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Abstract In recent years the integration of spatial data coming from different sources

has become a crucial issue for many geographical applications, especially in the process

of building and maintaining a Spatial Data Infrastructure (SDI). In such context new

methodologies are necessary in order to acquire and update spatial datasets by collect-

ing new measurements from different sources. The traditional approach implemented

in GIS systems for updating spatial data does not usually consider the accuracy of

these data, but just replaces the old geometries with the new ones. The application of

such approach in the case of SDI, where continuous and incremental updates occur, will

lead very soon to an inconsistent spatial dataset with respect to spatial relations and

relative distance among objects. In this paper we address this problem and we propose

a framework for representing multi-accuracy spatial databases, based on statistical rep-

resentation of the objects geometry, together with a method for the incremental and

consistent update of the objects, that applies a customized version of the Kalman filter.

Moreover, in the framework we consider also the spatial relations among objects, since

they represent a particular kind of observation that could be derived from geometries

or be observed independently in the real world. Also spatial relations among objects

need to be compared in spatial data integration and we show that they are necessary

in order to obtain a correct result in merging objects geometries.

Keywords Spatial Data Integration ∙ Multi-Accuracy Spatial Data ∙ Statistical

Update ∙ Kalman filter

1 Introduction

During the last years the attention of geographical applications towards the problems of

spatial data integration has rapidly increased. For instance, many national or regional
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geographical agencies, in particular in the European Union, are facing the challenge

of integrating in common Spatial Data Infrastructures (SDIs) datasets coming from

different sources and acquired using different technologies and instruments. Therefore

in the GIS community there is a need for new data integration methods to consolidate

huge amount of spatial data belonging to different thematic layers. In particular, those

methods have to be able to integrate different observations regarding the same specific

and identified geographical object (or set of objects) or about different objects among

which a particular relation holds. In doing this, such methods have to consider the

metadata describing the quality of both the datasets to be integrated and the resultant

one, and this is an important issue for the following reason. Spatial objects representing

geographical features are inherently uncertain because the measurements needed to

survey the shape, extension and position of an object with the maximal accuracy are too

expensive, or because the maximal accuracy is not necessary to satisfy the application

requirements. Thus, a certain amount of error in the representation of a spatial object

always exists. In literature [20,23,12] the term accuracy is considered as a measure

of how closely the recorded values represent their true values, and uncertainty is a

statistical estimate of the accuracy of a value and thus it is modeled using probability

theory. However, the importance of uncertainty is perceived in different ways by the

different communities that work in the GIS field.

Considering in particular the vector representation of spatial data (i.e. spatial

datasets are sets of geometries including points, polylines and polygons specified using

a list of coordinates in a reference space) we can observe that: computer scientists work-

ing with GIS tend to perceive the absolute coordinates as the primary data concerning

objects locations and to consider geometric coordinates as deterministic values. The

measurements from which these coordinates were obtained are seen as unnecessary data

once absolute point locations have been determined and no record is kept about them.

In this perspective each relative geometry measure (e.g. distance, angle, etc) and all

the other information (e.g. spatial relationships between objects) can be derived from

absolute coordinates. On the contrary, surveyors typically perceive the measurements

concerning geographical objects and the relative object distances as being the primary

data, while the calculated coordinates are treated as random variables. The coordinate

values are seen simply as a view of the data: the one that best fits the measurements

at that time. Moreover, the accuracy of relative geometry is in practice higher than

the absolute accuracy; therefore, absolute coordinates and relative measures are not

equivalent as computer scientists often believe.

Although it is possible to store measurements, rather than derived coordinates, into

a database and calculate the coordinates as required using all the stored measurement

information, this operation is computationally intensive and so in many applications

it is not practical. As a consequence in spatial databases only derived coordinates are

usually stored without any information about their accuracy or the original measure-

ments from which they come. In literature some papers proposed the introduction of

measurements-based cadastral systems [4,11,17] (see also Sec. 2); however, we aim to

consider the most frequent case where no details about measurements are available

and only coordinates are stored. Having discarded the solution based on measurements

management, we still need some aggregated accuracy information in order to deal with

spatial data in a correct way, since the derivation of coordinates from observations

is a unique but not reversible operation [10]. Moreover, information about accuracy

of spatial data should be used in every operation involving these uncertain data; in

particular, this is fundamental for integrating new observations coming from different
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sources, or for correctly interpreting the result of a query. We also observe that the

result of integrating spatial data coming from different sources is a dataset contain-

ing multi-accuracy spatial data and thus it is crucial that accuracy becomes a part of

spatial data representation at object granularity.

Example 1 Fig. 1 illustrates a typical problem that occurs when an integration is per-

formed by simply replacing older or less accurate objects with newer or more accurate

ones. In particular, Fig. 1(a) and Fig. 1(b) represent two source databases that have

one object in common: a sidewalk that is depicted as the light gray polygon in both

databases. Each database contains also an additional object, namely a road and a

building, respectively. Moreover, a disjoint condition is defined between the sidewalk

and the building in the second database and we suppose to know that this is the exist-

ing relation between them in the real world. Now suppose that the first database has a

higher absolute metric accuracy than the second one, thus in the integrated database

the resulting sidewalk is the one of Fig 1(a), while the other one is discarded. Finally,

the building is simply added in the resulting database without modifying its geometry

and without any consideration about its accuracy and its relations with other objects.

The resulting database is reported in Fig. 1(d): the building overlaps the sidewalk,

violating the disjoint condition defined in the second source database. This is a conse-

quence of the relative positions between the two geometries representing the sidewalk

in the two source databases as shown in Fig. 1(c).

Fig. 1 An example of integration that does not consider the accuracies of the objects to be
integrated, but simply replace old objects with new ones.

In this paper we propose a framework for dealing with multi-accuracy spatial

databases and treating their integration and update with the aim to solve the problems

shown in the previous example. In particular, we suppose that no data about ground

measurements are known, but only a set of metadata describing accuracy of absolute

positions and accuracy of relative distances have been assigned to each database. This is

a very common case in practice, since measurements are not used by GIS applications,

that work directly on coordinates often without paying attention to their accuracy.

However, at least average errors about absolute positions and relative distances can

often be recovered or derived by the cartographic scale of data. More precisely the

contribution of this paper is articulated into two points: firstly, in Sec. 3 we define a

methodology for computing and representing the accuracy of spatial data starting from

the given metadata; secondly, in Sec. 4 we propose an integration procedure, based on

the Kalman filter, that considers both the coordinate accuracies of the source databases

and the topological relations defined among database objects, producing an integrated

database with updated accuracies. Finally, some properties of the proposed integration

procedure are discussed in Sec. 5.

Before introducing the proposed framework for handling multi-accuracy spatial

data, we illustrate in the following section some previous works related to our proposal.
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2 Related Work

The need to consider the accuracy of spatial data is widely recognized in literature. In

particular, in [18,3,16] Bhanu et al. propose a probability-based method for modeling

and indexing uncertain spatial data. In this model each object is represented by a

probability density function and the authors discuss how to perform spatial database

operations in presence of uncertainty. In particular, in [18] they present a method for

performing the probabilistic spatial join operation, which, given two uncertain datasets,

finds all pairs of polygons whose probability to overlap is larger than a given thresh-

old. In [3,16] Bhanu et al. present a different indexing structure, called Optimized

Gaussian Mixture Hierarchy (OGMH) that supports both uncertain/certain queries

on uncertain/certain data, in particular they consider the k nearest neighbors (kNN)

search operation. The proposed model allows the representation of multi-accuracy spa-

tial databases because the uncertainty of an object is described by associating to each

vertex of its extent a probability density function. Therefore, an object can be intended

as a d-dimensional random variable and the similarity between two objects is given by

the probability that the two corresponding random variables are the same.

Another model for representing uncertainty in spatial database is introduced by

Tossebro et al. in [22–26]. In [23] the authors propose a representation of spatial data

through uncertain points, uncertain lines and uncertain regions. The basic idea is that

all uncertain objects, regardless of their type, are known to be within a certain crisp

region, it may also be known where an object is most likely to be. So they define the

concepts of core and support : each object is represented by two regions, one inside

the other: the innermost region is the area in which the object is certain to be, it is

called core and it is the area of greatest probability; the outermost region is the area

in which the object may be, it is called support and in this area the probability of the

object is above 0. Moreover, it is known that the object is not outside the outermost

region. In [25] this model is refined in order to reduce the storage space required and to

simplify the computation of the core and support regions. In [24] the authors extend its

model with some constructs for representing also temporal uncertainty into a spatial

database. Finally, in [26] the model is completed with the representation of topological

relationships between uncertain spatial objects, since they cannot be directly inferred

from the object representations.

Unfortunately none of these works deal with the integration process, they propose a

more or less formal model for representing uncertainty and eventually they concentrate

on query operations. Conflation techniques [19] have been widely used for integrating

two vector spatial databases. These methods essentially involves two phases: (1) corre-

sponding features in the two source datasets are recognised through the identification of

matching control points, (2) the two source datasets are aligned using rubber-sheeting

transformations based upon the identified matching control points. These phases are

repeated iteratively, with further control points being identified as the data sources

are brought into alignment. However, conflation techniques typically align the dataset

with lower accuracy to the more accurate one, called target dataset. The positional

information related to the control points within the less accurate dataset is ignored,

assuming that the target dataset is correct. In this way, corresponding features in the

two datasets are aligned but in a sub-optimal manner. Moreover, no updated quality

information are provided for the adjusted dataset.

In [4,11,17] the authors introduce the concept of measurement-based GIS as an

alternative to the usual notion of coordinate-based GIS. While in the latter systems
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the stored coordinates values are the primary sources of data and they provide answer

to both metric and topological queries; in the proposed kind of GIS only measures

between higher-quality points (i.e. control points), parcel boundary measurements and

measurements of other objects of interest are stored together with their accuracy infor-

mation. This solution provides some advantages during the integration process, because

any new measure can be easily added to the database, since old or inaccurate mea-

surements can coexists with better values or deleted without difficult. However, any

time a query has to be answered or the spatial information has to be visualized, the

coordinates of each point have to be derived from measurements. In order to overcome

this problem, in [4] the authors propose to store also the obtained coordinates and

to periodically process the available measures in order to make coordinates reliable

and consistent. As stated in the introduction we consider the more usual case where

measurements are not available and only coordinates are stored.

A more sophisticated approach to the integration problem has to take into account

the accuracies of both source datasets in order to produce a more accurate integrated

database, as done in [10,12–14]. These approaches use techniques based on weighted

least-squares method to obtain the best fit between the source datasets. The advantage

of such approaches is that resultant positions are determined taking into account all

the available information, including the positional accuracy of points in both datasets.

Moreover, updated quality parameters are generated, enabling detailed quality report-

ing of the resultant dataset. The integration method proposed here is also based on

a least-squares estimation of the new coordinates, but it exploits the Kalman filter to

perform an incremental computation of such estimation, namely the integration has

not to be performed at once and there is no need to maintain all the previously inte-

grated information for obtaining the final result. In [12–14] the authors consider also

the problem of preserving topological relations between objects by representing them

as inequalities that are included in the least squares method. In this paper we propose a

different approach for preserving topological relations during the integration processes,

similarities and differences between the two approaches will be discussed in Sec. 4.3.

In [21] the authors discuss how to use the Kalman filter into a static context for

sequentially improving the best least-squares estimate as soon as new observations are

integrated. The key concept above the use of the Kalman filter is the idea of updating

the solution: the new estimate is expressed as the linear combination of the previous

one and the new observations, in a recursive manner, so that it is not required to store

the previous integrated observations. In [1] the author uses the Kalman filter approach

to estimate the coordinate positions of atoms within a molecule. He assumes a static

structure and he does not introduce any time-dependent model of change.

