5 research outputs found

    Generating approximate region boundaries from heterogeneous spatial information: an evolutionary approach

    Get PDF
    Spatial information takes different forms in different applications, ranging from accurate coordinates in geographic information systems to the qualitative abstractions that are used in artificial intelligence and spatial cognition. As a result, existing spatial information processing techniques tend to be tailored towards one type of spatial information, and cannot readily be extended to cope with the heterogeneity of spatial information that often arises in practice. In applications such as geographic information retrieval, on the other hand, approximate boundaries of spatial regions need to be constructed, using whatever spatial information that can be obtained. Motivated by this observation, we propose a novel methodology for generating spatial scenarios that are compatible with available knowledge. By suitably discretizing space, this task is translated to a combinatorial optimization problem, which is solved using a hybridization of two well-known meta-heuristics: genetic algorithms and ant colony optimization. What results is a flexible method that can cope with both quantitative and qualitative information, and can easily be adapted to the specific needs of specific applications. Experiments with geographic data demonstrate the potential of the approach

    A framework for integrating multi-accuracy spatial data in geographical applications

    Get PDF
    In recent years the integration of spatial data coming from different sources has become a crucial issue for many geographical applications, especially in the process of building and maintaining a Spatial Data Infrastructure (SDI). In such context new methodologies are necessary in order to acquire and update spatial datasets by collecting new measurements from different sources. The traditionalapproach implemented in GIS systems for updating spatial data does not usually consider the accuracy of these data, but just replaces the old geometries with the new ones. The application of such approach in the case of an SDI, where continuous and incremental updates occur, will lead very soon to an inconsistent spatial dataset withrespect to spatial relations and relative distances among objects. This paper addresses such problem and proposes a framework for representing multi-accuracy spatial databases, based on a statistical representation of the objects geometry, together with a method for the incremental and consistent update of the objects, that applies acustomized version of the Kalman filter.Moreover, the framework considers also the spatial relations among objects, since they represent a particular kind of observation that could be derived from geometries or be observed independently in the real world. Spatial relations among objects need also to be compared in spatial dataintegration and we show that they are necessary in order to obtain a correct result in merging objects geometries

    Towards topological consistency and similarity of multiresolution geographical maps

    No full text
    The paper proposes a new approach for evaluating consistency and similarity among geographical map

    Supporting Distributed Geo-Processing: A Framework for Managing Multi-Accuracy Spatial Data

    Get PDF
    Negli ultimi anni molti paesi hanno sviluppato un'infrastruttura tecnologica al fine di gestire i propri dati geografici (Spatial Data Infrastructure, SDI). Tali infrastrutture rechiedono nuove ed efficati metodologie per integrare continuamente dati che provengoono da sorgenti diverse e sono caratterizzati da diversi livelli di qualit\ue0. Questo bisogno \ue8 riconosciuto in letteratura ed \ue8 noto come problema di integrazione del dato (data integration) o fusione di informazioni (information fusion). Un aspetto peculiare dell'integrazione del dato geografico riguarda il matching e l'allineamento degli oggetti geometrici. I metodi esistenti solitamente eseguono l'integrazione semplicemente allineando il database meno accurato con quello pi\uf9 accurato, assumendo che il secondo contenga sempre una rappresentazione migliore delle geometrie rilevate. Seguendo questo approccio, gli oggetti geografici sono combinati assieme in una maniera non ottimale, causando distorsioni che potenzialmente riducono la qualit\ue0 complessiva del database finale. Questa tesi si occupa del problema dell'integrazione del dato spaziale all'interno di una SDI fortemente strutturata, in cui i membri hanno preventivamente aderito ad uno schema globale comune, pertanto si focalizza sul problema dell'integrazione geometrica, assumendo che precedenti operazioni di integrazione sullo schema siano gi\ue0 state eseguire. In particulare, la tesi inizia proponendo un modello per la rappresentazione dell'informazione spaziale caratterizzata da differenti livelli di qualit\ue0, quindi definisce un processo di integrazione che tiene conto dell'accuratezza delle posizioni contenute in entrambi i database coinvoilti. La tecnica di integrazione proposta rappresenta la base per un framework capace di supportare il processamento distributo di dati geografici (geo-processing) nel contesto di una SDI. Il problema di implementare tale computazione distribuita e di lunga durata \ue8 trattato anche da un punto di vista pratico attraverso la valutazione dell'applicabilit\ue0 delle tecnologie di workflow esistenti. Tale valutazione ha portato alla definizione di una soluzione software ideale, le cui caratteristiche sono discusse negli ultimi capitoli, considerando come caso di studio il design del processo di integrazione proposto.In the last years many countries have developed a Spatial Data Infrastructure (SDI) to manage their geographical information. Large SDIs require new effective techniques to continuously integrate spatial data coming from different sources and characterized by different quality levels. This need is recognized in the scientific literature and is known as data integration or information fusion problem. A specific aspect of spatial data integration concerns the matching and alignment of object geometries. Existing methods mainly perform the integration by simply aligning the less accurate database with the more accurate one, assuming that the latter always contains a better representation of the relevant geometries. Following this approach, spatial entities are merged together in a sub-optimal manner, causing distortions that potentially reduce the overall database quality. This thesis deals with the problem of spatial data integration in a highly-coupled SDI where members have already adhered to a common global schema, hence it focuses on the geometric integration problem assuming that some schema matching operations have already been performed. In particular, the thesis initially proposes a model for representing spatial data together with their quality characteristics, producing a multi-accuracy spatial database, then it defines a novel integration process that takes care of the different positional accuracies of the involved source databases. The main goal of such process is to preserve coherence and consistency of the integrated data and when possible enhancing its accuracy. The proposed multi-accuracy spatial data model and the related integration technique represent the basis for a framework able to support distributed geo-processing in a SDI context. The problem of implementing such long-running distributed computations is also treated from a practical perspective by evaluating the applicability of existing workflow technologies. This evaluation leads to the definition of an ideal software solution, whose characteristics are discussed in the last chapters by considering the design of the proposed integration process as a motivating example
    corecore