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Abstract

Spatial information takes different forms in different applications, ranging from
accurate coordinates in geographic information systems to the qualitative ab-
stractions that are used in artificial intelligence and spatial cognition. As a
result, existing spatial information processing techniques tend to be tailored to-
wards one type of spatial information, and cannot readily be extended to cope
with the heterogeneity of spatial information that often arises in practice. In
applications such as geographic information retrieval, on the other hand, ap-
proximate boundaries of spatial regions need to be constructed, using whatever
spatial information that can be obtained. Motivated by this observation, we pro-
pose a novel methodology for generating spatial scenarios that are compatible
with available knowledge. By suitably discretizing space, this task is translated
to a combinatorial optimization problem, which is solved using a hybridization
of two well-known meta-heuristics: genetic algorithms and ant colony optimiza-
tion. What results is a flexible method that can cope with both quantitative and
qualitative information, and can easily be adapted to the specific needs of spe-
cific applications. Experiments with geographic data demonstrate the potential
of the approach.

Key words: Spatial Reasoning, Genetic Algorithms, Ant Colony
Optimization, Geographic Information Retrieval

1. Introduction

To be effective, applications dealing with spatial information need to ab-
stract away from unnecessary subtleties, focusing exclusively on those aspects
of physical space that are relevant in the given context. In domains such as
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artificial intelligence (AI) and spatial cognition, for instance, there is a large
interest in qualitative approaches to describing space [7, 19, 21, 30, 56, 59].
Spatial configurations are then typically reduced to a number of qualitative re-
lations, of a given type, which are known to hold between a given set of regions
(e.g. region A is known to be contained in region B, or is known to be adjacent
with B). As an example, Figure 1(a) depicts a spatial configuration involving
three regions A, B and C. One of the typical Al approaches is to model only
topological relations that hold between these regions, because only topological
information is relevant, or more likely, because only topological information is
available. As shown in Figure 1(b), these topological relations can be summa-
rized in a graph, where nodes correspond to regions, and edges to topological
relations. Topological relations are usually modeled in either the 9—intersection
model [15] or in the conceptually similar Region Connection Calculus (RCC;
[56]). In Figure 1(b) and throughout this paper, the notations of the latter
framework are used. Their intuitive meaning is illustrated in Figure 2. Other
types of qualitative spatial relations that play an important role in Al include di-
rection [19], distance [7], and size [23] relations. A graph of topological relations
can be seen as an instance of a constraint satisfaction problem (CSP), where the
number of constraints is finite, but the domains of the variables, which could
be instantiated by arbitrary polygons!, are infinite. Typical reasoning tasks
of interest consist of checking whether a certain set of topological relations is
consistent (or satisfiable), i.e. if there can actually exist polygons such that the
given topological relations are all satisfied [59, 58, 14].

On the other hand, in the context of geographic information systems (GIS)
or computer vision, quantitative information tends to play a more central role.
In the case of GIS, for instance, the focus tends to be more on efficiently an-
swering queries against large spatial databases than on reasoning about incom-
plete descriptions. Another important issue in GIS systems is the integration of
spatial information of different resolutions [13]. To speed up computation (or
because rich boundaries are not available), the exact boundaries of regions are
often reduced to simpler representations. For example, a typical GIS approach
is to simplify all boundaries to minimal bounding boxes (MBBs). In this case,
depicted in Figure 1(c), every region is represented by the smallest rectangle
encompassing the region, whose sides are parallel to the axes. Note that special
care needs to be taken when modeling spatial relations between regions by com-
paring their MBBs [12]. Another popular alternative is to model each region as
a single point, called a centroid (Figure 1(d)).

In all these application domains, different assumptions are made on what
spatial information is available (qualitative/quantitative, accurate/approximate,
certain/probabilistic, crisp/fuzzy, etc.), and on what the behavior of a spatial
information processing module should be (proving the consistency of spatial
constraints, efficiently addressing spatial queries, generating approximate spa-

n practice, the set of allowed instantiations is often even larger, allowing for instance
arbitrary regular closed (or regular open) subsets in certain topological spaces.
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Figure 1: A spatial scenario can be abstracted in many different ways.
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Figure 2: Topological relations from the Region Connection Calculus: disconnected (DC),
partially overlapping (PO), externally connected (EC), tangential proper part (TPP), and
non-tangential proper part (NTPP)




tial models from incomplete or uncertain data, etc.). As a result, existing
techniques for manipulating spatial information tend to deal exclusively with
one type of information, e.g. only topological relations, only minimal bounding
boxes, only points (centroids), etc. Consistency checking procedures for topolog-
ical relations, for instance, cannot cope with quantitative spatial information.
Nonetheless, given only the minimal bounding boxes of regions A, B and C
from Figure 1(c), it may be of interest to certain applications to know what
topological relations can hold between A, B and C; e.g. is it still possible that
TPP(A,C) and DC(B,C) both hold? Moreover, consistency checking is often
not sufficient, as we may be interested in obtaining visualizable spatial config-
urations (e.g. by constructing actual polygons). Similarly, in the GIS field, a
number of techniques have been studied to generate polygons from incomplete
quantitative information (e.g. sets of points that are known to lie in certain re-
gions), but these techniques cannot deal with additional qualitative information
(e.g. topological relations that are known to hold), or additional quantitative
information of a different type (e.g. bounding boxes that are available for some
regions).

In general, two fundamentally different approaches may be considered in the
face of heterogeneous spatial information. First, techniques may be developed
that derive useful conclusions by combining pieces of information from different
data sets, each of which may have different characteristics. Despite that com-
pleteness of the resulting algorithms is difficult to guarantee, in many application
scenarios this approach delivers satisfactory results, and may moreover be im-
plemented efficiently, allowing on-line querying of available data. This solution
has been proven particularly useful in classical GIS settings, where integrating
information from different sources easily leads to problems, e.g. due to the use
of different resolutions [3], and where care should be taken when quantitative
descriptions are incomplete [2]. The second approach consists of constructing
quantitative representations at a fixed resolution that are as compatible as pos-
sible with all available information. This is the methodology that we follow in
this paper, its advantage being that once the quantitative representations have
been obtained, spatial data may be queried as if complete, consistent, quanti-
tative information were available, making it possible, for instance, to visualize
information that was initially partially qualitative or otherwise incomplete. On
the other hand, obtaining suitable quantitative representations may be time-
consuming, requiring this step to be performed off-line. More fundamentally,
the resulting quantitative representations are only approximations, without any
guarantees on accuracy. Since these drawbacks are effectively problematic for
many standard GIS scenarios, this second method has only received very lim-
ited attention thus far. Nonetheless, it is the second method which seems most
useful for tasks such as geographic information retrieval (GIR; [32]). Indeed,
by their very nature, information retrieval systems operate using a best effort
principle: while search engines provide no guarantees that the returned search
results are relevant, they attempt to find the most relevant ones, given available
information. In the same way, in geographical information retrieval, we may
attempt to find boundaries for a certain geographic region which are as mean-



ingful as possible, allowing us to find meaningful results even when available
geographic information is scarce.

The main goal of GIR systems is to spatially enable search engines, allowing
them to understand the meaning of geographic search terms and constraints.
We may be interested, for instance, in finding information about hotels in Lon-
don’s Bloomsbury neighborhood, in blog posts about the US elections by people
from Western Furope, or in pictures of the Hong Kong skyline. As the total
number of queries involving place names is substantial — a survey of the 2004
Excite search engine query logs revealed that 15% of all queries contained place
names [63] — proper treatment of geographic information in search engines is
paramount. One problem with traditional, text—based search engines is that
place names tend to be highly ambiguous. For example, dozens of places in
the US are called Springfield, hence a mechanism is needed to discover if an
occurrence of Springfield in a document corresponds to the same place as an oc-
currence of Springfield in a query [49]. A second problem is related to the variety
of ways places can typically be referred to. For example, a text—based search
engine cannot straightforwardly deduce that a document about Oxford Street
might be relevant to a user interested in shopping in London. Despite that there
is a growing interest in GIR, and in spatially aware technologies in general (e.g.
Google Earth 2 or Microsoft Maps Live ), most existing work focuses on certain
subproblems looking at one type of spatial information only. In particular, due
to the lack of better tools, existing approaches to GIR treat available qualitative
information more or less independently from available quantitative information,
although certain hybrid representational frameworks are beginning to emerge
[71, 76, 27]. Using the technique introduced below, available spatial informa-
tion can be more tightly integrated, paving the way for better performing GIR
systems.

The aim of this paper is to introduce a sufficiently general technique for
generating appropriate polygons from heterogeneous spatial information, often
involving a mixture of qualitative and quantitative information. This problem
can be cast into a combinatorial search problem by treating the available spa-
tial information as constraints on allowed instantiations (polygons) of variables
(regions), and by appropriately discretizing the real plane. Specifically, we pro-
pose an approximate algorithm for spatial information processing, based on a
combination of two types of evolutionary algorithms: genetic algorithms (GA;
[29]) and ant colony optimization (ACO; [10]). The genetic algorithm is used to
find an optimal ordering by which variables (i.e. regions) and spatial relations
should be processed. In each generation, a spatial scenario is generated for each
chromosome, whose quality is evaluated in terms of the number of spatial con-
straints that it satisfies. This evaluation is not only used to define the fitness
of the chromosomes, it is also used by an ACO algorithm to favor, in future
generations, spatial configurations which are similar to high—quality scenarios

2http://earth.google.com
3http://maps.live.com



that were found earlier.

