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OPC UA is an industrial communication protocol that enables the modelling of
complex information with semantics and exposing it in the address space of an
OPC UA server. With developments such as the Industrial Internet of Things and
Industrie 4.0, the amount of data in the industrial environment is increasing and
it is provided by an increasing number of sources. This can lead to information
becoming increasingly scattered, which creates difficulties and inefficiencies in
getting a view of all the available information.

This thesis presents the design and implementation of a software solution that can
integrate information from multiple OPC UA source servers that provide informa-
tion in different ways and from different viewpoints. An existing aggregating OPC
UA server was improved based on elicited requirements to implement an integration
platform that can group together and display the heterogeneous information sources
in its specially organized address space. The developed software solution consists
of three parts: instance aggregation, type aggregation and service mappings, that
cooperate together to create the needed functionality.

The implemented prototype solution was evaluated in several test cases and found
to meet the goals set for it. The instance aggregation procedure is able to find and
group relevant information from different sources, while the type aggregation and
service mappings keep the type definitions of the aggregated information intact.
The instance aggregation procedure can also be configured by the user with a set
of rules that enable compatibility with different use case needs. In the future, the
results of this thesis will be used as a starting point in the incremental development
of improved versions of the aggregation feature.
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Teollisuudessa käytetty OPC UA -tiedonsiirtomäärittely mahdollistaa monimut-
kaisen tiedon ja semantiikan esittämisen UPC UA -palvelimen osoiteavaruudessa
oliomallin avulla. Teollisen internetin ja Industrie 4.0:n viitoittama suunta teol-
lisuudessa on lisääntyvä tiedon määrä yhä useammista tietolähteistä. Tämän
seurauksena tieto voi pirstaloitua ja täten vaikeuttaa kokonaiskuvan saantia ole-
massaolevasta tiedosta.

Tämä diplomityö esittelee suunnittelun ja toteutuksen ohjelmistolle, joka pystyy
integroimaan tietoa useista eri OPC UA -lähdepalvelimista, jotka voivat esittää tie-
toa eri tavoin ja eri näkökulmista. Olemassaolevaa aggregoivaa OPC UA -palvelinta
kehitettiin uusiin vaatimuksiin perustuen toteuttamaan integraatioalusta, joka voi
ryhmitellä yhteen ja näyttää tietoa erilaisista lähteistä tarkoituksenmukaisesti
järjestetyssä nimiavaruudessaan. Kehitetty ohjelmistoratkaisu koostuu kolmesta
osasta: instanssien aggregoinnista, tyyppien aggregoinnista ja palvelukartoituksista,
jotka toimivat yhdessä tuottaakseen tarvittavan toiminnallisuuden.

Kehitettyä prototyyppiratkaisua arvioitiin useissa testitapauksissa ja sen havaittiin
täyttävän sille asetetut tavoitteet. Instanssien aggregointi pystyy löytämään ja
ryhmittelemään yhteenkuuluvat tiedot eri lähteistä, kun taas tyyppien aggregointi
ja palvelukartoitukset pitävät aggregoidun tiedon tyypppimäärittelyt muuttumat-
tomina. Käyttäjä voi konfiguroida instanssien aggregointia käyttämällä erityisiä
sääntömäärittelyjä, jotka mahdollistavat aggregointiprosessin yhteensopivuuden
eri käyttötarpeiden kanssa. Tulevaisuudessa tässä opinnäytetyössä saatuja tuloksia
käytetään lähtökohtana aggregointitoiminnallisuuden asteittaisesssa jatkokehittä-
misessä.

Avainsanat: OPC UA, aggregoiva palvelin, tietomalli
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1 Introduction

1.1 Background
The amount of data in the modern industrial environment is increasing with rising
levels of digitalization and automation. The emerging concepts of Industrial Internet
of Things (IIoT) and the Industrie 4.0 initiative aim to further increase the available
information by introducing interconnected sensors and cyber-physical systems as
providers of vast amount of data and services. The information can be used as a tool in
improving decision making processes and automation control in industrial information
systems, such as Enterprise Resource Planning (ERP), Manufacturing Execution
Systems (MES) and Supervisory Control and Data Acquisition (SCADA). However,
the key challenge regarding these developments is how to effectively manage and
utilize that vast array of data that is provided by numerous decentralized providers.
The first issue comes from the interoperability problems that can arise from using
disparate communication protocols between various devices and systems. The second
issue is related to the lack of horizontal and vertical integration that arises from having
multiple independent servers instead of a centralized integration server. Accessing
different systems and devices, with heterogeneous information models and from
different levels of the automation pyramid, can be challenging. Configuring the
required connections and security settings for multiple servers requires great effort.
Furthermore, it is not easy to acquire a holistic view of information that is scattered
into several servers.

The OPC Unified Architecture (OPC UA) communication protocol aims to answer
these dilemmas with its interoperable nature, scalability and flexible information
modelling capabilities. OPC UA enables integration of production data from the
device level to different levels of information systems. Metadata and semantics
provided by the information modelling capabilities of OPC UA can answer the needs
of industrial information systems, in addition to basic level automation control. OPC
UA can expose and access data regardless of the data content or the device platform,
thus enabling interoperability between numerous systems of various applications.
Currently, there are several information modelling standards for OPC UA that
concentrate on modelling different aspects of systems. Different models always have
certain viewpoints to the modelled systems and usually remain separate from each
other due to natural separation of different engineering domains. These models
might also be divided into different servers, which is often the case in the industrial
environment. For example, real-time device information might be provided by
automation systems while schematic design data is provided by information systems
in the manufacturing operation management level. Division of data to different
servers can be beneficial due to reasons of redundancy, modularity and load-balancing.
However, in the worst case, this might result in several servers providing various
models representing different aspects of the same entities (physical or virtual). In
that case, integration of information is lost. If a user wishes to gain a complete view
of the information available, he must access multiple models and possibly connect to
multiple servers to combine all the existing data.
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One solution to managing and accessing multiple OPC UA source servers providing
heterogeneous data is the aggregating server paradigm presented in the fundamental
works of Mahnke, Leitner and Damm[1] and in the OPC UA Specification[2]. The
aggregating server is a single server that provides an integrated entry point to the
data and services of several underlying source servers. It aims to combine the
information from the source servers in its own address space in a purposeful way
and can also perform transformations on the data models of the source servers
if necessary. Additionally, aggregating servers can be utilized as tools of vertical
integration. Aggregating servers from the lower levels of automation hierarchy can act
as source servers for higher level aggregating servers. In this manner, information is
organized in a way that replicates the plant structure and the higher level information
systems are not required to connect to the numerous lower-level devices or systems
directly.

OPC UA Historian is an existing commercial product developed by Prosys
OPC Ltd. It offers functionality for collecting data values from connected servers
into a database, but it also provides simple aggregating server capabilities. The
aggregation functionality in the OPC UA Historian adds an entry point to each
configured source server to its own address space, allowing users to browse any of
the connected individual servers through these entry points. In this manner, the
OPC UA Historian acts as an integration portal for multiple underlying servers.
However, this functionality is very basic and keeps the information from the different
servers strictly separated. Furthermore, the existing implementation introduces type
consistency issues, which will be explained later in this thesis.

The aggregating OPC UA server and the integration of information from dif-
ferent domains in OPC UA has been researched in the Technische Hochschule
Ingolstadt[3][4], in the Technische Universität Dresden[5][6], in the Tampere Univer-
sity of Technology[7] and in the Aalto University[9][10][11][12]. The first article by
Großmann et al.[3] presents the motivation for using aggregating servers and proposes
a generic architecture as well as evaluates an implemented prototype solution. The
second article by Großmann and Banerjee[4] expands on the previous with respect
to handling aggregation of different information models along with an overview of a
possible architecture. The problem is very similar to the one presented in this thesis.
However, the solution presented by Großmann and Banerjee in the article does not
cover any technical or implementation details. Thus, it cannot be directly utilized in
creating actual software implementations. The papers by Wollschlaeger et al.[5][6]
provide an example of tackling the problem of combining heterogeneous informa-
tion models from the domains of industrial and building automation by creating a
new higher level homogenized information model. Hästbacka et al.[7] outline the
requirements for a concept of an aggregating OPC UA server used for centralized
condition monitoring of field devices and sensors. The master’s theses written by
Elovaara[9], Tuomi[10] and Tuovinen[11] cover topics related to aggregating servers.
Elovaara studies the use of aggregating servers in agricultural work machines and
Tuomi their usage in flexible manufacturing systems. Tuovinen presents a solution
on how to perform address space transformations between the source servers and the
aggregating server. The works are all also summarized in the conference paper by
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Seilonen et al.[12].

1.2 Objectives and Scope
The basic concepts of the aggregating server in OPC UA, from the relaying of
services to basic data model transformations, have been examined and proven in
practice by the aforementioned research and even commercial solutions such as the
UaGateway software by Unified Automation and the OPC UA Historian by Prosys
OPC. Nevertheless, the issues related to aggregating several servers with various
heterogeneous information models have been largely left uncovered. The central topic
that this thesis is concerned with is the situation where there are various servers
providing different aspects of the same entities with dissimilar information models.
This problem has only been briefly discussed by Großmann and Banerjee[4].

The aim of this thesis is to first research the different information model specifica-
tions that exist for OPC UA. The purpose is to determine what are the viewpoints
and specific characteristics of the information models. Secondly, this knowledge is
then utilized in developing a prototype feature in the Prosys OPC UA Historian
software for aggregation of different information models that display different aspects
of the same entity. The goal is that the new aggregation feature is able to create a
user-configurable aggregated address space where information from multiple source
servers and from different information models is concentrated. Such a solution would
provide an integration platform for information and an easy access point in use cases
involving horizontal or vertical integration of data. The feature aims to be a generic
solution and applicable in a wide array of domains, including industrial information
systems. In addition, it is necessary that the solution ensures that all type definitions
in the aggregated address space are consistent among instances that are integrated
from different source servers. Before developing the implementation, more specific
requirements need to be determined and analyzed. The final implementation is tested
and evaluated using a set of simple test cases displaying different integration needs
and involving various servers implementing multiple information models.

1.3 Research Methods
Primary sources for knowledge on current research on the subjects of aggregated
servers and information models in this thesis were the article papers mentioned in the
previous section, mainly by Großmann et al.[3][4] from the Technische Hochschule In-
golstadt and the master’s theses written by Elovaara[9], Tuomi[10] and Tuovinen[11]
from the Aalto University. The premier sources for the basic concepts of OPC UA
communication protocol were the fundamental works of Mahnke et al.[1] and the offi-
cial specification documents for OPC UA[2][13][14][15]. The official documentations
of the various OPC UA companion specifications[16][17][18][19][20] were extensively
studied in order to map the characteristics of the different information models.

The attained knowledge from the literature review was utilized in the software
development phase. A set of requirements was specified for the new aggregation
functionality and a software blueprint was designed to meet these requirements.
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During implementation, the existing source code of the Prosys OPC UA Historian
software was first thoroughly examined. Functional prototyping of the implemen-
tation was then used as a tool for intermediate experimentation and evaluation
during application development. This was a valuable source of direction during the
development process. The finished implementation was a preliminary prototype of
the new features in the Historian software. The solution was then evaluated against
the defined requirements and analyzed for shortcomings that could serve as areas
of future development before the feature is added to the commercial version of the
Historian software.

1.4 Structure of the Thesis
The work in this thesis is divided into five main chapters. This first chapter outlined
the background, existing research and motivation related to this thesis and also
introduced the ambitions set for the result of this work.

The second chapter introduces several important concepts related to the back-
ground of this study work. The viewpoint is the use of the OPC UA communication
protocol as an integration platform as is the aim of this thesis.

