determining a minimal set of configurations
such that the successful verification of this small set im-
plies the correctness of the entire product family.

P365 [65] Relating requirement and de-
sign variabilities

Method to relate the variability from design to require-
ment based on a conformance relation between design
and requirement models of SPL’s features.

P377 [66] Reuse of Software in Dis-
tributed Embedded Automo-
tive Systems

Framework for the reuse of application software compo-
nents for automotive manufacturers, based on the PLP
process model: Process part, development of modular-
ized software components, and product development by
using a standard software core.

P404 [67] Software behavior description
of real-time embedded sys-
tems in component based soft-
ware development

Concept to support the functional view (software be-
havior, e.g., “signal flows” and “mode dependent signal
flows”) at the component level.

P468 [68] Towards integrated variant
management in global soft-
ware engineering: An experi-
ence report

Integrated variant management for building a common
SPL by distributed teams. Parts of the method: Common
development process with integrated feature model, and
common configuration and revision control.

P493 [69] Variation management for
software product lines with
cumulative coverage of
feature interactions

Variant management with respect to pair-wise feature
interaction.

P503 [70] Why does it take that long? Es-
tablishing Product Lines in the
Automotive Domain

Experience report: Introduction of SPL approach at Bosch
Gasoline Systems, consisting of initial designing of the
SPL, and long-term product line design and development
including quality management.



30 of 37

Id Ref Title Summary

P580 [71] A process to support a system-
atic change impact analysis of
variability and safety in auto-
motive functions

Process of an integrated, model-based change impact anal-
ysis. This process is integrating model-based develop-
ment, SPL engineering, and safety engineering.

P588 [72] A model-based approach to
support the automatic safety
analysis of multiple product
line products

Model-based approach to support the generation of safety
analysis assets (fault trees and FMEA analysis) addressing
multiple SPL products.

P589 [73] Supporting the automated
generation of modular prod-
uct line safety cases

Approach for supporting largely automated generation
of modular and reusable PL safety case architectures from
the information provided by SPL feature modeling and
model-based safety analysis.

P660 [74] Evaluating flexibility in em-
bedded automotive product
lines using real options

Evaluation process for practitioners using Real Options
theory that provides a way of valuing system designs and
enables to think about the future in a systematic manner.

E8 [75] Automotive Software Prod-
uct Line Architecture Evolu-
tion: Extracting, Designing
and Managing Architectural
Concepts

A method, that combines the following techniques: archi-
tectural concept; quality measurement technique; evolu-
tionary incremental development process. Goal: Overall
development cycle for managed evolution of automotive
PLAs.

E53 [76] Control Mechanisms for Man-
aged Evolution of Automotive
Software Product Line Archi-
tectures

(1) Description language and its meta model for the speci-
fication of the software product line architecture and the
software architecture of the corresponding products. Goal:
Architecture conformance checking.

E59 [77] Towards a Model-Driven
Product Line Engineering
Process – An Industrial Case
Study

They identify and define a Product Line Engineering pro-
cess that is aligned with Model-based Systems Engineer-
ing activities at the engines control department of Volvo
CE; Discuss the implications of the migration from the
current development process to a Model-based Product
Line Engineering-oriented process.

E66 [79] Extractive Software Product
Line Engineering Using
Model-Based Delta Module
Generation

Procedure that uses the extracted variability information
to generate a transformational delta-oriented SPL fully
automatically.

E127 [80] A Multiple Product Line De-
velopment Method Based on
Variability Structure Analysis

Structural analysis method of variability for multiple
product lines using an extended model of OVM. Agile
application development method to refine development
items according to variability dependency based on the
analysis.

E130 [81] Agile Tames Product Line
Variability: An Agile Devel-
opment Method for Multiple
Product Lines of Automotive
Software Systems

Agile development method for multiple product lines by
iteratively reusing process assets in application engineer-
ing.

E132 [82] An Industrial Case Study for
Adopting Software Product
Lines in Automotive Industry

A practical evolution-based approach to migrate and
evolve a set of variants of a given product into an SPL.

E173 [83] Structuring automotive prod-
uct lines and feature models:
an exploratory study at Opel

Guidance to practitioners how to structure automotive
product lines and their feature models

E175 [84] Real-life Challenges on Agile
Software Product Lines in Au-
tomotive

Survey based on 16 semi-structured interviews from the
automotive domain, an internal workshop with 40 partic-
ipants and a discussion round on ESE congress 2016.

E177 [85] Combining Agile Develop-
ment and Software Product
Lines in Automotive: Chal-
lenges and Recommendations

Combines the results of two previous publications and
extends them by recommendations to combine agile soft-
ware development and SPLs.

E178 [86] Mapping Agility to Automo-
tive Software Product Line
Concerns

Based on previous work and two workshops, agility is
mapped to software product line concerns.

E179 [87] Interface-Based Similarity
Analysis of Software Com-
ponents for the Automotive
Industry

An automated syntactical similarity analysis for software
component interfaces is proposed to support the software
product line extraction and maintenance.



