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Abstract—The Asset Administration Shell (AAS) is a fun-
damental concept in the Reference Architecture Model for
Industry 4.0 (RAMI 4.0), that provides a virtual and digital
representation of all information and functions of a physical
asset in a manufacturing environment. Recently, Semantic AASs
have emerged that add knowledge representation formalisms to
enhance the digital representation of physical assets. In this
paper, we provide a comprehensive survey of the scientific
contributions to Semantic AASs that model the Information and
Communication Layer within RAMI 4.0, and summarise and
demonstrate their structure, communication, functionalities, and
use cases. We also highlight the challenges of future development
of Semantic AASs.

Index Terms—Industry 4.0, RAMI 4.0, Semantic Asset Admin-
istration Shell, Knowledge-driven manufacturing

I. INTRODUCTION

Digital transformation in manufacturing is enabling a shift
in paradigm towards smart manufacturing, which makes use of
new technologies and concepts. The advancements in Cyber-
Physical Systems (CPS), Industrial Internet of Things (IIoT),
Cloud Computing, Artificial Intelligence (AI), and others key
enabling technologies, has lead to a vision that machines,
processes, and products are connected via intelligent networks
utilizing information and communication technologies. This
vision is called the fourth industrial revolution, commonly
referred to as Industry 4.0 [1]. To realise this paradigm shift,
there are many initiatives developing architecture models to
support Industry 4.0. The Reference Architecture Model for
Industry 4.0 (RAMI 4.0), developed by Plattform Industrie 4.0
and other associations including ZVEI and VDMA [2], in-
cludes the fundamental concept of an Asset Administration
Shell (AAS) that serves as the virtual and digital representation
of all information and functions of a physical asset in a
manufacturing environment. Within an AAS, big industrial
data is stored in a strict format through one or more sub-
models to enable real-time condition monitoring of machines
and machine tools.

As the manufacturing domain is highly data and knowledge-
intensive, uniform knowledge representation of physical re-
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sources and seamless integration of heterogeneous data for
analytic tasks are needed as the basis to automate decision
making processes for production systems. To address these
challenges, knowledge-driven manufacturing methods have
received significant attention in recent years. Normally, these
methods involve knowledge models during decision making
processes in order to provide rich data semantics throughout
the manufacturing activities [3]. This trend has enabled the
adoption of Semantic Asset Administration Shells. A Seman-
tic AAS uses knowledge representation formalisms such as
Resource Description Framework (RDF) and Web Ontology
Language (OWL) to create digital representations of physical
assets [4]. Semantic AASs enable interoperable communica-
tion among machines, and compatibility with diverse digital
frameworks and architecture.

Although Semantic AASs are often mentioned in the context
of knowledge-driven smart manufacturing, to the best of our
knowledge, there lacks a survey contribution to summarise and
demonstrate their structure, functionalities, and use cases. In
this paper, we aim to fill this gap by providing a compre-
hensive survey on this subject. The aim of the survey is to
provide a vision and outlook on the critical and cutting-edge
technologies used within Semantic AASs.

The rest of the paper is structured as follows. Firstly,
Section II gives a brief introduction to RAMI 4.0 and Indus-
try 4.0 components. In Section III, we introduce the survey
methodologies used in this paper. Afterwards, in Section IV,
we present an in-depth construct of Semantic AASs by intro-
ducing their structure, communication technologies, character-
istics, and functionalities. Section V demonstrates some typical
application use cases of Semantic AASs. Finally, Section VI
concludes the paper and outlines open challenges within this
research field.

II. BACKGROUND

This section gives a brief description of relevant topics and
concepts coined for Industry 4.0.

A. RAMI 4.0 Model

The Reference Architecture Model for Industry 4.0
(RAMI 4.0) is a 3D model frame, in the form of a Smart
Grid Architecture Model (SGAM) that highlights the most
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important and key aspects of achieving Industry 4.0 [2]. The
model uses a divide and conquer approach to tackle the
complex technical to business processes and architecture of
Industry 4.0. Figure 1 displays the RAMI 4.0 model.

Fig. 1. RAMI 4.0 portrayed by Plattform Industrie 4.0 and ZVEI [2].

Firstly, the Layers axis, as seen on the left hand side of
Figure 1, represents the six processes that describe the techni-
cal and business perspectives of a product [5]. The asset layer
represents the things that are in the physical world whereas the
communication, information, functional, and business layers
represent the asset’s form in the digital world. The integration
layer is responsible for bridging these two worlds together by
reading and storing all digital information of assets, typically
through sensors.

