182 research outputs found

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    An event-based AutomationML model for the process execution of ‘Plug-and-Produce’ assembly systems

    Get PDF
    Assembly systems today are facing significant pressure to deliver high performance process executions, while being responsive to the fluctuating market demands. However, the implementation the trending Cyber Physical Systems concepts via ‘Plug-and-Produce’ devices produces some communication overheads. In this direction, the openMOS project aims to decouple the elements that are responsible for adaptation and general operations of the system. This allows the system to have two parallel processes. Towards this end, the priority is to deliver high performance process executions, while the other process focuses on delivering the required agility. The focus of this work is narrowed down to the development of task execution tables that guarantees high performance process executions. In this direction, the definition of task execution table is based on an existing AutomationML (AML) model that highlights the explicit relationships between the Product, Process and Resource (PPR) domains. A new decisional attribute has been added to the existing ‘Skill’ concept, which provides the flexibility to incorporate eventbased process alternatives. An insight description on how the system handles process executions during run-time failures is also provided. Finally, this paper illustrates the run-time implementation of the execution table with a help of an industrial case study that has been used for a demonstration activity within the openMOS projec

    Semantic Asset Administration Shells in Industry 4.0: A Survey

    Get PDF
    The Asset Administration Shell (AAS) is a fundamental concept in the Reference Architecture Model for Industry 4.0 (RAMI 4.0), that provides a virtual and digital representation of all information and functions of a physical asset in a manufacturing environment. Recently, Semantic AASs have emerged that add knowledge representation formalisms to enhance the digital representation of physical assets. In this paper, we provide a comprehensive survey of the scientific contributions to Semantic AASs that model the Information and Communication Layer within RAMI 4.0, and summarise and demonstrate their structure, communication, functionalities, and use cases. We also highlight the challenges of future development of Semantic AASs

    Improving transferability between different engineering stages in the development of automated material flow modules

    Full text link
    For improving flexibility and robustness of the engineering of automated production systems (aPS) in case of extending, reducing or modifying parts, several approaches propose an encapsulation and clustering of related functions, e.g. from the electrical, mechanical or software engineering, based on a modular architecture. Considering the development of these modules, there are different stages, e.g. module planning or functional engineering, which have to be completed. A reference model that addresses the different stages for the engineering of aPS is proposed by AutomationML. Due to these different stages and the integration of several engineering disciplines, e.g. mechanical, electrical/electronic or software engineering, information not limited to one discipline are stored redundantly increasing the effort to transfer information and the risk of inconsistency. Although, data formats for the storage and exchange of plant engineering information exist, e.g. AutomationML, fixed domain specific structures and relations of the information, e.g. for automated material flow systems (aMFS), are missing. This paper presents the integration of a meta model into the development of modules for aMFS to improve the transferability and consistency of information between the different engineering stages and the increasing level of detail from the coarse-grained plant planning to the fine-grained functional engineering.Comment: 11 pages, https://ieeexplore.ieee.org/abstract/document/7499821

    An event-based automationML model for the process execution of ‘plug-and-produce’ assembly systems

    Get PDF
    Assembly systems today are facing significant pressure to deliver high performance process executions, while being responsive to the fluctuating market demands. However, the implementation the trending Cyber Physical Systems concepts via ‘Plug-and-Produce’ devices produces some communication overheads. In this direction, the openMOS project aims to decouple the elements that are responsible for adaptation and general operations of the system. This allows the system to have two parallel processes. Towards this end, the priority is to deliver high performance process executions, while the other process focuses on delivering the required agility. The focus of this work is narrowed down to the development of task execution tables that guarantees high performance process executions. In this direction, the definition of task execution table is based on an existing AutomationML (AML) model that highlights the explicit relationships between the Product, Process and Resource (PPR) domains. A new decisional attribute has been added to the existing ‘Skill’ concept, which provides the flexibility to incorporate event-based process alternatives. An insight description on how the system handles process executions during run-time failures is also provided. Finally, this paper illustrates the run-time implementation of the execution table with a help of an industrial case study that has been used for a demonstration activity within the openMOS project