31 of 37

Id Ref Title Summary

E183 [88] Applying Product Line Test-
ing for the Electric Drive Sys-
tem

They present the TIGRE methodology. Goal: Reduce
redundant testing effort by intelligent planning and re-
porting of the test execution.

E187 [89] Applying Declarative Analy-
sis to Software Product Line
Models: An Industrial Study

Approach to lifting behavior alteration analysis, including
configurable visualization of analysis results.

E224 [90] Risk-Based Compatibility
Analysis in Automotive
Systems Engineering

Risk-based change-impact analysis to identify system vari-
ants relevant for retesting after an update.

E230 [91] Exploring Automotive Stake-
holder Requirements for Ar-
chitecture Optimization Sup-
port

Interviews with the automotive industry experts. Goal:
Research the usefulness (or necessity) of automated PLA
design space exploration for current industrial practice.

Appendix B Data Extraction and Dataset Quality Assessment

The data extraction and the quality assessment was performed in a combined manner.
For this, we developed a data sheet that was filled paper-wise. Table 8 shows the data
extraction sheet. The actual outcome of the quality assessment of the papers included in
the study can be taken from Table 9, respectively.

Table 8: Data extraction and study quality assessment sheet used in this study.

Category Questions

Data Extraction The data extraction was performed using the following key questions:

1. Which methods and or techniques are used?

• Are the same methods used for domain and application engi-
neering?

• Are the methods/techniques used evaluated (see quality assess-
ment)?

2. Is there a holistic approach?

• Are the different activities (Section 2.2) fully covered?
• Are there gaps?
• What are the consequences for a holistic approach?

Quality Assessment The quality assessment was carried out following the list of questions from
Kitchenham and Charters [39, p. 28]. Each question was rated on a 5-point
scale with: criterion is 1=not fulfilled at all, 2=partially fulfilled, 3=basically
fulfilled, 4=fulfilled to a large extent, and 5=completely fulfilled and very
well implemented/documented. Please note that the numbers for the in-
dividual questions are taken from [39, p. 28]. In Table 9, we refer to these
numbers to present the quality assessment for the particular studies.



32 of 37

Table 9: Quality assessment of the papers included in this study.