These solutions for updating spatial data rely on measure with known accuracy;

therefore, they are not directly applicable to existing spatial databases containing only

coordinate values. A method has to be defined for determining the accuracy of these

coordinates from the commonly available information.

3 Representing Multi-Accuracy Spatial Databases

A multi-accuracy database is a spatial database in which objects are characterized by

different accuracy parameters, in the extreme case each single point in the database

can have a different accuracy. In this section we present an abstract data model for

representing Multi-ACcuracy Spatial databases, called MACS database.
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Spatial information can be classified into two major groups: metric observations

and logic observations. Metric observations represent quantitative properties of spa-

tial objects, in particular their position and extension. These observations are subject

to uncertainty and have to be treated with a statistical approach in order to express

their different accuracies. Logic observations describe qualitative properties of spatial

objects, like spatial relations or shape characteristics. This kind of observations rep-

resents certain information, namely they can be only known or unknown and so they

are treated with a logical approach. In geographic applications the most important

category of spatial relations is the set of topological ones. Many models for this kind of

relations have been proposed in literature, starting from the well known 9-intersection

model of Egenhofer et al. [7]. In this paper we assume that metric observations and

topological relations are stored inside a MACS database and they are considered jointly

during the update phase, which integrates new metric or logic observations with the

existing ones, or the integration phase where another MACS database is integrated

with the current one.

3.1 Representing Metric Observations

A MACS database is constituted by a set of objects, called features adopting the

terminology of the ISO TC 211 International Standards for geographical information

and the Open GeoSpatial Consortium. A feature represents a real geographic entity

and has a fundamental property which is the geometry describing its extension, shape

and position on the Earth surface.

In a MACS database each real position P is represented as a pair of random vari-

ables (xP , yP ) (we consider 2D datasets) and its accuracy information is expressed by

the joint probability density function: fP (xP , yP ) : E2 → [0, 1]. This function describes

where the position P could be located; its type depends on the survey process and can

vary considerably. In this work we assume that random variables representing real po-

sitions have a Gaussian distribution, since statistically this is the distribution obtained

by any experimental process. Following this approach, for each position P to be stored

in the database, it should be necessary to store its fP (xP , yP ) by means of a set of pa-

rameters that approximate such function. This set of parameters could be very large,

moreover visualizing complex probability density functions or using them in query

processing could be very difficult and computationally intensive. Thus, a synthetic

description of fP (xP , yP ) has to be defined. Considering the context of geographi-

cal applications of recent years, where very few information about spatial accuracy is

available, we propose to adopt the following representation of positions.

Definition 1 (Soft Absolute Position) The absolute position of a point P with

probability density function fP (xP , yP ), is given by a position index and a dispersion

index. The position index of P , also called representative point and denoted by P, is

the point (μxP , μyP ), where μxP and μyP are the averages of xP and yP with respect

to fP (xP , yP ). The dispersion index of P represents the dispersion of the probability

around P and is given by the variance-covariance matrix of the xP and yP variables.

Cσ =

[
σ2

xP
σxP yP

σyP xP σ2
yP

]

�
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In many real situations (as the building of a national SDI) the only available meta-

data describing the metric quality of coordinates are an error estimate e for the absolute

positions, namely the maximum granted error between the real coordinates and the

measurements, and a validity percentage of that error FR(e), which is the percentage of

cases that have to satisfy this error, for each surveyed area. In [6] the authors illustrate

how variance of coordinates can be calculated from these metadata using the circular

error formula; in this paper we adopt their approach, as shown in Eq. 1. Since there

is no reason for considering different the variance of x from the variance of y, we can

suppose that:

σ2
xP

= σ2
yP

= σ2
P =

−e2

2 ∙ log(1− FR(e))
(1)

Given the variance of a position, the correlation between different positions can be

estimated by introducing the covariance between their points coordinates. In this way

the correlation is greater for near points and it decreases as distance increases. Given

two positions P = (xP , yP ) and Q = (xQ, yQ), the variance and covariance values can

be represented in a matrix, called Cv, as follows:

Cv =







σ2
P σxP ,yP σxP ,xQ σxP ,yQ

σyP ,xP σ2
P σyP ,xQ σyP ,yQ

σxQ,xP σxQ,yP σ2
Q σxQ,yQ

σyQ,xP σyQ,yP σyQ,xQ σ2
Q







This matrix could be calculated only when all measurements collected during sur-

veys are known (as done in [4]). This is not the case considered in this paper, since

we suppose to know only some aggregate metadata about the metric accuracy of posi-

tions at hand. Under these conditions we must introduce some hypotheses in order to

simplify the model and reduce the number of unknown parameters in the matrix.

Definition 2 (Independence hypotheses) Considering surveyed spatial data, the

following hypotheses can be reasonable in applications that deal with them, when no

detailed information about ground measurements are available:

1. The x and y coordinates of a position P can be considered mutually independent,

so the covariance between the xP and yP can be set to zero: σxP ,yP = σxQ,yQ = 0.

2. We assume that the correlation among point positions has effects only between

coordinates of the same axis, i.e. the x (y) coordinate of a position P does not

influence the y (x) coordinate of any other point Q, so: σxP ,yQ = σyP ,xQ = 0

3. The correlation between the x coordinate of P and the x coordinate of Q is equal to

the correlation between the y coordinate of P and the y coordinate of Q: σxP ,xQ =

σyP ,yQ = cPQ.

Any other hypotheses leads to inconsistent state of Cv or removes the propagation

effect. �

Applying the hypotheses contained in Def. 2 and the covariance property σa,b =

σb,a, the matrix Cv can be rewritten as follows:

Cv =







σ2
P 0 cPQ 0

0 σ2
P 0 cPQ

cPQ 0 σ2
Q 0

0 cPQ 0 σ2
Q





 (2)
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where cPQ represents the correlation between the positions P and Q.

The remaining unknown parameter is only cPQ. In order to obtain an estimation

of this parameter we propose the following approach: cPQ represents somehow the

“attraction” that P exerts on Q and vice versa, thus we can estimate it by considering

the accuracy of the relative distance among points of the map. Indeed, this is another

piece of metadata that is often available for surveyed spatial datasets, since the accuracy

of the relative distance among the surveyed objects is usually higher than the one

derivable from the accuracy of the absolute coordinates of points. Now supposing that

σ2
dP Q

is the variance of the relative distance between the two positions P and Q, that

can be calculated using Eq. 1 where e is replaced with the maximum granted error

of the relative distance between absolute positions and FR(e) with its percentage of

validity, cPQ can be calculated as shown in the following lemma.

Lemma 1 (Covariance estimation) Given the variance σ2
dP Q

of the relative dis-

tance between the two points P and Q and the variance of their coordinates σ2
P and

σ2
Q, the covariance σxP ,xQ = σyP ,yQ = cPQ can be calculated as follows:

cPQ =
σ2

P + σ2
Q − σ2

dP Q

2
(3)

Proof - (sketch) Eq. 3 is obtained by applying the variance propagation law to the

random variable dPQ, representing the distance PQ, and the vector of random variables

v = (xP yP xQ yQ), representing the coordinates of the points P and Q. The relation

dPQ = g(v) exists, where g is the well-known distance function between two points.

Notice that g is a non-linear function, but it can be easily linearized as dPQ ' J ∙ v,

where J is the Jacobian (the matrix containing the partial derivatives of g with respect

each component of v). According to the variance propagation law: σdP Q
= J ∙ Cv ∙ JT

and from here, considering as Cv the matrix in Eq. 2, we obtain the thesis. �

Let us notice that there is a connection between the accuracy of absolute positions

of two points and the accuracy of their relative distance. For example, if two points

P and Q have an absolute accuracy corresponding to a circular error of eP and eQ,

respectively, with a percentage of 95%, then their relative distance will be affected at

most by an error of eP + eQ in the 95% of the cases. Moreover, we also remark in the

following observation that, in the context of real spatial data integration, only positive

values of covariance are acceptable in order to preserve relative distances among points.

Observation 1 (Positive covariance constraint) In order to preserve the relative

distance between two position P and Q during the integration and update process pre-

sented in the following sections, the covariance value cPQ between P and Q has to be

positive (greater than zero), namely from Eq. 3:

σ2
dP Q

< σ2
P + σ2

Q

It follows that every time a value of σ2
dP Q

greater than this limit is obtained from Eq. 1,

it has to be substituted with the value σ2
P + σ2

Q. �

Finally, it is easy to prove that with the hypotheses of Def. 2 (in particular the

second one) and having imposed the constraint in Obs. 1, the covariance matrix Cv in

Eq. 2 is positive-definite. The reasoning illustrated above regards only two positions,
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but its extension to the network of all points contained in a database is straightforward.

In particular, this procedure must be applied to all possible pair of positions in the

database, altogether there are m =
(
n
2

)
pairs of positions, where n is the total number

of positions. It is easy to show that the procedure applied considering all the n positions

is equivalent to the application of the procedure to the m pairs of positions in input.

Given the notion of absolute position, a geometric object is defined as follows.

Definition 3 (Object (or feature)) An object O is defined as: O = 〈ID,CL,Geo〉
where:

– ID is an integer representing an unique identifier for the object.

– CL is the thematic class to which the object belongs, e.g. Building or Road.

– Geo is the geometry of the object, that is composed of: (i) the set of absolute po-

sitions Geo.pos = {P1, . . . , Pn} describing the geometry and its uncertainty, (ii)

the type of geometry Geo.type ∈ {point, curve, surface} and (iii) the representative

geometry Geo.rep = {μx1 , μy1 , . . . , μxn , μyn} which is the point, polyline or poly-

gon used during object visualisation and querying. In order to handle the case in

which only spatial relations among objects are represented (see next section), with

no geometries, the empty value for Geo is admitted; it is denoted as ∅geo and we

suppose that ∅geo.pos = ∅geo.rep = ∅ and ∅geo.type = null. �

Notice that on each object geometry the following constraints hold: if Geo.type = point,

then |Geo.pos| = |Geo.rep| = 1, if Geo.type = curve, then |Geo.pos| = |Geo.rep| > 1, if

Geo.type = surface, then |Geo.pos| = |Geo.rep| > 2.

3.2 Representing Logic Observations

For representing geographical information, another kind of observation is necessary,

namely the spatial relations among the objects of a dataset. Several types of spatial

relations can be considered; in this paper we focus on topological relations, since they

have been deeply studied in literature starting from the paper of Egenhofer [7] and

they are available in every current GIS product and also open source software, like the

well known Java APIs such as JTS Topology Suite1.

Many different models for the definition of topological relations have been proposed

starting from the well-known 9-intersection model defined in [7,8]. In particular, since

the objects we are considering have geometries of different types (point, curve and

surface), we adopt the set of topological relations defined by Clementini et al. in [5].