    Komponenttien luokittelu ja parhaat käytännöt tuotantosimulaation mallinnuksessa

    Get PDF
    Production simulation software plays a major role in validation, optimization and illustration of production systems. Operation of production simulation is generally based on components and their interaction. Components typically represent factory floor devices, but in addition, there can be components to provide visualization, statistics, control or other input to simulation. The demand for having high-quality, easy-to-use and compatible components emphasizes the importance of component modelling. The objectives of this thesis were to develop component classes based on industrial devices, to standardize component modelling solutions and best practices in component modelling. Other objectives were to identify and analyse future prospects of production simulation. This focuses on the concept of digital twin, which could be described as reflective real-time simulation model from the physical system. In addition, focus is also set on formal modelling languages. The outcome of this thesis presents component classes and best practices in component modelling. In component classification, the focus was set to development of generic components, which can be controlled with signal-based logic. This enables components from the software to be externally controlled. In addition, automatic model creation tool wizard, is implemented to instantly generate components based on the defined component classes. Best practices were based on the selected modelling fields that are most relevant for general use. In the development of best practices, interviewing method was utilized to receive input from simulation experts.Tuotantosimulaatio on tärkeässä osassa tuotantojärjestelmien validoinnissa, optimoinnissa ja visualisoinnissa. Tuotantosimulaation toiminta perustuu yleisesti komponentteihin ja niiden väliseen vuorovaikutukseen. Komponentit esittävät tyypillisesti tehtaasta löytyviä laitteita ja esineitä, mutta komponentteja voidaan käyttää myös visualisointiin, statistiikan keräämiseen, järjestelmän ohjaukseen tai muuhun tarpeeseen simuloinnissa. Tämän diplomityön tavoitteita oli kehittää komponenttiluokkia teollisuudesta valittujen laitteiden perusteella, mikä mahdollistaa mallinnusratkaisujen standardoinnin. Sen lisäksi tavoitteena oli kehittää parhaat käytännöt komponenttimallinnukseen. Muita tavoitteita oli tunnistaa ja analysoida tulevaisuuden näkymiä tuotantosimulaatiolle. Tämä keskittyi pääosin digitaaliseen kaksoseen, jota voidaan kuvata reaaliaikaisesti peilautuvaksi simulaatiomalliksi todellisesta järjestelmästä. Tämän lisäksi työssä keskityttiin formaaleihin mallinnuskieliin. Diplomityön lopputulos esittää kehitetyt komponenttiluokat ja parhaat käytännöt komponenttimallinnuksessa. Komponenttien luokittelussa keskityttiin kehittämään geneerisiä komponentteja, joita voidaan ohjata signaalipohjaisilla komennoilla. Tämä mahdollistaa komponentin ohjaamisen myös simulointiohjelman ulkopuolelta. Tämän lisäksi automaattista komponenttien luomistyökalua käytettiin luokiteltujen komponenttien luomisessa. Parhaat käytännöt komponenttimallinnuksessa pohjautuivat mallinnuksen oleellisimpiin osa-alueisiin tavanomaisissa mallinnustilanteissa. Parhaiden käytäntöjen kehityksessä haastateltiin simulointiammattilaisia, joiden mielipiteistä muodostettiin perusta käytäntöjen kehitykselle

    The cyber-physical e-machine manufacturing system : virtual engineering for complete lifecycle support

    Get PDF
    Electric machines (e-machines) will form a fundamental part of the powertrain of the future. Automotive manufacturers are keen to develop emachine manufacturing and assembly knowledge in-house. An on-going project, which aims to deliver an e-machine pilot assembly line, is being supported by a set of virtual engineering tools developed by the Automation Systems Group at the University of Warwick. Although digital models are a useful design aid providing visualization and simulation, the opportunity being exploited in this research paper is to have a common model throughout the lifecycle of both the manufacturing system and the product. The vision is to have a digital twin that is consistent with the real system and not just used in the early design and deployment phases. This concept, commonly referred to as Cyber Physical Systems (CPS), is key to realizing efficient system reconfigurability to support alternative product volumes and mixes. These tools produce modular digital models that can be rapidly modified preventing the simulation, test, and modification processes forming a bottleneck to the development lifecycles. In addition, they add value at more mature phases when, for example, a high volume line based on the pilot is created as the same models can be reused and modified as required. This research paper therefore demonstrates how the application of the virtual engineering tools support the development of a CPS using an e-machine assembly station as a case study. The main contribution of the work is to further validate the CPS philosophy by extending the concept into practical applications in pilot production systems with prototype products