Paper Ref 1 1.1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18

P8 [40] 3 3 3 3 4 3 4 4 3 3 3 2 2 3 4 3 3

P22 [41] 4 4 5 3 3 3 2 3 2 3 3 3 3 4 4 3 4

P43 [42] 5 5 5 4 5 5 4 4 5 5 5 3 4 4 4 4 5

P71 [43] 5 4 4 3 4 4 3 3 3 3 3 3 3 4 4 3 4

P72 [44] 5 4 4 4 4 4 4 4 4 4 4 5 4 4 5 4 4

P79 [45] 3 3 3 3 3 2 3 3 2 3 3 2 2 3 3 3 3

P86 [46] 4 4 4 4 4 4 3 3 4 4 3 3 3 4 4 4 4

P90 [47] 5 4 4 3 3 4 3 3 4 4 4 4 3 4 4 4 4

P94 [48] 4 3 4 3 3 3 3 3 2 2 3 2 2 3 3 3 3

P100 [49] 4 3 4 4 4 5 4 4 5 4 4 4 4 5 5 4 4

P129 [50] 4 4 5 4 4 5 4 4 4 4 4 4 3 4 4 3 4

P173 [51] 4 3 4 3 3 3 3 2 2 2 3 3 2 3 3 3 3

P215 [52] 4 4 5 4 5 4 3 3 4 4 3 4 3 4 4 4 4

P218 [53] 4 4 4 3 2 3 2 2 3 2 3 4 2 3 3 2 3

P220 [54] 4 4 4 3 3 2 2 2 3 2 3 3 2 3 3 3 2

P221 [55] 4 4 3 3 3 3 2 3 2 3 3 2 3 3 3 3 3

P223 [56] 4 4 3 2 3 3 2 2 2 2 3 3 2 3 3 3 3

P279 [57] 4 3 4 3 2 3 2 2 2 2 2 3 2 3 3 2 3

P281 [58] 3 3 3 2 2 3 2 2 2 2 3 3 2 3 3 2 3

P285 [59] 4 4 4 3 3 3 3 3 3 3 3 2 2 3 4 3 3

P289 [60] 4 4 4 3 2 3 2 3 2 2 3 3 2 3 3 3 3

P300 [61] 4 3 4 3 3 3 4 3 3 3 3 2 2 3 3 3 3

P310 [62] 4 4 4 4 3 3 3 3 3 3 2 2 2 3 4 4 3

P332 [63] 4 4 4 3 4 3 3 3 2 3 3 3 2 3 4 4 3

P343 [64] 4 4 4 3 3 3 3 3 3 3 3 3 3 3 4 3 4

P365 [65] 4 4 3 3 2 3 2 3 3 3 2 3 3 3 3 3 3

P377 [66] 4 4 3 2 2 3 3 2 2 3 3 3 2 3 4 3 3

P404 [67] 4 4 4 3 3 3 3 3 2 3 2 2 2 3 4 3 3

P468 [68] 4 4 4 4 4 4 3 3 4 3 3 3 2 3 4 3 3

P493 [69] 4 4 4 3 4 4 3 3 3 4 3 3 4 4 4 4 4

P503 [70] 3 2 3 2 2 2 1 1 2 2 2 2 2 3 3 3 2

P580 [71] 4 4 3 4 4 3 3 4 3 3 3 3 3 3 4 4 4

P588 [72] 4 4 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3

P589 [73] 4 4 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3

P660 [74] 3 3 3 2 3 3 3 3 2 3 2 2 2 3 3 2 3

E8 [75] 4 4 3 4 3 3 4 2 2 3 3 3 4 3 3 3 4

E53 [76] 4 4 3 4 3 3 3 4 4 4 3 3 4 4 4 4 4

E59 [77] 4 3 4 3 3 3 3 3 2 2 3 3 3 3 3 3 4

E66 [79] 4 3 4 3 2 3 3 3 3 3 3 2 3 3 3 3 4

E127 [80] 3 3 4 3 2 3 3 4 3 4 3 4 3 4 3 3 4

E130 [81] 4 4 4 3 3 3 2 2 3 4 3 4 3 3 3 3 3

E132 [82] 3 3 3 3 2 3 3 4 3 3 3 2 3 2 3 3 3

E173 [83] 3 4 4 2 3 2 3 3 3 3 3 4 3 3 4 3 3

E175 [84] 4 4 5 2 3 4 3 2 3 3 3 4 3 3 4 3 3

E177 [85] 4 4 4 3 2 3 2 2 3 3 2 2 1 3 3 2 3

E178 [86] 4 4 4 2 3 2 2 3 3 2 3 4 2 3 3 3 3

E179 [87] 4 4 4 3 2 3 2 2 3 3 2 2 3 3 4 4 3

E183 [88] 4 5 4 4 4 4 3 4 3 3 3 3 2 2 3 3 3

E187 [89] 4 4 4 3 3 3 3 4 3 4 3 3 3 4 4 4 4

E224 [90] 5 4 5 4 4 4 4 4 4 4 3 4 3 4 4 4 4

E230 [91] 4 4 4 3 3 4 3 3 4 3 3 3 3 3 4 3 4



33 of 37

References
1. Schäuffele, J.; Zurawka, T. Automotive Software Engineering: Grundlagen, Prozesse, Methoden und

Werkzeuge effizient einsetzen, 4nd revised edition ed.; Vieweg+Teubner, 2010.
2. Broy, M.; Pretschner, A.; Salzmann, C.; Stauner, T. Software-Intensive Systems in the Automotive

Domain: Challenges for Research and Education . Technical Report 2006-01-1458, SAE Technical
Paper, 2006.

3. Bernard, M.; Buckl, C.; Döricht, V.; M., F.; Fiege, L.; von Grolman, H.; Ivandic, N.; Janello, C.;
Klein, C.; Kuhn, K.J.; Patzlaff, C.; Riedl, B.C.; Schätz, B.; Stanek, C. Mehr Software (im) Wagen:
Informations- und Kommunikationstechnik (IKT) als Motor der Elektromobilität der Zukunft; fortiss
GmbH, 2011.

4. Broy, M. Challenges in Automotive Software Engineering. Proceedings of the 28th International
Conference on Software Engineering; ACM: New York, NY, USA, 2006; ICSE ’06, pp. 33–42.

5. Schulte-Coerne, V.; Thums, A.; Quante, J. Automotive Software: Characteristics and Reengi-
neering Challenges. Softwaretechnik-Trends 2009, 29.

6. Pretschner, A.; Broy, M.; Krüger, I.H.; Stauner, T. Software Engineering for Automotive Systems:
A Roadmap. 2007 Future of Software Engineering. IEEE Computer Society, 2007, FOSE ’07, pp.
55–71.

7. Thiel, S.; Babar, M.A.; Botterweck, G.; O’Brien, L. Software Product Lines in Automotive
Systems Engineering. SAE international journal of passenger cars-electronic and electrical systems
2008, 1, 531–543.

8. Macala, R.R.; Stuckey, L.D.; Gross, D.C. Managing Domain-specific, Product-line Development.
IEEE Software 1996, 13, 57–67.

9. Meyer, M.H.; Lehnerd, A.P. The Power of Product Platforms; Free Press: New York, NY, 1997.
10. Weiss, D.M.; Lai, C.T.R. Software Product-line Engineering: A Family-based Software Development

Process; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1999.
11. Clements, P.; Northrop, L. Software Product Lines: Practices and Patterns; Addison Wesley, 2001.
12. Pohl, K.; Böckle, G.; Linden, F.J.v.d. Software Product Line Engineering: Foundations, Principles and

Techniques; Springer-Verlag, 2005.
13. Haghighatkhah, A.; Banijamali, A.; Pakanen, O.P.; Oivo, M.; Kuvaja, P. Automotive software

engineering: A systematic mapping study. Journal of Systems and Software 2017.
14. Raatikainen, M.; Tiihonen, J.; Männistö, T. Software product lines and variability modeling: A

tertiary study. Journal of Systems and Software 2019, 149, 485–510. doi:10.1016/j.jss.2018.12.027.
15. Kitchenham, B.A.; Budgen, D.; Brereton, P. Evidence-Based Software Engineering and Systematic

Reviews; CRC Press, 2015.
16. Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for Conducting Systematic Mapping

Studies in Software Engineering: An Update. Inf. Softw. Technol. 2015, 64, 1–18.
17. Petersen, K.; Feldt, R.; Mujtaba, S.; Mattson, M. Systematic mapping studies in software

engineering. International Conference on Evaluation and Assessment in Software Engineering.
ACM, 2008, pp. 68–77.