The second axis is the Life Cycle and Value Stream axis.
This axis expresses the lifecycle and associated value stream
of products, machinery, factories, and other assets according to
the IEC 62890 standard. The purpose of this axis is to record
all data of an asset, from its first idea and initial design, all
the way until the asset is scrapped.

The final axis, the Hierarchy Levels axis, describes the
necessary advancements in hierarchy required for achieving
Industry 4.0. The core structure of this axis is based on
the IEC-62264 (Enterprise-control system integration) and
IEC-61512 (Batch control) standards within a manufacturing
environment. These two standards cover many sectors of a
factory, from process industry to factory automation. The
RAMI 4.0 model adds two additional layers:

• Product: The product itself is a key aspect of Industry 4.0
and still part of the model even after it has been manu-
factured and sold.

• Connected World: Connected world portrays cloud stor-
age and collaboration beyond one factory, between other
factories, suppliers, customers, and so forth, to achieve
greater connectivity than at factory level.

B. Industry 4.0 Components

An Industry 4.0 component (I4.0 component) serves as a
model, the purpose of which is to hold all data of assets
that can describe properties, configuration parameters, and
functions of other assets [6].

The British Standards Institution (BSI) group, known for
developing standards in Manufacturing and Engineering, de-

fines an I4.0 component as a globally and uniquely identifiable
participant that is capable of communication within an I4.0
system [2], [7]. This can range from a module within a machine
to a whole production system [4]. In general, an I4.0 compo-
nent is composed of an Asset and an Asset Administration
Shell as described below:

The Asset layer, as previously mentioned, represents all real,
physical things within a manufacturing environment that can
be connected digitally. Taking cold rolling mills as an example,
this will include physical equipment or products such as the
rolling mills, the rolls, the coils, and other machinery. This also
includes immaterial items such as documents, plans, orders,
and even the shift workers involved.

An Asset Administration Shell (AAS) serves as a virtual
and digital representation of all information and functions of
an asset, and acts as an administration interface accessible
within an Industry 4.0 network [8]. Communication between
assets occurs between their AAS, whereby the AAS provides
and moderates controlled access to the data [9]. Additionally,
an AAS contains an administration interface where its data
may be accessed through external application services, e.g. by
calling an Application Programming Interface (API) from an
Enterprise Resource Planning (ERP) system. The data itself
is stored in a strict format through one or more sub-models.
The sub-model approach of storing data is expandable and
flexible, and storage location on the data model is of free
choice [10]. Thereby, similar assets from different vendors
may contain different sub-models where the AAS simply acts
as the data manager [10]. The data set should contain the full
lifecycle of the asset, from its early stages of being planned
and manufactured until it is scrapped.

The stored data is processed by data-driven methods for
understanding manufacturing processes, thus enabling real-
time condition monitoring and maintenance of the physical
assets. The AAS is the key enabler of transforming legacy
industrial components into I4.0 components.

As knowledge-based frameworks, Semantic AASs equip
traditional AASs with knowledge representation formalisms
to allow semantic metadata modelling. Resource Description
Framework (RDF) and Web Ontology Language (OWL) are
prime examples of widely used models for standardizing
metadata and semantics [11]. Benefiting from the explicit data
semantics specified in semantic models, these Semantic AASs
enable interoperable machine-to-machine data exchange and
communications [4].

III. SURVEY METHODOLOGY

A. Research Questions

This survey paper will investigate research literature related
to Semantic AAS as an I4.0 component. There is much
literature on Industry 4.0 and I4.0 components, but the under-
standing of Semantic AASs is often overlooked. This review
aims to provide a clearer and more concrete understanding of
this topic.

The work of this survey paper is guided by answering the
following research questions:



• What are the key characteristics of Semantic AASs?
• What sub-domains of manufacturing have been studied

in the literature?
• What are the typical application cases?
In section IV, we answer the first two research questions by

reviewing the existing literature on Semantic AASs. In sec-
tion V, we answer the third research question by summarising
the application cases of Semantic AASs.

B. Inclusion & Exclusion Criteria
In this paper, we focus on the Semantic AASs that model

the Information Layer and Communication Layer within
RAMI 4.0. Indeed, these two layers are of vital importance for
the digital representation and real-time data analytics of phys-
ical assets. Although there are Semantic AASs that address
the challenges in other layers, the amount of papers found
are almost negligible compared to the two layers mentioned
above. Because of this, research papers that focus on other
layers are excluded from this study.

During this study, research papers, technical reports, and
white papers are considered valuable resources. However,
duplicates among these resources are excluded. This survey
primarily focuses on English papers only.