This is a complete set of mutually exclusive topological relations, namely a set of

topological relations in which for each pair of objects there is one and only one possible

relation. In the 9-intersection model, the geometry of each object A is represented by

3 point-sets: its interior A◦, its exterior A−, and its boundary ∂A. The definition of

binary topological relations between two spatial objects A and B is based on the 9

possible intersections of each object component. Thus, a topological relation R(A, B)

can be represented as a 3 × 3-matrix, called 9-intersection matrix, defined as:

R(A, B) =




A◦ ∩B◦ A◦ ∩ ∂B A◦ ∩B−

∂A ∩B◦ ∂A ∩ ∂B ∂A ∩B−

A− ∩B◦ A− ∩ ∂B A− ∩B−





1 www.vividsolutions.com/jts/jtshome.htm
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Relation
Name

Relation Definition Geometry type
(S: surface,
C: curve, P:
point)

Corresponding
patterns of the
9-int. matrix

disjoint (d) A ∩ B = ∅

S/S, C/C,
FFT − FFT − TTT

S/C, C/S
S/P, C/P FFT − FFT − TFT
P/S, P/C FFT − FFF − TTT
P/P FFT − FFF − TFT

touch (t) (A◦ ∩ B◦ = ∅) ∧ (A ∩ B) 6= ∅)

S/S FFT − FTT − TTT

C/C
F ∗ T − ∗T ∗ −T ∗ T
F ∗ T − T ∗ ∗ − T ∗ T
FTT − ∗ ∗ ∗ − T ∗ T

S/C
FFT − T ∗ ∗ − ∗ ∗ T
FFT − FTT − T ∗ T

C/S
FT ∗ −F ∗ ∗ − T ∗ T
FFT − FT ∗ −TTT

S/P, C/P FFT − TFT − FFT
P/C, P/S FTF − FFF − TTT

in (i) (A ∩ B◦ = A) ∧ (A◦ ∩ B◦) 6= ∅)
S/S, C/C, C/S TFF − TFF − TTT
P/S, P/C TFF − FFF − TTT

coveredBy
(A ∩ B = A) ∧ (A◦ ∩ B◦) 6= ∅) ∧
(A ∩ B◦ 6= A)

S/S, C/C TFF − TTF − TTT

(b) C/S T ∗ F − ∗TF − TTT

contains (c) (A ∩ B◦ = B) ∧ (A◦ ∩ B◦) 6= ∅)
S/S, C/C, S/C TTT − FFT − FFT
S/P, C/P TFT − FFT − FFT

covers (v)

(A ∩ B = B) ∧ (A◦ ∩ B◦) 6= ∅) ∧
(A◦ ∩ B 6= B)

S/S, C/C TTT − FTT − FFT

S/C
T ∗ T − FTT − FFT
T ∗ T − TFT − FFT
T ∗ T − TTT − FFT

equal (e) A = B
S/S, C/C TFF − FTF − FFT
P/P TFF − FFF − FFT

cross (r)
dim(A◦ ∩ B◦) = C/S TTT − ∗ ∗ ∗ − TTT
(max(dim(A◦), dim(B◦))− 1)∧ S/C T ∗ T − T ∗ T − T ∗ T
(A ∩ B) 6= A ∧ (A ∩ B) 6= B C/C 0 ∗ T − ∗ ∗ ∗ − T ∗ T

overlap (o)
dim(A◦) = dim(B◦) = S/S TTT − TTT − TTT
dim(A◦ ∩ B◦) ∧
(A ∩ B) 6= A ∧ (A ∩ B) 6= B C/C 1 ∗ T − ∗ ∗ ∗ − T ∗ T

Legend: The pattern is a string ”c1,1c1,2c1,3 − c2,1c2,2c2,3 − c3,1c3,2c3,3”, where element
ci,j corresponds to cell (i, j) in the 9-intersection matrix. If ci,j = ∗ then this position is
not relevant in defining the topological relation, if ci,j = F/T means that the intersection is
(or is not) empty, ci,j ∈ {0, 1, 2} means that the intersection has the specified dimension.
Finally, dim(g) computes the dimension of the geometry g.

Table 1 Definition of the reference set of topological relations between two objects A and B.

Considering the value empty (�) or not empty (¬�) for each intersection, many rela-

tions can be distinguished between surfaces, curves and points. In [5], this model has

been extended by considering for each 9-intersection its dimension (i.e., 0 for points, 1

for curves and 2 for surfaces), giving raise to the extended 9-intersection model. Since

the number of such relations is quite high, a partition of the extended 9-intersection ma-

trices has been defined, grouping together similar matrices and assigning a name to each

group. The result is the definition of the following set of binary, mutually exclusive topo-

logical relations: {Disjoint,Touch, In,Contain,Overlap,Cross,Equal}. We also consider

the relations CoveredBy and Covers, since they are specializations of In and Contains

for which a specific treatment is necessary during the integration process. The reference

set of topological relations considered here is: Rtopo = {Disjoint,Touch, In,CoveredBy,

Contains,Covers, Cross,Overlap}.
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The semantics of topological relations in Rtopo is provided in Table 1. The last

column presents for each topological relation the pattern grouping all the corresponding

9-intersection matrices. The boundary of a geometry is defined as follows: a surface

boundary is the ring defining its border, the boundary of a curve is composed of its

end points and the point boundary is empty.

In current GIS systems topological relations existing between objects are usually

derived from their geometries. However, in a MACS database absolute positions, com-

posing the objects geometries, are soft data, namely they are uncertain. As a conse-

quence, from absolute positions only soft topological relations can be derived, namely

topological relations that are not precisely defined.

Claim We claim that also topological relations can be considered as observations useful

for representing spatial information. This claim has two important consequences: (i)

observed topological relations among objects of a dataset have to be stored indepen-

dently with respect to objects geometries; (ii) observed topological relations have to

be integrated with objects geometries resolving possible inconsistency. �

Moreover, observed topological relations cannot be considered data subject to mea-

surement error, since we cannot measure them like the width of a building, they can

only be true or false. Therefore, we will call them hard data, to distinguished them

from the absolute positions that are soft data, as explained before. The uncertainty

of the knowledge about the topological relation existing between two objects can be

represented by a disjunction of topological relations, that we know might exist be-

tween them. If we cannot exclude any relations, then the disjunction is composed of

all relations of the considered reference set.

Definition 4 (Hard Topological Relation) Given a complete set of mutually ex-

clusive topological relations Rtopo, an instance of topological relation is defined as:

〈O1, R, O2〉 where: O1, O2 are objects and R ∈ 2Rtopo is the set of topological relations

that might exist between O1 and O2 (e.g. {Disjoint}, {In,Equal}, {Touch, In,Overlap},
etc.). In particular, sets with more than one relation represent disjunction of topologi-

cal relations between O1 and O2. The set containing all the topological relationships,

called universal relation and denoted with RU , represents the situation in which the

topological relation between O1 and O2 is unknown. �

Consequently as regards to topological relations three situations may occur: (i)

if |R| = 1, the relation is known; (ii) if R = RU , the relation is unknown; (iii) if

|R| > 1 ∧R 6= RU , the relation is unknown and could be one of the relations r ∈ R.2

Even if topological relations cannot be derived from absolute positions, we have

to impose a coherence constraint between hard and soft topological relations. Given

two objects A and B the soft topological relation rsoft that exists between them can

be computed by considering as geometries their representatives (see Def. 3). For ob-

taining an effective integration between soft and hard data, rsoft has to be compatible

with the hard topological relation R explicitly stored, i.e. it must be that: rsoft ∈ R.

The integration of two MACS databases can determine the violation of the coherence

constraint, we will discuss in detail in Sec. 4.3 how to solve this kind of conflicts.

We can notice that the number of hard topological relations to be stored in a MACS

database is large, indeed if the database contains n objects, the total number of hard

2 In the following, where there is no ambiguity, a hard topological relation will be denoted
simply as topological relation.
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topological relations to be stored is n × (n − 1)/2, because one topological relation

has to be defined between each pair of objects. This could be a large number in real

databases, so some optimizations can be applied in order to reduce the amount of

information that have to be stored. The idea is to represent hard topological relations

among objects using soft topological relations when possible and store them explicitly

only when they are completely or partially unknown (i.e., 1 < |R| ≤ |RU |).
First of all, we need to introduce the notion of support for a position P (SuppP (α))

as the region around P where a given quantity α < 1 of the probability to find the

position P is located. The support of P visualizes the dispersion index around the

representative P. The form of this region depends on the variance and covariance of P

and is in general an ellipse around the representative P. For example, considering the

initial state of the matrix Cv for a position P according to Def. 2, then the support for

P in this case is a circle with radius 2σ2
P for α ' 0.95.

Given the notion of support for a position P , an index of maximum dispersion αM

can be defined for the whole database: it has to be considered during the computation

of the support for each database position. Therefore, any point outside SuppP (αM )

cannot be considered an eligible position for P . We now extend the concept of support

to the geometry of an object.

Definition 5 (Object support estimation) Given an object O = 〈ID,CL,Geo〉
the support of O with respect to αM (denoted by Supp(O, αM )) can be approximated

by considering the smallest buffer region of O.Geo.rep3 that contains the support of

all its defining positions O.Geo.pos. The real position of an object cannot be outside

its support. �

Thanks to the object support, only topological relations between pairs of objects

〈O1, O2〉 that interact (i.e. whose supports are not disjoint) have to be explicitly stored.

Given two objects whose supports are disjoint the only possible topological relation

between them is the disjoint one. In practical cases, the topological relation between two

features is known rather than unknown, so given the coherence constraint previously

mentioned, we can decide to store only topological relations that contain more than

one element and derive the other ones from the representatives of the objects. Thus,

given a pair of objects 〈O1, O2〉 the possible cases are shown in Table 2.

Condition on objects Soft top. Stored hard Hard
support relation top. relation top. relation

Supp(A, αM ) ∩ Supp(B, αM ) = ∅ A dj B - 〈A, {dj}, B〉
Supp(A, αM ) ∩ Supp(B, αM ) 6= ∅ A r B - 〈A, {r}, B〉
Supp(A, αM ) ∩ Supp(B, αM ) 6= ∅ A ri B 〈A, {r1, .., ri, .., rk}, B〉 〈A, {r1, ..., rk}, B〉
Supp(A, αM ) ∩ Supp(B, αM ) 6= ∅ A ri B 〈A, RU , B〉 〈A, RU , B〉

Table 2 Possible cases in the representation of the hard topological relations between two
objects A and B (dj = disjoint).

Given the definition of soft and hard data we can define a MACS database as follows.

Definition 6 (MACS database) A Multi ACcuracy Spatial database (MACS data-

base) is a 6-tuple: DBm = (DB, CDB,TY,OBJ,REL, αM ,SuppDB) where:

3 The buffer operation is a well-known operation available in GIS systems that, given a
geometry g and a ray r, computes the region representing the set of points having a distance
less or equal to r from g.
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– DB is a set of position index (i.e., 2D points coordinates) of the absolute positions

contained in the MACS database. For each position index P the following tuple is

stored: 〈IDP , xP , yP 〉, where IDP is the identifier of P , and P= (xP , yP ).

– CDB is the matrix of dispersion indexes (variance and covariance of coordinates)

of DB; we discuss below the problem of storing CDB.

– TY is a set of available feature classes for the objects.

– OBJ is a set of objects 〈ID,CL,Geo〉 (see Def. 3) belonging to the classes of TY

and whose geometry is described through the positions in DB.

– REL is a set of hard topological relations, which are explicitly stored, since they

are not derivable from soft topological relations.

– αM is the maximum dispersion index and SuppDB is the region representing the

support of the database, which is obtained as the union of the objects supports.