18. Clarke, S.; Fitzgerald, B.; Nixon, P.; Pohl, K.; Ryan, K.; Sinclair, D.; Thiel, S. The Role of Software
Engineering in Future Automotive Systems Development. SAE International Journal of Passenger
Cars-Electronic and Electrical Systems 2008, 1, 544–552.

19. Grimm, K. Software technology in an automotive company: major challenges. Proceedings of
the 25th international conference on Software Engineering. IEEE Computer Society, 2003, pp.
498–503.

20. Gruszczynski, B. An overview of the current state of software engineering in embedded
automotive electronics. Electro/information Technology, 2006 IEEE International Conference
on. IEEE, 2006, pp. 377–381.

21. Fabbrini, F.; Fusani, M.; Lami, G.; Sivera, E. Software engineering in the european automo-
tive industry: Achievements and challenges. Computer Software and Applications, 2008.
COMPSAC’08. 32nd Annual IEEE International. IEEE, 2008, pp. 1039–1044.

22. Antinyan, V. Revealing the complexity of automotive software. Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering; Devanbu, P., Ed.; Association for Computing Machinery: New
York,NY,United States, 2020; ACM Digital Library, pp. 1525–1528. doi:10.1145/3368089.3417038.

23. Schmid, K.; Rabiser, R.; Grünbacher, P. A Comparison of Decision Modeling Approaches in
Product Lines. Proceedings of the 5th International Workshop on Variability Modeling of
Software-intensive Systems (VaMoS’11); Heymans, P.; Czarnecki, K.; Eisenecker, U.W., Eds.
ACM, 2011, pp. 119–126.

https://doi.org/10.1016/j.jss.2018.12.027
https://doi.org/10.1145/3368089.3417038


34 of 37

24. Czarnecki, K.; Grünbacher, P.; Rabiser, R.; Schmid, K.; Wasowski, A. Cool Features and Tough
Decisions: A Comparison of Variability Modeling Approaches. Proceedings of the Sixth
International Workshop on Variability Modeling of Software-Intensive Systems; ACM: New
York, NY, USA, 2012; VaMoS ’12, pp. 173–182.

25. Harman, M.; Jia, Y.; Krinke, J.; Langdon, W.B.; Petke, J.; Zhang, Y. Search Based Software
Engineering for Software Product Line Engineering: A Survey and Directions for Future Work.
Proceedings of the 18th International Software Product Line Conference - Volume 1; ACM: New
York, NY, USA, 2014; SPLC ’14, pp. 5–18. doi:10.1145/2648511.2648513.

26. Engström, E.; Runeson, P. Software product line testing–A systematic mapping study. Informa-
tion and Software Technology 2011, 53, 2–13.

27. Lee, J.; Kang, S.; Lee, D. A Survey on Software Product Line Testing. Proceedings of the 16th
International Software Product Line Conference-Volume 1. ACM, 2012, pp. 31–40.

28. Oster, S.; Wübbeke, A.; Engels, G.; Schürr, A. A Survey of Model-Based Software Product Lines
Testing. Model-Based Testing for Embedded Systems 2011, pp. 338–381.

29. Thüm, T.; Apel, S.; Kästner, C.; Schaefer, I.; Saake, G. A Classification and Survey of Analysis
Strategies for Software Product Lines. ACM Computing Surveys (CSUR) 2014, 47, 6.

30. Chen, L.; Ali Babar, M.; Ali, N. Variability Management in Software Product Lines: A Systematic
Review. Proceedings of the 13th International Software Product Line Conference; Carnegie
Mellon University: Pittsburgh, PA, USA, 2009; SPLC ’09, pp. 81–90.

31. Schobbens, P.Y.; Heymans, P.; Trigaux, J.C. Feature Diagrams: A Survey and a Formal Semantics.
Requirements Engineering, 14th IEEE international conference. IEEE, 2006, pp. 139–148.

32. Chacón-Luna, A.E.; Gutiérrez, A.M.; Galindo, J.A.; Benavides, D. Empirical software product
line engineering: A systematic literature review. Information and Software Technology 2020,
128, 106389. doi:10.1016/j.infsof.2020.106389.

33. Marques, M.; Simmonds, J.; Rossel, P.O.; Bastarrica, M.C. Software product line evolution:
A systematic literature review. Information and Software Technology 2019, 105, 190–208. doi:
10.1016/j.infsof.2018.08.014.