The third chapter describes the characteristics of the current commercial version
of the Historian software and details its issues. These issues and new demands are
then used to define the requirements for the implementation that is to be developed
in the course of this thesis.

The fourth chapter presents in detail the design of the implemented aggregating
server feature. It covers the functionality, algorithms and architecture of the developed
solution.

The fifth chapter evaluates different aspects of the implemented aggregation fea-
ture. It presents a set of test cases used to demonstrate and evaluate the functionality
of the developed software. The chapter also offers a detailed analysis of different
aspects of the implementation.
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2 OPC UA as an Integration Platform
This chapter presents several topics that are essential background information for the
topic of this thesis, namely information modelling and aggregating servers. The larger
theme is the use of OPC UA communication protocol as an integration platform
throughout the information systems in an industrial environment. The first section
introduces the concept of information modelling on a general level and its benefits
especially as a tool for integration. This is followed by a section with an overlook of the
OPC UA communication protocol and its implementation of information modelling.
The fourth section first presents the concept of the OPC UA companion specification
and then gives a short description of some of the central companion specifications.
The last section of the chapter describes the aggregating server paradigm that is a
central theme of server integration in OPC UA.

2.1 Information Modelling
Information modelling is, in essence, the enrichment of basic data values with
semantics and metadata that transform simple data into information. Information
models define the concepts, rules, constraints, relationships and sometimes the
functionality related to the information[21]. Information models usually apply to a
particular limited field or a domain and different domains possess distinctive models.
Information models are created to support the requirements of the specific purposes
and use cases of the application domain. Hence, the scope of the model is defined
already in the early stages of development[22].

Information models are usually concerned with modelling representations of
general entity types and their properties, relationships and operations, but not
particular instances[22]. The types can represent either abstract concepts or they
can model real-world objects. Type definitions provide the constraints and the
necessary properties and components needed to build a valid instance of the type.
The definitions simply provide a formal way of describing entities but do not restrict
the mapping of the types to existing instances.[23]

Information models also define relationships between entities. The relationships
describe the internal connections and interactions between different types of instances.
The classic view of information modelling incorporates three generic widely used rela-
tionships: generalization, classification and aggregation. A ’generalization’ describes
the relation between a superclass and a subclass, a ’classification’ defines the type of
an instance and an ’aggregation’ depicts that an entity is comprised of other entities.
However, many more relationships exist and can be utilized if they are supported by
the modelling language and standards.[24] Relationships between objects is a key
concept that facilitates the building of complex structures with diverse semantics
that can closely relate to the characteristics of actual physical or software entities.

An important motivation behind the use of information models is that they provide
structure to data and, therefore, facilitate better organization and accessibility to
said data. With better organization, each user can locate and access only the
information that is relevant to their demands. The well-established concept of the
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automation pyramid model shows information flowing upwards through different
layers of industrial information systems. The left side of the figure 1 below presents
a simplified version of the automation pyramid. Basic data is generated at the
machine level that is responsible for sensing and manipulating the actual physical
production process. This data is collected and utilized in the control network level by
systems like SCADA (supervisory control and data acquisition) and DCS (distributed
control system). Further up the hierarchy, the data is utilized by systems managing
the site-specific manufacturing operations, such as MES (manufacturing execution
systems). At the top level, the data can be accessed through an enterprise-wide ERP
(enterprise resource planning) information system. Each of these levels have their
unique use cases and requirements related to the the available data. With the help of
well-formed information modelling, each level of the automation hierarchy can utilize
the information structures to access only the data that it requires and formulate the
data to match its needs.

The emerging trend in industrial automation is towards flexible modular systems
composed of cyber-physical systems (CPS) as demonstrated by strategic initiatives
such as the Industrie 4.0 initiative of the German government. OPC UA communi-
cation protocol is also among the standards promoted for use in the Industrie 4.0
initiative.[25] The cyber-physical systems are autonomously exchanging information,
triggering actions and controlling each other over a communication network[26]. In
this way, the automation pyramid can be flattened into an Industrial Internet of
Things (IIoT), where the pyramid is instead an interconnected mesh network. This
structure is presented in the figure 1 below, where the left side shows the traditional
layered automation pyramid and the right side shows the flattened network of IIoT.
The CPS modules provide virtual descriptions of the information and services of real
physical objects, which is another source of demand for sophisticated information
modelling. The demands of openness and interoperability between heterogeneous
system components creates the need for standardized modelling of information.

Figure 1: Structure of the automation network in a hierarchical automation pyramid
(on the left) or in a mesh network of Industrial Internet of Things (on the right)[27].

However, the motivation for information modelling is not just to bring efficiency
and integration, but to also provide interoperability. Without unified information
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models inside common domains, different vendors and manufacturers would each
organize their data in different ways. This patchwork of information would result
in severe compatibility issues between different data models. The consumers of
information would need to handle each vendor-specific type individually, even if
they are similar in concept. On the other hand, if all the vendors model their
information according to a predefined standard, it is possible for the user to handle
similar types in a similar way, thus providing increased interoperability. These
interoperability benefits can be maintained even when applying a vendor-specific
information model, if the vendor model is derived from a common higher-level
information model. Nevertheless, in order to properly use the semantics provided by
an information model, the user of the information model needs to be aware of the
model and be configured to utilize it.

2.2 OPC Unified Architecture
2.2.1 Introduction

Standardized in IEC 62541, OPC Unified Architecture (OPC UA) is a platform-
independent communication protocol and the successor of the original OPC (also
known as OPC Classic) that is widely used in industrial automation systems. Both
standards have been developed by the OPC Foundation. OPC UA was released in
2008 to integrate all the different OPC Classic standards (OPC Data Access, OPC
Alarms & Events and OPC Historical Data Access) under one framework. Mahnke
et al.[1] summarize the improvements of the OPC UA architecture over the OPC
Classic to include: platform independence, interoperability, performance, security,
reliability and ability to define complex information.

The OPC UA specification defines a service-oriented architecture (SOA) with a
set of services that form an interface that is utilized by OPC UA servers as suppliers
of services and by OPC UA clients as consumers of services. All the possible OPC UA
services are described in the part 4 of the OPC UA Specifications[14]. The services
include, for example, functionalities for discovering and connecting to servers, reading
and writing attribute values, exploring the address space of servers and monitoring of
data changes. Part 1 of the OPC UA specifications[2] offers an overview of the OPC
UA features that are described next. The OPC UA services utilize various transport
protocols and data encodings for communication and data transfer between the server
and client. OPC UA supports the use of transport protocols such as the internet
standard HTTPS but also a faster binary OPC UA TCP protocol. Data encoding can
utilize either XML or a specialized UA Binary format, however, the XML-format has
not been widely adopted. The core design and definitions of OPC UA are separated
from the underlying computing and network transportation technologies. OPC UA
also provides a robust security model with application and user authentications and
it also enables the use of encryption in the transport layer.
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2.2.2 The Address Space Model

Part 3 of the OPC UA specifications[13] describes the concept of the Address Space
Model that governs how information in OPC UA is modelled. The central concepts of
these definitions are summarized here. Throughout this thesis, capital letters are used
in representing all OPC UA–specific terms, similarly to the OPC UA specification
documentation.

OPC UA employs an object-oriented data model with detailed metadata. This
allows for modelling of complex systems as Objects with Variables and Methods. The
Variables allow for representing data for the client and the Methods allow representing
functionality. The structure of an OPC UA Object is presented in the figure 2 below.

Figure 2: Structure of an Object in OPC UA[13].

The fundamental component of an OPC UA server address space is the Node.
It is a structure that consists of a set Attributes and References and can be an
instance of any of the eight NodeClasses (Object, ObjectType, Variable, VariableType,
Method,ReferenceType, View and DataType) defined in the OPC UA specification.
Each NodeClass has a set of mandatory attributes. The Node is presented in the figure
3 below. All information in the address space of an OPC UA server is constructed
of these base Nodes. The Nodes have References to other Nodes that organize the
information in the address space of an OPC UA server in a mesh network of Nodes.
References are not strictly hierarchical but have many variations and they can be
application specific.

Basic Nodes can be combined through References to define types. Types are
equivalent to the class concept in programming languages. Types comprise of any
number and class of Nodes and present a common structure for all instances of that
type. The Address Space Model defines a set of standard ObjectTypes, DataTypes
and ReferenceTypes.
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Figure 3: Structure of a Node in OPC UA[13].

2.2.3 Information Modelling in OPC UA

The OPC UA specification defines an information model as an ’organizational
framework that defines, characterizes and relates information resources of a given
system or set of systems’[2]. The Address Space Model is the metamodel for all
information models in OPC UA[1]. All OPC UA information models utilize the
concepts and restrictions of the Address Space Model to define their domain-specific
formalizations.

The Part 5 of the OPC UA specifications[15] already defines a standard Informa-
tion Model containing mainly basic TypeDefinitions for different NodeClasses, such
as the BaseObjectType, BaseVariableType and BaseDataType as well as some of
their subtypes. The base Information Model also defines the entry point for clients
to the server address space and an Object named ’Server’ providing diagnostic and
capability information related to the server application in question. In addition,
the OPC UA specifications also define some extensions to the base model for the
requirements of services related to process information. These information models
are divided into five separate documentations according to their use case domains:
Data Access[30], Alarms and Conditions[31], Programs[32], Historical Access[33] and
Aggregates[34].

Every OPC UA server contains the base Information Model, which is the model
of an empty server. However, servers can support multiple information models at
the same time. All other domain-specific information models extend from the base
Information Model by subtyping the base types. Nonetheless, some domain-specific
information models do not directly extend from the base model but instead they
are derived from other domain-specific information models. In this manner, the
information models in OPC UA form a layered structure where each increasingly
specific model extends the more general models. This structure is shown in the
figure 4 below, where the lowest level is the base Information Model. On top of the
base model are the service-specific information model extensions for Data Access,
Alarms & Conditions, Programs, Historical Access and Aggregates. Above this
composition of general information models defined in the OPC UA specifications
are the companion specifications. Companion specifications are domain-specific
information models that are specified jointly by organizations operating in those
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domains. The concept of companion specifications and details of some of the central
companion specifications are covered in more detail in the next section of this chapter.
On the uppermost level of the OPC UA information model structure are the highly
specified information models defined by different companies or vendors for use in
their specific products. The composition of information models can be extended even
further, as each server application may specify more detailed information models
specializing even further from the vendor-defined information models.

Figure 4: The layered structure of information models in OPC UA[35].

The server communicates the information model it utilizes in its address space
in the form of definitions of Nodes. This type information can be read from the
address space and utilized by any connected client. The Nodes defined by information
models can be of any NodeClass. Type definitions are communicated in the form of
ObjectTypes, VariableTypes, DataTypes and ReferenceTypes. Besides them, the
information model can also define well-defined instances such as Objects and their
standard Properties and Methods and even new ModellingRules. In addition, any
kind of constraints can be defined, such as semantic (e.g. naming conventions) and
DataType restrictions.

Each Node in the OPC UA address space has a NodeId Attribute that acts as a
server-wide identifier for the Node. The NodeId contains a NamespaceIndex or a
NamespaceUri. The NamespaceIndex is merely an index used to access a Names-
paceUri from the NamespaceArray of the server. Therefore both the NamespaceIndex
and the NamespaceUri correspond to a URI value that identifies the naming authority
for the Node. This URI value is used to state the information model that the Node
belongs to. Thus, each Node is uniquely tied to its information model and similar
Nodes from different information models can be distinguished from each other. The
NodeId also contains a value part that acts as an unique identifier in the scope of
the information model marked by the URI.