Notice that if two objects has intersecting geometries, then they must share some

positions representing their common intersections points (for surfaces this constraint

is referred to their boundary). �

We propose different methods for storing CDB that can be applied in different

states of the database. Initially the matrix can be generated starting from two meta-

data describing the metric quality of the whole database by applying the procedure

shown in Sec. 3.1. We observe that in practice the error of relative distance ed is usu-

ally considered as a function of the distance d, for instance it can be a function like:

fed(d) = (0.60 + d/1000) for d ≤ 600m and fed(d) = 1.20 for d > 600m. In this ex-

ample the computed covariance (see Eq. 3) is greater than 0 only for points having a

relative distance less than 600m. On the contrary, error of absolute positions is usually

constant. Therefore, initially only these metadata have to be stored: namely we store

the pair (e, FR(e)) and the pair (fed(d),FR(ed)) (see Sec. 3.1), representing the error

of the absolute positions and the error of the relative distance among positions, respec-

tively. The initialization step could be more complex if several metadata about metric

quality are available, for instance we could have different metadata in different regions

partitioning SuppDB. In this case we store the region together with its metadata: for

example, (e, FR(e), R1) if the metadata (e, FR(e)) is valid in R1. After the integration

with another database we might need to store some values of CDB, in particular those

values that have a significant difference (greater than a given threshold) with respect

to the ones obtained from metadata. We call this matrix Cδ
DB and we store it together

with the metadata. Other optimizations can be applied; for instance, the covariance

values of the matrix Cδ
DB can be approximated by storing them only for a subset of

position pairs; this subset can be determined for example by using a Delaunay triangu-

lation. An alternative approach could identify regions (clusters) with positions having

homogeneous variance (covariance) values and replace the portion of Cδ
DB regarding

these points with a set of metadata of the form: {(e1,FR(e1), R1), ..., (ek,FR(ek), Rk)}
({(fed1

,FR(ed1), R1), ..., (fedk
,FR(edk

), Rk)}).

Example 2 (Example of MACS database) Let us consider the database presented in

Fig. 1(a), denoted here as DB1
m. Supposing that for DB1

m the error e for the absolute

position is 0.8m with a percentage of validity of 95%, and the error ed for the relative

distance is 0.6m with a percentage of 95%, while its maximum dispersion index αM

has value 0.75 and the region representing its support is briefly indicated as supp.

The representation of this MACS database is reported below. Let us notice that with

DB(id) we denote the elements of the vector DB related to the position with identifier
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id; similarly, with CDB(id) we denote the elements (variance and covariances) of the

CDB matrix related to the position with identifier id.

– DB1
m.DB = {〈id001, 2456, 9783〉, . . . 〈id023, 2456, 7684〉, . . . }

– DB1
m.CDB = (0.25, 0.18, supp), DB1

m.TY = {Road,Sidewalk}
– DB1

m.OBJ = {〈obj1, obj1.Geo,Road〉, 〈obj2, obj2.∅geo,Sidewalk〉}
– obj1.Geo.pos = {〈DB(id001), CDB(id001)〉, . . . , 〈DB(id023), CDB(id023)〉, . . . }
– obj1.Geo.type = surface

– obj1.Geo.rep = {2456, 9783, . . . , 2456, 7684}
– DB1

m.REL = {〈obj1, {Touch,Disjoint}, obj2〉}
– DB1

m.αM = 0.75, DB1
m.SuppDB = supp

3.3 MACS database accuracy estimators

In order to evaluate the overall accuracy of a MACS database, we introduce an index

of metric accuracy and an index of certainty for logic observations. We choose to give

an estimation of certainty of logic observations, instead of uncertainty, in order to have

an index with the same behaviour of the metric accuracy.

Given a position P inside a MACS database DBm, the metric accuracy of its

absolute position is defined as the inverse of its variance. Since according to Eq. 2 the

variance of the x and y coordinates of a point is the same and, as we will see in next

sections, remains the same also after the integration procedure, the metric accuracy of

the position P is defined as: accM (P ) = 1/σ2
P .

The average global accuracy estimation of a MACS database DBm concerning the

metric observations can be computed as:

accM (DBm) =

∑
Pi∈DBm.DB accM (Pi)

|DBm.DB|

Similarly, we can observe that the certainty of a set of topological relations R

defined between two objects O1 and O2 can be estimated as: accT (R) = (|RU | −
|R|)/((|RU | − 1) ∙ |R|). Considering the reference set of topological relations proposed

in Sec. 3.2, we obtain: accT (R) = (7 − |R|)/(6 ∙ |R|). Therefore, the certainty is the

highest when |R| = 1, namely when the relation is known (accT (R) = 1), and it is the

lowest when R = RU , namely when the relation is unknown (accT (R) = 0).

The average global certainty estimation of a MACS database DBm concerning the

logic observation can be computed as follows:

accT (DBm) =
|DBm.OBJ |2 − |DBm.REL|+

∑
Ri∈DBm.REL accT (Ri)

|DBm.OBJ|2

Each known topological relation (i.e. not explicitly stored in REL) has a unit cer-

tainty value, so the first term |DBm.OBJ |2−|DBm.REL| calculates the overall certainty

of all known relations. To this value the certainty of all unknown topological relations

is added (
∑

Ri∈DBm.REL accT (Ri)). This sum is normalized with respect to the total

number of possible relations (|DBm.OBJ|2), so that the certainty is the highest when

all the relations are known and decreases when more relations are unknown.
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4 Integrating Multi-Accuracy Spatial Databases

This section deals with the problem of integrating two existing MACS databases. Dif-

ferent situations can occur as shown in Table 3, since the databases to be integrated

can be completely different or can share absolute positions and/or objects and/or rela-

tions. More specifically, different application scenarios may occur during the integration

of two MACS database: (i) the integration of two size-comparable spatial databases

describing different geographic themes but sharing a large part of territory (cases A.*

in the table). (ii) The integration of two databases describing the same geographic

features but on adjacent regions (cases A.* in the table). (iii) The integration of a mas-

sive spatial database with some new soft or hard observations about known positions

or objects (cases B.* in the table). (iv) The update of the geometries of some known

objects in a reference dataset (cases B.* in the table).

The integration of two MACS databases produces as result a new MACS database.

In order to classify all the situations that is necessary to handle, we first introduce the

general operations needed to integrate two MACS databases defining its component

tasks and then we describe each of them separately.

Definition 7 (MACS database integration) Given two MACS databases DB1
m =

(DB1, CDB1 , TY1,OBJ1,REL1, αM , SuppDB1) and DB2
m = (DB2, CDB2 , TY2,OBJ2,

REL2, αM , SuppDB2) their integration produces a new database DB3
m = (DB3, CDB3 ,

TY3,OBJ3,REL3, αM , SuppDB3) whose components can be obtained by applying dif-

ferent operations to the corresponding components of DB1
m and DB2

m, depending on

the interaction that exists between them, as reported in Table 3, in particular:

DB3 = metricPosInt(DB1,DB2, CDB1 , CDB2)

CDB3 = metricVarInt(CDB1 , CDB2)

TY3 = TY1 ⊕ty TY2

OBJ3 = OBJ1 ⊕obj OBJ2

REL3 = logicRelInt(REL1,OBJ1,REL2,OBJ2)

�

Notice that, in Table 3 some combinations are not admissible and are not shown,

since the following conditions have to be satisfied:

OBJ1.ID ∩OBJ2.ID 6= ∅ =⇒ ext(REL1,OBJ1) ∩ ext(REL2,OBJ2) 6= ∅

OBJ1.ID ∩OBJ2.ID 6= ∅ =⇒ TY1 ∩ TY2 6= ∅

The preliminary opration that is necessary in order to integrate two spatial databases

is the identification of common classes, objects and positions. The more the databases

are decoupled and come from independent sources, the more this operation is tough.

Many works were presented in literature dealing with this important issue, denoted as

schema integration and features (point) matching. In this paper, we suppose that the

class, object and position matching has already been solved, since we want to focus on

the impact of the spatial accuracy in an integration process based on object geome-

tries. Thus, we suppose that common objects in the two integrating databases share

the same ID and the same is valid for common positions.
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Description of the cases < TY∩, OBJ∩, DB∩, REL∩ >

A. Integration of two independent databases
having comparable number of objects and positions

A.0 - Nothing in common (no adjustments of objects ge-
ometries)

< ∅, ∅, ∅, ∅ >

A.1 - Some classes in common, but no objects and points (no
adjustments of objects geometries)

< ¬∅, ∅, ∅, ∅ >

A.2 - Some points in common, but no classes, objects and re-
lations (adjustments of interfering objects geometries)

< ∅, ∅,¬∅, ∅ >

A.3 - Some classes and points in common, but no objects
(adjustments of interfering objects geometry)

< ¬∅, ∅,¬∅, ∅ >

A.4 - Some classes, objects and relations in common, but no
points (objects update by geometry replacement and
relation integration)

< ¬∅,¬∅, ∅,¬∅ >

A.5 - Some classes, objects, points and relations in common
(update by geometry modification and relation inte-
gration)

< ¬∅,¬∅,¬∅,¬∅ >

B. Update of a reference databases DB1
m

with new metric and/or logic observations represented in DB2
m

B.1 - Some classes and points in common, but no objects
(OBJ2 = ∅) (adjustments of some positions)

< ¬∅, ∅,¬∅, ∅ >

B.2 - Some classes and points in common, but no objects
(OBJ2 6= ∅) (new objects insertion)

< ¬∅, ∅,¬∅, ∅ >

B.3 - Some classes, objects and relations in common, but no
points (DB2 6= ∅) (objects update by geometry replace-
ment)

< ¬∅, OID2.ID, ∅,¬∅ >

B.4 - Some classes, objects and relations in common, but no
points (DB2 = ∅) (objects update by relations integra-
tion)

< ¬∅, OID2.ID, ∅,¬∅ >

B.5 - Some classes, objects, points and relations in common
(update by geometry modification and relations inte-
gration)

< ¬∅, OID2.ID,¬∅,¬∅ >

Table 3 Possible cases in the integration of two MACS databases. In the second column the
tuple < TY∩, OBJ∩, DB∩, REL∩ > represents the intersections < TY1 ∩ TY2, OBJ1.ID ∩
OBJ2.ID, DB1.ID ∩ DB2.ID, ext(REL1, OBJ1) ∩ ext(REL2, OBJ2) >.

The simplest integration tasks are those regarding classes and objects. Indeed, the

integration of classes produces simply their union: TY1 ⊕ty TY2 = TY1 ∪ TY2, while

the integration of the objects is obtained as follows:

OBJ1 ⊕obj OBJ2 =

{o | (o ∈ OBJ1 ∧ o.ID 6∈ OBJ2.ID) ∨ (o ∈ OBJ2 ∧ o.ID 6∈ OBJ1.ID)} ∪

{objPosInt(o1, o2) | o1 ∈ OBJ1 ∧ o2 ∈ OBJ2 ∧ o1.ID = o2.ID} (4)

where objPosInt(o1, o2) is the procedure that identifies which positions have to be

integrated and stored in the final database DB3
m as representatives for the object with

the same ID. This choice can be done by considering the object surveying date, namely

by keeping the positions of the most recent object, even its non matching positions,

and discarding instead the non matching positions of the other older object. Otherwise

a direct decision of the user is necessary.

The next subsections are organized as follows, first the integration of the se-

lected positions (metric observations) is considered in Sec. 4.1; in particular, a statis-

tical method for computing the functions metricPosInt(DB1,DB2, CDB1 , CDB2) and

metricVarInt(CDB1 , CDB2) is presented. In Sec. 4.2 we concentrate on the problem of

integrating topological relations (logic observations); more specifically, a method for

computing the function logicRelInt(R1, R2) is illustrated. Finally, in Sec. 4.3 we treat
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the problem of maintaining the consistency between metric and logic observations on

the integrated database.

4.1 Integrating Metric Observations

This section presents in detail a method for integrating metric observations con-

tained in two MACS databases. This method is denoted here as metricPosIntkalman

(DB1,DB2, CDB1 , CDB2), where DB1 and DB2 are the set of positions contained in the

two databases, while CDB1 and CDB2 are the corresponding dispersion index matrices.