C. Corpus & Web search engine
To derive greater understanding of Semantic AASs, an

analysis of all relevant publications was carried out. This
topic contains strong blends of scientific literature and engi-
neering principle. Because of this, this survey used different
bibliographic databases, including Institute of Electrical and
Electronics Engineers (IEEE) Xplore for the engineering side,
and ACM for the scientific literature side. Finally, Scopus was
used which provided a combination of literature found in both
IEEE and ACM, as well as other valid sources.

D. Survey results
At the initial stage, the main keywords searched were Asset

Administration Shell. Scopus provided a result of 61 unique
hits from 2017 to 2020; 70.4% of which were conference
papers, 26.2% Articles and 3.4% categorized as others. The
vast majority of these publications were from IEEE and only
a handful from ACM. Very few results were from other
bibliographic databases, such as Science Direct and Web of
Science. As a result, this paper includes all relevant results but
will primarily focus on the results found from IEEE as well as
ACM. These keywords resulted in 37 papers on IEEE Xplore
from the years 2017 to 2020. This small number conveys that
this field of research is new and upcoming. From 2017 to
2020, the average annual number of papers are nine. In 2017,
four papers mentioned “Asset Administration Shell”, followed
by eight papers in 2018. This value jumped to 16 papers in
2019 and dipped to seven from January to October 2020.
Furthermore, there are no papers prior to 2017 which further
emphasises that this field is in early stages of research.

In comparison, ACM only contained six papers from 2017
to 2020. This conveys that most research is happening from
an engineering point of view.

When expanding the search to include Semantic AASs,
RDF-based AASs, knowledge-based AAS, we found under ten
relevant papers from the above digital libraries. Thus, we
extended our search with Google Scholar and other available
sources, and discovered seventeen relevant papers in total. We
will introduce these papers in the next section.

IV. SEMANTIC ASSET ADMINISTRATION SHELLS: THE
STATE OF THE ART

This section gives a detailed description of the Semantic
AASs that appear within the papers mentioned in the previous
section. The papers are categorized according to which layer
the Semantic AASs serve within the RAMI 4.0 architecture.
In this paper, we focus on two layers: the Information Layer
and the Communication Layer. Most of the reviewed literature
contribute to these two layers.

A. The Information Layer: RDF-based AASs

Normally, Semantic AASs use formal knowledge modelling
languages such as RDF and OWL to create digital representa-
tions of physical assets. These type of AASs enable industrial
devices to communicate and understand each other, for the
goal of semantic interoperability.

The first RDF-based data model for AAS was introduced by
Grangel-González et al. in 2016 [4]. This paper proposed to
add a semantic layer to AAS, stating the advantages of adopt-
ing an RDF-based approach. The developed AAS benefited
from the traits of RDF schema as it provided decentralized
and extensible global Identification, unified data Integration,
and Coherence among new taxonomies, vocabularies, and
ontologies. Because of the uniform information representation,
existing standards and asset data could easily be integrated
and referenced. To access relevant asset information, SPARQL
was used as a query language to retrieve data captured by the
Semantic AAS. The authors demonstrated the Semantic AAS
using a motor controller as a use case. This Semantic AAS
was extended by the same authors later in [12]. Here, they
proposed three improvements: 1) A significant extension of
the RAMI 4.0 vocabulary for describing sensor data, units
of measurement, and product information; 2) An RDF-based
vocabulary which incorporated the international standard IEC
62264 that aligned with the RAMI 4.0 vocabulary; 3) A
real-world use case on black carbon monitoring in industry.
The prominent characteristic of their work is the translation
of IEC 62264 standard-based RAMI 4.0 model to an RDF-
based uniform vocabulary. This translation provided a com-
mon description of Industry 4.0 components using a unified
knowledge representation language.

Similarly, Bader et al. introduced Semantic AASs in more
detail [13]. In their paper, the authors filled the gap between
industrial reference frameworks and semantic description of
the physical world. To achieve this goal, the authors mapped
the latest AAS data models into RDF format, and used Shapes
Constraint Language (SHACL) shapes to enable schema vali-
dation. Firstly, when mapping to RDF, they stated that the AAS
object is the root of every AAS. Thereby, it could also be the



entry for traversing the Semantic AAS graph. To cover the
semantics of an asset, the authors created rdf:type, rdfs:label,
rdfs:comment to cover the class assertions, name, description,
and kind attributes of the asset. Secondly, a fundamental
requirement of an AAS is to have a unique identifier — the
authors declared that it is possible to use the RDF’s URI
as a possible identifier. Otherwise, custom formats such as
International Registration Data Identifiers (IRDI) are allowed.
Submodels and SubmodelElements of AAS were realized and
modelled using Operations, ReferenceElements, Files, binary
objects and Properties classes. rdf:property was developed to
align the Property class with RDF’s graph model. To execute
this mapping, the authors used an open-source tool named
RMLMapper. They also illustrated how the transformation to
the semantic data model was able to decrease the amount of
required storage space.