OPC UA provides an object-oriented approach to information modelling. Objects,
in OPC UA terms, are composed of other Objects, Variables and Methods. Objects
and their components all fall under the term Node and therefore possess sets of
Attributes and References. The relationships between entities in an OPC UA
information model are expressed by utilizing the References. The Node that contains
the Reference is the source Node and the Node that is referenced is the target Node.
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References can be hierarchical and signal aggregation (e.g. ’is component of’) or be
non-hierarchical and signal some other association (e.g. ’is caused by’). Additionally,
References have the characteristic of being either non-symmetric, i.e. directed (as
in the previous examples), or they might be symmetric (e.g. electrical connection).
References can also be cyclical, which means that each Node can have a Reference to
any another Node. This indicates that the address space is structured as a net instead
of a tree. Due to the extensible nature of OPC UA information models, it is possible
to define References that indicate any possible relationship. With the use of Nodes
as basic building blocks and References as the providers of semantic information,
OPC UA facilitates the construction of complex objects that can model all sorts
of semantic structures. The flexible information modelling capabilities provide for
the usage of OPC UA in communication across the entire information network of a
production plant, starting from the plant floor network (e.g. sensors and actuators),
moving to the operations network (e.g. MES) and up to the corporate network (e.g.
ERP).

2.3 Companion Specifications
The OPC UA companion specifications aim to provide standards for presenting
information and the semantics related to a certain application domain. They are
designed by organizations and industry groups from a certain field to ’define how their
specific information models are to be represented in OPC UA Server AddressSpace’
[2]. Each companion specification provides an information model that can be utilized
in a domain or industry field that can range from very specific to very broad. An
example of a companion specification with a rather specific domain is the OPC Unified
Architecture for AutoID, which defines an information model for representing and
accessing AutoID devices in the field of automatic identification and data capture. An
example of a broader information model is the OPC Unified Architecture for Devices,
which allows for representing generic devices in OPC UA. By utilizing these domain-
specific information models in the design and development of new applications, it is
possible to increase the interoperability between different applications of the same
domain due to the similar conventions and semantics. Typically in many industrial
information systems, each level of the automation pyramid is strictly separated
with their own functional requirements and communication standards. This has
lead to dehabilitating interoperability issues between the layers. The companion
specifications built upon the OPC UA base Information Model aim to alleviate these
problems in vertical integration of automation systems.

The following subsections briefly introduce a few prominent OPC UA companion
specifications. The presented specifications were chosen because they were regarded
as having high estimated potential as being widely used in the industrial environment
and other application domains. For a product that aims for general usage and wide
applicability, evaluating the most common domains is the most beneficial. All of the
chosen specifications also have released versions and no release candidate or draft
versions were evaluated. The presented companion specifications were used in the
development and evaluation of the solution presented as the result of this thesis.
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The following descriptions introduce some of the central elements of the companion
specifications but are by no means complete descriptions. The reader is advised
to resort to the respective specification documentations for more details. In the
descriptions, it should be noted that all the type definitions have the suffix ’Type’ in
their name and their respective instances are without the suffix.

2.3.1 OPC Unified Architecture for Devices

The OPC Unified Architecture for Devices, or briefly Device Integration (DI), is a
central information model expanding on the standard OPC UA information model
with basic concepts for describing general aspects of devices. In this subsection, a
description of the characteristics of the DI information model is presented based on
the official documentation[16]. The specification defines a device as an ’independent
physical entity capable of performing one or more specified functions in a particular
context and delimited by its interfaces’. Typical devices provide sensing, actuating,
communication and possibly control functionality. Examples include transmitters,
valve controllers, drives, motor controllers, programmable logic controllers (PLC), and
communication gateways. The objective of the specification is to unify the approach
to describing automation devices in the OPC UA address space, irrespective of
their underlying technological details. The Device Integration information model
is also extended upon by other companion specifications, such as OPC Unified
Architecture for Analyser Devices, OPC UA Information Model for IEC 61131-3 and
some unreleased information models such as the companion specification for Field
Device Integration (FDI).

The DI specification describes devices with three different models: the base Device
Model, the Device Communication Model and the Device Integration Host Model.
The Device Model provides an unified view of devices, independently from any related
protocols. The Device Communication Model, on the other hand, describes the
network and communication aspects of the device. Lastly, the Device Integration
Host Model adds additional elements and rules that reflect the topology of the
automation systems and the communication networks containing the devices. It
provides information for managing the integration of the devices into a complete
system. The DI companion specification mainly defines ObjectTypes with their
Properties and Methods but also some Object instances as the entry points in the
address space for information modelled according to the specification.

The key elements of the Device Model are the type definitions for TopologyEle-
mentType, ConfigurableObjectType and ProtocolType. An overview of the Device
Model is displayed in the figure 5 below. TopologyElementType is the base Object-
Type used to model elements of a device topology and it includes a set of parameters
and methods for the element. The TopologyElementType is further inherited by
DeviceType and BlockType. The DeviceType is an abstract type used to model
general devices and should be subtyped by more specific models from vendors. It also
dictates some Properties that are common to all instances, such as ’SerialNumber’,
’Model’ and ’Manufacturer’. BlockTypes are typically used as means to organize the
functionality within a Device and the purpose of the ConfigurableObjectType is to
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model modular TopologyElements that can, for example, contain various Blocks. In
addition, the Device Model defines a FolderType Object called ’DeviceSet’ inside
the ’Objects’ folder defined in the OPC UA base information model. The ’DeviceSet’
aggregates all the instances of the devices implementing the information model. For
hierarchical devices, only the top-level element is referenced inside the ’DeviceSet’
folder.

Figure 5: Overview of the Device Model of the DI information model[16].

The Communication Model defines further ObjectTypes for representing the
network aspects of devices. NetworkType models the means of communication used by
the Devices connected to it, for example wired or wireless technologies. ProtocolType
is used to represent the communication protocols supported by TopologyElements.
ConnectionPointType is a subtype of the TopologyElementType that represents
the interface of a Device to a communication network. The Communication Model
additionally defines an Object instance named ’NetworkSet’ inside the ’Objects’ folder
that contains all Network instances. Communication semantics are further enhanced
with two new implicit ReferenceTypes: ConnectsTo and ConnectsToParent.

The Device Integration Host Model defines an entry point named ’DeviceTopology’
inside the ’Objects’ folder as the starting point used to organize and provide access
to all instances that constitute the device topology, such as networks, devices and
communication elements. ’DeviceTopology’ also contains a Property showing whether
the server is currently able to communicate to Devices in the topology.

2.3.2 OPC Unified Architecture for Analyser Devices

The OPC Unified Architecture for Analyser Devices, or briefly Analyser Device
Integration (ADI), specifies an unified information model to characterize different
kinds of analytical devices. This section summarizes the aspects of the companion
specification presented in the official documentation[17]. The analysers are divided
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into various groups such as light spectrometers, particle size monitoring systems,
imaging particle size monitoring systems, acoustic spectrometers, mass spectrometers,
chromatographs, imaging systems and nuclear magnetic resonance spectrometers.
The ADI information model is a specialization of the Device Integration information
model, which is extended by the ADI model through subtyping. The information
model mainly defines ObjectTypes but also a few ReferenceTypes, VariableTypes
and DataTypes.

The modelling of an analyser object in the specification is mainly divided into
five different definitions: AnalyserDeviceType, AnalyserChannelType, StreamType,
AccessoryType and AccessorySlotType. They all inherit from types defined in
the DI information model. An overview of the ADI information model as well as
its connection points to the DI information model are displayed in the figure 6
below. AnalyserDeviceType is a subtype of the DeviceType of the Device Inte-
gration information model and it represents the analyser instrument as a whole.
AnalyserChannelType, StreamType and AccessoryType are subtypes of the Topolo-
gyElementType and AccessorySlotType is a subtype of the ConfigurableObjectType.
Each AnalyserDevice instance has at least one AnalyserChannel and may have
AccessorySlots through which an Accessory can be connected. In addition, each
AnalyserChannel may have its own AccessorySlots through which Accessories are
connected. Accessories can only be connected to the AccessorySlots. Data acquisition
is performed through the AnalyserChannel or through the Accessory connected to
that AnalyserChannel. Stream is the connection of an AnalyserChannel to a specific
sampling point in the monitored process. In addition, the specification defines that
each of the mentioned main elements also contains a state-machine describing the
current status of the device and the information model offers some new subtypes
of FiniteStateMachineType from the base OPC UA Information Model to facilitate
these uses.

Figure 6: Overview of the Analyser Device Integration information model[17].

2.3.3 OPC UA Information Model for IEC 61131-3

IEC 61131-3 is a global vendor-independent standardization for programming lan-
guages in industrial automation. The specification of the OPC UA information



15

model for IEC 61131-3, often referenced simply as PLCopen, presents the types
and conventions needed to make relevant information of an IEC 61131-3 compliant
PLC accessible via OPC UA. An overview of the PLCopen information model is
presented here based on the official specification[19]. The specification defines four
use cases for the information model: observation, operation, engineering and service.
Each use case extends the former. This means that, for example, the operation use
case incorporates all the actions of the observation use case abut also adds more.
The most basic ’observation’ use case only includes the reading and monitoring of
data. The ’operation’ use case adds the writing of data, such as variable values,
and execution control. The ’engineering’ use case extends the former use cases with
the writing of program elements, for example, when updating a program. The most
advanced ’service’ use case comprises of performing functions related to service and
maintenance, such as reading or writing of special data and firmware updates.

The IEC 61131-3 information model is also a specialization and extension of the
DI information model. By reason of the IEC 61131-3 specializing in the domain of
controller devices, it is natural that the ObjectType definitions are subtypes of the
types in the Device Integration information model. The definition for ’controller’
provided by the specification is that ’a controller is a digitally operating electronic
system, designed for use in an industrial environment, which uses a programmable
memory for the internal storage of user-oriented instructions for implementing specific
functions such as logic, sequencing, timing, counting and arithmetic, to control,
through digital or analogue inputs and outputs, various types of machines or processes’.
The term ’controller’ is abbreviated as ’Ctrl’ in the specification so as to not overlap
with terms defined in the main specifications for OPC UA. The information model
specification establishes a set of ObjectTypes and some ReferenceTypes.

The main concepts of the IEC 61131-3 standard and of the related OPC UA
companion specification are presented here. CtrlVariables present the variables used
in the control tasks and can be assigned a role of input, output or internal. They
also have associated data types and scopes (local or external). The CtrlVariables
implement the BaseDataVariableType of the OPC UA base Information Model.
CtrlConfigurations, CtrlResources and CtrlTasks are elements used to organize the
topology of a control solution. They are specified in the information model by
their corresponding ObjectTypes named CtrlConfigurationType, CtrlResourceType
and CtrlTaskType. CtrlConfigurationType and CtrlResourceType are subtypes
of DeviceType from the DI information model and CtrlTaskType is a subtype
of BaseObjectType of the base Information Model. Overview of the PLCopen
information model is presented in the figure 7 below. CtrlConfiguration is the highest
level entity that models the entire software needed to solve some control application.
It contains at least one CtrlResource which is a component able to execute the
control software. A CtrlResource can include one or more CtrlTasks that define the
execution of the control software and can run periodically or triggered by events.

The actual software run by CtrlTasks can be written in any of the program-
ming languages in the IEC 61131-3 standard and exposed in the OPC UA address
space using the types derived from CtrlProgramOrganizationUnitType, which is
an abstract subtype of the BlockType from the DI information model. CtrlPro-
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Figure 7: Overview of the PLCopen information model[19].

gramOrganizationUnitType dictates how to model the variables and the code of the
element and it has two more specialized abstract subtypes CtrlProgramType and
CtrlFunctionBlockType. Since all these types are abstract, no instances of them
will exist and all vendors and applications must define their implementations as new
subtypes.