This method is based on an application of the Kalman filter [15] to the vectors of

coordinates, containing the representative of the positions that have to be integrated,

and the matrices of the variance-covariance estimates for such positions.

The use of the Kalman filter for performing the integration has the following im-

portant advantage: least squares-based methods are able to provide the solution that

best fit all the information contained in the source datasets; however, the integration

cannot always be performed in one time, but it can be necessary or convenient to

perform sequential integrations in order to obtain the final result. For instance, this

approach is unavoidable when there are more different sources to integrate or when the

size of the considered area requires to perform multiple integration steps, each one on

a different sub-area. As stated in [21] the Kalman filter can be applied for updating the

least squares estimate as new integration are performed, in a recursive manner so that

it is not necessary to store the previously integrated observations. Even if the Kalman

filter has been designed to work with dynamic systems in which the estimate depends

on both the new observations and the time change, that filter can also be applied in

a static context, as during the integration of different datasets. In particular, given

the current estimate x̂k|k, the Kalman filter normally provides the updated solution

x̂k+1|k+1 into two steps: a prediction phase that projects forward (in time) the current

state, providing a priori estimate x̂k+1|k based only on the current estimate, and a

correction phase that corrects the a priori estimate based on the new measurements.

In a static system the state does not change in time, so the prediction phase is not

necessary: the a priori estimate x̂k+1|k corresponds with the current estimate x̂k|k.

Notice that, in order to effectively integrate two databases, they should share a

common area; otherwise, there is no possibility to define a real correlation between

them and no adjustments propagation is possible. Similarly, when a new object has

to be integrated inside a preexisting database, some information about its nearest

objects has to be provided for correctly positioning it and adjusting dependent objects.

Nevertheless, the proposed method is able to deal with all the cases in Table 3, in

particular for cases A.0, A.1 and B.4 the following integration functions can be applied.

Observation 2 (Metric integration with no common objects (positions))

Considering cases A.0, A.1 and B.4 of Table 3, the following integration functions

can be applied:

metricPosIntunion(DB1,DB2, CDB1 , CDB2) = [DB1 DB2]

metricVarIntunion(CDB1 , CDB2) =

[
CDB1 Czero

CT
zero CDB2

]

where the matrix Czero contains only zeros.
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Proof – This result is due to Obs. 1 and the hypotheses in Def. 2, since no informa-

tion is available about the relative distance among the objects of the databases to be

integrated. �

In other words, the covariance σPQ between pair of positions P and Q, where

P ∈ DB1 ∧ P 6∈ DB2 and Q ∈ DB2 ∧ Q 6∈ DB1, is set to zero, as no information is

available about their correlation. In all the other cases, we need to prepare the coordi-

nates vectors, one for each database to be integrated, and the corresponding matrices of

variance-covariance estimates that will be used by the Kalman filter. Notice that each

vector (matrix) should contain coordinates (variance-covariance values) regarding the

whole set of objects the resulting MACS database will contain. We denote the coordi-

nates vectors as VDB1 , VDB2 and the variance-covariance matrices as C′DB1
and C′DB2

.

They are built in different ways, according to the considered scenario (see Table 3), as

show in the following observation.

Observation 3 (Initialization of vectors and matrices for the application of

the Kalman filter) Given two sets of position indexes DB1, DB2 and the correspond-

ing dispersion indexes CDB1 , CDB2 , the vectors VDB1 , VDB2 and the corresponding

variance-covariance matrices C′DB1
, C′DB2

are build as follows:

– cases A.2, A.3, A.5 and B.1, B.5: first we drop from each DBi (i ∈ {1, 2}) the

positions that are not contained in any object geometry of OBJ3 (see Eq. (4)), then

VDB1 =[DB1 \ID DB2 DB1 ∩ID DB2 DB2 \ID DB1]

VDB2 =[DB1 \ID DB2 DB2 ∩ID DB1 DB2 \ID DB1]

C′DB1
=




Π1−2,1−2(CDB1) Π1−2,1∩2(CDB1) Czero

Π1∩2,1−2(CDB1) Π1∩2,1∩2(CDB1) Czero

Czero Czero C∞





C′DB2
=




C∞ Czero Czero

Czero Π1∩2,1∩2(CDB2) Π1∩2,2−1(CDB2)

Czero Π2−1,1∩2(CDB2) Π2−1,2−1(CDB2)





– case A.4 and B.2, B.3: DB2 contains some new positions that do not exist in DB1

or that have to replace the corresponding positions in DB1. We suppose that DB2

contains also some information about the accuracy for the relative distance between

its positions and some positions in DB1.

VDB1 =[DB1 \ID DB2 DB1 ∩ID DB2 DB2 \ID DB1]

VDB2 =[DB1 \ID DB2 DB2 ∩ID DB1 DB2 \ID DB1]

C′DB1
=




Π1−2,1−2(CDB1) Czero Czero

Czero C∞ Czero

Czero Czero C∞





C′DB2
=




C∞ Δ(Czero) Δ(Czero)

Δ(Czero) Π1∩2,1∩2(CDB2) Π1∩2,2−1(CDB2)

Δ(Czero) Π2−1,1∩2(CDB2) Π2−1,2−1(CDB2)





where [a b c] represents the vector concatenation, DBi \ID DBj = {p | p ∈ DBi∧p.ID 6∈
DBj .ID}, DBi ∩ID DBj = {p | p ∈ DBi ∧ p.ID ∈ DBj .ID}

4 and Πa,b(C) computes

4 Notice that ∩ID is not commutative
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the matrix by keeping only the elements ci,j ∈ C where i ∈ a and j ∈ b. a(b) can be

“1 − 2”, which means the row (columns) of positions p ∈ DB1 \ID DB2, or “1 ∩ 2”,

which means the row (columns) of positions p ∈ DB1 ∩ID DB2. Finally, C∞ is the

matrix containing very high variance values on the main diagonal and zero elsewhere,

and Δa,b(Czero) is a matrix containing the covariance between positions i and j, when

known from relative distance measures, or zero otherwise.

Proof – This result is obtained for the first cases by considering that: (i) the two

databases have to be represented together and for the non-shared objects we only

have one pair of coordinates, thus we simulate to have another pair of coordinates

in the other database, equal to the original one, but with very low accuracy; (ii) for

the shared objects we have instead two pairs of coordinates with different accuracy

and we can populate the matrices accordingly. For the second cases we can observe

that DB2 contains some new points that are not present in DB1 or that have to

replace the ones contained in DB1. Therefore, each common position contained in DB1

becomes very inaccurate with respect to the one contained in DB2 and so its variance

is replaced with very high values. Moreover, between some positions in DB2 and DB1

some information about the accuracy of relative distance might be known, so this

information is eventually inserted into the matrix C′DB2
(this is indicated by the use

of the Δ operator). �

Now the application of the Kalman filter is straightforward.

Method 1 (Position Integration (Kalman filter)) Given the vectors VDB1 , VDB2

and the matrix C′DB1
, C′DB2

(see Obs. 3) the Kalman filter is applied as follows:

VDB3 = VDB1 + K ∙ (VDB2 −A ∙ VDB1)

K is named Kalman or gain matrix and it represents the adjustment applied to the

measurements contained in VDB1 due to the presence of the measurements in VDB2 :

K = ((C′DB1
)−1 + (C′DB2

)−1)−1 ∙ (C′DB2
)−1 (5)

A is the design matrix which defines the relation between the observations and the

parameters; in this paper we consider only direct measurements and so it can be omitted.

VDB3 = VDB1 + K ∙ (VDB2 − VDB1) (6)

�

From VDB3 we can easily obtain DB3 which represents the result of the function

metricPosIntkalman(DB1,DB2, CDB1 , CDB2).

The filter allows not only to update the coordinates of the position indexes, but

also to estimate the accuracy of the resulting database, that is to update the variance-

covariance matrix as follows:

CDB3 = (I −K) ∙ C′DB1
∙ (I −K)T + K ∙ C′DB2

∙KT (7)

where CDB3 is the result of the function metricVarInt(CDB1 , CDB2).

Let us denote with c1a,b, c2a,b, c3a,b and ka,b the coefficients of the matrices CDB1 ,

CDB2 , CDB3 and K, respectively, in row a and column b. It is easy to prove that the

following properties holds:
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– If for a certain position P it holds that c1xP ,xP
= c1yP ,yP

and c2xP ,xP
= c2yP ,yP

, then

it follows that c3xP ,xP
= c3yP ,yP

and kxP ,xP = kyP ,yP .

– If for a certain position P it holds that c1xP ,yP
= c1yP ,xP

= 0 = c2xP ,yP
= c2yP ,xP

,

then it follows that c3xP ,yP
= c3yP ,xP

= 0 and kxP ,yP = kyP ,xP = 0.

– If for a certain pair of positions P and Q, it holds that c1xP ,xQ
= c1yP ,yQ

and

c2xP ,xQ
= c2yP ,yQ

, then it follows that c3xP ,xQ
= c3yP ,yQ

and kxP ,xQ = kyP ,yQ .

– If for a certain pair of positions P and Q, it holds that c1xP ,yQ
= c1yQ,xP

= c1yP ,xQ
=

c1xQ,yP
= 0 = c2xP ,yP

= c2yP ,xP
= c2yP ,xQ

= c2xQ,yP
, then it follows that c3xP ,yQ

=

c3yQ,xP
= c3yP ,xQ

= c3xQ,yP
= 0 = kxP ,yQ = kyQ,xP = kyP ,xQ = kxQ,yP .

These properties confirms that the initial configuration of the variance-covariance

matrix (see Eq. 2) is preserved by the proposed integration methods.

Notice that the effectiveness of a least square-based method can be compromised

by the presence of blunders. A blunder is an erroneous observation that is clearly in

contrast with the other available observations. In the integration context, blunders

influence the point matching phase of the two source databases. Several blunder de-

tection techniques have been proposed [?]; however, in this paper we assume that the

quality of the considered information is ensured by the data provider that is responsible

for performing a correct point matching of the source databases, thus we can safely

abstract from this problem.

It is clear that in real situation a least squares-based methods cannot be applied

to an entire database, in particular for the costs of inverting the involved matrices. In

Sec. 3 a concept of distance threshold for covariance values has been defined, so that

covariance values are different from zero and have to be stored only between points that

really interact, and only for those points it is reasonable to propagate the integration

effects. In the same manner, given the two source datasets, a selection on the database

positions can be made, considering during the integration process only the positions

which are correlated to the new integrated ones, namely whose positions that are within

the distance specified by the error function for the relative distances, since for the other

positions the covariance would be equal to zero and thus no integration effects would

spread on them.

4.2 Integrating Logic Observations

This section discusses the problem of integrating logic observations contained into two

distinct MACS databases DB1
m and DB2

m. In particular, referring to Def. 7, we define

a method for computing the function logicRelInt(REL1,OBJ1,REL2,OBJ2).

As regards the integration of logic observations, a significant case occurs when

the two databases share at least one object. Anyway, the proposed method is able to

handle any possible case; indeed, different operations are necessary according to the

rate of objects sharing. In particular, if no objects are shared the known relations are

all preserved, while the new relations between objects of OBJ1 and objects of OBJ2

have to be declared unknown. Actually, considering the support of these objects some

more precise relations can be derived by computing the relations among their support

as shown in the following observation.