Tantik and Anderl aligned the Plattform Industrie 4.0 AAS
guidelines with the World Wide Web Consortium (W3C) spec-
ifications in [14]. W3C provides the Object Memory Model
(OMM) which contains block-based digital object memories
(DOMe) to present highly standardized meta-information.
Combining OMM with an integrated component data model
produces a new data model: the Component Data Model
(CDM). The authors used CDM to present data of nested I4.0
components. Using a robot arm as a use case, they presented an
integrated data model that used a central remote maintenance
platform (CRMP) as a form of communication between AASs.

Hua and Hein investigated AutomationML from a semantic
point of view in [15]. They argued there was a lack of semantic
support for automated machine processing, and thereby, used
OWL to transform AutomationML data to a formal and
declarative semantic representation. They combined Inductive
Logic Programming (ILP) techniques with automated reason-
ing to obtain meaning of system unit classes. To demonstrate
this, they used a machine learning example using OCEL
and CELOE algorithms to demonstrate concept learning in
AutomationML using DL-Learner.

Thuluva et al. dived into the Web of Things (WoT) and
Semantic Web Technologies to address cross-domain interop-
erability problems in Automation Systems (AS) [16]. The WoT
standard provides an interface named Thing Description (TD)
that was developed to describe an object, as well as its meta-
data and interaction. This paper employed SWT in WoT and
used TD as the basis to model a WoT-enabled AAS.

B. The Information Layer: OWL ontology-based AASs

As another type of semantic models, OWL-based ontolo-
gies also play an important role for describing manufactur-
ing entities within a Semantic AAS. In computer science,
an ontology is considered as “an explicit specification of
a conceptualization for a domain of interest” [17]. Within
this definition, specification refers to an act of describing or
identifying something precisely. This requires the concepts
and relationships in ontologies to be clearly defined by using
formal logic. Since ontologies are developed based on formal
logic foundations, they have been pervasively used in industry

to ensure the semantic interoperability among different sys-
tems and users. In the manufacturing domain, ontologies play a
key role in many distributed intelligent systems as they provide
a shared, machine-understandable vocabulary for information
exchange among dispersed agents [18]–[21]. Large ontologies
are designed in a modular structure to enhance their reusability,
extendability, and easy maintenance.

To model the concepts and relations within ontologies, the
W3C developed a formal ontology language named OWL.
OWL is a component of SemanticWeb that explicitly rep-
resents the meaning of terms in vocabularies and the rela-
tionships between those terms. The representation of terms
and their interrelationships form an ontology. In the following
section, we review the existing OWL ontologies and their rule-
based extensions that are relevant to Semantic AASs.

The first group of studied ontologies were developed to
model product-related concepts for manufacturing. Vegetti
et al. [22] proposed a PRoduct ONTOlogy (PRONTO) for
the domain of Complex Product modelling. With primary
focus on product structure, this ontology considered different
abstraction levels of product concepts such as Family and
Variant. It also extended the conventional product structure
representations (BOMs) with considering composition and
decomposition structures of products within a variety of man-
ufacturing environments. However, PRONTO was not capable
of referring to the existing international standards related to
the modeling of product structure, processes, and features.
To address this weakness, Panetto et al. [23] developed
ONTO-PDM, which is an ontological model considered as
a facilitator for interoperating all application software that
shared information during the physical product lifecycle. The
distinctive merit of this ontology was its incorporation of
standardisation initiatives, such as International Organization
for Standardization (ISO) and International Electrotechnical
Commission (IEC) standards. This nature of ONTO-PDM al-
lowed the management of heterogeneous information scattered
within organizations, by formalising the knowledge related
to product technical data [23]. The MASON ontology [24],
developed by Lemaignan et al., is another prominent ontology
for manufacturing. This OWL ontology was developed to draft
a common semantic net in manufacturing. It conceptualised
three core concepts: Entities, Operations, and Resources. In
more detail, the product information was specified by three
sub-concepts: Geometric Entities, Raw Material, and Cost
Entities. The representation of product-related concepts were
linked to the description of manufacturing processes and
resources under the proposed semantic net in manufacturing.

