3,802 research outputs found

    Testing the boundaries of closely related daisy taxa using metabolomic profiling

    Full text link
    Advances in high-throughput, comprehensive small molecule analytical techniques have seen the development of the field of metabolomics. The coupling of mass spectrometry with high-resolution chromatography provides extensive chemical profiles from complex biological extracts. These profiles include thousands of compounds linked to gene expression, and can be used as taxonomic characters. Studies have shown metabolite profiles to be taxon specific in a range of organisms, but few have investigated taxonomically problematic plant taxa. This study used a phenetic analysis of metabolite profiles to test taxonomic boundaries in the Olearia phlogopappa (Asteraceae) complex as delimited by morphological data. Metabolite profiles were generated from both field- and shade house-grown material, using liquid chromatography-mass spectrometry (LC-MS). Aligned profiles of 51 samples from 12 taxa gave a final dataset of over 10,000 features. Multivariate analyses of field and shade house material gave congruent results, both confirming the distinctiveness of the morphologically defined species and subspecies in this complex. Metabolomics has great potential in alpha taxonomy, especially for testing the boundaries of closely related taxa where DNA sequence data has been uninformative

    Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcript profiling of closely related species provides a means for identifying genes potentially important in species diversification. However, the predictive value of transcript profiling for inferring downstream-physiological processes has been unclear. In the present study we use shotgun proteomics to validate inferences from microarray studies regarding physiological differences in three <it>Pachycladon </it>species. We compare transcript and protein profiling and evaluate their predictive value for inferring glucosinolate chemotypes characteristic of these species.</p> <p>Results</p> <p>Evidence from heterologous microarrays and shotgun proteomics revealed differential expression of genes involved in glucosinolate hydrolysis (myrosinase-associated proteins) and biosynthesis (methylthioalkylmalate isomerase and dehydrogenase), the interconversion of carbon dioxide and bicarbonate (carbonic anhydrases), water use efficiency (ascorbate peroxidase, 2 cys peroxiredoxin, 20 kDa chloroplastic chaperonin, mitochondrial succinyl CoA ligase) and others (glutathione-S-transferase, serine racemase, vegetative storage proteins, genes related to translation and photosynthesis). Differences in glucosinolate hydrolysis products were directly confirmed. Overall, prediction of protein abundances from transcript profiles was stronger than prediction of transcript abundance from protein profiles. Protein profiles also proved to be more accurate predictors of glucosinolate profiles than transcript profiles. The similarity of species profiles for both transcripts and proteins reflected previously inferred phylogenetic relationships while glucosinolate chemotypes did not.</p> <p>Conclusions</p> <p>We have used transcript and protein profiling to predict physiological processes that evolved differently during diversification of three <it>Pachycladon </it>species. This approach has also identified candidate genes potentially important in adaptation, which are now the focus of ongoing study. Our results indicate that protein profiling provides a valuable tool for validating transcript profiles in studies of adaptive divergence.</p

    Cooking shapes the structure and function of the gut microbiome

    Get PDF
    Diet is a critical determinant of variation in gut microbial structure and function, outweighing even host genetics1-3. Numerous microbiome studies have compared diets with divergent ingredients1-5, but the everyday practice of cooking remains understudied. Here, we show that a plant diet served raw versus cooked reshapes the murine gut microbiome, with effects attributable to improvements in starch digestibility and degradation of plant-derived compounds. Shifts in the gut microbiota modulated host energy status, applied across multiple starch-rich plants, and were detectable in humans. Thus, diet-driven host-microbial interactions depend on the food as well as its form. Because cooking is human-specific, ubiquitous and ancient6,7, our results prompt the hypothesis that humans and our microbiomes co-evolved under unique cooking-related pressures

    Comprehensive Detection of Genes Causing a Phenotype using Phenotype Sequencing and Pathway Analysis

    Full text link
    Discovering all the genetic causes of a phenotype is an important goal in functional genomics. In this paper we combine an experimental design for multiple independent detections of the genetic causes of a phenotype, with a high-throughput sequencing analysis that maximizes sensitivity for comprehensively identifying them. Testing this approach on a set of 24 mutant strains generated for a metabolic phenotype with many known genetic causes, we show that this pathway-based phenotype sequencing analysis greatly improves sensitivity of detection compared with previous methods, and reveals a wide range of pathways that can cause this phenotype. We demonstrate our approach on a metabolic re-engineering phenotype, the PEP/OAA metabolic node in E. coli, which is crucial to a substantial number of metabolic pathways and under renewed interest for biofuel research. Out of 2157 mutations in these strains, pathway-phenoseq discriminated just five gene groups (12 genes) as statistically significant causes of the phenotype. Experimentally, these five gene groups, and the next two high-scoring pathway-phenoseq groups, either have a clear connection to the PEP metabolite level or offer an alternative path of producing oxaloacetate (OAA), and thus clearly explain the phenotype. These high-scoring gene groups also show strong evidence of positive selection pressure, compared with strictly neutral selection in the rest of the genome

    Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways

    Get PDF
    Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to sugarcane cv. SP70-1143, and it describes the initial molecular events that may trigger the increased drought tolerance in the host plant
    corecore