Observation 4 (Objects relations from supports relations) Given two sets of

objects O1 and O2 respectively, where O1.ID∩O2.ID = ∅, the following function can be
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Supp(o1, ) disjoint Supp(o2, )

o2.GeoType = S  

Supp(o1, ) in o2 

Supp(o1, ) disjoint Supp( o2, )

o1.GeoType = S  

 o1 contains Supp(o2, ) 

Supp( o1, ) disjoint Supp(o2, )

o1.GeoType = S  

o2.GeoType = S  

(Supp(o1, ) \ Supp( o1, )) 
intersects 

(Supp(o2, ) \ Supp( o2, ))

NoYes

Yes No

No

rx ={ in}

rx ={ disjoint}

Yes

rx ={ contains}

Yes

rx ={ in, contains, coveredBy, covers, 
equal, overlap, cross}

No

rx =RU

Fig. 2 Algorithm for deriving the topological relation between two objects starting from the
relation between their supports.

defined for representing the knowledge about the topological relations existing among the

objects of O1 ∪O2; it is obtained by considering the relations between objects supports:

topFromSupp(O1, O2) = {〈o1, o2, rx〉 | (o1, o2) ∈ O1 ×O2 ∧ rx = fsupp(o1, o2)}

where fsupp(o1, o2) is defined as in Fig. 2.

Proof – Considering Fig. 2 and starting from the first conditional block we can observe

that, if the objects supports are disjoint, then for the support definition (Def. 5) the

objects are disjoint. If they have intersecting support, o1 is a surface and the o2 support

is inside o1 without touching o1 boundary, then no points of o2 can have a position

that is outside o1, thus o2 in o1. The third conditional block shows a situation that

is the inverse of the previous one. Finally, the last conditional block says that, if the

supports of two surfaces intersect without considering the support of their interior, the

surfaces certainly have intersecting interiors, thus the existing relation between them

can be only one among: in, contains, covers, coveredBy, equal or overlap. �

Method 2 (Relation integration) Given two distinct MACS databases DB1
m, DB2

m,

the integration of the sets of topological relations (or logic observations) that are known

in each of them is represented by the function logicRelInt(REL1,OBJ1,REL2,OBJ2).

In order to obtain this result we first compute the complete set of relations known by

DB1
m (DB2

m), denoted as R1 = ext(REL1,OBJ1) (R2 = ext(REL2,OBJ2)), and, start-

ing from them, we compute R3 as follows (referring to Table 3 for the cases definition

and to Table 1 for relation symbols):

– in cases A.0, A.1, A.2, A.3 and B.1, B.2 no objects are shared by the databases to

be integrated DB1
m and DB2

m:

R3 = R1 ∪R2 ∪ topFromSupp(OBJ1,OBJ2)

where topFromSupp(OBJ1,OBJ2) has been introduced in Obs. 4.
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– in cases A.4, A.5 and B.3, B.4, B.5 there are some common objects between the

databases to be integrated, thus the function works differently:

R3 =(R1 \ID R2) ∪ (R2 \ID R1) ∪

topFromSupp(OBJ1 \ID OBJ2,OBJ2 \ID OBJ1) ∪

mergeTopRel(R1,OBJ1 ∩ID OBJ2, R2,OBJ2 ∩ID OBJ1)

where (Ri \ID Rj) = {〈a, b, rx〉 | 〈a, b, rx〉 ∈ Ri ∧ 〈a, b, ry〉 6∈ Rj} and (OBJi \ID

OBJj) = {o | o ∈ OBJi ∧ o.ID 6∈ OBJj .ID}.
Finally, the function mergeTopRel(R1, O1, R2, O2) is defined as follows:

mergeTopRel(R1, O1, R2, O2) = {〈o1, o2, r〉 | o1 ∈ O1 ∧ o2 ∈ O2∧

〈o1, o2, r1〉 ∈ R1 ∧ 〈o1, o2, r2〉 ∈ R2 ∧ r = r1 ∩ r2)} (8)

The result of logicRelInt(REL1,OBJ1,REL2,OBJ2) = REL3 is obtained by considering

the entries of R3 that represents disjunction of relations or empty relations. �

Notice that, the mergeTopRel function can produce empty relations (as result of

the intersection r1 ∩ r2); these empty relations represent inconsistencies between the

databases to be integrated and have to be solved by human intervention.

The human intervention is necessary whenever logic observations contained in the

source databases are discordant. However, if the cost of human intervention is too high

or the user is not able to determine the right relation for the final database, some

automatic procedures can be implemented in order to convert the inconsistency into a

loss of certainty. For this purpose we consider the proximity relationship among topo-

logical relations, first introduced in [9] for the definition of conceptual neighborhoods

starting from the the 9-intersection matrices. This definition has been extended in [2]

in order to be applied to relations defined by means of sets of 9-intersection matrices, as

those defined in Table 1. In particular, the distance between two relations is computed

considering the minimum distance between the corresponding 9-intersection matrices.

In this paper we adopt the same approach for defining, given a topological relation

REL1 between specific object types (e.g. between surfaces), the set of relations that

are near to it. We say that a topological relation REL1 is near to another relation

REL2, if REL2 is characterized by a matrix with the minimum distance (variation),

with respect to other relations, from the matrix characterizing REL1. The following

definition formally specifies the proximity between topological relations. Fig. 3 illus-

trates proximity between topological relations calculated on the basis of the type of the

involved objects. An arc is depicted between two topological relations if they are near

and the label on each arc denotes the distance between them. Let us notice that when

a topological relation have several matrices associated to it, each of these can have

different distances with respect to the matrix of another relation, but for simplicity

only the minimum distance is reported in the diagram.

If this kind of approach can be admissible for the user, we can assume that

when the topological relations in the source databases are not compatible but are

near, then the resulting relation becomes the disjunction of the original ones. For-

mally, this result can be obtained by replacing the intersection r1 ∩ r2 in Eq. 8

with near(r1, o1.Geo.type, o2.Geo.type) ∩ near(r2, o1.Geo.type, o2.Geo.Type), where

near(r, t1, t2) computes the set of relations that are near to r when objects of types t1
and t2 are considered.
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2
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Touch1
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1 2
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Fig. 3 Proximity between topological relations classified on the basis of the type of the in-
volved objects. Let us notice that for not cluttering the diagram, the relations Overlap and
Cross between two curves have been collapsed into a unique box because they have the same
distance from the other relations. The distance between them is 1 if we consider the dimension
of the intersection between their interior.

4.3 Integrating Metric and Logic Observations Together

The complete integration of two MACS databases requires to combine metric and

logic observations together. In particular, in Sec. 3.2 we have introduced the coher-

ence constraint between soft topological relations, which are those derived from object

representatives, and hard topological relations, which are those explicitly stored. More-

over, in the same section we have established that for reducing the quantity of stored

information, when a topological relation is known, it can be derived directly from the

geometries of the objects representatives without additional information.

In general, after the integration operations presented in the previous sections a

check phase is necessary in order to verify that the coherence constraint is satisfied

in the resulting MACS database DB3
m. This means that for each pair of objects of

OBJ3 we need to compute the soft topological relation between them, denoted as

rsoft, and compare it with the relation eventually stored in REL3, denoted as R. If

rsoft ∈ R then the coherence constraint is satisfied, otherwise it is necessary to modify

the positions defining the objects geometries, in order to obtain a new situation where
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rsoft changes and becomes one of the relations of R. Indeed, we always suppose that

logic observations have higher priority with respect to metric observations.

The remainder of this section analyses how metric observations compliant with

a topological relation REL1 have to be transformed in order to become compliant

with another desired topological relation REL2. In doing so, let us notice that some

transitions from one topological relation to another, like the transition disjoint →
touch, require that two distinct positions of the objects involved in the relation becomes

the same position. We denote this case with the term positions snapping (→←). For

other transitions the inverse operation is required, i.e. a shared position has to be

transformed into two distinct ones. We denote this operation as positions decoupling

(←→). Finally, in some cases the switch of location for a position with respect to a

curve or surface is necessary. This operation is denoted as positions switching (�). In

Tables 4, 5 and 6 the operations semantics and the necessary preconditions for their

application are summarized.

Operation Syntax Precondition Semantics

positions a→← b ∃P : P ∈ a.Geo.pos, identify the pair of positions
snapping SuppP (α) ∩ Supp(b, α) 6= ∅∨ (P ′, Q′) to snap (they can be

∃Q : Q ∈ b.Geo.pos, existing positions or positions
Supp(a, α) ∩ SuppQ(α) 6= ∅ generated by projection), substi-

tute Q′ with P ′ in b and consider
Q′ as a new observation of the po-
sition of P ′ to be integrated.

one a→←1 b as for a→← b as for a→← b, but only one
position substitution is admitted.
snapping
two a→←2 b as for a→← b and: as for a→← b, but exactly
positions ∃P : P ∈ a.Geo.pos, two subsequent positions must be
snapping SuppP (α) ∩ Supp(b, α) = ∅∨ snapped.

∃Q : Q ∈ b.Geo.pos,
Supp(a, α) ∩ SuppQ(α) = ∅

right a→⇔ b ∀Q ∈ b.Geo.pos : for all Qi ∈ b.Geo.pos identify the
positions Supp(a, α) ∩ SuppQ(α) 6= ∅∧ pair of positions (Pi, Qi) to snap,
snapping ∀P ∈ match(a, b) : substitute Qi with corresponding

Supp(b, α) ∩ SuppP (α) 6= ∅ Pi ∈ a.Geo.pos and consider po-
sitions Qi new observations of the
positions Pi to be integrated.

all a⇒⇔ b ∀P ∈ a.Geo.pos : identify the pairs of positions
positions SuppP (α) ∩ Supp(b, α) 6= ∅∧ (Pi, Qi) to snap (no positions of
snapping ∀Q ∈ b.Geo.pos : a or b have to remain dangling),

Supp(a, α) ∩ SuppQ(α) 6= ∅ substitute each Qi with corre-
sponding Pi and consider Qi new
observations of the positions Pi to
be integrated.

Table 4 Positions snapping operations. match(a, b) returns all the positions of a that have a
matching with a position of b or that are between two matching positions.

Method 3 (Alignment of positions with respect to logic observations) Given

an integrated MACS databases DB3
m and the initial databases DB1

m and DB2
m the

alignment of positions with respect to logic observations is an iterative process that is

executed until the following condition holds:

{(o1, o2) | (o1, o2) ∈ OBJ3 ×OBJ3 ∧ o1rsofto2 ∧ 〈o1, o2, R〉 ∈ REL3 ∧ rsoft 6∈ R} = ∅

The core algorithm, that is reiterated, is composed of the following tasks:

1. for each violation of consistency between a pair of objects (o1, o2), the necessary

relation transition rA → rB is identified;



25

2. for each relation transition its applicability is evaluated; in particular, some transi-

tion are not admitted a priori, some others requires operations that, in specific cases,

could not be applied (see Tables 4-6 in this section and Tables 7-15 in Appendix);

3. for each relation transition that is not applicable, since its preconditions are not

satisfied, the user intervention is required;

4. for each relation transition rA → rB that is applicable and such that o1 rsoft o2

in DBi
m (i ∈ {1, 2}) and rsoft = rB , we augment the accuracy of the relative

distance among all the positions pairs (Pi, Qi) ∈ o1.Geo.pos × o2.Geo.pos having

intersecting supports by setting the covariance to the value (σ2
P + σ2

Q)/2 (see Eq.3)

in the corresponding matrix CDBi
. In this way the accuracy of the relative distance

(i.e. the covariance) between these two objects P and Q becomes maximum, the

two objects now constitute a rigid body and move accordingly without changing

the relative position of their points. Then we repeat the computation of DB3 =

metricPosIntkalman(DB1,DB2, CDB1 , CDB2).