The second group of reviewed ontologies focused on
process-related concepts for manufacturing. A manufacturing
process is a sequence of activities through which the raw
materials are assembled, integrated, and transferred into a
final product. To model manufacturing processes, Grüninger
et al. [25] proposed the Process Specification Language (PSL)
Ontology, which is a semantic model to facilitate correct
and complete exchange of process information among man-
ufacturing systems. Within the PSL ontology, the authors



formalized the concept of process in the form of first-order
logic theories. This formalisation has been widely used in
domain applications such as process modeling, process mon-
itoring, process planning, simulation, project and workflow
management [25]. Another process-related OWL ontology is
the one developed by Cao et al. [26]. In their work, a do-
main ontology was developed to formalise essential concepts
and relations about condition monitoring. The ontology was
structured into three sub-modules, namely the Manufacturing
module, the Context module, and the Condition Monitoring
module. This ontology was used within a Cyber Physical
System to enable real-time predictive maintenance. A case
study on a conditional maintenance task of bearings in rotating
machinery was performed to evaluate the proposed ontology.
This ontology was extended by the same authors in their
recent work [27]. The extended new ontology was named
Manufacturing Predictive Maintenance Ontology (MPMO).
MPMO was used together with Semantic Web Rule Language
(SWRL) rules to enable ontology reasoning, for detecting
and predicting possible anomalies that may happen within
manufacturing processes. The effectiveness and usefulness of
MPMO was tested on a real-world data set collected from a
semi-conductor manufacturing process.

The third group of ontologies addressed resource-related
concepts for manufacturing. In general, the concept Resources
is defined as physical objects that can execute a range of
operations during a manufacturing process. Borgo and Leitão
[28] formalized the concept of Resources by developing a core
ontology for manufacturing scheduling and control environ-
ments. In their work, a Resource was defined as “an entity that
can execute a certain range of jobs, when it is available, as long
as its capacity is not exceeded” [28]. The core ontology was
implemented as part of a multi-agent manufacturing control
system by using the Java Agent Development Framework
(JADE) framework. The author concluded that an established
foundational ontology plays an important role in handling
heterogeneous data generated by manufacturing control ap-
plications, especially those built upon distributed approaches
such as multi-agent systems. The notion of Resources was also
studied in the MASON ontology [24], where Resources are
further classified into four sub-notions: 1) Machine-tools (e.g.,
turning machines, drilling machines, milling machines); 2)
Tools (e.g., forging die and punch, turning tool, founding pat-
tern and mould); 3) Human Resource (e.g., procedure expert,
handling operator, programming operator); and 4) Geograph-
ical Resources (e.g., plants, workshops). The modelling of
manufacturing resources was of vital importance for estimating
the total cost for manufacturing activities.

C. The Communication Layer: Semantically-enhanced OPC-
UA

To tackle the Communication layer of RAMI 4.0, a joint
working group including OPC Foundation, ZVEI and VDMA
have chosen the OPC Unified Architecture (OPC-UA) as the
standard for machine to machine communication [29]. OPC-
UA is an enhanced, platform-independent, connection-oriented

communication protocol based on service-oriented architecture
(SOA) developed by the OPC Foundation [30]. The OPC-
UA protocol follows the IEC 62541 standards [31] which
are derived from the OPC-UA’s Core, Access and Utility
specifications [32].

Within RAMI 4.0, the Communication Layer provides com-
ponents for the communication between machines, devices,
production lines, and products. To enable this goal, data com-
munication standards are used to offer required communication
between sensors, actuators, and smart devices. In Industry
4.0, OPC-UA has emerged as a widely used standard for
data exchange and communication in smart factories [33].
Recently, semantic technologies are considered as a solution to
annotating data and provide unambiguous data semantics. The
provided data semantics are machine-readable information that
allows AASs to perform required actions intelligently without
human intervention.

When tackling the communication aspects, Grangel-
González et al. used RDF, and STO ontology to describe
I4.0 communication standards in [34]. They provided build-
ing blocks for the implementation of knowledge graphs for
Smart Factory Standards to enable mapping and semantic
integration. They used existing ontologies such as MUTO (for
tagging), FOAF (to represent agents & linking documents),
and DCTERMS (for document meta-data and RAMI (for
vocabulary). Afterwards, they described the main STO classes.
Some examples included sto:Standard, sto:SDO, sto:Domain,
sto:isPartOf, sto:relatedTo e.t.c.. They used VoCol as an
integrated environment to view and explore these ontology
classes. Using these classes, the authors provided a semantic
description of the OPC Foundation as well as OPC-UA. They
also provided a use case for searching standards and their
metadata.