The structure of this paper is as follows. In the next section, we review
existing work on spatial information processing in more detail. Next, in Section
3, we show how the problem of manipulating heterogeneous spatial information
can be translated to a combinatorial search problem, and we introduce a naive
baseline algorithm. Subsequently, Section 4 discusses how this baseline algo-
rithm can be improved by using a genetic algorithm. In Section 5, we present
a further improvement based on ant colony optimization. An experimental val-
idation of our techniques on real-world geographic data is presented in Section
6. Finally, Section 7 presents our conclusions.

2. Related Work

2.1. Spatial Reasoning

There has been considerable work on reasoning about topological informa-
tion encoded in RCC-8, an important subfragment of the RCC consisting of
eight base relations: the five relations from Figure 2, the equality relation EQ,
and the inverses NTPP~! and TPP~! of NTPP and TPP. Indefinite topo-
logical information can be encoded in RCC-8 by enumerating which of the eight
base relations may hold between a given pair of regions. Conceptually, spatial
relations in RCC-8 are therefore represented as subsets of {DC, PO, EC, TPP,
NTPP, EQ, TPP~!, NTPP~'}. Most reasoning tasks of interest in RCC-8
are NP—complete [59]. In consequence, and inspired by results about temporal
reasoning in the interval algebra [1], many research efforts have been devoted to
finding tractable subfragments of RCC-8, i.e. subsets of the 2% relations that can
be expressed in RCC-8 for which reasoning is tractable [59, 26, 45, 57]. In [45],
it was shown that reasoning in RCC-8 is tractable, provided only base relations
are used (i.e. no indefinite information). Of special interest are subsets of RCC—
8 relations that are maximally tractable, i.e. such that every proper superset of
RCC-8 relations would result in NP—completeness. A first maximal tractable
subfragment, containing 146 relations, was identified in [59]. Two additional
maximal tractable subfragments were identified in [57], containing 158 and 160
relations. In [57] it was moreover shown that these three subfragments are the
only maximal tractable subfragments of RCC-8 that contain all eight base re-
lations. In all three subfragments of RCC-8, satisfiability can be checked using
an O(n?) path—consistency algorithm, similar to Allen’s algorithm for temporal
reasoning.

Usually, a knowledge base of RCC-8 relations is called satisfiable (or consis-
tent) if it can be realized in some topological space, i.e., if all variables can be
interpreted by regions in some topological space such that all imposed relations
hold [59]. In practice, however, it might be interesting to know whether a set of
RCC-8 formulas can be realized by (regular closed) subsets of, for example, R?
or Z? and, if so, which additional constraints on these subsets might be imposed
(e.g., convexity, internal connectedness, etc.). In [58], it was shown that any
satisfiable set of RCC-8 formulas can be realized in R™ for every n in N\ {0}.



A similar realization algorithm, which runs in cubic time, was also presented in
[38]. These results imply that satisfiability and realizability in R™ are essentially
equivalent. For n > 3, this result also holds when regions are constrained to be
internally connected, and even if they are constrained to be polytopes. Unfor-
tunately, for n = 2 and n = 1 this result does not hold in general. This implies
that some satisfiable sets of RCC—-8 formulas cannot be realized as polygons.
This latter problem — checking the realizability of RCC-8 formulas as polygons
— can be reduced to the problem of recognizing a special class of graphs called
string graphs [26, 35], a hard problem which until recently was not even known
to be decidable. In [64], it was shown that this problem is NP—complete.

Other types of qualitative spatial relations have been considered in the lit-
erature as well, most notably cardinal directions [51, 25, 70]. Of special interest
are techniques for combining different types of qualitative relations, such as
the integration of topology and direction [68, 39], or topology and size [23].
However, different types of spatial relations interact in very subtle ways, which
makes the search for complete reasoning algorithms highly non—trivial. There-
fore, it seems not feasible to extend this approach to the kind of expressivity
we require of spatial information in the context of, among others, GIR. This
paper presents an alternative methodology for dealing with expressive spatial
information, which, from a reasoning perspective, achieves a substantially larger
degree of expressivity by sacrificing completeness.

2.2. Approzimating Region Boundaries

For many of the geographic regions people refer to, either accurate bound-
aries do not exist (e.g. vague regions such as London’s West End), or they are
not available in the given context (e.g. because the licensing costs are too high).
On the other hand, there is a large interest in geo-data acquisition, i.e. the dis-
crete pointwise observation of geographical phenomena [20]. For instance, based
on user surveys [43], or web mining techniques [65, 34], we may have a set of
points at our disposal which we know are located in a given region. Accordingly,
a number of techniques have been developed in the GIS community to construct
approximate region boundaries from a given set of points. For instance, Galton
and Duckham [22] review hull algorithms based on triangulation and a variation
of the well known gift-wrapping method called the swing-hammer algorithm.
Lam [36] proposes a non—exhaustive method to model regions based on disks.
Both of these methods work with varying sizes of point sets, but the uncertainty
of the region to be modeled is not considered. Kernel density estimation (KDE)
methods, on the other hand, do explicitly take this uncertainty into account.
They have been used in several areas of geographic information analysis such as
crime and traffic investigations [5], but also for the automated definition of city
centres [75] as well as geographic information retrieval [54]. The main principle
behind KDE is based on determining a weighted average of data points within
a moving window centred on a grid of points. In this way, KDE turns a vec-
tor into a field representation. The actual result depends on the choice of an
appropriate kernel function and a bandwidth parameter, although experimen-
tal studies have found that the choice of the kernel function is less important



than the choice of the bandwidth parameter [48]. A common automated way
of setting the bandwidth, based on statistical features of the point set, is the
rule of thumb [69]. Different KDE representations can be combined using an
indexed overlay, which allows to join different variables when modelling a region
or phenomenon. Thurstain-Goodwin and Unwin [75] modelled city centres by
overlaying kernel density representations of indices for property, economy, di-
versity and visitor attractions of a town. In order to derive an actual polygon
for a region from the three-dimensional kernel density surface, an appropriate
threshold needs to be chosen, which can be interpreted as a level of confidence.
The resulting polygon is a contour of the kernel density surface.

The use of KDE has been controversial, its main criticism being the rather
arbitrary choice of parameters [62] as well as the fact that it is only suitable
for large point sets, which are typically only available for popular regions. On
the other hand, given a sufficiently large point set, kernel density models are
quite robust against outliers. Adaptive kernel parameters such as suggested by
Brunsdon [6] or Sain [62] can consider the variation of point density in a spatial
point pattern. Using a Gaussian kernel they provide a means to analyse and
represent a region based on statistical grounds. As we will show in Section
6 below, in the presence of additional qualitative information, using KDEs as
heuristic information in ACO algorithms can alleviate both the problem of KDEs
with small data sets and the problem of selecting appropriate thresholds.

2.3. Geographic Information Retrieval

Geographic Information Retrieval (GIR) facilities the retrieval of geographic
information from large document collections such as the web. For each document
in the collection, a spatial footprint is generated by geo-parsing the document
and extracting the geographical feature objects. These spatial footprints are
then combined with a classical index of the document keywords, yielding a
searchable structure to perform geospatial queries. Geospatial queries involve
place names or geographic concepts along with a spatial preposition and possibly
a locational component [33, 41]. Less formally, a geospatial query is a “query
about the spatial relations of entities geometrically defined and located in space”
[16]. To determine the relevance of a document, its spatial footprint is then
compared with the locations and place names from the query. Alternatively,
spatial relationships can be determined directly from qualitative relations that
are stored explicitly in the document index.

Even if they do not fully support the aforementioned structured geospatial
queries, web search engines such as Google are progressively being enriched
with spatial semantics to facilitate more sophisticated retrieval techniques [32],
including query term expansion (e.g. adding nearby places to increase recall),
resolving of place name coreferences (e.g. “Paris” and “the French capital”) and
spatially-related place lookup (e.g. “medieval towns in Southern France”). To
enable such spatial awareness, structured information from official sources is
mostly used (gazetteers, ontologies). Often however, an extra effort is made
to automatically expand this structured information. For instance, qualitative



spatial information about places can be extracted from natural language loca-
tional phrases on general web pages, using shallow or deep linguistic processing
[55, 53, 67], or from semi-structured web resources such as Wikipedia* (see [55]
for a comparison of different Wikipedia approaches). Quantitative information,
such as point sets to generate approximate region boundaries, can be extracted
by looking at the context in which addresses occur, or by relying on web 2.0 ini-
tiatives, such as the Open Street Maps Project ®, Geonames ¢, Wikimapia 7, or
social web sites in general. Note that the quantitative information that can be
found on such free resources is often restricted to simple point based geometric
data, leading to parsimonious (frugal) spatial models [31]. As an alternative, or
as an addition, accurate (paid for) spatial footprints of geographical features can
be obtained from official sources, such as the Ordnance Survey (UK’s national
mapping agency), who provide administrative subdivisions as a multilevel hier-
archy of highly detailed polygons®. However such information is licensed and is
not usually applied for large-scale web GIR systems. Importantly, all quanti-
tative geographic resources are inherently incomplete, as free resources rely on
user input, and official sources are typically restricted to administrative regions.
Hence, there is a clear need to augment incomplete quantitative information
with incomplete qualitative information, mined from textual resources, to ob-
tain a richer geographic model, and thus to enhance geographic information
retrieval tasks.