5. for each relation transition rA → rB that is applicable but does not satisfy the

previous condition, it is necessary to modify some pairs of positions (Pj , Qj) ∈
o1.Geo.pos × o2.Geo.pos having intersecting supports, by applying the operations

requested by the transition, as shown in Tables 7-15 in Appendix. This leads to

the definition of a new DB′3 and to a new variance-covariance matrix CDB′
3

that

needs to be integrated with DB3 in order to obtain the final database: DBfinal =

metricPosIntkalman(DB3,DB′3, CDB3 , CDB′
3
).

�

Operation Syntax Precondition Semantics

in a
in
←→ b ∃P : substitute P with two new positions

positions P ∈ a.Geo.pos, Q1 ∈ a.Geo.pos and Q2 ∈ b.Geo.pos,
decoupling P ∈ b.Geo.pos where the distance between Q1 and Q2

is the minimum representable distance ε
such that Q2 in a and Q1 in b. Finally,
the accuracy of the relative distance be-
tween Q1 and Q2 is maximized.

in left po-
sitions de-
coupling

a
inL←→ b as for a

in
←→ b as for a

in
←→ b, but requiring that

Q1 in b and Q2 disjoint a.

out po-
sitions
decoupling

a
out
←→ b as for a

in
←→ b as for a

in
←→ b, but requiring that

Q1 disjoint b and Q2 disjoint a

cross po-
sitions
decoupling

a
cr
←→ b as for a

in
←→ b as for a

in
←→ b, but requiring that

a cross b after decoupling.

all out
(in left)
positions
decoupling

a
∗
⇔⇒ b as for a

in
←→ b as for a

inL←→ b (or a
out
←→ b), but requir-

ing that all sharing positions are decou-
pled and that, after the operation, the
relation a in b (or a disjoint b) is sat-
isfied.

Table 5 Positions decoupling operations. (The distance ε could be a parameter set by the user,
however it has always to be significantly lower w.r.t. the average error of absolute coordinates).

Notice that, in Tables 7-15 some allowed transitions involves pairs of relations that

are not near. These cases are considered since the transition can be obtained with a

local geometry modification, i.e. by applying a minimal change on objects positions.

The main idea underlying phases 4 and 5 is that the positions of objects involved

into a particular topological relation have to become a rigid body that can move in
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Operation Syntax Precondition Semantics

in positions
a

in

� b as for a→← b
it is the combination of a→← b

switching followed by a
in
←→ b.

out positions
a

out

� b as for a→← b
it is the combination of a→← b

switching followed by a
out
←→ b.

cross positions
a

cr

� b as for a→← b
it is the combination of a→← b

switching followed by a
cr
←→ b.

all in positions
switching

a
in

�all b as for a→⇔ b it is the combination of a→⇔ b followed

by a
in

←⇒ b

all out positions
switching

a
out

� all b as for a→⇔ b it is the combination of a→⇔ b followed

by a
out

←⇒ b

Table 6 Positions switching operations.

space but in a uniform manner: they have to maintain their relative reciprocal positions

in order to keep the effect of the previous transformations. This is the aim of the

covariance correction proposed in phase 4 and in the operations eventually applied in

phase 5.

Our approach differs from to the one presented in [12,13] for several reasons; first

of all, we consider the integration of both metric and topological information, while

they suppose to have only one set of topological relation that has to be valid on the

integrated geometry. We cannot use sets of equations representing the topological re-

lations that are valid in the two source datasets, because if they contain discordant

information the method cannot find a solution that satisfy all the equations. Moreover,

our method consider not only single relation, but also sets (disjunctions) of topologi-

cal relations between objects, so the number of necessary equations, that have to be

added into the system in the approach of [12][13], can increase considerably making

the integration impracticable. Finally, thanks to the role covered by the accuracy of

the relative distances, most of the topological relations that are valid before the up-

date, remain satisfied also in the integrated database: in practice very few relations are

violated after the integration process.

In order to prove that the proposed operations (shown in Tables 7-15) are sufficient

conditions for obtaining the needed relation transitions, we show below the proof of

this property for the transitions starting from a disjoint relation. In a similar way the

same property can be proved for the other transitions.

Theorem 1 (Operations for disjoint transitions) Let us consider Table 7 showing

the allowed transitions starting from the disjoint relation. Each column, representing

a given target relation REL∗,∗, reports for each types pair t1, t2 the operations that

represent a sufficient condition in order to obtain, starting from two disjoint objects of

types t1, t2, the target relation.

Proof – We present the proof for the first column of the table, the proof for the other

columns follows a similar reasoning:

Transition (a disjoint b) → (a touch b), for types pairs (S, S), (S, C), (C, C) and

(C, S): according to Table 1 the pattern for disjoint in these cases is FFT−FFT−TTT .

If we apply the required operation a →← b, when objects types are (S, S), then the

geometries of a and b are locally modified, so that after the modification a and b share
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a position. As a consequence, the intersection ∂a ∩ ∂b5 becomes not empty and the

pattern becomes: FFT − FTT − TTT , which is the pattern of the touch relation for

types (S, S). When objects types are (S, C), either ∂a ∩ ∂b becomes not empty or

∂a ∩ b◦ does, thus the pattern becomes FFT − FTT − TTT or FFT −TFT − TTT ,

which again are patterns of touch. A dual reasoning can be applied when objects types

are (C, S). When objects types are (C, C), the required operation is ∂a →← ∂b or

∂a→←1 b or a→←1 ∂b. As a consequence, either ∂a∩∂b becomes not empty or ∂a∩b◦

(a◦ ∩ ∂b) does, thus the pattern becomes FFT −FTT − TTT or FFT −TFT − TTT

(FTT − FFT − TTT ), which again are patterns of touch.

Transition (a disjoint b)→ (a touch b), for types pairs (S, P ) and (C, P ): according

to Table 1 the pattern for disjoint in these cases is FFT − FFT − TFT . If we apply

the operation a→← b (∂a→← b), then ∂a∩ b becomes not empty and a−∩ b becomes

empty, thus the pattern becomes FFT −TFT − FFT , which is the pattern of touch.

Transition (a disjoint b) → (a touch b), for types pairs (P, S) and (P, C): the

reasoning in this case is similar to the previous one. �

5 Properties of the Integration Process

This section presents some properties of the integration process proposed in Sec. 4.

In particular, we start by discussing the central role covered by the accuracy of each

measure during the integration process, showing that the final position of a location

depends not only on the integrated measures, but also on their accuracy and their

correlation with near positions. Then we state that the accuracy of the integrated

measures and the certainty of the logic observations are always increased after the

integration process or at least coincide with the accuracy and certainty of the most

accurate source database, respectively. In order to demonstrate these properties, we

first analyze the trend of the coefficients of the Kalman matrix in relation to the

different accuracies of the two source databases. Given two MACS databases DB1
m

and DB2
m that have to be integrated, the coefficients of the Kalman matrix associate

to each absolute or relative measure in DB2
m a value proportional to its accuracy

and normalized with respect to the overall accuracy of the two source databases. In

particular, the coefficients of the Kalman matrix assume a value as follows:

– The coefficients kxP ,xP = kyP ,yP related to the variance of a position P have a

value between 0 and 1.

kxP ,xP =






a ∈ [0, 0.5) if DB2
m <acc DB1

m

a = 0.5 if DB2
m =acc DB1

m

a ∈ (0.5, 1] if DB2
m >acc DB1

m

– The coefficients kxP ,xQ = kyP ,yQ for Q 6= P related to the covariance between two

different positions P and Q have a value between -1 and 1.

kxP ,xQ =






b ∈ [−1, 0) if DB2
m <acc DB1

m

b = 0 if DB2
m =acc DB1

m

b ∈ (0, 1] if DB2
m >acc DB1

m

5 Here we use the notation adopted by the 9-intersection model [7], that is presented in
section 3.2.
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– The coefficients kxP ,yP and kxP ,yQ corresponding to the covariance between the x

and y coordinates of a same position P , and the coefficients kyP ,xP , and kyQ,xP

for Q 6= P corresponding to the covariance between the x and y coordinate of two

distinct positions P and Q are zero.

From these characteristics of the Kalman matrix, we can state the first property of the

integration process.

Property 1 Given two MACS databases DB1
m and DB2

m that have to be integrated,

the shift of a position P from its location in DB1
m increases if the accuracy of P in

DB2
m is greater than the accuracy of P in DB1

m.

Proof – Given the vectors VDB1 and VDB2 built as explained in Obs. 3, the vector of

position indexes VDB3 for the integrated database DB3
m is obtained from the Eq. 6 as:

VDB3 = VDB1 + K ∙ (VDB2 − VDB1)

Let us suppose for simplicity that inside the two source databases there are only two

positions P = (xP , yP ) and Q = (xQ, yQ). The shift of the integrated x coordinate of

the position P , denoted as x3
P , from its original value in DB1

m becomes:

x3
P − x1

P = kxP ,xP (x2
P − x1

P ) + kxP ,xQ(x2
Q − x1

Q)

where ki,j is the coefficient of the Kalman matrix in row i and column j. Independently

from the measurements contained in DB2
m (x2

P and x2
Q), the shift of x3

P from the value

x1
P directly depends upon the coefficient kxP ,xP and kxP ,xQ of the Kalman matrix.

The trend of the Kalman matrix coefficients states that the more the accuracy of the

position P in DB2
m increases with respect to the accuracy of the same position in DB1

m,

the more the value of the coefficients kxP ,xP and kxP ,xQ tends to one, determining a

greater shift of x3
p that can eventually become equal to x2

P . Notice that the shift of P

is due not only to a direct update of its measure in DB2
m, but also to the propagation

of the update of other positions, in a measure that directly depends upon the accuracy

of the relative distance between them. �

Example 3 Let us suppose that DB1
m contains two positions P = (100, 100) and Q =

(123, 123) that have both an absolute accuracy e of 0.8m (with FR(e) = 95%), while

their relative distance has an accuracy of 0.6m (with FR(ed) = 95%). Moreover, DB2
m

contains another measure for P = (103, 103) that has to be integrated with the one

contained in DB1
m. We perform the integration between the measures of the two source

databases varying the error e(P ) of P in DB2
m and we analyze the different shift of

P and Q in DB3
m from their positions in DB1

m. The results of this test are reported

in the graph of Fig. 4. The graph clearly illustrates that greater is the accuracy of

xP in DB2 (smaller is its circular error), greater is the shift of both points after the

integration process. Moreover, even if the trend for the two points is similar, the shift

of P is greater because it is directly involved in the integration process, while the shift

of Q is only due to the propagation of the P integration.

Property 2 Given the MACS database DB3
m obtained by integrating two source MACS

databases DB1
m and DB2

m, the accuracy of each integrated measure in DB3
m is not

smaller than the accuracy of the corresponding measure in the two source databases. In

particular, if the accuracy of a measure in one database is very high, then the corre-

sponding measure in the other database does not influence the integration process and

the resulting accuracy corresponds to the greatest one.
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Fig. 4 Shift of the positions P and Q with respect to their original measures in DB1
m, con-

sidering different absolute error e(P ) for P in DB2
m.