2.3.4 OPC Unified Architecture for ISA-95 Common Object Model

The OPC Unified Architecture for ISA-95 brings the ability to model information
conforming to the Common Object Model of the ISA-95 standard[36]. The ISA-95
standard is developed by the International Society of Automation to define the
information interface between control systems and other enterprise systems in the
industrial environment. This section will give a short introduction to the ISA-95
standard and then present the basic concepts of the information model for OPC UA
based on the official specification documentation[18]. The ISA-95 standard divides
the automation hierarchy into five levels, where the first level (level 0) is the actual
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physical production process. The second level (level 1) consists of the devices sensing
and manipulating said process, while the third level (level 2) contains automation
systems controlling the process, for example, PLCs and DCSs. The fourth level (level
3) consists of manufacturing operations management (MOM) that includes various
different functions such as SCADA, maintenance, quality assurance and inventory
management. The final level includes business planning and logistics functions, such
as ERP systems. The ISA-95 information model for OPC UA is mainly concerned
with level 4 functions, i.e. MOM, and its internal communication, but also with the
communication between levels 4 and 5.

Figure 8: Overview of the ISA-95 information model[18].

The ISA-95 Common Object Model divides the information on the resources of
manufacturing operations and control into four categories: personnel, role-based
equipment, physical assets and material. Personnel information includes information
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about personnel and their roles and qualifications. Role-based equipment information
describes equipment as it pertains to the operations being performed. Physical
asset information identifies the actual devices that make up the equipment. Material
information defines the material and the properties of materials used in the production.

In the ISA-95 resource model, there are classes and instances. The class in ISA-95
does not necessarily mean the same as in the typical object-oriented meaning, but
a classification (such as a personnel classification). Each class can have their own
class-specific properties. These properties may also possess related test specifications.
The classes are then implemented by instances that have values for the specified
properties.

The ISA-95 Common Object Model specification for information modelling in OPC
UA contains a base model and then additional models for each of the four resource cate-
gories. An overview of the structure is depicted in the figure 8. The ISA-95 base model
defines three base ObjectTypes, named ISA95ClassType, ISA95TestSpecificationType
and ISA95ObjectType. They relate to the concepts of class, test specification and
instance that were presented in the previous paragraph. In addition, the ISA-95 base
model defines two VariableTypes named ISA95ClassProperty and ISA95Property
that relate to the class and instance properties. Finally, the base model defines a few
new DataTypes and several ReferenceTypes.

The ISA-95 base model is further expanded by models for each of the resource
categories: personnel, equipment, physical asset and material. Each of them define
more VariableTypes, ReferenceTypes and ObjectTypes that are subtypes of the
types in the base model. The main characteristic of the extensions is that they
each specify class, instance, property and test specification types that are specific to
their respective resource categories. For instance, the equipment model defines the
types named EquipmentClassType, EquipmentType, EquipmentClassPropertyType,
EquipmentPropertyType and EquipmentCapabilityTestSpecificationType.

2.3.5 OPC UA Information Model for AutomationML

The OPC UA information model for AutomationML enables the presentation of
AutomationML information and files in the address space of an OPC UA server. The
basic concepts of the AutomationML information model are summarized here on
the basis of the official specification [20]. AutomationML is an open and technology-
neutral standard for storage and exchange of engineering data on production systems.
The standard endeavours to interconnect the different heterogeneous engineering
tools used in different disciplines such as plant planning, mechanical engineering, elec-
trical engineering, process engineering, process control engineering, human-machine
interface (HMI) development, PLC programming and robot programming.

The AutomationML standard is based on XML and the top-level format is CAEX
(Computer Aided Engineering Exchange). However, the standard has a modular
format that includes two other XML-based data formats, COLLADA and PLCopen
XML, and it also facilitates other extensions. Information is modelled according to the
object-oriented paradigm which enables the modelling of physical and logical system
components as data objects with various characteristics. Objects can additionally be
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comprised of other objects.
Typical objects in plant automation comprise information on topology, geometry,

kinematics, logic and behaviour. This information is modelled in AutomationML
using an instance hierarchy. Instance hierarchy is the main model that represents the
structure of the modelled system as a hierarchical tree of elements. The structure
and semantics of the elements are defined by three element types: system unit classes,
role classes and interface classes. The instance hierarchy tree is constructed from
internal elements referencing the system unit classes they are derived from, the role
classes defining their semantics and the interface objects that link objects among each
other or with externally modelled information (such as external files). Definitions of
the system unit, role and interface classes are divided into their respective libraries.

The AutomationML information model for OPC UA is divided into two parts:
AutomationML Base Types OPC UA Model and AutomationML Libraries OPC UA
Model. Both models define a set of ObjectTypes and several Object instances as
entry points to information implementing the specification. In addition, the Base
Types OPC UA Model defines two ReferenceTypes and a VariableType.

The Base Types Model defines the basic building blocks of AutomationML
information through the CAEXBasicObjectType and its subtypes. CAEXBasicOb-
jectType is a subtype of BaseObjectType of the base OPC UA Information Model
and it describes all general characteristics of a CAEX–element in an AutomationML
model. It has two subtypes called CAEXFileType and CAEXObjectType that define
further features for representing CAEX files and objects. The CAEXObjectType is
inherited by three ObjectTypes named AutomationMLBaseInterface, Automation-
MLBaseRole and AutomationMLBaseSystemUnit. These type definitions describe
the characteristics for the previously explained interface, role and system unit classes.
All additional subtypes used by vendors should expand on these types. Furthermore,
the Base Types Model defines instances in the OPC UA address space for organizing
the data modelled using the specification. Inside the Objects folder of the OPC UA
base model, the AutomationML specification adds three new folders called Automa-
tionMLFiles, AutomationMLInstanceHierarchies and AutomationMLLibraries. The
AutomationMLFiles folder is the entry point for browsing all instances of Automa-
tionML files, the AutomationMLInstanceHierarchies contains all instance hierarchies
and the AutomationMLLibraries folder presents an entry point for Browsing when
looking for AutomationML libraries. The AutomationMLLibraries is further divided
into three folders: InterfaceClassLibs, RoleClassLibs and SystemUnitClassLibs.

The Libraries Model populates the subfolders of AutomationMLLibraries with
sets of ObjectTypes representing different interface, role and system unit classes.
Vendors can utilize these predefined types in their application or supplement them
with new types.

2.4 The Aggregating Server Pattern in OPC UA
The aggregating server pattern is a server architecture for OPC UA that was proposed
by Mahnke et al.[1] and has since been employed in many research projects and even
commercial products, such as the Prosys OPC UA Historian. An aggregating OPC
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UA server encompasses both server and client implementations. The embedded client
is used to access a number of other servers, called source servers or aggregated servers
(the first term is used in this thesis). A typical structure of an aggregating server is
presented in the figure 9. The function of the aggregating server is to concentrate
information from one or more source servers in its own address space. The great
benefit of an aggregated server is that it offers a central access point to multiple
sources of information. A client wishing to satisfy its information needs must only
connect to one central server instead of making separate connections and service
requests to each of the source servers. In this way, aggregating servers are naturally
suited for supervision and monitoring tasks, such as in SCADA systems, especially if
the aggregating server also implements the Alarms & Conditions services of OPC
UA. In addition, an aggregating server can act as a centralized security manager
for connection control and greatly ease the processes of managing and supervising
security[3]. The information from the source servers can be straightforwardly copied
to the address space of the aggregating server or it can be transformed according to
some predefined rules. The information models of the underlying servers can vary
greatly and offering an unified view of several servers might require some modification
to the information.

Figure 9: Model of an aggregating OPC UA server[12].

In addition to offering an integration point for information, the aggregating server
is also responsible for relaying service calls to the underlying servers. The aggregating
server acts as a gateway to the underlying servers and all service calls (for example
reads, writes and subscriptions) must be directed to the source servers to access
the actual data and functionality. The relaying of service calls is performed using
the internal clients of the aggregating server. In practical implementations, the
aggregating server usually has multiple internal clients and each client is responsible
for communication with one source server. The passing of the service calls requires
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that each Node in the aggregated address space has a counterpart Node in the
address space of one of the source servers. The correspondence between Nodes must
be configured in the aggregating server. However, it is also possible that the value of
a Node in the address space of an aggregated server is a function of the values of
multiple source Nodes. Service calls made to these aggregate Nodes might necessitate
passing calls to multiple underlying servers.

Depending on the server, some of the services can be implemented by the aggre-
gating server instead of the source servers. For example, the history data for the
values of variables can be recorded by the aggregating server, which is the method
used in the Prosys OPC UA Historian. In the case of the Prosys OPC UA Historian,
service requests to read history data are implemented inside the aggregating server
and not relayed to the underlying servers. In this manner, it is possible to implement
additional services inside the aggregating server, even if the underlying source servers
do not provide them. All of the services can be implemented by the aggregating
or the source server or the implementations can be divided in various ways. It is
also possible that a service functionality is implemented jointly by both the source
server and the aggregating server in a hybrid implementation. Nevertheless, even
if the aggregating server is responsible for implementing some of the services, the
underlying real-time data and server-specific functionality must at some point be
accessed from the source servers. Sometimes concentrating the needed services to
the aggregating server can be beneficial to ensure identical and repeatable behaviour.

From the viewpoint of a client, an aggregated server functions similarly to any
other server. Furthermore, aggregating servers can be aggregated by other aggregating
servers to form a multi-level hierarchical server architecture. Such an architecture
can mirror the structure of an automation pyramid. Higher-level aggregating servers
consolidate and organize data from lower-lever servers and possibly transform the
information to a more suitable form, for instance, creating abstractions required by
higher levels. In this manner, each level of the automation hierarchy can have its
own aggregating server that is then aggregated by higher ones to achieve vertical
integration from device level up to enterprise level. A schematic of this kind of a
chained aggregating server architecture is presented in the figure 10. However, a
limiting factor in the usage of chained aggregating servers are the delays induced
by the relaying of service requests and responses. Especially in architectures with
several levels, the transmitting of requests and the respective responses through
all the servers in the hierarchy can generate significant delays compared to direct
communication.
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Figure 10: Schematic of a chained aggregating server architecture for vertical inte-
gration in industrial information systems[2].
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3 Current Situation & New Requirements
In this chapter, the companion specifications presented in the previous chapter are
first analyzed to draw conclusions that can aid in developing the new aggregation
feature. Secondly, the current state of the Prosys OPC UA Historian software and
its key components are presented. These are relevant to this thesis because any
additional functionality will have to be built on existing software and utilizing existing
software architecture. Finally, current issues related to the Historian are discussed
along with new demands for the functionality. This analysis is then used to formulate
the requirements for the software feature implemented in the course of this thesis.

3.1 Analysis of Companion Specifications
The different companion specifications presented earlier in this thesis, namely the
information models for devices, analyser devices, IEC 61131-3, ISA-95 and Automa-
tionML, were compared and analyzed. These standardized information models are
designed to have widespread use in different applications and therefore studying their
features, application domains and possible overlappings could be beneficial. These
insights can be utilized in the development of the aggregation feature in the practical
part of this thesis.

The mentioned companion specifications are all applied to modelling the systems
and equipment in an industrial environment. Additionally, the ISA-95 is also used to
represent materials and personnel. The aspects that are modelled using the companion
specifications include the properties and parameters as well as the topology and
composition of the modelled elements. The PLCopen and ADI information models
are specializations of the DI information model. The PLCopen information model
applies to modelling the aspects of software in devices, such as the software topology
and parameters. The ADI specification extends the DI model by adding more type
definitions that are specific to analyser devices, but it also adds concepts for modelling
the state-machine of the device.