2.4. Evolutionary Spatial Information Processing

A number of metaheuristics have already been applied in the context of
spatial information processing. In [44], for instance, simulated annealing is used
to reason about possibly conflicting topological relations. The task described
consists of choosing an RCC-8 base relation for each pair of regions under
consideration which together form a consistent topological description. The
choices should moreover lead to a topological description that is as close as
possible to an initial, inconsistent set of topological relations.

Genetic algorithms have been used to solve facility layout problems [28,
40]. These problems resemble quadratic assignment problems and are thus
more closely related to classical combinatorial optimization. Nonetheless, the
algorithm from [28] has some similarities with ours. There as well, the main
purpose of the genetic algorithm is to obtain an ordering in which variables
should be processed; to find the actual regions an algorithm is used that starts
from one block and maintains an increasing set of contiguous blocks. In [60],
a genetic algorithm is used to efficiently solve spatial queries against a large
database of polygons (e.g., “find a hospital in an urban area adjacent to a park

4http://www.wikipedia.org

5www.openstreetmap.org

Swww.geonames.org

"www.wikimapia.org

80f note, even after using state of the art digitization methods, some errors still exist e.g.
slivers, overshoots etc.



and a highway”). A hill climbing algorithm for a similar problem was presented
in [50].

On a more general level, spatial information processing can usually be seen
as a special case of constraint satisfaction problems (CSP). A large number
of evolutionary techniques have already been proposed for general CSPs. For
example, [42] and [8] present overviews of genetic algorithms for this task, while
[61, 72] discuss the application of ant colony optimization. Similarly, in [46] a
tabu search approach to solving CSPs is proposed.

Finally, note that a preliminary version of this paper appeared in [66].

3. Constructing Polygons

3.1. Constructing One Polygon

Before we turn to the use of evolutionary algorithms, in this section we
illustrate the main idea of our algorithm. In particular, we show how this
problem can be seen as a constraint satisfaction problem, by converting available
spatial information to constraints on the possible instantiations (polygons) of
the variables (regions). In a first step, we consider a slightly simplified problem:
given a number of regions vy, vs, ..., v whose boundaries are known, find an
appropriate polygon for region u, subject to a set of spatial constraints ©. For
the ease of presentation, we will only consider topological relations at this point.
In particular, we assume that © contains constraints of the form r(u, v;), r being
a topological relation. For example, (NTPP UTPP)(u,vs) indicates that the
(unknown) polygon of u should be a proper part (either tangential or non-
tangential) of the (known) polygon of ve. Note, however, that the discussion
below can easily be extended to other types of unary (e.g. u is convex), binary
(e.g. w is north of v1) , or n-ary (e.g. u is located between v1 and wvy) spatial
relations.

In principle, an infinite number of polygons can be considered for the in-
stantiation of w. To make our problem tractable, we therefore need to apply
some form of discretization. The most obvious choice would be to represent
the plane as an infinite grid (i.e. the digital plane), and only consider poly-
gons that can be represented as a contiguous set of cells, possibly restricted to
some bounded fragment of this grid. An advantage of this technique is that
the most important theoretical results of reasoning in RCC-8 remain valid for
such a digital plane [38]. The problem, however, is that the polygons vy, ..., vg,
which may be the result of quantitative information that is available a priori,
are sometimes not representable in such a grid. Our solution is to discretize the
plane using triangles instead. To this end, we first choose a finite set of points
P, which should at least include the vertices of the polygons corresponding to
V1,...,Vg. In addition, P should contain a number of points that are chosen,
randomly or uniformly, within a certain area of interest. The more points that
are chosen in a certain area, the smaller the granularity of the discretization will
be in this area. The actual discretization of the plane is defined by calculating

10
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Figure 3: Regions v1, v2, v3 and the resulting Delaunay triangulation.

the Delaunay triangulation of P? [9]. Among all possible triangulations of P,
the Delaunay triangulation is defined as the one in which triangles are as much
equiangular as possible. The Delaunay triangulation is often used because it
satisfies many interesting properties, which intuitively ensure that the triangu-
lation is the most natural one. For example, the circumscribing circle of any
triangle of the Delaunay triangulation contains no other points than the vertices
of the triangle itself (Empty Circle property). Furthermore, every internal edge
£ is locally optimal, i.e. for Q the quadrilateral composed of the two triangles
sharing &, replacing £ in the triangulation by the other diagonal of Q does not
increase the minimum of the six internal angles. The Delaunay triangulation has
been well investigated and a number of algorithms exist that allow a calculation
in O(nlog(n)) time [37, 18].

As an example, three regions v1, v, v3 and a possible corresponding triangu-
lation are shown in Figure 3. In this figure, the points in P have been obtained
by choosing, for each of the polygons v, vo and vs, a fixed number of points on
the boundary, inside, and in the immediate vicinity of the polygons. Hence, for
instance, as vy is smaller than vs, the density of the points around v, is higher.
As possible instantiations of u, we only consider polygons that can be defined
as a set of contiguous triangles from the triangulation'®.

To find a polygon, or indeed a contiguous set of triangles 7, which satisfies

9Note that if some of the polygons v1,. .., v, would not be representable in the triangula-
tion, this can easily be remedied by splitting some of the triangles in smaller triangles.
10Note that the restrictions that the triangles be contiguous is only needed if self-connected
regions are desired. In some scenarios, it may be desirable to allow instantiations of variables
with finite unions of disjoint polygons (e.g. to model an archipelago).
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the spatial constraints in ©, we translate topological relations to a number of
simple set—theoretic restrictions on 7. In general, topological relations may
result in five types of constraints on 7:

1. Upper bound: The set 7 should be a subset of 7y, i.e. T C 7.

2. Lower bound: The set 7 should be a superset of 7, i.e. 7o C 7.

3. Overlap: The set 7 should contain at least one triangle from 7y, i.e. 7 N7, #
0.

4. Partial exclusion: The set 7 may contain some, but not all triangles from
Ty, ie. To L T.

5. Boundary: The polygon defined by 7 should share at least one boundary
point with the polygon defined by 7.

where 7o may be an arbitrary set of triangles from the triangulation. For bound-
ary constraints, we furthermore require that 7; is a contiguous set of triangles,
or, equivalently, that 7y defines a polygon. To illustrate this procedure, we
consider the following example.

Example 1. let vi, v and vs be defined as in Figure 3, and let © be defined
by

© = {EC(v1,u), PO(ve,u), TPP(u,v3)}
Furthermore, let us denote the set of triangles corresponding to the polygons for
v1, va and vs, as Ty, To and T3 respectively. First, EC(vi,u) implies that (the

polygons defined by) T and Ty should share at least one boundary point, and
furthermore, it induces the following constraint on T (upper bound):

TCU\T

where U denotes the set of all triangles in the Delaunay triangulation. Neaxt,
PO(va,u) implies that (overlap, partial exclusion, and again overlap):

TNT; #0
TLZT
TNWU\T)#0

and finally, T PP(u,vs) means that T and T3 share at least one boundary point,
and that (upper bound and partial exclusion):

TCTs
T3¢T
Note that although this example is on translating topological relations to con-

straints on T, the same technique can easily be applied to other types of spatial
relations, such as distance or orientation relations.

12



Once all spatial relations from © have been translated to constraints on the
set of triangles 7, we need to find an appropriate solution, i.e. an actual def-
inition of 7. To this end, we propose a simple randomized greedy algorithm,
although more complex algorithms, possibly including backtracking, could be
conceived. This algorithm will form the starting point of our evolutionary ap-
proach below. In the standard version of the algorithm, we first select an initial
triangle t° from U/ which satisfies all upper bound constraints on 7

1. if at least one lower bound constraint has been obtained from ©, t° is chosen
randomly from the triangles in the available lower bounds;

2. otherwise, if at least one overlap constraint has been obtained, t° is chosen
randomly from the triangles involved;

3. otherwise, ¥ is chosen randomly among all triangles that satisfy the avail-
able upper bounds.

After t° has been chosen, the algorithm repeatedly adds a neighboring triangle
to the current set of triangles. In particular, let 7° = {t°}, and let 7% be the
set of triangles that has been obtained after i steps (|7¢| = i+1). To find 7'*!
from 7%, we consider the set {t1,ta,...,ts} containing all triangles ¢ satisfying:

1. triangle ¢ is bordering on one of the triangles in 7°¢, but ¢ is itself not
contained in 7%

2. adding t to |7¢| does not violate any of the available constraints (e.g. t is
contained in all the available upper bounds);

3. T*U{t;} does not correspond to a polygon with a hole (if polygons without
holes are desired);

If a triangle ¢ in {1, o, ..., ts} is contained in one of the available lower bounds,
this triangle is chosen!!, i.e. 771 = 7?U{t}. If none of the triangles occurs in a
lower bound, a triangle from {t1,ts,...,ts} is chosen randomly. The algorithm
stops when no candidate triangles, satisfying the three criteria above, can be
found (failure), or when a solution has been found that satisfies all constraints
(success). As an example, in Figure 4, a typical outcome of our algorithm is
shown for © defined as in Example 1.