34. Knieke, C.; Körner, M.; Rausch, A.; Schindler, M.; Strasser, A.; Vogel, M. A Holistic Approach
for Managed Evolution of Automotive Software Product Line Architectures. Special Track:
Managed Adaptive Automotive Product Line Development (MAAPL), along with ADAPTIVE
2017. IARIA XPS Press, 2017, pp. 43–52.

35. Cool, B.; Knieke, C.; Rausch, A.; Schindler, M.; Strasser, A.; Vogel, M.; Brox, O.; Jauns-Seyfried,
S. From Product Architectures to a Managed Automotive Software Product Line Architecture.
Proceedings of the 31st Annual ACM Symposium on Applied Computing; ACM: New York,
NY, USA, 2016; SAC’16, pp. 1350–1353. doi:10.1145/2851613.2851964.

36. de Silva, L.; Balasubramaniam, D. Controlling Software Architecture Erosion: A Survey. Journal
of Systems and Software 2012, 85, 132–151.

37. Kuhrmann, M.; Fernández, D.M.; Daneva, M. On the pragmatic design of literature studies in
software engineering: an experience-based guideline. Empirical Software Engineering 2017. doi:
10.1007/s10664-016-9492-y.

38. Ivarsson, M.; Gorschek, T. A method for evaluating rigor and industrial relevance of technology
evaluations. Empirical Software Engineering 2011, 16, 365–395. doi:10.1007/s10664-010-9146-4.

39. Kitchenham, B.; Charters, S. Guidelines for performing systematic literature reviews in software
engineering. Technical Report EBSE-2007-01, Keele University, 2007.

40. Her, J.S.; Choi, S.W.; Cheun, D.W.; Bae, J.S.; Kim, S.D. A Component-Based Process for
Developing Automotive ECU Software. Lecture Notes in Computer Science 2007, 4589, 358.

41. Gleirscher, M.; Vogelsang, A.; Fuhrmann, S. A Model-Based Approach to Innovation Manage-
ment of Automotive Control Systems. Software Product Management (IWSPM), 2014 IEEE
IWSPM 8th International Workshop on. IEEE, 2014, pp. 1–10.

42. Martínez-Fernández, S.; Ayala, C.P.; Franch, X.; Nakagawa, E.Y. A Survey on the Benefits and
Drawbacks of AUTOSAR. Proceedings of the First International Workshop on Automotive
Software Architecture. ACM, 2015, pp. 19–26.

43. Kiebusch, S.; Franczyk, B.; Speck, A. An Unadjusted Size Measurement of Embedded Software
System Families and its Validation. Software Process: Improvement and Practice 2006, 11, 435–446.

44. Rana, R.; Staron, M.; Berger, C.; Hansson, J.; Nilsson, M. Analysing defect inflow distribution of
automotive software projects. Proceedings of the 10th International Conference on Predictive
Models in Software Engineering. ACM, 2014, pp. 22–31.

https://doi.org/10.1145/2648511.2648513
https://doi.org/10.1016/j.infsof.2020.106389
https://doi.org/10.1016/j.infsof.2018.08.014
https://doi.org/10.1016/j.infsof.2018.08.014
https://doi.org/10.1145/2851613.2851964
https://doi.org/10.1007/s10664-016-9492-y
https://doi.org/10.1007/s10664-016-9492-y
https://doi.org/10.1007/s10664-010-9146-4


35 of 37

45. Aoyama, M.; Yoshino, A. AORE (Aspect-Oriented Requirements Engineering) Methodology
for Automotive Software Product Lines. Software Engineering Conference, 2008. APSEC’08.
15th Asia-Pacific. IEEE, 2008, pp. 203–210.

46. Gustavsson, H.; Eklund, U. Architecting Automotive Product Lines: Industrial Practice. Software
Product Lines: Going Beyond 2010, pp. 92–105.

47. Eklund, U.; Bosch, J. Architecture for Embedded Open Software Ecosystems. Journal of Systems
and Software 2014, 92, 128–142.

48. Yoshimura, K.; Ganesan, D.; Muthig, D. Assessing Merge Potential of Existing Engine Control
Systems into a Product Line. Proceedings of the 2006 international workshop on Software
engineering for automotive systems. ACM, 2006, pp. 61–67.

49. White, J.; Benavides, D.; Schmidt, D.; Trinidad, P.; Dougherty, B.; Ruiz-Cortés, A. Automated
Diagnosis of Feature Model Configurations. Journal of Systems and Software 2010, 83, 1094–1107.

50. Lind, K.; Heldal, R. Automotive System Development using Reference Architectures. Software
Engineering Workshop (SEW), 2012 35th Annual IEEE. IEEE, 2012, pp. 42–51.

51. Yoshimura, K.; Ganesan, D.; Muthig, D. Defining a Strategy to Introduce a Software Product
Line Using Existing Embedded Systems. Proceedings of the 6th ACM & IEEE International
conference on Embedded software. ACM, 2006, pp. 63–72.

52. Axelsson, J. Evolutionary Architecting of Embedded Automotive Product Lines: An Industrial
Case Study. Software Architecture, 2009 & European Conference on Software Architecture.
WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference on. IEEE, 2009, pp. 101–110.