Even though all the companion specifications are used to model industrial systems
and equipment, this information can be divided into two viewpoints: physical assets
and equipment. The same categorization is used by the ISA-95 standard. Role-based
equipment describes a device that performs some function regardless of the technical
specifics. On the other hand, physical assets are the actual devices and systems
that perform the functions. Physical assets have defined technical attributes and
vendor-related properties, such as a model number. Role-based equipment is modelled
by the ISA-95 and AutomationML specifications and physical assets by the ISA-95
and DI models. Therefore, the only overlappings are between the ISA-95 and the DI
model regarding physical assets and between ISA-95 and AutomationML regarding
equipment. In these cases, it is possible that different information models present the
same information from the same viewpoint. It can be concluded that the information
models have mostly quite distinctive application domains and do not greatly overlap
with each other. The figure 11 below summarizes the observations presented in
this section. The colours signify different categories of information: physical assets,
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equipment, material and personnel. The ellipses describe the aspects of modelled
entities present in the different companion specifications.

Figure 11: Overview of the features modelled by the analyzed companion specifica-
tions.

3.2 Prosys OPC UA Historian
3.2.1 Introduction

The company Prosys OPC Ltd., where this thesis work is carried out, already has a
software product incorporating a simple aggregating OPC UA server. This application
is called the Prosys OPC UA Historian or Historian for short. The Historian is
programmed using the Java programming language and utilizes the Prosys OPC UA
Java SDK in its implementation of OPC UA functionality. Primarily the Historian is
a data logging software for OPC UA. The user can configure source servers to which
the Historian connects and the values that the Historian collects to a SQL database.
The data logged into the database can be accessed by the user through utilizing the
OPC UA HistoryRead services in the OPC UA server implemented by the Historian
or by reading directly from the database through SQL commands. In addition to
collecting data values, the Historian creates entry points to all the added sources
servers in its own address space. In this way, it acts as a simple aggregating server
and enables the use of OPC UA services, such as Read, Write and Subscribe, in the
aggregated address space.

3.2.2 Prosys OPC UA Java SDK

The Historian software utilizes the Prosys OPC UA Java SDK for its implementation
of OPC UA functionality. Typically, an OPC UA application consists of three
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software layers that are presented in the figure 12 below. The lowest level is a stack
that enables the OPC UA communication between clients and servers. It implements
the different transport mappings and functions for message serialization, security and
transport. The stack is responsible for enabling the invocation of OPC UA Services.
A stack can be implemented in any programming language and currently there exists
implementations for ANSI C / C++, .NET and Java. These stacks are developed
and maintained by the OPC Foundation. In addition, the are also open-source stacks
implemented for Node.js and Python.

Figure 12: Software layers of a typical OPC UA application[29].

The second software layer in a typical OPC UA application is a software develop-
ment kit (SDK). SDKs can also be implemented in various programming languages
and currently there are solutions for ANSI C / C++, .NET, Java, Node.js and
Python, similarly to the stacks. SDKs are usually commercialized by companies
such as Unified Automation and Proys OPC. SDKs are software development tools
that implement further abstractions and common functionality on top of the stacks.
They aim to handle low-level functionalities and to hide excess complexity from the
application programmer behind an easy-to-use application programming interface
(API). SDKs can be utilized in the creation of server and client applications to
reduce the development effort and speed up the development process.

The last software layer is the application layer. It implements the application-
specific logic and functionality and is usually built using the API of one of the SDKs
and using the same programming language as the SDK. The application layer defines,
for example, if the application implements server or client functionality or both. It
also dictates what services the application supports, how the address space of a
server is constructed, what information models it implements and the functionality
of methods, among other aspects.

The Prosys OPC UA Java SDK is a Java based SDK that utilizes the Java stack.
It is divided into server and client SDKs that organize the components needed in the
development of the respective OPC UA applications. It includes code generation
capability for creating an address space from an imported information model as well
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as many samples that can cater to common use cases. The Prosys OPC UA Java
SDK is a commercial product with an openly purchasible licence.

3.2.3 Graphical User Interface & JavaFX

The Historian application contains a separate configurator part, called the Historian
Configurator, that exposes a graphical user interface (GUI) through which the user
can configure the parameters of the Historian application. The GUI also exposes some
useful information for monitoring the status of the application and the configured
source servers as well as the recorded Variables. The figure 13 shows a screen capture
of the Historian Configurator with the tab for handling source servers open and
having two configured servers.

Figure 13: View of the Source Servers tab of the Historian Configurator.

The configurator is an independent application separated from the main Historian
application. All commands given by the user in the configurator GUI are transmitted
via OPC UA method services from the client in the configurator to the server in
the main application. The configuration data is encoded as a JSON string that is
used as the input argument for a method in the address space of the Historian server.
The server receives this input string, interprets it and then performs the requested
activity. Communication in the direction from the server to the client is conducted
through a database connection that is further explained in the next subsection.

The GUI of the configurator is programmed using the JavaFX library. JavaFX
is a Java-based API toolkit for building applications with diverse user interfaces.
The JavaFX API is available as an integrated feature in the Java SE Runtime
Environment (JRE) and the Java Development Kit (JDK) for Java 7 and 8. JavaFX
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includes a set of GUI control elements that can be used to provide user input and a
scene graph paradigm for creating the structure of the GUI components. The scene
graph is a tree-like structure that maintains vector-based graphic nodes. JavaFX can
interact with any Java code and therefore it can be connected as the front-end for
existing Java applications. The connection between UI components and application
functionality can be implemented by binding the UI to properties in a model or by
using change listeners. JavaFX user interfaces can be developed by programming Java
code or a special FXML language or by using a specialized Scene Builder software.
FXML is an XML-based declarative markup language for constructing JavaFX-based
user interfaces. The JavaFX Scene Builder is an application that allows the user
to interactively design a graphical user interface that can then be generated as an
FXML file.

3.2.4 SQL Database Connectivity

The Historian software stores all the collected historical values and its settings
and configuration data to a Structured Query Language (SQL) database. SQL
is a language standardized by ANSI, ISO and IEC for storing, manipulating and
retrieving data in databases. SQL data is stored in catalogues that can contain
several tables. Each table has a set of rows and columns that have set data types
and store the actual data values. Data can be retrieved from or manipulated in
the database by executing specified SQL statements with arguments that define the
functionality.

The Historian supports Microsoft SQL Server, MySQL and MariaDB which are
examples of relational database management systems (RDBMS). Hibernate ORM
(object-relational mapping) framework is used for handling the mapping of Java
classes to a relational database and persisting the data of Java objects. Hibernate
is able to map Java data types to SQL data types and manage the database tables
for storing the data. Hibernate API is database independent and it can internally
handle the interoperability issues related to using different RDBMSs. Hibernate is
free software that is distributed under the GNU Lesser General Public License.

3.2.5 Current Issues

Currently, the aggregating server functionality in the Prosys OPC UA Historian does
not support any sort of user configurability. It automatically adds entry points to all
the source servers that are added to the program. The entry points are added to a
pre-defined location in the address space of the aggregating server and allow the user
to access the ’Objects’ folders of the source servers through these entry points. The
aggregation keeps each source server strictly separated and is not able to understand
any semantic connection between Nodes from different servers. Models from different
servers that correspond to the same entities cannot be recognized.

Type consistency is an issue in the existing implementation of aggregation in the
Prosys OPC UA Historian. When the Historian aggregates several source servers, it
regards all type definitions as server-specific and creates new namespaces for them.
This means that instances from different source servers that are originally of the
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same type are transformed by the aggregation to the new server-specific types. After
that, they are no longer semantically the same types. This leads to type consistency
issues.

An example of a type inconsistency case is portrayed in the figure 14. It displays a
client-side view of the aggregated address space of the Historian. Two different servers
called ’Prosys OPC UA Sample Console Server’ and ’Prosys OPC UA Simulation
Server’ are aggregated and they both contain identical Objects called ’MyDevice’ (high-
lighted in the upper and lower parts of the figure). These Objects are instances of the
same ObjectType named ’MyDeviceType’ from a vendor-specific information model
that is identified by the NamespaceUri ’http://www.prosysopc.com/OPCUA/Sample-
AddressSpace’. However, after the aggregation, each of the Objects have different type
definitions which can be seen from the differing NamespaceIndices on the targets of the
HasTypeDefinition References. These indices 20 and 26 point to new server-specific
NamespaceUris created by the aggregation procedure for the types and instances
located on each source server. After this procedure, the types are now semantically un-
equal. Furthermore, neither of the types no longer belongs to their original information
model in the namespace ’http://www.prosysopc.com/OPCUA/SampleAddressSpace’.

Figure 14: Example of a type inconsistency between two identical Objects.

By creating the new server-specific type definitions, the aggregation procedure
disrupts the interoperability benefits brought by common information modelling
standards. For example, a client might be configured to handle the instances of a
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type from one of the companion specifications. After the aggregation procedure has
changed all type definitions to the new server-specific definitions, the client will no
longer recognize any instance as being an instance of the type it was configured to
handle. Thus, it will not be able to handle the types accordingly.

3.3 Requirements
The goal assigned to this thesis was to design and implement a prototype aggregating
OPC UA server that can integrate information from several sources into one OPC UA
address space. The source servers may expose information from different application
domains such as maintenance systems, design systems, control systems and product
life cycle management systems. Therefore, the different models can implement various
OPC UA information models and present aspects of the same entities. This needs
to be taken into account in the aggregation. Because the goal is rather vague, it
is necessary to define more detailed requirements before starting any development
on an actual implementation. The following subsections will outline the different
requirements defined for the new functionality. Industry representatives Karttunen
and Rossi[37] from the company Outotec were interviewed to provide possible use
cases and requirements. However, the described functionality is quite novel and
ahead of the current development in the industry. Currently, many companies are
only developing rather basic OPC UA implementations and do not see the described
functionality as being immediately relevant. Due to these reasons, no relevant input
was received from industry representatives. Therefore, the solution aims to create a
generic solution for a wide array of use cases and the requirements are drafted solely
based on the views of the writer of this thesis and of colleagues at Prosys OPC Ltd.

3.3.1 Programming Language and Software Platform

The software implementation developed during the course of this thesis should be
built as a new feature in the Historian application. The aim is to improve the existing
software and expand its functionality to make it more marketable and to meet a
greater range of user needs. Additionally, a great amount of software development
effort will be saved by utilizing the prefabricated constructs and functions of the
existing Historian software. Therefore the new functionality should be developed
using the same software platform as the existing implementation, namely Java
programming language and the Prosys OPC UA Java SDK.

3.3.2 Performance & Usability

The developed software is meant to be only a prototype and performance is not a
major concern. Nevertheless, the performance should be acceptable. In the context
of this thesis, acceptable performance is defined as not compromising the usage of
the software through excessive delays and processing.

In addition, the new functionality should be easy to use. According to general
experiences across the employees at Prosys OPC, it has been realized that most
users find the concepts and functionalities of OPC UA difficult to understand and
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use. Therefore, users would appreciate a simple user interface and functions that are
automated to a high degree. Performing as much functionality as possible without
any user input should be a central goal to improve efficiency. To ease the deployment
of the software in different application circumstances, it should not require any
modifications to the source servers. Changing the address spaces of the source servers
to accommodate aggregation would require a large amount of work and testing from
the user along with possible downtime for the server. Consequently, it is not a viable
option.

3.3.3 Type Consistency

The implementation developed in this thesis should fix the existing problems in the
type definitions of the Historian and keep the types semantically consistent. In the
scope of this thesis, semantic consistency of types means that when an instance is
aggregated from a source server to the aggregating server, the characteristics of its
type definition do not change. Before and after aggregation, the type of an instance
should remain in the same namespace with the same NodeId value and possess
similar characteristics, including the Attributes and Properties of the type. The type
definition can also be a hierarchical structure with multiple References which should
also remain unchanged.

