4 research outputs found

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    DoggyVision: Examining how Dogs (Canis familiaris) Interact with Media using a Dog-Driven Proximity Tracker Device

    Get PDF
    With screen technology becoming ubiquitously embedded into our homes, these screens are often in places where they can be viewed by domestic dogs (Canis familiaris); however, there is a lack of research showing to what extent, and for how long, dogs attend to media on screens. One pressing question is to understand if a dog, given the opportunity, would or could control its own viewing. This paper describes a prototype system (DoggyVision) that gives control to a dog in regard to the turning on and off of a TV screen in order to study activation with screen media in home settings. The system is used with two dogs to explore the interaction modalities between machine and dog. DoggyVision is shown to be non-invasive for the dog and easy to use in the home. Recordings show that dogs did attend to the screen but did not appear, in this study, to change their activation behaviors around the TV screen between being in no control (week 1), and in some control (week 2), of the TV media presentation. The study builds on ‘dog-centered’ methods to examine a dog’s behavior non-invasively demonstrating that useful data can be yielded from dog-driven devices within the home. For the Animal Computer Interaction community, this is the first system that allows the dog to trigger the activation of the device as the system records the activation automatically

    Pet sense: sistema de monitorização de animais em hospitalização

    Get PDF
    The observation and treatment of animals in veterinary hospitals is still very dependent on manual procedures, including the collection of vital signs (temperature, heart rate, respiratory rate and blood pressure). These manual procedures are time-consuming and invasive, affecting the animal’s well-being. In this work, we purpose the use of IoT technologies to monitor animals in hospitalization, wearing sensors to collect vitals, and low-cost hardware to forward them into a cloud backend that analyses and stores data. The history of observed vitals and alarms can be accessed in the web, included in the Pet Universal software suite. The overall architecture follows a stream processing approach, using telemetry protocols to transport data, and Apache Kafka Streams to analyse streams and trigger alarms on potential hazard conditions. The system was fully implemented, although with laboratory sensors to emulate the smart devices to be worn by the animals. We were able to implement a data gathering and processing pipeline and integrate with the existing clinical management information system. The proposed solution can offer a practical way for long-term monitoring and detect abnormal values of temperature and heart rate in hospitalized animals, taking into consideration the characteristics of the monitored individual (species and state).A observação e tratamento de animais hospitalizados continua muito dependente de procedimentos manuais, especialmente no que diz respeito à colheita de sinais vitais (temperatura, frequência cardíaca, frequência respiratória e pressão arterial). Estes procedimentos manuais são dispendiosos em termos de tempo e afetam o bem-estar do animal. Neste projeto, propomos o recurso a tecnologias IoT para monitorizar animais hospitalizados equipados com sensores que medem sinais vitais, com hardware acessível, e envio dos dados para um serviço na cloud que os analisa e armazena. O histórico dos valores e alarmes podem ser acedidos na web e incluídos na plataforma comercial da Pet Universal. A arquitetura geral segue uma abordagem de processamento funcional, usando protocolos de telemetria para transportar dados e Apache Kafka Streams, analisando e lançando alarmes sobre potenciais condições de risco de acordo com a temperatura e pulsação. O sistema foi totalmente implementado, embora com sensores de laboratório para simular os dispositivos a serem usados pelos animais. Conseguimos implementar um circuito de colheita e processamento de dados e integrar com o sistema de gestão clínica já existente. A solução proposta oferece uma forma prática de monitorização continuada e de deteção de valores anormais de temperatura e frequência cardíaca em animais hospitalizados, tomando em conta as características do indivíduo monitorado (espécie e estado).Mestrado em Engenharia Informátic
    corecore