53. Eklund, U.; Askerdal, O.; Granholm, J.; Alminger, A.; Axelsson, J. Experience of Introducing
Reference Architectures in the Development of Automotive Electronic Systems. Proceedings of
the Second International Workshop on Software Engineering for Automotive Systems; ACM:
New York, NY, USA, 2005; SEAS ’05, pp. 1–6. doi:10.1145/1082983.1083195.

54. Boutkova, E. Experience with Variability Management in Requirement Specifications. Software
Product Line Conference (SPLC), 2011 15th International. IEEE, 2011, pp. 303–312.

55. Tischer, C.; Muller, A.; Mandl, T.; Krause, R. Experiences from a Large Scale Software Product
Line Merger in the Automotive Domain. Software Product Line Conference (SPLC), 2011 15th
International. IEEE, 2011, pp. 267–276.

56. Merschen, D.; Polzer, A.; Botterweck, G.; Kowalewski, S. Experiences of Applying Model-based
Analysis to Support the Development of Automotive Software Product Lines. Proceedings
of the 5th Workshop on Variability Modeling of Software-Intensive Systems. ACM, 2011, pp.
141–150.

57. Graf, S.; Glaß, M.; Wintermann, D.; Teich, J.; Lauer, C. IVaM: Implicit Variant Modeling and
Management for Automotive Embedded Systems. Hardware/Software Codesign and System
Synthesis (CODES+ ISSS), 2013 International Conference on. IEEE, 2013, pp. 1–10.

58. Leitner, A.; Kajtazovic, N.; Mader, R.; Kreiner, C.; Steger, C.; Weiß, R. Lightweight introduction
of EAST-ADL2 in an automotive software product line. System Science (HICSS), 2012 45th
Hawaii International Conference on. IEEE, 2012, pp. 5526–5535.

59. Polzer, A.; Merschen, D.; Botterweck, G.; Pleuss, A.; Thomas, J.; Hedenetz, B.; Kowalewski,
S. Managing complexity and variability of a model-based embedded software product line.
Innovations in Systems and Software Engineering 2012, 8, 35–49.

60. Strasser, A.; Cool, B.; Gernert, C.; Knieke, C.; Körner, M.; Niebuhr, D.; Peters, H.; Rausch, A.;
Brox, O.; Jauns-Seyfried, S.; Jelden, H.; Klie, S.; Krämer, M. Mastering Erosion of Software
Architecture in Automotive Software Product Lines. SOFSEM 2014: Theory and Practice of
Computer Science; Geffert, V.; Preneel, B.; Rovan, B.; Stuller, J.; Tjoa, A.M., Eds. Springer, 2014,
Vol. 8327, LNCS, pp. 491–502.

61. Wang, S. Model Transformation for High-Integrity Software Development in Derivative Vehicle
Control System Design. High Assurance Systems Engineering Symposium, 2007. HASE’07.
10th IEEE. IEEE, 2007, pp. 227–234.

62. Lochau, M.; Oster, S.; Goltz, U.; Schürr, A. Model-based pairwise testing for feature interaction
coverage in software product line engineering. Software Quality Journal 2012, 20, 567–604.

63. Brink, C.; Kamsties, E.; Peters, M.; Sachweh, S. On Hardware Variability and the Relation to
Software Variability. Software Engineering and Advanced Applications (SEAA), 2014 40th
EUROMICRO Conference on. IEEE, 2014, pp. 352–355.

64. Scheidemann, K.D. Optimizing the Selection of Representative Configurations in Verification of
Evolving Product Lines of Distributed Embedded Systems. Software Product Line Conference,
2006 10th International. IEEE, 2006, pp. 75–84.

https://doi.org/10.1145/1082983.1083195


36 of 37

65. Millo, J.V.; Ramesh, S. Relating Requirement and Design Variabilities. Software Engineering
Conference (APSEC), 2012 19th Asia-Pacific. IEEE, 2012, Vol. 2, pp. 35–42.

66. Hardung, B.; Kölzow, T.; Krüger, A. Reuse of Software in Distributed Embedded Automotive
Systems. Proceedings of the 4th ACM international conference on Embedded software. ACM,
2004, pp. 203–210.

67. Kim, J.E.; Kapoor, R.; Herrmann, M.; Haerdtlein, J.; Grzeschniok, F.; Lutz, P. Software Behavior
Description of Real-Time Embedded Systems in Component Based Software Development.
Object Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE International
Symposium on. IEEE, 2008, pp. 307–311.

68. Manz, C.; Stupperich, M.; Reichert, M. Towards Integrated Variant Management in Global
Software Engineering: An Experience Report. Global Software Engineering (ICGSE), 2013 IEEE
8th International Conference on. IEEE, 2013, pp. 168–172.

69. Kato, S.; Yamaguchi, N. Variation Management for Software Product Lines with Cumula-
tive Coverage of Feature Interactions. Software Product Line Conference (SPLC), 2011 15th
International. IEEE, 2011, pp. 140–149.