For the implemented aggregation feature this also means that it should appoint
the same type definitions to aggregated instances across all the source servers if the
instances had the same type definition originally. The functionality should not create
new namespaces or alter the original type definitions to server-specific ones so that
all instances remain in their original namespaces and are associated to their original
information model.

3.3.4 Aggregation Functionality & User Configurability

The created software solution must create an aggregated address space by accessing
the defined source servers and applying an aggregation procedure on them. This
aggregated address space should integrate information in a generic way as the
solution should be applicable for general usage. It is impossible to know how or
where the software will be used or how the information is modelled in those usage
environments. Therefore, the aggregation procedure should be configurable by
the user. The user should be able to define how the aggregated address space is
constructed based on information that is modelled on the underlying source servers.
This way the aggregation procedure is flexible and can meet the needs of various use
cases. One definite use case requirement is the case where there are different models
on different servers that express different aspects of the same entity. The aggregation
procedure should be able to concentrate this information to offer an unified view of
the entity. The aggregation algorithm must be able to function properly with data
that implements any information model. This means that data conforming to any
companion specification or even a vendor- or application-specific model should be
aggregated properly.
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4 Design & Implementation
This chapter will delve into the practical side of this thesis. The following sections will
detail various aspects of the chosen approach for meeting the requirements defined in
the previous chapter for the aggregating server feature in the Historian application.
The first section will detail how the implemented aggregation procedure handles the
aggregation of types. This is followed by a presentation of the architecture and the
algorithms for handling the aggregation of instances. The final sections will detail
how the aggregating server handles the mapping of services from the aggregated
address space to the source servers and also present an overview of the architecture
of the implementation.

4.1 Introduction
The information provided by an OPC UA server can be divided into types and
instances. Type information consists of all the DataTypes, ObjectTypes, Variable-
Types, EventTypes and ReferenceTypes in the address space of the source server.
The type information defines the common characteristics for all the associated in-
stances on the server. Instances model the actual data and functionality in the
address space of the server in the form of Objects, Variables and Methods. The
Address Space Model of the OPC UA specification defines the main structure of every
OPC UA server. This structure is also presented in the figure 15. All of the type
information is included under the folder named ’Types’ while instance related data
is concentrated under the ’Objects’ folder. To implement the required aggregation
functionality, this thesis took a three-part approach consisting of type aggregation,
instance aggregation and new service mappings. These parts function together to
form the new aggregating server feature in the Historian application.

Figure 15: Standard structure of the address space of an OPC UA server[15].
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4.2 Type Aggregation
To meet the type consistency requirements, the chosen approach was to aggregate
the type definitions from all the source servers. This means that all new types that
are discovered on the source servers are added to the address space of the aggregating
server. As a result, all type definitions of the instances on the aggregating server can
be made locally. Therefore, all equal type definitions from the various source servers
will point to the same local types after aggregation. This will enable the types to
remain consistent across the aggregated instances. Equality of types is evaluated
based on the NamespaceUri and the NodeId value, which together form an unique
identifier for a type definition Node. The overhead of adding the types to the server
is negligible since the amount of different types is limited and the type aggregation
is performed as a merge. This means that types already existing on the server will
not be added.

The type aggregation procedure can access all the type information offered
by a source server through the ’Types’ folder. The hierarchy starting from this
folder contains all the type definitions that the server utilizes. In addition, the
Address Space Model defines a set of base types BaseDataType, BaseEventType,
BaseObjectType, References and BaseVariableType that all other types inherit from.
This type hierarchy and the base types are depicted in the figure 16. The known
hierarchical structure of type inheritance is utilized by the type aggregation algorithm
to merge the type definitions of added source servers into the type hierarchy of the
aggregating server.

Figure 16: Top levels of the type hierarchy of an OPC UA server.

4.2.1 Type Aggregation Algorithm

The following is a stepwise description of how the implemented type aggregation
algorithm proceeds when a new source server is added for aggregation:

1. Browse the BaseDataType, BaseEventType, BaseObjectType, References and
BaseVariableType Nodes from the address space of the source server.
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2. Browse the same Nodes from the address space of the aggregating server.

3. List all the HasSubtype References for each of the browsed Nodes from both
servers.

4. Compare the HasSubtype References between the same Nodes on the aggre-
gating server and the source server. The comparison is performed using the
NodeIds of the target Nodes of the References. If the NamespaceUris and the
values of the NodeIds are equal, then the target Nodes are regarded to be equal.

5. If no disparity between the References is detected, move to step 6. Otherwise,
a new type has been found. The new type is the target of the HasSubtype
Reference that was not found on the aggregating server. This new type is
added to the aggregating server by creating a new Node and copying all the
Attributes to the new Node and connecting it to the evaluated Node with a
HasSubtype Reference.
Because types can be complex hierarchical structures, it is necessary to evaluate
all the References of the newly discovered type Node. If the Node has References
other than HasTypeDefinition or HasModellingRule, it acts as a root Node
for a hierarchical tree-like type definition structure. This type definition tree
is copied in its entirety to the aggregated server by recursively following all
forward References from hierarchy level to the next and copying the respective
target Nodes. A type definition branch ends when there are no more References
other than HasTypeDefinition or HasModellingRule. The HasTypeDefinition or
HasModellingRule References point to other type definitions or to ModellingRule
instances on the server. If these type definitions or ModellingRules already
exist, the References should be copied to the aggregated server, but their target
Nodes do not need to be added.
However, it is also possible that the target of the HasTypeDefinition Reference
is another new type which must be added to the server before copying the
Reference. Similarly, the target Node of a HasModellingRule Reference can
also be an instance that is not located on the aggregating server and should be
added.
Repeat step 5 for each new type definition discovered as a subtype of the
currently evaluated Node.

6. Move down the type hierarchy by browsing all the target Nodes of the HasSub-
type References. Repeat the algorithm starting from step 2 for all the newly
browsed Nodes.

4.3 Instance Aggregation
The previous section presented how the aggregating server handles type definitions
from its source servers. The aggregated information provided by multiple sources
must be semantically coherent and therefore centralizing all type definitions to the
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aggregating server is beneficial. This type information is needed in order to aggregate
information from the source servers in the form of instances that are occurrences of
these type definitions. The instances model the actual data on the source servers in
the form of Objects and Variables and functionality in the form of Methods. To meet
the requirements stated for the aggregation procedure, three key components were
created. Firstly, aggregation rules provide constructs that enable the customization
of the aggregation procedure. Secondly, a special information model was created
for the use of the aggregated address space. Lastly, an algorithm was developed to
perform the aggregation of information. The aggregation algorithm searches through
the source servers and finds all instances that should be grouped together according
to the aggregation rules. This allows for configuring the aggregation procedure to
locate, for example, all models that describe the different aspects of the same entity.
This was the requirement placed for the implementation to meet the information
integration needs involving several heterogeneous providers of information. However,
the aggregation rules make it possible to perform varied aggregation procedures also
inside a single server and with similar information models.

4.3.1 Aggregation Rules

To meet the requirements for user configurability in the aggregation procedure, the
concept of aggregation rules was developed. These rules define which instances
from different servers are grouped together. By changing the rules that are used
by the instance aggregation algorithm, it is possible to change the behaviour of the
aggregation procedure. By allowing the user to change these rules, they can configure
the aggregation procedure to meet different use-case-specific requirements, such as
different information models or system parameters.

The following will outline the Java class architecture of the aggregation rules that
was designed and implemented during the work in this thesis. The figure 17 below
shows an UML diagram overview of the architecture. The model is greatly simplified
in its presentation to highlight the central features.

AggregationRule models the concept of an aggregation rule. An Aggregation-
Rule contains a name attribute that can be used to identify the rule. It is useful
to be able to clearly distinguish different rules because the amount of rules is not
limited in any way. Additionally, the AggregationRule contains a number of Aggre-
gationFootprints. They are organized in lists based on the namespaces where they
are applicable. This means that the AggregationFootprint is only evaluated against
Nodes that reside in the specified namespace. However, it is also possible to define
that the footprint is evaluated against all Nodes irrespective of their namespace. The
applicable namespace is defined when a new AggregationFootprint is added to the
rule using the addFootprint-method. The AggregationRule also contains methods for
evaluating the rule against a given Node as well as a getter for the name attribute.

AggregationFootprint models all the properties that a Node must have so that
it matches the footprint. These properties are described by AggregationFeatures.
AggregationFootprint contains a list of all the AggregationFeatures that are associated
with it and methods to set and get AggregationFeatures. It also contains a method
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Figure 17: Java class architecture for aggregation rules.

that evaluates if a given Node matches the footprint.
AggregationFeature is a common interface implemented by AttributeAggrega-

tionFeature and ReferenceAggregationFeature. It defines one method for getting the
value for a feature.

AttributeAggregationFeature contains an identifier that signals which At-
tribute of the evaluated Node the feature is concerned with. It also contains a variable
with a value that signals what the value of the defined Attribute should be so that
an evaluated Node matches the feature. Alternatively, instead of an explicit value,
the variable can define an equality relationship between features. This is done using
a special FeatureIdentifier class.

FeatureIdentifier is a simple class that contains an integer-valued ID for com-
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paring its equality to other FeatureIdentifiers. When a FeatureIdentifier is assigned as
the value of an AttributeAggregationFeature, it means that the value of the Attribute
defined by the AttributeAggregationFeature is evaluated against the values of the
Attributes defined in all other AttributeAggregationFeatures with the same FeatureI-
dentifier. This means that a FeatureIdentifier defines an equality condition between
values of Attributes. Values of the Attributes are compared between Nodes and the
Nodes with equal values for the Attributes marked by the same FeatureIdentifiers are
matched together. In this way, FeatureIdentifiers make it possible to group instances
based on common characteristics instead of just preset explicit values.

ReferenceAggregationFeature is similar to the AttributeAggregationFeature
but it instead defines the ReferenceType and the target for a Reference that the
evaluated Node should possess to match the feature. The defined value for the target of
the Reference can be either a NodeId or another AggregationFootprint. The direction
of the Reference is also defined. Through the use of ReferenceAggregationFeatures it
is possible to build a complex hierarchical construct of multiple AggregationFootprints
that can match the semantics of any OPC UA object.

The figure 18 below presents an example model that represents an Aggregation-
Rule implementing most of the features introduced above. The rule has a single
AggregationFootprint called ’Footprint1’ that applies to Nodes from all namespaces.
The footprint contains one AttributeAggregationFeature called ’AttributeFeature1’
that matches to all Nodes whose NodeClass is Variable. The footprint also con-
tains one ReferenceAggregationFeature called ’ReferenceFeature1’ that matches to
all Nodes that have a Reference of type HasProperty. The reference feature has
a Reference target that is another AggregationFootprint called ’Footprint2’. This
means that for a Node to match the Reference feature, it must have a HasProperty
Reference whose target Node matches the AggregationFootprint named ’Footprint2’.
The ’Footprint2’ footprint adds a requirement that the DisplayName of the evaluated
Node must have the value ’Definition’. In addition, the footprint has an Attribute
feature with a FeatureIdentifier called ’FeatureIdentifier1’ for the Value Attribute.
This means that only Nodes with equal values for the Value Attribute are grouped
together.