If a correct solution is found, we may choose to add further triangles (or
remove some of the earlier assigned triangles) to obtain a more desirable polygon,
e.g. with a more natural shape. In the experiments below, we will use the
following strategy to add further triangles to a correct solution. Let t; be
the next triangle to be considered and let 7; in [0,1] be an estimation of how
desirable adding t; would be. One possibility is to take 7; = 0.5 fixed. We
proceed as follows:

1. Let p be randomly chosen from [0, 1]

11If there is more than one such triangle, we can choose one at random. Note that which
one we choose is completely irrelevant in this case, as the remaining triangles will be added
in the subsequent steps.
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Figure 4: Possible definition of u satisfying EC(v1,u), PO(v2,u) and TPP(u,vs).

(a) If p < 75, add triangle ¢;, i.e. let 7°t!' = 7% U {t;}, and repeat the
process with a new triangle t;, chosen as explained above.

(b) Otherwise, skip triangle ¢; and repeat the process with a new triangle
!/
t;.

2. Repeatedly apply this strategy until either

(a) ksuce successive triangles have been skipped;

(b) or each of the candidate triangles would cause a violation of a con-
straint, or would result in a polygon with a hole.

8.2. Constructing Multiple Polygons

Now we turn to the original problem, where no polygons are available ini-
tially. Let vy, ..., v, be variables, and let © be a set of spatial relations involving
(only) these variables. In a first step, information that follows implicitly from
the relations in © is made explicit. Specifically, we calculate the algebraic clo-
sure of ©. This can be done in O(n?), n being the number of relations in O,
using techniques that are similar to Allen’s path—consistency algorithm [1]. In-
tuitively, such algorithms proceed by repeatedly applying composition rules (or
transitivity rules). For example, from the RCC-8 composition table [56], we
know that NTPP(a,c) holds as soon as NTPP(a,b) and TPP(b,c) for some
region b. Therefore, if NTPP(a,b) and TPP(b,c) are both contained in ©, we
can add NTPP(a,c) as well. If no relations can be added to © in this way, ©
is called algebraically closed. By calculating the algebraic closure of ©, implicit
spatial information is made explicit, which substantially increases the effective-
ness of our algorithm. Henceforth, we will denote the algebraic closure of © by
O.

Our goal is to find a model of ©, i.e. polygons for the variables v; which
satisfy all spatial relations in © (or equivalently, in ©). Note that in general, ©
may contain a mixture of unary, binary, and n-ary relations (n > 3). To find
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Figure 5: Mean and standard deviation of the percentage of satisfied spatial relations in
scenarios generated using random variable orderings.

such a model, the technique from the previous section could be straightforwardly
applied as follows. Initially, we randomly choose a polygon for v; that satisfies
all unary relations from © (i.e. geometric constraints) involving this variable.
For example, a MBB B for v; could be available, in which case a polygon for
v1 is constructed such that B is indeed the MBB of v;. To find such a polygon,
first a triangle tg is chosen randomly from the triangles that are within B, and
subsequently, triangles are added until the constraint is satisfied. Next, we use
the technique from Section 3.1 to find a polygon for vs that satisfies all unary
relations from © involving vg, as well as all binary relations involving v; and vz
(from ©). Continuing in this way, in each step 4, we try to construct a polygon
for v;, given the polygons for vy,...,v;_1, which satisfies all relations from ©
that involve only variables from {vy,...,v;}.

4. Variable Ordering

4.1. Motivation

An important characteristic of the algorithm from Section 3 is that its
chances of being successful critically depend on the order in which the variables
are processed. This is illustrated in Figure 5, which displays the performance
of the algorithm for 25 random orderings. Each ordering is evaluated by gen-
erating a spatial scenario (i.e. polygons), and by calculating what percentage
of the spatial relations in © are effectively satisfied. This process, for each of
the 25 orderings, was repeated 25 times; Figure 5 shows the mean and standard
deviations of the percentages found for a problem involving 20 variables and 20
randomly generated topological relations. Note how the best performing vari-
able ordering (72.7% of the spatial relations satisfied on average) is substantially
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Figure 6: (a) After vi, va and vs have been instantiated, no polygon v4 can be found any-
more such that EC(v1,v4), EC(v2,v4) and DC(v3,v4); (b) After vi, vs and vs have been
instantiated, a suitable polygon for vy can always be found.

better than the worst performing ordering (45.9% of the spatial relations satis-
fied on average). This dependency on the variable ordering is further illustrated
in the next example.

Example 2. Let © be given by
0= {TPP(UQ, 1)1), EC(Ug, 1}1), EC(U3, 1}2), EC(’U4, 1)1), EC(’U4, 1}2), DC(’U4, ’U3)}

and assume that first vy, vo and vs are instantiated. Then it is quite likely
that a scenario such as the one displayed in Figure 6(a) is obtained. In that
case, no solution can be found, since v4 should share at least one boundary point
with v1 and v (from EC(vq,v1) and EC(vg,v2)). However, as all boundary
points that are common to vy and vy are also included in vs, this would violate
the requirement that DC(vg,v3). Such problems could easily be alleviated if the
variables were processed in the order vy, vs, vy, vo. After vi, vs and vy have been
instantiated, a suitable polygon for vy can always be found (see Figure 6(b)).

As illustrated in this example, there often exists some ordering of the variables
which makes finding suitable polygons trivial. Finding such an ordering deter-
ministically, however, is difficult, since many factors may influence the optimal-
ity of a given ordering: availability of quantitative information, particularities
of the given Delaunay triangulation, subtle interactions between different types
of qualitative relations, etc. Even when only considering topological relations,
it is not at all obvious, in general, why some orderings turn out to be better
than others.

4.2. A Genetic Algorithm

Genetic algorithms (GAs) are a well-known metaheuristic, mimicking the
evolution of species to tackle combinatorial optimization problems. Because of
this analogy, candidate solutions are called chromosomes. A set of such chro-
mosomes, called the population, is maintained by the algorithm, and allowed to
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evolve using two problem-specific operators: crossover and mutation. Typically,
a crossover operator takes two chromosomes as input (the parents) and recom-
bines these to obtain one or more new chromosomes (the offspring), whereas a
mutation operator takes one chromosome as input and alters it in some way.
The sets of solutions that are repeatedly obtained are called generations of the
population. To improve the average quality of the solutions found, the fitness
of each chromosome, i.e. the quality of the candidate solutions, is evaluated and
used to select the parents for the next generation: fitter chromosomes are more
likely to be selected as parent than others.

The use of GAs to optimize orderings is well-established [52, 73], making
this framework ideal for our problem. Although a large part of the crossover
operators that have been proposed in the literature were developed with the
traveling salesman problem in mind, some order—preserving crossover operators
have been proposed that are of interest to the problem at hand, including Or-
der Crossover (OX), Order Crossover 2 (0X2), Cycle Crossover (CX), Position
Based Crossover (PBX) and Partially Mapped Crossover (PMX); we refer to
[24, 47, 74] for more details on these operators. Figure 7 depicts the (average)
performance of these crossover operators on 50 randomly generated problems.
Each of the problems involves 20 variables and 20 topological relations. In this
experiment, we used a steady—state genetic algorithm [77]: in each step only
one offspring is generated, which replaces the worst individual of the popu-
lation. When we refer to a generation in this context, we mean 20 of these
elementary steps (e.g. 200 generations means that 4000 chromosomes have been
generated), among others to allow for a fair comparison with other (genetic)
algorithms. To generate an offspring, first two parents need to be selected. This
selection is done using a 3—way tournament selection: we randomly choose three
chromosomes from the population, and select the one with the highest fitness
with probability 0.5, or one of the others, each with probability 0.25. Once
two parents have been found, a crossover operator is applied with a certain
probability (we used 0.25). Subsequently, a mutation operator is applied on the
resulting offspring with a certain probability (we used 1). As mutation operator,
we randomly swap two elements in the variable ordering corresponding to the
chromosome. In our experiments, we used a population size of 20.

To evaluate the fitness of a chromosome ch;, we apply the algorithm from
Section 3 using the variable ordering encoded in the chromosome, resulting in
a spatial scenario S, (i.e. polygons for every variable involved). The fitness
f(ch;) of chromosome ch; is then defined as the percentage of spatial relations
from O that are satisfied in scenario Se.p:

' El

Note that in this way, due to the randomness of the procedure from Section
3, the fitness function is non—deterministic. To cope with this, and to avoid
the computational overload of calculating too many scenarios, only one scenario
is generated for every chromosome, which is used to assign its fitness function
until the chromosome is discarded from the population.