Katti et al. [35] focused on the concept of the Semantic
Web Services (SWS), well known for allowing machines to
connect without human intervention. The authors integrated
OWL-S concepts into the OPC-UA specification, expanding
to the last layer of the automation pyramid, the shop floor.
To achieve this, they integrated the edge component GeSCo,
which also tackled the connectivity and network latency chal-
lenges in Cloud MES manufacturing systems. GeSCo commu-
nicated with the manufacturing resources through the OPC-
UA protocol. This approach added flexibility in generating
orchestration plans, to overcome any unpredicted events in
production. Their work was further developed in [36] where
they introduced Semantic Annotations (SAWSDL) concepts for
more added benefit. They named this approach Semantically
Annotated OPC-UA (SA-OPC-UA). They stated that the under-
lying enabling technology for SAWSDL was WSDL. WSDL
contains extension attributes that enable semantic annotations
to describe the syntax of the web services and their operations.
They stated that there was no equivalent facility in OPC-UA
that could achieve the same goal.



D. The Communication Layer: the Semantic Web of Things

In Industry 4.0, the Internet of Things (IoT) aims to cre-
ate a network of physical objects that are embedded with
smart sensors, actuators, and software. To enable real-time
data analytics, AASs are required to be equipped with low-
latency data exchange and communication capabilities. IoT is
a promising solution for this task. However, IoT suffers from
a lack of interoperability which leads to its weakness in data
management in pervasive and heterogeneous environments
[37], [38].

One of the earliest contributions to the Semantic Web of
Things was proposed by Pfisterer et al. in [39]. In their work,
a service infrastructure named SPITFIRE was developed as
an architecture of the Semantic Web of Things. SPITFIRE
provides uniform vocabularies to integrate descriptions of
sensors and physical objects with the linked open data (LOD)
cloud, by which the analysis of data is accomplished on
the web. It also provides a comprehensive representation and
integrated abstractions for physical objects, their high-level
states, and how they were linked to sensors. By this, users
were able to access the current status of real-world entities.
This vision was achieved by embedding a semantic search
engine in the architecture which integrated different static and
dynamic data sources in a seamless way [39].

Another framework for the Semantic Web of Things was
developed by Ruta et al. in [40]. To associate semantic anno-
tations to real-world objects, locations, and events, the authors
outlined a novel general framework for the Semantic Web of
Things. The framework ubiquitous Knowledge Base (u-KB)
is based on an evolution of the classical Knowledge Base
model [40]. To enable data annotation, domain ontologies were
used as conceptual models for a particular domain of interest.
The data annotation allows semantic-based dynamic resource
dissemination and discovery within a mobile communication
network.

In a more recent work, Jara et al. analysed the IoT conver-
gence issue by presenting the different architecture levels of
the Semantic Web of Things [41]. The focus was addressed
on the trends for capillary networks and for cellular networks
with standards such as IPSO, ZigBee, OMA, and the oneM2M
initiative [41]. The work paved the way for developing a
semantic layer for the IoT by giving a comprehensive analysis
of each technology. The analysed technologies are mainly the
common internet protocols, including IPv6, Hypertext Transfer
Protocol (HTTP), Constrained Application Protocol (CoAP),
the Internet Engineering Task Force (IETF) protocols.

The reviewed articles in this section mainly contributed to
the Information and Communication Layers of RAMI 4.0.
Table I summarises our survey results regarding the domains,
information and communication models, and achieved goals
of the reviewed papers.

V. SEMANTIC ASSET ADMINISTRATION SHELLS:
APPLICATION CASES

In this section, we abstract from technologies and focus on
application cases of Semantic AASs.

Grangel et al. demonstrated the semantic implementation
of a Servo Motor Controller used for automation within an
Engineering and Manufacturing domain in [4]. The same
authors also semantically described industry sensors in legacy
systems in [12]. Within these legacy systems, the authors used
the industrial data set AirProbe from an SQL dump. This dump
contained sensor information such as geospatial locations and
measurements of black carbon concentrations, temperature and
humidity [12]. From this data, they were able to query active
sensors within a given time interval and displayed them as
geographical coordinates on an interactive map.