Figure 18: Example model of an AggregationRule that aggregates together all
Variables that have a Property whose DisplayName equals ’Definition’ and whose
Values are identical.
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4.3.2 Information Model for Aggregation

A special information model was developed to define how the information in the
aggregated address space is constructed. This model is then implemented in the
Historian application. The information model dictates how the address space of the
aggregating server is structured. This structure is also presented in the figure 19.
The model adds a folder named ’AggregatedInformation’ under the ’Objects’ folder
defined in the OPC UA specification. This ’AggregatedInformation’ folder acts as
the entry point to the aggregated address space. Under it are four more folders
named ’Equipment’, ’PhysicalAssets’, ’Material’ and ’Personnel’. They categorize
the aggregated information similarly to the ISA-95 Common Object Model. This
concept was also discussed in the chapter 3. All the information modelled by the
examined companion specifications can be mapped into these four categories. It is
also a very general model that applies to various use cases, especially in the industrial
environment. The implemented aggregation information model offers an example
of a possible approach for organizing the aggregated address space and is not an
entrenched implementation. It can be changed with minimal effort to meet different
requirements.

The other Objects presented in the figure 19 are from the previous implementation
of the Historian. The ’Configuration’ Object and its ’Configure’ Method are used by
the Historian Configurator application to communicate new settings and parameters
provided by the user to the Historian application. The ’Servers’ Object contains
folders that act as entry points to the address spaces of the source servers that were
configured to the Historian application. The example shown in the figure 19 contains
two source servers with user-provided names.

Figure 19: The aggregated address space of the Historian application.

In addition, the aggregation information model adds a new ObjectType called
AggregateObjectType. This is a subtype of the BaseObjectType and is used to
group different instances that model the same entity. The AggregateObjectType
represents the entity and it has References to models from different source servers
that model its various aspects. For this purpose the information model also defines
new ReferenceTypes: HasModel, HasDIModel, HasADIModel, HasPLCopenModel,
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HasAutomationMLModel and HasISA95Model. HasModel is a subtype of the Ag-
gregates ReferenceType from the OPC UA specification and the other custom
ReferenceTypes are subtypes of the HasModel ReferenceType. The new Reference-
Types and their type hierarchy is displayed in the figure 20. The source Node of
these ReferenceTypes is always an AggregateObject and the target Node is the root
Node of a model that represents an aspect of the AggregateObject. The particular
ReferenceType is chosen based on the namespace of the type definition of the target
model. If it belongs to one of the companion specifications, then the ReferenceType
is one of the specific types, for example, HasADIModel for the Analyser Devices
information model. HasModel ReferenceType is used for the standard OPC UA
namespace.

Figure 20: The new ReferenceTypes defined by the information model for aggregation.

4.3.3 Instance Aggregation Algorithm

The instance aggregation algorithm begins running when the type aggregation for the
source server has been completed. The algorithm starts by browsing the standardized
’Objects’ folder that organizes all the instances in an OPC UA server. The OPC UA
specification defines that ’the intent of the ’Objects’ Object is that all Objects and
Variables that are not used for type definitions or other organizational purposes (e.g.
organizing the Views) are accessible through hierarchical References starting from
this Node’[15]. This concept is utilized by the instance aggregation algorithm to
Browse through each Node in the instance hierarchy and evaluate if it is suitable for
aggregation. After browsing the ’Objects’ folder, the algorithm proceeds according
to the description below:

1. List the target Nodes for all hierarchical References from the current Node.
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2. Find out the NamespaceUri for each of the target Nodes from their NodeId.
If a NodeId does not use a NamespaceUri, then the NamespaceUri must be
deduced from the NamespaceIndex using the NamespaceArray of the source
server.

3. Find all configured aggregation rules that apply to the namespaces of the target
Nodes.

4. If there are no applicable rules, then jump to step 10. Otherwise continue to
the next step.

5. Evaluate the applicable aggregation rules against the target Nodes.

6. If the rule evaluation passes for a Node, then the Node is added to a set
containing all the Nodes that match the rule.

7. If the set already contains matching Nodes, then jump to the next step. If
the Node is the first to match the rule, then a new Object of type Aggrega-
teObjectType is created in the aggregated address space. The type definition
of the matching Node is browsed upwards in hierarchy by following inverse
HasSubtype References until the type is part of a known information model.
This will define the folder in the aggregated address space where the Aggrega-
teObject is placed according to the mappings presented earlier in this thesis. For
example, instances of the AutomationML information model are placed under
the ’Equipment’ folder. With instances of the ISA-95 model, it is necessary
to find out if the type is a subtype of one of the types specific to equipment,
physical assets, material or personnel in order to define the appropriate folder.
’PhysicalAssets’ folder is the default folder for Nodes that do not belong to any
companion specification. The information model that the Node belongs to also
dictates the ReferenceType used in the next step. The new AggregateObject
will be given the same DisplayName as the first Node matching the rule.

8. Find the AggregateObject that is associated with the rule. Each AggregateOb-
ject is specific to an aggregation rule so that all Nodes matching a single rule
are organized under the same AggregateObject. An exception to this is when
the rule uses FeatureIdentifiers. In that case, multiple AggregateObjects can
be created for a single rule and each of the AggregateObjects groups together
only Nodes with common characteristics.

9. Add a Reference of type HasModel, or of a more specific type if the Node is an
instance of a companion specification, from the corresponding AggregateObject
to the matching Node.

10. Move down the instance hierarchy tree by browsing all the target Nodes of
hierarchical References from the current Nodes and start over from step 1.
This recursive algorithm ends for a certain branch of the instance hierarchy
tree when no hierarchical References exist for a given Node or if the Node has
already between evaluated against all applicable rules. The latter condition
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is a safeguard against loops in the instance hierarchy. To avoid the algorithm
endlessly proceeding through the loops, it is necessary to save the NodeIds
of all evaluated Nodes and then prevent the algorithm from evaluating these
Nodes again.

A special part of the instance aggregation algorithm is the evaluation of aggre-
gation rules against Nodes in the address space of a source server. This procedure
is performed inside the scope of the AggregationRule Java class. The algorithm
has two inputs, the Node that is evaluated and its NamespaceUri. The Node is an
instance of the UaNode Java class which is a complex construct used by the Prosys
OPC UA Java SDK to model general OPC UA Nodes. UaNodes can be read from
OPC UA servers by utilizing the functionality in the Prosys OPC UA Java Client
SDK. An aggregation rule matches an instance Node in the source server if any
of its footprints matches the Node. Therefore, the evaluation of the rule starts by
finding all the footprints that are applicable for the NamespaceUri of the evaluated
Node. Then each applicable footprint is evaluated according to the algorithm that is
detailed step-by-step below:

1. Access all the defined AttributeAggregationFeatures in the AggregationFoot-
print and read the values of the Attributes specified by the features from the
source server.

2. If the value specified by an AttributeAggregationFeature is not a FeatureIden-
tifier, then compare the value of the Attribute that was read from the source
server to the value specified by the AttributeAggregationFeature. If the values
are equal, then the evaluated Node matches the feature. If the values are not
equal, the Node is not a match and the algorithm ends for the current footprint.
If the value specified in the AttributeAggregationFeature is a FeatureIdentifier,
then the read value should be saved to a container. This container saves the
values of FeatureIdentifiers specific to a certain Node for later comparison
between different Nodes.

3. Access all the ReferenceAggregationFeatures defined for the footprint. If the
rule does not have any, then the evaluated Node is a match for the footprint.
If the AggregationFootprint has ReferenceAggregationFeatures, then it is hi-
erarchical and the evaluated Node should be searched for References whose
type matches the ones specified by the ReferenceAggregationFeatures. If the
required References are not found, then the Node does not match the footprint
and the algorithm ends. If a matching Reference is found, then continue to the
next step.

4. Browse the target Nodes for the References specified by the ReferenceAggre-
gationFeatures and start the algorithm from step 1 to evaluate each of the
AggregationFootprints specified by the ReferenceAggregationFeatures against
the target Nodes of the specified References. In this recursive way, the entire
hierarchical AggregationFootprint structure should be evaluated against a Node
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hierarchy on the source server. If any of the features in the hierarchy do no
match, then the algorithm ends.
Alternatively, a ReferenceAggregationFeature might define a NodeId that
should be compared against the NodeId of the target Node of the specified
ReferenceType. If the NodeIds are equal, then the feature matches the evaluated
Node, otherwise the algorithm ends.

5. The algorithm is completed and the Node is a match to the AggregationFoot-
print.

If the AggregationRule uses any FeatureIdentifiers, the values of the Attributes
marked by the FeatureIdentifiers must be compared against all the other Nodes
matching the rule. Only if the values marked by the same FeatureIdentifiers are
equal between Nodes, are they grouped together in the aggregated address space.

4.4 Service Mappings
The last component of the three-part solution implemented in this thesis is the
mapping of OPC UA Services. This relates to how the aggregating server handles
service calls, such as Browse, Read, Write and Subscription, made in its address
space. As was presented in the overview of aggregating OPC UA servers in the
second chapter, the aggregating server functions by transmitting the service calls it
receives to the underlying source servers. Much of this basic architecture is already
implemented in the existing version of the Historian software. The Historian employs
a typical service mapping mechanism and an aggregating server architecture similar
to the one presented in the second chapter. The details of the implementation are
presented in the master’s thesis by Asikainen[28] on which the actual software is based
on, however, with some modifications and further development. The existing software
already enables using Browse, Read, Write, Subscription and Method services in the
aggregated address space.

Nevertheless, some modifications needed to be made to the implementation
of Browse services to facilitate the use of the type definitions on the aggregating
server together with the aggregated instances. When a Browse request is made to
the aggregating server, it is transformed and relayed through one of the internal
clients to a server that is the source for the aggregated Node. Transformation of
service requests is necessary because information is modelled differently between the
aggregated server and the source server. Similarly, the response received from the
source server by the internal client must be transformed to a form that is suitable
for the aggregating server. However, in the existing implementation of the Historian
software all Browse results were transformed to a form where the types are server
specific. This led to the type consistency issues presented earlier in this thesis. In
addition, all ModellingRules were mapped to server-specific ModellingRules instead
of common ModellingRules.

The aggregation feature developed during this thesis fixes the existing problems
by adding new service mappings for Browse requests. The feature is plugged into the
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existing Historian to handle all Browse requests regarding types or ModellingRules
when they are performed in the aggregated address space. These particular Browse
requests are identified by their service context that includes the ReferenceTypes
HasTypeDefinition or HasModellingRule. The new Browse service implementation
will transform all the NodeIds and BrowseNames of the respective service results to
match types that are local to the aggregating server but correspond to the original
types on the source server. Similarly, ModellingRules in service responses are mapped
to local ModellingRules on the aggregating server. The correspondence between types
on the source server and types on the aggregating server is evaluated on the basis
of matching NamespaceUris and NodeId values. The NodeIds and BrowseNames
of instances are not changed because instances must be server specific in order to
distinguish similar Nodes between different servers.

The service mappings combine together the type aggregation procedure that
guarantees that all needed type definitions are present locally on the aggregating
server and the instance aggregation procedure that requires the use of consistent
type definitions between instances. Cooperating together, these three components
form the implemented solution.

4.5 Architecture
The new aggregation related functionality was created as a modular structure that
was added to the existing Historian software. This means that most of the developed
code is concentrated to a single Java package. In addition, the functionalities of the
type aggregation, instance aggregation and service mappings are concentrated into
a single central Java class named AggregationManager. The AggregationManager
acts as the interface to the functionality and can handle the aggregation related
functionality fairly independently. This aggregation management module can be
plugged into the existing application with minimal code changes. Due to this modular
structure, managing the code is simple. Changing implementation specifics related
to the aggregation feature is easy because of the centralized code base. Similarly,
tracking of errors and debugging is simplified. In addition, modularity makes it easy
to enable or disable the new aggregation feature.