17



19 7

18

17 1

.
LS

Number of Violated Relations

12 7

11 4 sressssssns,

0 25 50 75 100 125 150 175 200
Generation

Figure 7: Performance of ordering crossover operators for generating spatial configurations.
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Figure 8: Mean and standard deviation of the percentage of satisfied spatial relations in
scenarios generated using variable orderings that were obtained after 200 generations of a
genetic algorithm.
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The results from Figure 7 indicate that PMX is best suited for our purpose.
Interestingly, this observation is consistent with results that have been obtained
in the context of facility layout problems [28], where also optimal variable or-
derings are sought to generate spatial scenarios. Figure 8 presents results for
the same experiment as Figure 5, but using variable orderings produced by the
genetic algorithm, rather than random variable orderings. Specifically, each of
the 25 orderings correspond to the best chromosome that was found after 200
generations (in 25 different runs of the genetic algorithm). In this case, the
mean percentage of satisfied spatial relations ranges from 68.7% to 80.1%. This
clearly shows us that the genetic algorithm improves on the quality of random
orderings, resulting in spatial scenarios that satisfy more spatial relations. Note,
however, that there is a rather large variability in the number of satisfied spatial
relations. This implies that increases of the fitness function are a combination
of the fact that better orderings are found, and the fact that a larger number of
scenarios is generated, which increases the chances of being “lucky”. As this lat-
ter effect is also present in simpler strategies, we compared our choice of genetic
algorithm, which uses PMX crossover, to a number of alternatives in Figure
9. Specifically, we used a completely random search, a variant of our algorithm
that uses no crossover operation, random—mutation hill-climbing (RMHC; [17]),
and a variant that uses a generational selection scheme instead of steady—state.
Unsurprisingly, random search leads to the worst performance. RMHC per-
forms slightly better, but is clearly outperformed by a genetic algorithm without
crossover, which, in turn performs similarly as the generational algorithm with
crossover. Finally, the steady—state genetic algorithm with crossover performs
best, so it is this algorithm that we will use in the remainder of this paper.

In addition to an optimal ordering in which the variables should be processed,
we may sometimes also require an optimal ordering, for each variable, in which
the spatial relations involving that variable should be considered. Note that
such orderings are mainly relevant when © is not consistent. Indeed, if no
model for © exists, we may still be interested in scenarios that satisfy as many
of the relations in © as possible. To this end, we need to find out what relations
are most interesting to ignore, which boils down to determining the order in
which the relations should be considered. This can be done in entirely the same
way as learning the optimal variable ordering.

5. Identifying Good Triangles

5.1. Motivation

In the preceding discussion we have mainly focused on topological relations,
and although the algorithm can easily be generalized to other types of spatial
information, there is at least one extension which is useful when quantitative
information is present. To illustrate this, we will assume in this section that
MBBs are available for some regions, in addition to topological relations.

Example 3. Consider the MBBs in Figure 10(a). These rectangles give us
an approximate idea of the boundaries of the unknown regions A and B: we
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Figure 9: Comparison of the genetic algorithm with a number of baseline systems.

know that the polygons of A and B are contained in the corresponding rectan-
gles, and that they touch each of the four sides. Such bounding box information
s often available in practical applications. For example, freely available geo-
graphic knowledge bases such as the Alexandria gazetteer'? and the database of
wikimapia'® contain bounding bozes of regions, but not (usually) their actual
polygons (boundaries). In terms of the constraints on triangles from Section
8.1, the information we have about the MBB of a region can straightforwardly
be translated to an upper bound constraint and four boundary constraints. Now
assume that we know, in addition to the MBBs from Figure 10(a), that the
topological relation DC(A, B) holds, i.e. that A and B do not share any points.
Again this information can be translated to constraints on triangles. However,
intuitively, from the combination of both types of information, we learn more
than the union of the constraints they individually entail. In particular, the tri-
angles in the grey zone are less likely to be contained in either of the two regions.
As a second example, consider the MBBs from Figure 10(b) and assume that
EC(A, B) is known to hold. In this case, the grey zones in the rectangles for A
and B are more likely to be contained in the corresponding polygons. Indeed, the
only point where A and B can touch is in the lower right corner of the rectangle
for A, resp. the upper left corner of the rectangle for B.

2http://wuw.alexandria.ucsb.edu/gazetteer/
Bhttp://wuw.wikimapia.org/
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(a) DC(A, B) (b) EC(A, B)

Figure 10: When topological information is available in addition to MBBs, some parts of the
MBBs are more likely to be contained in the actual polygons than others.

Note how in both cases of the example above, our additional information is
based on intuition, and expressed in terms of likelihood. It is not possible
to convert such intuitions into hard constraints, and for complex scenarios it
is not even feasible to make these intuitions explicit, as the available spatial
information may interact in subtle ways. To cope with this, we try to learn,
in an automated way, which triangles tend to appear often in good scenarios,
based on the spatial scenarios that are generated by the genetic algorithm.

5.2. Ant Colony Optimization

Ant colony optimization (ACO) is a metaheuristic inspired by the foraging
behaviour of ants [10]. When foraging for food, ants share their knowledge of
promising paths from the nest to food sources by depositing a chemical sub-
stance called pheromones on the ground. The more pheromone on a certain
path, the higher the probability that other ants will follow this same path.
Such other ants then further increase the amount of pheromone on the path
which, in turn, stimulates even more ants to follow it. Using this technique,
ant colonies usually succeed in finding an optimal (or near—optimal) path in
a short period of time. The ACO metaheuristic uses this idea to solve prob-
lems whose solutions can be built iteratively by repeatedly adding components
to intermediate solutions. The likelihood that a certain component is added
depends on heuristic information (if available), and experience from previous
iterations. This experience is encoded by assigning a real value to each compo-
nent (or to connections between components), which, in analogy, is called the
amount of pheromones on that component: the more frequently a component
occurs in high—quality solutions, the more pheromones will be dropped on that
component, and the more likely it will appear in future solutions.

The ACO algorithm generalizes the technique from Section 3.1 for construct-
ing polygons that satisfy a set of spatial constraints. As such, there is a tight
interaction between the ACO algorithm and the GA from Section 4, where ants
are essentially identified with chromosomes, and each generation of the GA
corresponds to a tour of the ants. In particular, the ACO algorithm is used to
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generate the spatial scenarios S¢;, that correspond to the chromosomes ch of the
genetic algorithm, and pheromone updates are performed after each generation
of the GA. The details of this procedure are as follows.

5.2.1. Choosing Triangles
We assume that pheromones are dropped on the elements of the triangulation
(i.e. the triangles), where a different type of pheromone is used for each variable
(region). We write 7 to denote the amount of pheromones on triangle ¢; of the
type corresponding to region v;. Now assume that, as in Section 3.1, a set of
triangles 7° has already been chosen for region v; and we are considering to
add one of the triangles t1,%o,...,ts. Rather than choosing a triangle randomly
(in the case that none of them occurs in a lower bound constraint), a bias is
introduced towards more promising triangles, i.e. triangles that are more likely
to be included in good solutions. In particular, the probability that triangle ¢,
is chosen depends on the value of vj = (h)® - (7 )P, where hi is a heuristic
value, reflecting a priori information about the likelihood that triangle ¢; should
be included in the polygon of region v;, and « and § are constants in [0, +00]
that encode the relative importance of heuristic information and experience (i.e.
pheromones). When no a priori information is available, we assume hj = 1.
The triangle which is actually added to 7° is then defined using the ACS
variant of ACO [11]: with probability A, we add the triangle ¢ with the highest
score for 1]
t = argmax v, (1)
tm
Otherwise (with probability 1 — X), a triangle is chosen using a roulette wheel
selection, i.e. the probability of choosing ¢; becomes
J
PHIT!) = < @)
Zm:l Vg”

The initial triangle, or equivalently the set 7!, is obtained in a similar fashion.
The only difference lies in how the candidate triangles t1,ts,...,ts are chosen.
As there are no previously assigned triangles to start from, we consider all
triangles ¢;, located within the available upper bound constraints, for which
either h or 7] exceeds a certain threshold: h] > 6, or m/ > 6.. If there are no
such triangles, we fall back on the strategy from Section 3.1.

5.2.2. Updating Pheromones

To conclude the description of the ACO algorithm, we need to specify how
pheromone values are obtained and updated. Initially, the pheromone level on
all triangles is equal to a small constant 7y in [0,1]. After each generation of
the genetic algorithm, and for every variable v;, each offspring ch deposits an
amount of pheromones (of type j) on the triangles ’Z}SC” that constitute region
v; in the spatial scenario S, corresponding to chromosome ch. Note that in
this way, we identify the chromosomes of the genetic algorithm with the ants of
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the ACO algorithm. The amount of pheromones that are dropped on region v;
depend on the quality of the polygon for v; in scenario S.;, which we define as

1 1
9,(5) = T3
J

2

T4k )

where k is the number of spatial relations from © that are violated in S.;, and
k; is the number of violated spatial relations involving the variable v;. The first
factor ensures that more importance is given to spatial scenarios of a globally
good quality. This means that even when all spatial relations involving v; are
satisfied, the quality of the polygon for v; may be considered low when this comes
at the cost of other spatial relations — not involving v; — being violated. The
second factor in the definition of g; reflects that, nonetheless, the quality of v;
should mainly be evaluated based on the number of violated relations involving
v;. Our specific pheromone update scheme is based on the hypercube framework
for ACO [4]. In this framework, the amount of pheromones of type j that are
dropped on triangle ¢; is defined in terms of

> enli(Sen)lti € T}
Zch 9; (SCh)

In other words, the more scenarios in which ¢; is contained in v;, and the higher

Al =

the quality of these scenarios, the higher the value of A{ . Finally, to forget mis-
takes from the past, ACO algorithms also implement some form of pheromone
evaporation. This leads to the following pheromone updating rule, which is
applied after each generation of the genetic algorithm:

] pri + (1= p)A]

where p €]0, 1].