Similarly, Pfisterer et al. also used sensors as a use case [39].
However, their application focused on connecting sensors to
the internet and the web, as well as searching for specific
semantic entities from the sensors. Their application valued
and attempted to derive real world entities and their high-
level status (e.g. meeting room that is occupied) over simply
displaying the sensor and its raw data (sensor 536 with motion
detection at time T ). To realise this, appropriate technologies
of mechanisms that establish an explicit mapping between
sensors and real life entities was looked into.

Katti et al. [36] made use of a manufacturing production
scenario of a shop-floor. Their example included a produc-
tion routing consisting of three unique operations: welding,
color spraying, and quality checking. Firstly, these three tasks
published their meta-data to the appropriate server that could
send and retrieve routine details from a Cloud Manufacturing
Execution System (MES), then back to the server. The server
then assigned tasks and acknowledgements to each operation
starting with welding.

Bader et al. [13] developed three examples of mapping As-
set Administration Shells into Semantic Asset Administration
Shells. The first AAS represented a Raspberry Pi (Pi 3B+) that
contained three sub-models that stored technical characteris-
tics data, documentation materials (product sheet and usage
manual) and asset descriptions, constructed by a total of 52
SubmodelElements. In contrast, the second AAS represented
an electronic Automation Controller for automation facilities,
constructed by three sub models with more than 100 Sub-
modelElements. Finally, the third AAS represented a Multi-
Protocol controller; this AAS contained eight submodels and
over 150 SubmodelElements. When evaluating the mappings,
they discovered that some expressions were not able to be
transported from AAS to Semantic AAS as RDF struggled
to sufficiently present some constructs e.g. the Property class
in [13]. This also occurred as many input entities contained
redundant information in their example.

Hua et al. [15] used DL-learner framework to adopt the
OCEL and CELOE learning algorithms for concept learning
in AutomationML. The authors were primarily interested in
the accuracy and efficiency of these algorithms and thereby
developed three scenarios that follow typical system unit class
structures, each of which having unique complexities. The data
set (AutomationML data) contained 222 classes, 63 properties
and 61 individuals. Their tests derived that CELOE is much
slower than OCEL, and not determined by the complexity of



TABLE I
DOMAINS, INFORMATION AND COMMUNICATION MODELS, ACHIEVED GOALS OF THE REVIEWED PAPERS

Reference Domain Information Model Communication Model Achieved Goals
[4] Automation control RDF, RDFS, OWL. OPC-UA Present the initial concept of Semantic I4.0 Component.
[12] Industry sensors RDF, D2RQ, SPARQL Semantic Sensor Network (SSN) Translate the IEC 62264 standard into RDF.
[13] Automation control RDF, SHACL RMLMapper Map the latest AAS data models into RDF.
[14] Production robotics Object Memory Model (OMM) Central remote maintenance platform Align AAS guidelines with W3C specifications.
[15] Engineering systems OWL AutomationML Transform AutomationML data to OWL.
[22] Complex product modelling Ontology - Model product information in different abstraction levels.
[23] Complex product modelling Ontology - Incorporate international standards in product modelling.
[24] Smart manufacturing Ontology - Draft a common semantic net for manufacturing.
[25] Process modelling PSL - Use PSL to enable the exchange of process information.

[26], [27] Smart manufacturing Ontology, logic rules - Enable ontology-based predictive maintenance.
[28] Smart manufacturing Ontology, JADE framework - Handle heterogeneous manufacturing data.
[34] Smart manufacturing RDF, Standards Ontology (STO) OPC-UA, AutomationML Facilitate the structuring, selection, and integration of standards.

[35], [36] Smart manufacturing OWL-S, SAWSDL OPC-UA, GeSCo Add flexibility in generating production plans.
[39] Semantic sensor web SPITFIRE Linked Open Data (LOD) cloud Link semantic sensor models to the cloud.
[40] Semantic web of things Ontology ubiquitous Knowledge Base (u-KB) Link semantic web to a mobile communication network.
[41] Semantic web of things Ontology IPSO, ZigBee, OMA, oneM2M Pave a way for developing a semantic layer for the IoT.

TABLE II
APPLICATION CASE OBJECT AND PURPOSE

Reference Physical Object Application Purpose
[4] Festo AG Motor Controller Semantically describe an I4.0 component and some of its basic relations.
[12] Industry Sensors in Legacy Systems Display sensors on a global interactive map based on time stamps.
[13] Raspberry Pi, Electronic & Multi-protocol Controllers Map AASs into Semantic AASs.
[14] Robot Arm Simulate the adaptation and remote maintenance of a production robot.
[15] KUKA Robot Adopt OCEL and CELOE learning algorithms for concept learning.
[16] Embedded Micro Reasoner Detect overflow of water in a tank using sensors.
[36] Shop Floor Production Machines Welding, color spraying and quality testing processes on shop floor.
[39] Sensors Connect, search and display sensors to the web & internet.

the target concept. This was verified when their most simple
test case in OCEL was the most computationally intensive.