70. Tischer, C.; Muller, A.; Ketterer, M.; Geyer, L. Why does it take that long? Establishing Product
Lines in the Automotive Domain. Software Product Line Conference, 2007. SPLC 2007. 11th
International. IEEE, 2007, pp. 269–274.

71. Käßmeyer, M.; Schulze, M.; Schurius, M. A process to support a systematic change impact
analysis of variability and safety in automotive functions. Proceedings of the 19th International
Conference on Software Product Line. ACM, 2015, pp. 235–244.

72. de Oliveira, A.L.; Braga, R.T.; Masiero, P.C.; Papadopoulos, Y.; Habli, I.; Kelly, T. A Model-
Based Approach to Support the Automatic Safety Analysis of Multiple Product Line Products.
Computing Systems Engineering (SBESC), 2014 Brazilian Symposium on. IEEE, 2014, pp. 7–12.

73. de Oliveira, A.L.; Braga, R.T.; Masiero, P.C.; Papadopoulos, Y.; Habli, I.; Kelly, T. Supporting
the Automated Generation of Modular Product Line Safety Cases. In Theory and Engineering of
Complex Systems and Dependability; Springer, 2015; pp. 319–330.

74. Gustavsson, H.; Axelsson, J. Evaluating Flexibility in Embedded Automotive Product Lines
Using Real Options. Software Product Line Conference, 2008. SPLC’08. 12th International.
IEEE, 2008, pp. 235–242.

75. Grewe, A.; Knieke, C.; Körner, M.; Rausch, A.; Schindler, M.; Strasser, A.; Vogel, M.; (Keine
Angabe). Automotive Software Product Line Architecture Evolution: Extracting, Designing
and Managing Architectural Concepts. In International Journal on Advances in Intelligent Systems;
Hans-Werner Sehring., Ed.; IARIA, 2017; pp. 203–222.

76. Knieke, C.; Körner, M.; Rausch, A.; Schindler, M.; Strasser, A.; Vogel, M. Control Mechanisms for
Managed Evolution of Automotive Software Product Line Architectures. International Journal
On Advances in Software 2017, pp. 191–210.

77. Bilic, D.; Sundmark, D.; Afzal, W.; Wallin, P.; Causevic, A.; Amlinger, C.; Barkah, D. Towards a
Model-Driven Product Line Engineering Process. Proceedings of the 13th Innovations in Soft-
ware Engineering Conference on Formerly known as India Software Engineering Conference;
Jain, S., Ed.; Association for Computing Machinery: New York,NY,United States, 2020; ACM
Digital Library, pp. 1–11. doi:10.1145/3385032.3385043.

78. Wieringa, R.; Maiden, N.; Mead, N.; Rolland, C. Requirements Engineering Paper Classification
and Evaluation Criteria: A Proposal and a Discussion. Requirements Engineering 2005, 11, 102–
107. doi:10.1007/s00766-005-0021-6.

79. Wille, D.; Runge, T.; Seidl, C.; Schulze, S. Extractive software product line engineering using
model-based delta module generation. Proceedings of the Eleventh International Workshop
on Variability Modelling of Software-intensive Systems; Schaefer, I., Ed.; ACM: New York, NY,
2017; ACM Digital Library, pp. 36–43. doi:10.1145/3023956.3023957.

80. Hayashi, K.; Aoyama, M. A multiple product line development method based on variability
structure analysis. Proceedings of the 22nd International Systems and Software Product Line
Conference - Volume 1; Berger, T., Ed.; ACM: New York, NY, 2018; ACM Other conferences, pp.
160–169. doi:10.1145/3233027.3233048.

81. Hayashi, K.; Aoyama, M.; Kobata, K. Agile Tames Product Line Variability. Proceedings of the
21st International Systems and Software Product Line Conference - Volume A; Cohen, M., Ed.;
ACM: New York, NY, 2017; ACM Digital Library, pp. 180–189. doi:10.1145/3106195.3106221.

82. Ignaim, K.; Fernandes, J.M. An industrial case study for adopting software product lines in
automotive industry. Proceedings of the 23rd International Systems and Software Product Line

https://doi.org/10.1145/3385032.3385043
https://doi.org/10.1007/s00766-005-0021-6
https://doi.org/10.1145/3023956.3023957
https://doi.org/10.1145/3233027.3233048
https://doi.org/10.1145/3106195.3106221


37 of 37

Conference volume B - SPLC ’19; Salinesi, C.; Ziadi, T., Eds.; ACM Press: New York, New York,
USA, 2019; pp. 1–8. doi:10.1145/3307630.3342409.

83. Oliinyk, O.; Petersen, K.; Schoelzke, M.; Becker, M.; Schneickert, S. Structuring automotive
product lines and feature models: an exploratory study at Opel. Requirements Engineering 2017,
22, 105–135.

84. Hohl, P.; Münch, J.; Schneider, K.; Stupperich, M. Real-Life Challenges on Agile Software
Product Lines in Automotiv. International Conference on Product-Focused Software Process
Improvement. Springer, 2017, pp. 28–36.