The hypercube framework has a number of well-known advantages over al-
ternative pheromone updating schemes [4], both theoretical (e.g. proofs of con-
vergence) and practical (a smaller number of parameters to tune). An additional
advantageous feature is that all pheromone values are contained in the unit in-
terval [0, 1], provided my € [0,1]. Thus we can interpret pheromone values as
degrees of confidence that triangles are contained in the corresponding regions.
This allows us to compare the result of our algorithm to established techniques
such as kernel density estimations.

5.3. Kernel Density Estimations

Heuristic information is useful to guide the ants towards promising solu-
tions, especially in early generations when reliable pheromone maps have not
yet been formed. While the specific use of heuristic information is to some ex-
tent application-dependent, in many geographic applications the use of point
sets recurs as coarse approximations of region boundaries. The idea is that for
each region v, a set of points P, = p1,...,ps is known which lie inside it. These
points may, for instance, be obtained by looking for addresses of places that are
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claimed to be in v on the web, either in textual or semi-structured form. The
spatial distribution of the points in P, can tell us something about the spatial
extent of v. This idea is often implemented using kernel density estimations
(KDEs), which provide a smooth R? — [0, +-00[ mapping K, to approximate
the spatial distribution underlying the point set P, (see also Section 2.2). We
will use normalised KDEs that take values in [0,1]. Specifically, the normalised
version K of K, is given for each p in R? by

K, (p)
superz Ko, (9)

K (p) =

Given the mapping K ;j, we can define the heuristic score hf for triangle ¢; and
region v; as the average value of K, over the area of the triangle:

I, K3, (p) dp
ftl dp

where hg € [0, 1] represents a default (or guaranteed) heuristic value. Note that
since K (p) is in [0,1] for all p in R?, we have that £ is in [0,1] as well.

h! = max(ho,

5.4. A note on complexity

From a theoretical point of view, the overall computational complexity of our
approach is dominated by the O(k*) complexity (k being the number of regions)
of calculating the transitive closure of the given spatial relations. Calculating
the Delaunay triangulation can be done in O(n; - log n;) with n; the number of
triangles; note that this number of triangles n; can be seen as a constant that
can be chosen independently from the number of regions. When quantitative
information is available, the value of n; will influence the coarseness of the
solution, however. The complexity of the genetic algorithm, with the ant colony
optimization extension, depends primarily on the complexity of generating a
single individual, which is quadratic in the number of regions k. Another factor
that is important is the number of triangles n;, which determines the total
number of possible scenarios. As spatial regions are obtained by incrementally
adding triangles, it is clear that the practical execution time will depend strongly
on this number n;. Finally, execution time will also depend (linearly) on the
total number of individuals that are generated. In practice, however, the nature
of the evolutionary setting makes it possible to stop the calculation after a fixed
amount of time (or after a fixed number of individuals have been generated),
which allows one to search for the best possible scenario, within a given time-
frame. Furthermore, the use of genetic algorithms and ant colony optimization
enables the use of parallelization in a natural way.

6. Evaluation

To evaluate how successful our algorithm would be on real-world geographic
data, we performed a number of experiments with the boundaries of neigh-
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borhoods'* in 10 UK cities: Cardiff (28 neighborhoods), Swansea (39 neigh-
borhoods), London (33 neighborhoods), Birmingham (41 neighborhoods), York
(11 neighborhoods), Reading (17 neighborhoods), Oxford (20 neighborhoods),
Bristol (38 neighborhoods), Leicester (32 neighborhoods) and Newcastle (27
neighborhoods). Starting from the exact boundaries'®, we calculated which
topological relation holds between every pair of neighborhoods. For each neigh-
borhood, we also calculated the corresponding MBB. In this way, a set © was
obtained containing two types of spatial relations (constraints), viz. topological
relations and MBBs, on which we then applied our algorithm to find a suit-
able model (spatial scenario). Ideally, this model would correspond to the exact
boundaries © was generated from. This situation is highly unlikely, however,
given the limited amount of spatial information that is provided to the algo-
rithm. In a GIR context, for instance, where the only spatial information is
coming from coarse representations in gazetteers and from analyzing the con-
tent of web documents, we merely intend to acquire reasonable approximations
of the real boundaries. Note that in many cases, geographic regions are inher-
ently ill-defined and “real” boundaries do not even exist. City neighborhoods,
for instance, often have many alternative definitions, which are used for specific
purposes; e.g. electoral wards tend to be similar, but not identical to a parish
with the same name. Thus, we are mainly interested in how useful the out-
put of the algorithm is, rather than whether or not the correct boundaries are
obtained.

We are not aware of any existing techniques that could generate spatial
scenarios from such heterogeneous information. Currently, GIR methods are
almost always based on MBBs or a variant of KDEs. Therefore, we will focus
our evaluation on assessing (i) how our overall algorithm compares to simpler
variants (e.g. without the ACO component), (i) which parameters produce the
best results, and (iii) how much our techniques can improve on what can already
be accomplished using MBBs or KDEs. In particular, we focus on three different
use cases, each with its own peculiarities, and with different optimal parameter
settings, as will be discussed in detail below.

6.1. Experiment 1: Visualizing Spatial Relations

In this first experiment, we are only interested in finding a model that sat-
isfies all, or as many as possible, of the spatial relations in ©. In particular,
whether or not the boundaries obtained are similar to the real boundaries is
assumed to be irrelevant. This situation arises when very little quantitative
information is available, and a more or less schematic representation of the
available spatial information is desired as the end result, e.g. to check by vi-
sual inspection whether a given qualitative description contains errors, or to

14 Specifically, we used the boundaries of the electoral wards in each city, except for London,
where we used the boundaries of the parishes to obtain a comparable number of neighborhoods.

5Datasource, EDINA UK Borders, © Crown Copyright/database right 2008. An Ordnance
Survey/EDINA supplied service.
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Figure 11: Number of satisfied relations during the first 50 generations, without using heuristic
information and assuming that both topological relations, and MBB constraints need to be
satisfied. The notation (a, b) is used to describe the configuration 8 = a and A = b.

visualise/summarize a natural language description of a scene (e.g. in a work
of fiction). Compare this, for instance, with the schematic maps that are often
used to depict a network of subway lines.

The results of this experiment, for a number of variants of our algorithm,
are shown in Figure 11 (averaged over the 10 cities). The line labelled “genetic”
corresponds to the genetic algorithm from Section 4, and is used as a baseline
system here. The other lines correspond to different choices of the parameters
B and A, which reflect the sensitivity of the algorithm to the pheromones and
the degree of randomness in choosing the triangles to add to intermediate so-
lutions. The extreme value § = 0 means that the algorithm effectively ignores
the pheromones, whereas A = 0 and A = 1 entail that, respectively, a roulette
wheel and a greedy strategy are used to choose triangles. The initial amount of
pheromones and the pheromone evaporation factor are kept fixed: w9 = 0.1 and
p = 0.95. For the threshold value 6, applied in selecting the initial triangle of a
region, we use the value 6, = m-p’ which depends on the number of the current
generation ¢. In this way, the triangles that are initially considered are exactly
those triangles that have been chosen at least once in a preceding generation
(in the first generation, these triangles are chosen randomly). The best result
in Figure 11 is obtained by taking 8 and A sufficiently high (6 = 3 and A=0.9).
Performance deteriorates when decreasing either 8 or A, but all configurations
perform substantially better than the genetic algorithm. Note that the genetic
algorithm actually corresponds to the configuration 5 = A = 0. To test the
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Figure 12: Number of satisfied relations during the first 50 generations, using a kernel density
surface generated from 25 points (Gaussian distribution) as heuristic information, and assum-
ing that both topological relations and MBB constraints need to be satisfied. The notation
(a, b; ¢) is used to describe the configuration « = a, 8 =b and A = c.

statistical significance of these conclusions, we employed a (2-tailed) Wilcoxon
signed-rank test to the result after 10 generations, and to the result after 50
generations. In the former case, using a p-value cut-off of 0.05, we obtain the
following ordering

Genetic < (1,0.1) < {(1,0.5),(0.5,0.5)} < {(1,0.9),(3,0.9)}

where we write sysA<sysB to denote that sysB is significantly better than sysA.
The difference in performance between (1,0.5) and (0.5,0.5) is not statistically
significant, and neither is the difference between (1,0.9) and (3,0.9). Regarding
the performance after 50 generations, we found:

Genetic < (1,0.1) < {(1,0.5),(0.5,0.5), (1,0.9), (3,0.9)}

Figure 12 depicts the result of a similar experiment, in which heuristic in-
formation was made available to help the ants find a model of the topological
relations and MBBs. In this case, the configuration (3,0;0.5) can be seen as
another baseline system, in addition to the genetic algorithm, which disregards
pheromones but does use the available heuristic information. These heuristic
values were generated from a kernel density surface as explained in Section 5.3.
The kernel density surface itself was obtained using points that were generated
according to a Gaussian distribution. Specifically, the two coordinate values of
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each point were chosen independently, using the middle of the MBB’s projection
on the X-axis (resp. Y-axis) as mean and 10% of the length of this projection as
standard deviation. In this way, more points occur in the centre of the regions
than at the borders. Note that a similar situation typically arises in practice,
where we have a lot of information about the centre of a region, but almost
no information about its outskirts. To obtain the kernel density estimations
we used a Gaussian kernel, relying on Silverman’s rule of thumb [69] to choose
an appropriate bandwidth parameter. We used a default heuristic value of 0.1,
which was also used as the threshold to choose initial triangles: hg = 8, = 0.1.
The results from Figure 12 are slightly worse than those from Figure 11, which
is somewhat surprising as one may expect that because of the heuristic infor-
mation, accurate models would be found significantly faster. However, the bias
introduced by the heuristic information causes the algorithm to largely ignore
entire fragments of the search space. While we know that the actual boundaries
cannot be found in these ignored fragments, they may very well include models
of the spatial relations in ©. In the likely situation where the actual bound-
aries cannot be represented using triangles from the Delaunay triangulation, the
actual boundaries are, in fact, not contained in the search space. Hence, it is
possible that the only models of © may be found in fragments that are ignored
when heuristic information is added. In the case of Figure 12, this potential
drawback of heuristic information (slightly) outweighs the potential advantage
of faster convergence. In terms of statistical significance, we obtain

Genetic<{(3,0;0.5),(3,0.5,0.5),(3,1;0.1)} < (3,1;0.5) <{(1, 3;0.9),(3,1;0.9) }
after 10 generations, and
Genetic<{(3,0;0.5),(3,1;0.1)} <(3,0.5,0.5)<{(3,1;0.5), (1, 3;0.9),(3,1;0.9) }

after 50 generations.

In Figure 13, the results are shown of an experiment in which no MBBs
are used. As there is less information available in this case, the boundaries
that are found will be less similar to the actual boundaries. However, from the
perspective of spatial reasoning, i.e. finding spatial models of ©, the absence
of MBBs means that less constraints need to be satisfied, and therefore, that
convergence occurs faster. The baseline system (3,0;0.5), only guided by the
heuristic information, produces very similar scenarios in each generation, in
which most, but not all relations are satisfied. Because it disregards previous
experience (pheromones), it fails to satisfy some of the more difficult relations,
repeatedly making the same “mistakes”. As all the easy relations are already
satisfied in the models produced by the first generation, the result does not
improve in subsequent generations. The following results were found to be
statistically significant:

Genetic < {(3,0;0.5),(3,0.5,0.5),(3,1;0.1),(3,1;0.5)} < {(1,3;0.9),(3,1;0.9)}
after 10 generations, and

Genetic < {(3,0;0.5), (3,0.5,0.5),(3,1;0.1)} < {(1,3;0.9), (3,1;0.9),(3,1;0.5) }
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Figure 13: Number of satisfied relations during the first 50 generations, using a kernel den-
sity surface generated from 25 points (Gaussian distribution) as heuristic information, and
assuming that only topological relations need to be satisfied. The notation (a,b;c) is used to
describe the configuration « = a, 8 =b and A = c.

after 50 generations.

6.2. Experiment 2: Approximating Region Boundaries

In geographic applications, it may of interest to acquire boundaries that are
reasonable approximations of the (unknown) true boundaries of a given region.
In GIR systems such as Google Maps, for instance, approximate representations
of city neighborhoods are useful to support queries like Give me a list of hotels
in the city centre of Ghent. Whether or not a spatial scene that was generated
satisfies all imposed constraints is of little value in this context, constraints are
only used as a means to help the system find useful boundaries, i.e. boundaries
that are as similar as possible to the actual boundaries. Therefore, in a second
series of experiments, we have looked at how accurate the boundaries are that
were obtained by our algorithm.

To evaluate the accuracy of region boundaries, we use the well-known Jac-
card similarity measure. Specifically, let R; be a polygon corresponding to the
true boundary of a certain region R, and let Ry be the polygon that was found
by our algorithm. We define the accuracy of Ry, relative to Ry, as

area(Ry N Ry)

ace(Byi Be) = o R U Ry

In other words, the accuracy is defined as the percentage of the total area
occupied by Ry or R, on which both agree. It is easy to see that acc(Ry; R;) =1
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(b) (3, 0‘.5’;'0.5) (c) (3,0;0.5)

(a) (1,3;0.'9)

Figure 14: Pheromone maps obtained for the Roath neighborhood (Cardiff), when only topo-
logical relations and MBBs are provided (after 50 generations).

only when Ry and R, are identical, and acc(Ry; R;) = 0 only when Ry and R;
are completely disjoint.

Table 1: Similarity between the boundaries found by the algorithm and the actual boundaries.
The notation (a, b; c) is used to describe the configuration « = a, 8 =b and A = c.
1,3;0.9) (3,1;0.9) (3,1;0.5) (3,1;0.1) (3,0.5;0.5) (3,0;0.5) Genetic
MBB 0.510 0.526 0.544 0.532 0.561 0.479 0.483
Gauss.-25 0.290 0.291 0.288 0.276 0.253 0.263 0.009
Gauss.-20, Noise-5 0.290 0.262 0.293 0.276 0.263 0.247 0.009
Gauss.-15, Noise-10 | 0.258 0.272 0.249 0.256 0.259 0.239 0.009
Uniform-25 0.354 0.349 0.348 0.344 0.338 0.315 0.009
Gauss.-25 + MBB 0.555 0.565 0.567 0.540 0.591 0.515 0.483
Uniform-25 + MBB | 0.620 0.621 0.615 0.576 0.617 0.593 0.483

The results are presented in Table 1, where each column corresponds to a
different configuration of our algorithm (using the notations from Figure 12); the
last column displays the result of the genetic algorithm, which disregards any
heuristic and pheromone values, and should be seen as a baseline system. Every
line of the table corresponds to a slightly different experiment. In each case,
all topological relations were given to the algorithm, as well as some additional
information, viz. MBBs and/or heuristic information in the form of a KDE.
On the first line, the results are shown of an experiment where only MBBs
and topological relations were used (cf. Figure 11). In the experiment on the
second line, no MBBs were used, but heuristic information was provided in
terms of a KDE generated from 25 Gaussian distributed points (cf. Figure 12).
To check the robustness of the algorithm, the third and fourth line correspond
to a similar experiment, in which some of the initial points (resp. 5 and 10) used
to obtain the KDE were actually erroneous (but still generated using the same
Gaussian distribution). Next, the algorithm was applied using KDEs generated
from uniformly distributed points. Finally, for the results on the last two lines,
both MBBs and heuristic information (KDEs) were used.

One important observation when comparing Table 1 to the results from
Section 6.1 is that configurations which yield a good performance in the exper-
iments of Section 6.1 do not necessarily lead to the best performance here, and
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vice versa. For example, while (1,3;0.9) turned out to be the optimal configu-
ration in Section 6.1, it is not at all optimal in most of the experiments from
Table 1. For the experiment on the first line, for example, what happens is
that due to a lack of geometric information, the algorithm converges to regions
that satisfy most of the available relations, but these regions may not have a
very natural shape. This is illustrated in Figure 14 where the pheromone maps
are depicted that were obtained for the Roath neighborhood in Cardiff. In this
figure, dark regions correspond to triangles where a large amount of pheromones
is found. Figure 14(a) clearly illustrates that the algorithm has converged very
quickly, and that after 50 generations, no real variations occur anymore. The
way by which the region touches the bottom of the MBB is very artificial, how-
ever. Because the overall scenario satisfies all available constraints, this artificial
shape is not penalized by the algorithm. In fact, exactly because of this shape,
there is more room to satisfy the constraints involving the neighboring regions.
While this strategy led to a very good performance in Section 6.1, is does not
lead to optimal boundaries. In Figure 14(c), the opposite effect occurs, i.e. as
pheromone values are completely ignored, the algorithm has not converged at
all, and even after 50 generations, there still is a large degree of randomness
in the generation of boundaries. As it turns out, the configuration from Figure
14(b) forms the ideal trade-off between these two extremes. When heuristic in-
formation is available, the difference between (1, 3;0.9) and (3, 0.5;0.5) becomes
smaller, and in some cases, (1,3;0.9) is even better. This is mainly because the
algorithm converges to a shape that is less arbitrary and therefore often less
artificial, hence the fast-converging behavior of (1,3;0.9) is not necessarily a
disadvantage anymore.

As no existing techniques exist to generate boundaries from heterogeneous
spatial information, assessing the overall quality of the ACO based approach
is difficult. When MBBs are available, a common strategy is to use the entire
MBB as an approximation of the region boundary. This strategy leads to an
accuracy of 0.523 (not shown in Table 1).