    Aggregoiva OPC UA palvelin yleiseen tiedon yhdistämiseen

    Get PDF
    OPC UA is an industrial communication protocol that enables the modelling of complex information with semantics and exposing it in the address space of an OPC UA server. With developments such as the Industrial Internet of Things and Industrie 4.0, the amount of data in the industrial environment is increasing and it is provided by an increasing number of sources. This can lead to information becoming increasingly scattered, which creates difficulties and inefficiencies in getting a view of all the available information. This thesis presents the design and implementation of a software solution that can integrate information from multiple OPC UA source servers that provide information in different ways and from different viewpoints. An existing aggregating OPC UA server was improved based on elicited requirements to implement an integration platform that can group together and display the heterogeneous information sources in its specially organized address space. The developed software solution consists of three parts: instance aggregation, type aggregation and service mappings, that cooperate together to create the needed functionality. The implemented prototype solution was evaluated in several test cases and found to meet the goals set for it. The instance aggregation procedure is able to find and group relevant information from different sources, while the type aggregation and service mappings keep the type definitions of the aggregated information intact. The instance aggregation procedure can also be configured by the user with a set of rules that enable compatibility with different use case needs. In the future, the results of this thesis will be used as a starting point in the incremental development of improved versions of the aggregation feature.Teollisuudessa käytetty OPC UA -tiedonsiirtomäärittely mahdollistaa monimutkaisen tiedon ja semantiikan esittämisen UPC UA -palvelimen osoiteavaruudessa oliomallin avulla. Teollisen internetin ja Industrie 4.0:n viitoittama suunta teollisuudessa on lisääntyvä tiedon määrä yhä useammista tietolähteistä. Tämän seurauksena tieto voi pirstaloitua ja täten vaikeuttaa kokonaiskuvan saantia olemassaolevasta tiedosta. Tämä diplomityö esittelee suunnittelun ja toteutuksen ohjelmistolle, joka pystyy integroimaan tietoa useista eri OPC UA -lähdepalvelimista, jotka voivat esittää tietoa eri tavoin ja eri näkökulmista. Olemassaolevaa aggregoivaa OPC UA -palvelinta kehitettiin uusiin vaatimuksiin perustuen toteuttamaan integraatioalusta, joka voi ryhmitellä yhteen ja näyttää tietoa erilaisista lähteistä tarkoituksenmukaisesti järjestetyssä nimiavaruudessaan. Kehitetty ohjelmistoratkaisu koostuu kolmesta osasta: instanssien aggregoinnista, tyyppien aggregoinnista ja palvelukartoituksista, jotka toimivat yhdessä tuottaakseen tarvittavan toiminnallisuuden. Kehitettyä prototyyppiratkaisua arvioitiin useissa testitapauksissa ja sen havaittiin täyttävän sille asetetut tavoitteet. Instanssien aggregointi pystyy löytämään ja ryhmittelemään yhteenkuuluvat tiedot eri lähteistä, kun taas tyyppien aggregointi ja palvelukartoitukset pitävät aggregoidun tiedon tyypppimäärittelyt muuttumattomina. Käyttäjä voi konfiguroida instanssien aggregointia käyttämällä erityisiä sääntömäärittelyjä, jotka mahdollistavat aggregointiprosessin yhteensopivuuden eri käyttötarpeiden kanssa. Tulevaisuudessa tässä opinnäytetyössä saatuja tuloksia käytetään lähtökohtana aggregointitoiminnallisuuden asteittaisesssa jatkokehittämisessä

    Komponenttien luokittelu ja parhaat käytännöt tuotantosimulaation mallinnuksessa

    Get PDF
    Production simulation software plays a major role in validation, optimization and illustration of production systems. Operation of production simulation is generally based on components and their interaction. Components typically represent factory floor devices, but in addition, there can be components to provide visualization, statistics, control or other input to simulation. The demand for having high-quality, easy-to-use and compatible components emphasizes the importance of component modelling. The objectives of this thesis were to develop component classes based on industrial devices, to standardize component modelling solutions and best practices in component modelling. Other objectives were to identify and analyse future prospects of production simulation. This focuses on the concept of digital twin, which could be described as reflective real-time simulation model from the physical system. In addition, focus is also set on formal modelling languages. The outcome of this thesis presents component classes and best practices in component modelling. In component classification, the focus was set to development of generic components, which can be controlled with signal-based logic. This enables components from the software to be externally controlled. In addition, automatic model creation tool wizard, is implemented to instantly generate components based on the defined component classes. Best practices were based on the selected modelling fields that are most relevant for general use. In the development of best practices, interviewing method was utilized to receive input from simulation experts.Tuotantosimulaatio on tärkeässä osassa tuotantojärjestelmien validoinnissa, optimoinnissa ja visualisoinnissa. Tuotantosimulaation toiminta perustuu yleisesti komponentteihin ja niiden väliseen vuorovaikutukseen. Komponentit esittävät tyypillisesti tehtaasta löytyviä laitteita ja esineitä, mutta komponentteja voidaan käyttää myös visualisointiin, statistiikan keräämiseen, järjestelmän ohjaukseen tai muuhun tarpeeseen simuloinnissa. Tämän diplomityön tavoitteita oli kehittää komponenttiluokkia teollisuudesta valittujen laitteiden perusteella, mikä mahdollistaa mallinnusratkaisujen standardoinnin. Sen lisäksi tavoitteena oli kehittää parhaat käytännöt komponenttimallinnukseen. Muita tavoitteita oli tunnistaa ja analysoida tulevaisuuden näkymiä tuotantosimulaatiolle. Tämä keskittyi pääosin digitaaliseen kaksoseen, jota voidaan kuvata reaaliaikaisesti peilautuvaksi simulaatiomalliksi todellisesta järjestelmästä. Tämän lisäksi työssä keskityttiin formaaleihin mallinnuskieliin. Diplomityön lopputulos esittää kehitetyt komponenttiluokat ja parhaat käytännöt komponenttimallinnuksessa. Komponenttien luokittelussa keskityttiin kehittämään geneerisiä komponentteja, joita voidaan ohjata signaalipohjaisilla komennoilla. Tämä mahdollistaa komponentin ohjaamisen myös simulointiohjelman ulkopuolelta. Tämän lisäksi automaattista komponenttien luomistyökalua käytettiin luokiteltujen komponenttien luomisessa. Parhaat käytännöt komponenttimallinnuksessa pohjautuivat mallinnuksen oleellisimpiin osa-alueisiin tavanomaisissa mallinnustilanteissa. Parhaiden käytäntöjen kehityksessä haastateltiin simulointiammattilaisia, joiden mielipiteistä muodostettiin perusta käytäntöjen kehitykselle
    corecore