85. Hohl, P.; Stupperich, M.; Munch, J.; Schneider, K. Combining Agile Development and Software
Product Lines in Automotive: Challenges and Recommendations. 2018 International Confer-
ence on Development and Application Systems (DAS); IEEE: Piscataway, NJ, 2018; pp. 1–10.
doi:10.1109/ICE.2018.8436277.

86. Hohl, P.; Theobald, S.; Becker, M.; Stupperich, M.; Münch, J. Mapping Agility to Automotive
Software Product Line Concerns. In Product-focused software process improvement; Kuhrmann,
M., Ed.; Springer: Cham, 2018; Vol. 11271, Lecture Notes in Computer Science, pp. 409–421. doi:
10.1007/978-3-030-03673-732.

87. Kehrbusch, P.; Richenhagen, J.; Rumpe, B.; Schloßer, A.; Schulze, C. Interface-based similarity
analysis of software components for the automotive industry. Proceedings of the 20th Interna-
tional Systems and Software Product Line Conference; Mei, H., Ed.; ACM: New York, NY, 2016;
ACM Digital Library, pp. 99–108. doi:10.1145/2934466.2934468.

88. Ebert, R.; Jolianis, J.; Kriebel, S.; Markthaler, M.; Pruenster, B.; Rumpe, B.; Salman, K.S. Applying
Product Line Testing for the Electric Drive System. Proceedings of the 23rd International
Systems and Software Product Line Conference - Volume A; Berger, T., Ed.; Association for
Computing Machinery: New York,NY,United States, 2019; ACM Digital Library, pp. 14–24. doi:
10.1145/3336294.3336318.

89. Shahin, R.; Hackman, R.; Toledo, R.; Ramesh, S.; Atlee, J.M.; Chechik, M. Applying Declarative
Analysis to Software Product Line Models: An Industrial Study. 2021 24th International
Conference on Model Driven Engineering Languages and Systems; IEEE: Piscataway, NJ, 2021;
pp. 145–155. doi:10.1109/MODELS50736.2021.00023.

90. Pett, T.; Eichhorn, D.; Schaefer, I. Risk-based compatibility analysis in automotive systems
engineering. Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings; Guerra, E., Ed.; Association for
Computing Machinery: New York,NY,United States, 2020; ACM Digital Library, pp. 1–10. doi:
10.1145/3417990.3421263.

91. Wägemann, T.; Tavakoli Kolagari, R.; Schmid, K. Exploring Automotive Stakeholder Require-
ments for Architecture Optimization Support. 2019 IEEE International Conference on Software
Architecture companion; IEEE: Piscataway, NJ, 2019; pp. 37–44. doi:10.1109/ICSA-C.2019.00015.

92. Fleiss, J.L. Measuring nominal scale agreement among many raters. Psychological Bulletin 1971,
76, 378–382.

93. Amram, M.; Kulatilaka, N. Real options; Harvard Business School Press Boston, Massachusetts,
1999.

94. Copeland, T.; Antikarov, V. Real Options: A Practitioner’s Guide; TEXERE New York, 2001.
95. Gomaa, H. Designing Software Product Lines with UML: From Use Cases to Pattern-Based Software

Architectures; Addison-Wesley Professional, 2004.

https://doi.org/10.1145/3307630.3342409
https://doi.org/10.1109/ICE.2018.8436277
https://doi.org/10.1007/978-3-030-03673-732
https://doi.org/10.1007/978-3-030-03673-732
https://doi.org/10.1145/2934466.2934468
https://doi.org/10.1145/3336294.3336318
https://doi.org/10.1145/3336294.3336318
https://doi.org/10.1109/MODELS50736.2021.00023
https://doi.org/10.1145/3417990.3421263
https://doi.org/10.1145/3417990.3421263
https://doi.org/10.1109/ICSA-C.2019.00015

	Introduction
	Research Approach and Contribution
	Outline

	Related Work & Background
	Related Work
	Automotive Software Engineering
	Software Product Line Engineering

	Conceptual Model for Managed Evolution of Automotive Software Product Line Architectures

	Research Design
	Research Method
	Research Questions
	Data Collection Procedures
	Overview of the Scoping Study
	Study Selection from the Scoping Study
	Collection and selection of papers from 2016-2021
	Final Paper Selection

	Analysis and Validity Procedures

	Study Results & Discussion
	Result Overview
	State of the Art in Holistic Approaches for Managed Evolution of Automotive Software Product Lines
	Methods and Techniques to Implement Automotive Software Product Lines
	Overview of Methods and Techniques used for Automotive Software Product Lines
	Architecture Evolution Process
	Cost-/Effort Estimation
	Safety Analysis
	Description Languages
	Architecture Reengineering
	Model Transformation
	Model-based Requirements Engineering
	Overall Approach/Process
	Reference Architectures
	Software Product Line Merging
	Testing/Verification
	Variability Management
	Agile Software Development

	Discussion
	RQ1: What is the current state-of-the-art in holistic approaches for managed evolution of automotive software product lines?
	RQ2: What particular methods and techniques are used to implement a managed evolution of automotive software product lines?

	Threats to Validity

	Conclusion
	Primary Studies
	Data Extraction and Dataset Quality Assessment
	References