In terms of statistical significance, using again the Wilcoxon signed-rank
test, we obtain for the first line of the table

(3,0.5:0.5) > {(3,1;0.5), (3,1;0.1), (3,1;0.9), (1, 3;0.9), MBB}
> {Genetic, (3,0;0.5)}
(3,1;0.5) > {(3,1;0.9), (1, 3;0.9), MBB}

where MBB is the result of using the entire MBB as boundary approximation.
For the second, fourth, and fifth line, we only find that the genetic algorithm
is significantly outperformed by all other systems. Next, for the third line, we
additionally find

(3,1;0.5) > {(3,1;0.9),(3,0;0.5)}
For the sixth line, we obtain

{(3,0.5;0.5),(3,1;0.5),(3,1;0.9)} > {MBB, (3,1;0.1),(3,0;0.5)} > Genetic
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(a) Exact Boundaries

(b) (3,1;0.9)

(¢) (3,1;0.9) + partition constraint

Figure 15: Boundaries of the Cardiff elector()&'a,% wards (© Crown Copyright/database right
2008. An Ordnance Survey/EDINA supplied service), as well as the approximation obtained
by our algorithm starting from topological relations, MBBs, and KDEs generated from 25
uniformly distributed points.



(3,1;0.9) > (1,3;0.9) > {(3,0;0.5), MBB}
and finally, for the last line:

{(3,1;0.9),(1,3;0.9),(3,1;0.5), (3,0.5;0.5)} > N > MBB > Genetic
{(3,1;0.9), (1,3;0.9), (3,0.5:0.5)} > Y > MBB

When point data is available, kernel density surfaces are often used as approx-
imations of region boundaries. A detailed comparison with this technique will
be presented below. Figure 15 compares the boundaries that were obtained by
the ACO algorithm with the actual boundaries, using the best configuration
(3,1;0.9) for the experiment of the last row in Table 1. Finally, note that the
result in Figure 15(b) can easily be improved by adding another type of spatial
information. Specifically, some of the triangles are completely surrounded by
regions, but are not actually contained in any of the regions. On the other hand,
because we are dealing with the electoral wards of a city, we know that such a
situation does not usually occur. A useful strategy may therefore be to expand
the regions, at the end of each generation, such that this kind of triangles does
not occur anymore. Formally, we want the union of all regions to form a poly-
gon without holes. The result of adding this modification to the algorithm is
presented in Figure 15(c).

6.3. Ezperiment 3: Pheromone Maps as Vague Region Boundaries

When sufficient quantitative information is available, the ACO approach
can be used to approximate region boundaries. Depending on the intended
use, however, there may be alternatives to the use of polygons for representing
approximate boundaries. An important disadvantage of polygons is that we
cannot encode how confident we are in their shape. A polygon may be generated
from very little information, in which case its exact shape is largely arbitrary, or
from an abundance of highly detailed information, in which case its shape may
be very reliable. Kernel density estimations, on the other hand, approximate
regions from point data using a smooth surface. As such, they encode vague,
gradual region boundaries, as opposed to the crisp boundaries offered by a
polygon representation. Typically, such a vague region representation consists
of a core, which is considered to be definitely a part of the region being modeled,
together with a transition zone about which we are less confident. By increasing
or decreasing the size of the transition zone, we obtain, respectively, less and
more informative representations.

There is a second reason why vague region representations may be benefi-
cial. Depending on the context, we may mainly be interested in polygons that
definitely encompass the region being modeled, and care less about the result-
ing polygons being too large, or in polygons that are definitely contained in the
region being modeled, and care less about polygons being too small. To eval-
uate how well the polygon Ry satisfies these two criteria, relative to the true
boundary R, we can measure the degree to which Ry is included in Ry, and
conversely, the degree to which R; is included in R¢. The former corresponds to
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Figure 16: Precision—recall graph of the pheromone maps when only topological relations and
MBBs are available.

the notion of precision from the field of information retrieval, whereas the latter
corresponds to the notion of recall. Formally, we define (assuming area(Rys) > 0
and area(R:) > 0)

area(Ry N Ry)
area(Ry)

area(Ry N Ry)
area(Ry)

prec(Ry; Ry) =
recall(Rys; Ry) =

Note that prec(Ry; R;) = 1iff R is completely contained in R; and recall(Ry; Ry)
1iff R, is completely contained in Ry. The situation where both prec(Ry; Ry) =
1 and recall(Ry; R;) = 1 corresponds exactly to the situation that acc(Ry; Ry) =
1. A vague region can be mapped to an infinity of crisp regions, typically poly-
gons or finite unions of polygons, by taking the a-level cuts. Specifically, we
will assume that vague regions are formally represented as fuzzy sets of points,
i.e. as mappings from R? to [0,1]. The a-level cut A, of a fuzzy set of points
(or vague region) is defined as (« € [0, 1])

Ao ={plp eR* AN A(p) > a}

By increasing the size of «, the value of prec(Ry¢; R;) will increase and recall(Ry; R;)
will decrease. Hence, using this parameter «, we can control the precision—recall
trade-off.

The pheromone maps produced by the ACO algorithm can be regarded as
vague region representations in the sense described above. The quality of these
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Figure 17: Precision-recall graph of the pheromone maps when only topological relations and
kernel density surfaces generated from 25 points (Gaussian distribution) are available.

representations can be evaluated by looking at the corresponding precision—
recall graph, which is a visual representation of the precision—recall trade-off.
In Figure 16, the precision-recall graph is shown for various configurations of the
ACO algorithm, in the scenario where only topological relations and MBBs are
available (cf. Figure 11 and the first line of Table 1). In the case of configuration
(1,3;0.9), for instance, a recall value of 0.5 corresponds to a precision of 0.671.
This means that if we want a recall value of 0.5, precision can at most be
0.671. Interestingly, the performance of the various configurations is almost the
opposite of their performance in the experiments of Section 6.1. For example, the
configuration (1,3;0.9), which was optimal in Section 6.1 performs now clearly
worst. In particular, it appears that slow convergence, or even no convergence
at all, is a necessary condition to perform well on this task. The reason for
this is clearly illustrated in Figure 14, where only the configuration (3,0;0.5)
produced a truly vague boundary. Using the other configurations, an artificially
crisp pheromone map resulted, due to convergence of the algorithm.

In Figures 17-22, the results of a number of alternative scenarios are pre-
sented. Note that the relative performance of the various ACO configurations
is more or less the same in all cases: (3,0;0.5) consistently performs best and
(1,3;0.9) consistently performs worst. Interestingly, since all these scenarios
are based on heuristic information in the form of KDEs, we can compare the
performance of the pheromone maps with the performance of the KDEs them-
selves. Overall, the configuration (3, 0;0.5) substantially outperforms the KDEs,
while, with the exception of scenarios where uniformly distributed points are
used (Figures 18 and 20), the KDEs only outperform the other configurations
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Figure 18: Precision-recall graph of the pheromone maps when only topological relations and
kernel density surfaces generated from 25 points (uniform distribution) are available.
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Figure 19: Precision-recall graph of the pheromone maps when only topological relations,
MBBs and kernel density surfaces generated from 25 points (Gaussian distribution) are avail-
able.
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Figure 21: Precision-recall graph of the pheromone maps when only topological relations and
kernel density surfaces generated from 25 noisy points (Gaussian distribution, 20 correct and
5 erroneous) are available.
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Figure 22: Precision—recall graph of the pheromone maps when only topological relations and
kernel density surfaces generated from 25 noisy points (Gaussian distribution, 15 correct and
10 erroneous) are available.

at small recall levels. This result shows that for sufficiently small values of the
parameter 3, the ACO approach successfully combines the quantitative infor-
mation from kernel density surfaces with additional spatial information that
may be available. Comparing Figures 17 and 19, or Figures 18 and 20, we can
notice that the availability of MBBs is especially beneficial at medium and high
recall levels. Finally, as Figures 21 and 22 illustrate, the ACO approach is quite
robust to errors in the available point data.

7. Conclusions

While existing techniques for processing spatial information mainly look
at one type of information only, applications such as GIR are faced with a
much larger diversity, often involving a mixture of qualitative (topological re-
lations, cardinal directions) and quantitative (point data, minimal bounding
boxes, polygons) spatial information. Motivated by this observation, we have
proposed a methodology to process heterogeneous spatial information.

Two evolutionary strategies lie at the hearth of our solution: genetic al-
gorithms and ant colony optimization (ACO). Genetic algorithms are used to
find an optimal ordering in which variables and spatial constraints should be
processed, a technique which is similar in spirit to previous work on facility
layout problems [28]. Through a hybridization with ant colony optimization,
our algorithm is, in addition, able to learn geometric constraints that are im-
plicit in the available information. In particular, pheromone maps, which are
generated based on previous experience, are used to encode what parts of the
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plane are likely to be contained in, or excluded from a certain region. Existing
techniques for processing imperfect information can be added to this algorithm
as the heuristic information of the ACO algorithm. This idea was exemplified
with the popular technique of generating kernel density surfaces from possibly
imperfect point data.

A number of experiments were described to illustrate the potential of this
technique, focusing on three possible use cases. First, our approach may be
useful to obtain a visual summary of available spatial information. In this
case, the focus is more on spatial reasoning, and on finding models of sets of
constraints, than on finding accurate geographical models. Thus, our algorithm
is used as an incomplete approach to expressive spatial reasoning. In the second
use case, we investigated the possibility of generating approximate boundaries
of geographic regions. Finally, the third use case extended this idea to vague
region boundaries, interpreting the pheromone maps as degrees of confidence
that certain points are contained in the corresponding region. Wherever baseline
systems were available (e.g. kernel density surfaces in the third use case), our
approach compared favorably.
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