Thuluva et al. [16] used an embedded micro reasoner to
demonstrate the FESTO process on an automation workstation.
The micro reasoner ran on resource-constrained devices with
Unix/Linux OS and consisted of two main parts: a micro
event processing engine and a datalog reasoner. The former
managed event rules that were accessible over a RESTful API
and were directly deployed on the automation system devices.
The latter provided datalog reasoning, and was embedded in
the edge device. The edge device itself was embedded on
an automation system and acted as a gateway between the
automation system and the cloud. The author’s demo included
a binary float sensor that included liquid level values on a tank
to ensure the tank did not overflow.

Table II summarises our survey results including the purpose
for each application, as well as the physical objects used for
each use case.

VI. CONCLUSION AND OPEN CHALLENGES

The Plattform Industrie group developed a reference archi-
tecture model named RAMI 4.0 to tackle the ongoing ques-
tions of Industry 4.0. This model introduces a new key tech-
nology known as the AAS that is the key enabler for providing
a unified way of storing and communicating information
between components. From our survey, we have discovered
that there is plenty of ongoing research looking at the RAMI
4.0 model but only some containing implementations of AASs.

It is clear that there is a lack of formal standardization when
implementing AAS as many papers use different standards
and technologies for their AAS implementations. Further-
more, a key fundamental of Industry 4.0 that needs to be
addressed is the semantic interoperability between machines.
Many of the AAS implementations display ways of storing
and communicating data between industrial devices but these
devices lack to demonstrate the ability to understand the data
itself. Thus, the direction towards Semantic-based AAS with
the use of RDF, OWL and other semantic approaches have
been investigated to achieve greater interoperability. In this
paper, we have demonstrated existing research contributions
regarding Semantic AASs, under the framework of RAMI 4.0.
The main characteristics, functionalities, frameworks, and use
cases have been covered in this survey.

The survey results expose three main open challenges. The
first challenge is the lack of standardised information models
for Semantic AASs. Most of the reviewed papers proposed
fragmented frameworks or models with a focus on a specific
sub-domain of manufacturing, while only a few of them
addressed the standardisation issue at a high level. For future
works, standardised information models need to be developed
with referring to formal ontologies and international standards.
The second issue is the need for statistical data processing
capabilities for Semantic AASs. As semantic technologies
mainly use logic formalisms to describe a certain domain of
interest, they have an inherent weakness in processing numeric
data. To address this issue, statistical methods such as machine



learning and big data technologies are required to equip
Semantic AASs with strong mathematical data processing
functionalities. The third open challenge is the lack of human
behaviour modelling within Semantic AASs. Although fun-
damental machine operations can be executed autonomously
without human intervention, many decisions for complex tasks
need the involvement of humans. However, only a few of
the existing research works have considered human behaviour
within a decision making cycle. In the future, data from social
perspectives need to be considered to improve the decision
making of manufacturing systems.
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[25] M. Grüninger, “Using the psl ontology,” in Handbook on Ontologies.
Springer, 2009, pp. 423–443.

[26] Q. Cao, F. Giustozzi, C. Zanni-Merk, F. de Bertrand de Beuvron, and
C. Reich, “Smart condition monitoring for industry 4.0 manufacturing
processes: An ontology-based approach,” Cybernetics and Systems,
vol. 50, no. 2, pp. 82–96, 2019.

[27] Q. Cao, A. Samet, C. Zanni-Merk, F. de Bertrand de Beuvron, and
C. Reich, “Combining chronicle mining and semantics for predictive
maintenance in manufacturing processes,” Semantic Web, no. Preprint,
pp. 1–22, 2020.

[28] S. Borgo and P. Leitão, “Foundations for a core ontology of manufac-
turing,” in Ontologies. Springer, 2007, pp. 751–775.

[29] Z. Platform Industrie 4.0, “Details of the asset administration shell - part
1. version 2.0,” 2019.

[30] X. Ye and S. Hong, “An automationml/opc ua-based industry 4.0
solution for a manufacturing system,” 09 2018, pp. 543–550.

[31] S. Grunner, J. Pfrommer, and F. Palm, “Restful industrial communication
with OPC UA,” in IEEE Transactions on Industrial Informatics, 2016,
vol. 12, no. 5, pp. 1832–1841.
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