Proof – The metric accuracy of a position P is defined in Sec. 3.3 and it inversely

depends on the positions variance. The variance for the integrated position P in DB3
m

is computed using the Eq. 7 as:

CDB3 = (I −K) ∙ CDB1 ∙ (I −K)T + K ∙ CDB2 ∙K
T

Let us suppose that DB2
m contains a very accurate measure for P , then as stated above

the coefficient kxP ,xP (or equivalently kyP ,yP ) of the Kalman matrix has a value near

to one. From this, it follows that the resulting variance value in CDB3 is very close to

(at most coincides with) the element contained in CDB2 , namely to the most accurate

one. Conversely, if DB1
m contains a very accurate measure for P , then the coefficient

kxP ,xP of the Kalman matrix has a value near to zero and the variance value in CDB3

for P is very close to the one in CDB1 . In the other cases, if the two source databases

contain both relative accurate measures for P , the diagonal position kxP ,xP of the

Kalman matrix contains a positive but smaller than one value. This value multiplied

with the elements of the original matrices produces a value that is smaller than the

original ones; moreover, their sum is smaller than each original value as the coefficient

of K are normalised with respect to the overall accuracy of the two databases (the

sum of the two original variances). Finally, as the variance of each measure decreases

at each iteration, the quality of the integrated position always increases. �

Example 4 Let us consider again the two MACS databases in Ex. 3 and perform the

integration between them taking into account the new value of absolute error calculated

after the integration process. The error values for the integrated measures are reported

in the graph of Fig. 5, considering different values of absolute error e2(P ) for the

position P in DB2
m. We can notice that as P becomes more accurate, the error of the

integrated measures decreases. Moreover, if the error e2(P ) is equal to the error e1(P )
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of P in DB1 (0.80m), the integrated measure has an error that is smaller than the

original ones: the integration of two measures with the same accuracy produces a new

measure that is more accurate than the two source ones. Finally, if the measure of P is

very inaccurate, it has not effect during the integration process also as regards to the

error of the integrated measure, indeed as e2(P ) increases, the resulting error for the

integrated measure settles to a value near the original error in DB1
m (0.80m).

From this property and the definition of average global accuracy of metric observa-

tions, it directly derives that also the average global accuracy of metric observations of

an integrated MACS database is always greater than or equal to the maximum average

global accuracy of metric observations of the source databases.
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Fig. 5 Variation of the absolute error for the integrated positions P and Q in DB3
m with

respect to the value in DB1
m, considering different absolute error for P in DB2.

Property 3 Given a MACS database DB3
m obtained by integrating two source MACS

databases DB1
m and DB2

m, the certainty of each logic observations does not decrease

during the integration process, it can only remains unchanged or increases.

Proof – The certainty of each logic observations is defined in Eq. 4. Discarding the

optimization mentioned at the end of Sec. 4.2, given two disjunction of topological

relations R1 and R2, their integration always produces a set of relations R3 whose

cardinality is smaller than the cardinality of both the original ones, or equal to the

smallest ones (|R3| ≤ min(|R1|, |R2|). Therefore, putting this new cardinality into the

certainty formula, we obtain a certainty index that is equal to the greater one or is

greater than both the original ones. �

From this property and the definition of average global certainty of logic observa-

tions, it directly derives that also the average global certainty of logic observations of

an integrated MACS database is always greater than or equal to the maximum average

global certainty of metric observations of the source databases.

The presented properties allows one to conclude that the proposed integration

process does not decrease (and usually increases) the overall knowledge of a certain
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geographical area represented in a MACS database with respect to both metric and

logic observations.

6 Conclusions

The integration of spatial data is an important activity, especially in an open and

distributed environment, such a Spatial Data Infrastructure (SDI). Spatial data is in-

herently characterized by some accuracy parameters that have to be considered during

an integration process. Unfortunately, it is not a common practice to attach accuracy

information to the spatial data stored inside a spatial database.

In this paper we proposed a model for representing a multi-accuracy spatial databa-

se, called MACS, and we discuss how accuracy values can be derived from the commonly

available information stored inside a spatial database. Then we proposed a methodol-

ogy for integrating two MACS databases containing metric and logic observations and

we discussed how these two kind of information can be combined together and kept

consistent in the resulting database. The proposed methodology allows not only to inte-

grate metric observations and maintaining them consistent with the desired topological

relations, but also provides an accuracy estimate for the resulting database. Finally,

some properties of the proposed integration procedure are presented, they principally

illustrate how considering the accuracy of measures can affect the resulting integrated

dataset and its resulting accuracy.
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A Appendix

This section contains the tables explaining all the possible transitions between topological
relations. In each cell is reported in round brackets the distance between the two considered
topological relations (“req. d” means that the transition is allowed only when the distance
between the matrix of the current scene and the requested relation rel is d) and below the
operations that have to be applied in order to obtain the requested relation. The symbol ND
indicates that the target relation rel is not defined for the considered geometric types, while
NA indicates that rel cannot be obtained without a human intervention.

a d∗,∗ b → a rel b

d∗,∗
rel

t∗,∗ i∗,∗ c∗,∗ e∗,∗ r∗,∗ o∗,∗ b∗,∗ v∗,∗

dS,S
(1) (4)

a→← b NA NA NA ND a
in

� b NA NA

dS,C
(1) (2)

a→← b ND NA ND a
in

� b ND ND NA

dS,P
(2) (2)

a→← b ND a
in

�all b ND ND ND ND ND

dC,S
(1) (2)

a→← b NA ND ND a
in

� b ND NA ND

dC,C

(1) (1) (1)

∂a→←1 b NA NA NA a
cr

� b a→←2 b NA NA
or

a→←1 ∂b
or

∂a→← ∂b

dC,P
(2) (2)

∂a→← b ND a◦ →⇔ b ND ND ND ND ND

dP,S
(2) (2)

a→← b a
in

�all b ND ND ND ND ND ND

dP,C
(2) (2)

∂a→← b a◦ →⇔ b ND ND ND ND ND ND

dP,P
(3)

ND ND ND a⇒⇔ b ND ND ND ND

Table 7 Transitions between topological relations: case disjoint → rel.

a e∗,∗ b → a rel b

e∗,∗
rel

d∗,∗ t∗,∗ i∗,∗ c∗,∗ r∗,∗ o∗,∗ b∗,∗ v∗,∗

eS,S NA NA NA NA ND NA
(3) (3)

a
in
←→ b a

out
←→ b

eC,C NA NA NA NA NA
(2) (3) (3)

a
out
←→ b ∂a

out
←→ b ∂b

out
←→ a

eP,P
(3)

ND ND ND ND ND ND ND
a

out
←→ b

Table 8 Transition between topological relations: case equal → rel.
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a t∗,∗ b → a rel b

t∗,∗
rel

d∗,∗ i∗,∗ c∗,∗ e∗,∗ r∗,∗ o∗,∗ b∗,∗ v∗,∗

tS,S
(1)

NA NA NA ND
(3)

NA NA

a
out

⇔⇒ b a
inL←→ b

tS,C
(1)

ND NA ND
(req. 1)

ND ND
(req. 1)

a
out

⇔⇒ b a
cr
←→ b a

inL←→ b

tS,P
(2)

ND
(2)

ND ND ND ND

a
out

⇔⇒ b a
inL←→ b

tC,S
(1)

NA ND ND
(req. 1)

ND
(req. 1)

ND

a
out

⇔⇒ b a
cr
←→ b b

inL←→ a

tC,C
(1)

NA NA NA
(1) (1)

NA NA

a
out

⇔⇒ b a
cr
←→ b a→←2 b

tC,P
(2)

ND
(2)

ND ND ND ND ND

a
out

⇔⇒ b a
inL←→ b

Table 9 Transition between topological relations: case touch → rel.

a i∗,∗ b → a rel b

i∗,∗
rel

d∗,∗ t∗,∗ c∗,∗ e∗,∗ r∗,∗ o∗,∗ b∗,∗ v∗,∗

iS,S NA NA NA NA ND
(4) (1)

NA

a
out

� b a→← b

iC,S NA NA ND ND
(2)

ND
(1)

ND
a

out
←→ b a→← b

iP,S
(2) (2)

ND ND ND ND ND ND

a
out

� b b→⇔ a

iC,C NA NA NA NA
(1) (1) (1)

NA
a

out

⇔⇒ b a
out

⇔⇒ b ∂a→← ∂b
a◦ →←1 b◦ a→←2 b

iP,C
(2) (2)

ND ND ND ND ND ND
a

out
←→ b a→← ∂b

Table 10 Transition between topological relations: case in → rel.

a c∗,∗ b → a rel b

c∗,∗
rel

d∗,∗ t∗,∗ i∗,∗ e∗,∗ r∗,∗ o∗,∗ b∗,∗ v∗,∗

cS,S NA NA NA NA ND
(1)

NA
(1)

a
out

� b a→← ∂b

cS,C NA NA NA ND
(2) (1)

ND
(1)

a
out
←→ b a→← b

cS,P
(2) (2)

ND ND ND ND ND ND

a
out

� b a→← b

cC,C NA NA NA NA
(1) (1)

NA
(1)

a
out

⇔⇒ b a
out

⇔⇒ b ∂a→← ∂b
a◦ →←1 b◦ a→←2 b

cC,P a
out
←→ b ∂a→← b ND ND ND ND ND ND

Table 11 Transition between topological relations: case contains → rel.
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a r∗,∗ b → a rel b

r∗,∗
rel

d∗,∗ t∗,∗ i∗,∗ c∗,∗ e∗,∗ o∗,∗ b∗,∗ v∗,∗

rS,C NA
(1)

ND NA ND ND ND
(1)

a→⇔ (a ∩ bP ) a→⇔ (bP \ a)

rC,C

(1) (1)

NA a
out

⇔⇒ b NA NA NA a→←2 b NA NA
(∂a→← b

or a→← ∂b)

Table 12 Transition between topological relations: case cross → rel. bP (aP ) is the set of
representative points corresponding to the positions used for representing the geometry of
b (a).

a o∗,∗ b → a rel b

o∗,∗
rel

d∗,∗ t∗,∗ i∗,∗ c∗,∗ e∗,∗ r∗,∗ b∗,∗ v∗,∗

oS,S NA
a→⇔ (a ∩ bP )

NA NA NA NA
b→⇔ (aP \ b) a→⇔ (bP \ a)

or or or
b→⇔ (aP ∩ b) a→⇔ (aP \ b) b→⇔ (bP \ a)

oC,C NA
a

out

⇔⇒ b
NA NA NA

a
NA NA(∂a→← b

cr
←→

or a→← ∂b) b

Table 13 Transition between topological relations: case overlap → rel. bP (aP ) is the set
of representative points corresponding to the positions used for representing the geometry of
b (a).

a b∗,∗ b → a rel b

b∗,∗
rel

d∗,∗ t∗,∗ i∗,∗ c∗,∗ e∗,∗ r∗,∗ o∗,∗ v∗,∗

bS,S
(1) (3) (1)

NA NA a
inL
⇔⇒ b NA a⇒⇔ b ND a

out
←→ b NA

bC,S
(1) (1)

NA b→⇔ a a
inL
⇔⇒ b ND ND a

out
←→ b ND ND

bC,C
(1) (1) (1)

NA NA ∂a
inL
⇔⇒ b NA NA a

out

⇔⇒ b a
out

⇔⇒ b NA
a◦ →←1 b◦ a→←2 b

Table 14 Transition between topological relations: case coveredBy → rel.

a v∗,∗ b → a rel b

v∗,∗
rel

d∗,∗ t∗,∗ i∗,∗ c∗,∗ e∗,∗ r∗,∗ o∗,∗ b∗,∗

vS,S NA NA NA
(1) (3)

ND
(3)

NA

b
inL
⇔⇒ a a⇒⇔ b a

out
←→ b

vS,C NA
(1)

ND
(1)

ND
(1)

ND ND

a→⇔ b b
inL
⇔⇒ a a

out
←→ b

vC,C NA NA NA
(1)

NA
(1) (1)

NA
∂b

inL
⇔⇒ a a

out

⇔⇒ b a
out

⇔⇒ b
a◦ →←1 b◦ a→←2 b

Table 15 Transition between topological relations: case covers → rel.