In the developed implementation, the Historian application includes a single
instance of the AggregationManager that is able to handle the aggregation of all the
added source servers. Aggregation can be enabled or disabled for each source server
in the Historian separately. Some additions were made to the GUI of the Historian
Configurator application to allow setting this option through the user interface. The
new source server configuration view of the Historian Configurator is displayed in
the figure 21. Changes were also made to the SQL database used by the Historian
so that the aggregation setting can be persisted in the database and is remembered
between application runs. When aggregation is enabled for a source server, then
during startup the Historian will pass the client connected to the source server to
the AggregationManager. The AggregationManager will then perform the type and
instance aggregation procedures utilizing OPC UA Services through the connected
client. The AggregationManager also handles all user-defined aggregation rules and
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the creation of the aggregated address space. In addition, it is plugged in to the
Browse services of the OPC UA server in the Historian application so that it can
handle all the needed service mappings that were described in the previous section.

Figure 21: Source server configuration view of the Historian Configurator application
with the setting for enabling or disabling the aggregation.
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5 Evaluation
The following chapter will evaluate the implemented software feature by analysing
its achievements and shortcomings and will present some possible approaches for
future development. The first section presents test cases where the software is tested
with aggregation of real OPC UA servers utilizing different information models. This
section is followed by a general overview of the solution and analyses of the type and
instance aggregation procedures.

5.1 Test Cases
5.1.1 Test Case for Type Aggregation

The first case used to evaluate the implemented aggregation feature tests the func-
tionality of the type aggregation algorithm. For the test, two source servers were
used. The first one was an integrated OPC UA server of a Beckhoff Automation
PLC device and the second one was a development prototype version of the Prosys
OPC UA Simulation Server software. Both of the servers implemented some of
the OPC UA companion specifications in addition to their application- or vendor-
specific information models. The table 1 below displays the information models
implemented by the source servers. The version of the Simulation Server used in the
tests supports loading NodeSet–files into the address space of the server. NodeSet is
an XML Schema that characterizes a standard syntax that can be used to formally
define information models and enables exchanging the model between computer
programs[38]. The listed companion specifications were loaded into the Simulation
Server from NodeSet–files provided by the organizations governing the specifications.
The Beckhoff Automation PLC server was factory-configured to include the listed
companion specifications.

Table 1: The standard information models, including the OPC UA base Information
Model and the companion specifications, implemented by the tested source servers.
The abbreviation ’SS’ stands for the Prosys OPC UA Simulation Server and ’BA’
for the Beckhoff Automation PLC.

Standard information models implemented by the tested source servers
Specification NamespaceUri SS BA
OPC UA http://opcfoundation.org/UA/ 4 4

ADI http://opcfoundation.org/UA/ADI/ 4

AutomationML http://opcfoundation.org/UA/AML/ 4

DI http://opcfoundation.org/UA/DI/ 4 4

PLCopen http://PLCopen.org/OpcUa/IEC61131-3/ 4

ISA-95 http://www.OPCFoundation.org/UA/2013/01/ISA95 4

The test case has two central characteristics. Firstly, the types are aggregated
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from more than one source server. The aggregation is performed simultaneously on
both servers in different application threads, which poses greater demands for the
aggregation algorithm. Secondly, the type definitions provided by the servers are
dissimilar because the source servers implement different information models as seen
in the table 1. On the other hand, there are also overlappings in the information
models and therefore in the type definitions provided by the servers. Overlapping
type definitions are also an important aspect to test. All OPC UA servers implement
the standard OPC UA Information Model, which in itself creates overlapping types
between servers. Additionally, both of the source servers in the test scenario also
implement the Device Integration information model.

The tested source servers were run on different platforms. The Simulation Server
was executed in the same computer as the Historian application while the Beckhoff
Automation server was executed on the PLC device that wass located in the same
local area network (LAN) as the other applications. The Beckhoff Automation server
communicating over the LAN using Ethernet has higher network delays compared to
the Simulation Server. In addition, the two source servers have varying hardware
and calculation power.

The testing process was setup by adding the two source servers to the Historian
application with the setting for aggregation being enabled. Then the Historian
application was restarted five times to get five clean runs of the aggregation process.
Some code was added to the aggregation algorithm to report the time taken taken
by the type aggregation procedures for each of the servers. The measured times are
reported in the table 2 below.

Table 2: The measured results for the time taken by the type aggregation procedure
of the two source servers during five different test runs.

Time taken by the type aggregation procedure (in seconds)
Aggregation run Simulation Server Beckhoff Automation PLC
1st 11.119 s 18.525 s
2nd 8.217 s 18.426 s
3rd 7.817 s 18.193 s
4th 7.862 s 18.221 s
5th 9.131 s 18.451 s

The namespaces implemented by the Historian were also recorded before and after
the aggregation by reading the values in the NamespaceArray of the OPC UA server.
The results are presented in the table 3 along with the application- and server-specific
namespaces implemented by the two source servers. They present the namespaces
used by the source servers in addition to the companion specifications listed earlier
in table 1. The list of namespaces of the Historian after the aggregation shows that
all namespaces containing type definitions were added from the source servers to the
Historian unchanged. These namespaces include the companion specifications but
also vendor- and application-specific namespaces if they contain type definitions.
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Table 3: The effect of type aggregation on the namespaces of the Historian.

Namespaces of the Prosys OPC UA Historian before the type aggregation
http://opcfoundation.org/UA/
urn:DESKTOP-BSPMG06:ProsysOPC:Historian
http://www.prosysopc.com/OPCUA/HistorianAddressSpace
http://www.prosysopc.com/OPCUA/Gateway

Application-specific namespaces of the Beckhoff Automation PLC
urn:CX-241DE2:BeckhoffAutomation:TcOpcUaServer:1
urn:CX-241DE2:BeckhoffAutomation:Ua:PLC1
http://Beckhoff.com/TwinCAT/TF6100/Server/Configuration
Application-specific namespaces of the Prosys OPC UA Simulation Server
urn:DESKTOP-BSPMG06:OPCUA:SimulationServer
http://www.prosysopc.com/OPCUA/SampleAddressSpace
http://www.prosysopc.com/OPCUA/ComplianceNodes
http://www.prosysopc.com/OPCUA/ComplianceNonUaNodes
http://www.prosysopc.com/OPCUA/SimulationNodes
http://www.prosysopc.com/OPCUA/SampleBigAddressSpace
http://www.prosysopc.com/OPCUA/SimulationConfiguration
Namespaces of the Prosys OPC UA Historian after the type aggregation
http://opcfoundation.org/UA/
urn:DESKTOP-BSPMG06:ProsysOPC:Historian
http://www.prosysopc.com/OPCUA/HistorianAddressSpace
http://www.prosysopc.com/OPCUA/Gateway
http://opcfoundation.org/UA/ADI/
http://PLCopen.org/OpcUa/IEC61131-3/
http://opcfoundation.org/UA/DI/
http://www.OPCFoundation.org/UA/2013/01/ISA95
http://www.prosysopc.com/OPCUA/SampleAddressSpace
http://opcfoundation.org/UA/AML/
http://www.prosysopc.com/OPCUA/SimulationConfiguration
http://www.prosysopc.com/OPCUA/SampleBigAddressSpace
urn:CX-241DE2:BeckhoffAutomation:TcOpcUaServer:1

An example of the resulting type definition hierarchy in the aggregated address
space of the Historian server is presented in the figure 22. It shows, on the left,
the subtypes of the ’BaseObjectType’ present before the aggregation procedure
and then, on the right, the expanded type hierarchy after the aggregation with
several new types added from the source servers. The new types on the right side
of the figure display examples from all the companion specifications. ’AccessoryS-
lotType’ is from the ADI information model, ’CAEXBasicObjectType’ is from the
AutomationML model, ’TopologyElementType’ is from the DI model, ’SFCType’
is from the PLCopen model and ’ISA95ClassType’ is from the ISA-95 model. A
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noteworthy aspect of the figure is also that the highlighted ’AccessorySlotType’ is
correctly located in its standard-defined namespace marked by the NamespaceUri
’http://opcfoundation.org/UA/ADI/’.

Figure 22: The ObjectTypes branch of type definition hierarchy tree of the Historian
before and after the type aggregation. Also showing highlighted the ’AccessorySlot-
Type’ from the Analyser Devices companion specification as an example of a type
that was successfully aggregated.

In the test, error-checking is already performed when the aggregation algorithm
adds the aggregated type Nodes to the address space of the Historian. The aggregation
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is performed using the Prosys OPC UA Java SDK that implements built-in sanity
checks that do not allow the user to create any constructs that conflict with the OPC
UA specification and will notify with error reports if illegal operations are attempted.
During testing, the aggregation procedure was observed to run without any errors.
In addition, a number of manual tests were performed by browsing various type
definitions from the address space of the Historian and comparing their Attributes,
Properties and References to the definitions provided by the companion specification
documentations. No discrepancies were detected.

Finally, a special algorithm was developed that is able to go through the type
definition hierarchies of two servers and report any differences between similar Nodes
in the hierarchy tree of the two servers. The algorithm regards Nodes similar if they
have equal NodeIds, i.e. same NamespaceUri and NodeId value, and then proceeds
to compare their Attributes and References. The algorithm was used to compare
the Historian server after the described aggregation procedure with the Simulation
Server after all the companion specifications were loaded into its address space from
NodeSet–files. In this case, the type definition hierarchies of the two servers should
be the same. Nevertheless, some differences were reported by the algorithm. After
manual inspection, it was revealed that these inconsistencies were caused by slightly
different versions of the DI information model between the two source servers of
the Historian. Because the aggregation procedure is additive, when two similar
type definition Nodes with different References are aggregated, it results in the new
type definition to contain References that are the sum of the References of the two
source type definitions. This is the form of the inconsistencies that were noticed
by the checking algorithm, however the amount of errors was small. In addition,
some differences were noticed in the Attributes of type hierarchy Nodes between the
cheched servers. The aggregation procedure prioritizes the Attributes of the first
encountered type definition Node. If another server provides a type definition Node
with an equal identity (NamespaceUri and NodeId value) but different Attributes,
the deviating Attributes are ignored by the aggregation procedure. These problems
were again caused by the different versions of the same information model between
different source servers. For example, some types were abstract in one version but
not in the other version.

The elapsed times measured for the type aggregation procedure show insight into
the efficiency of the aggregation procedure. Nevertheless, the duration is dependent
on the size of the type hierarchy tree of the source server that is being aggregated.
Because the aggregation is run in parallel for all the configured source servers,
the total time of aggregation is dictated by the slowest time for a single server.
In all the test cases, the slowest aggregation time was observed for the Beckhoff
Automation PLC server. The measured time in all the five test runs was consistently
between 18.2 to 18.5 seconds, while the type aggregation for the Simulation Server
fluctuated between 7.8 and 11.1 seconds. The amount of Nodes in the type definition
hierarchy of the Simulation Server is higher than that of the Beckhoff Automation
PLC. This would suggest a longer time needed for the type aggregation. However,
the Simulation Server was faster in all cases. This is probably due to the Simulation
Server being run on the same computer as the Historian. The Beckhoff Automation
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PLC is accessed over the local network and, as a consequence, the communication is
probably hampered by network delays in transmitting the OPC UA service calls and
possibly by also slower hardware in processing the calls. Overall, the performance of
the type aggregation was quite reasonable, especially since the procedure must be
performed only once during the runtime of the application.

5.1.2 Test Case for Instance Aggregation

The instance aggregation test case is divided into two parts. The first part tests cross-
server aggregation with two source servers but similar address spaces. Conversely,
the second part tests cross-model aggregation with one source server but dissimilar
address spaces implementing different information models.

The first instance aggregation test features two source servers: the Prosys OPC
UA Simulation Server and the Prosys OPC UA Sample Console Server. They both
implement similar address spaces with some sample instances but no added companion
specifications. The implemented namespaces are listed under the ’Application-
specific namespaces of the Prosys OPC UA Simulation Server’ in the table 3. A
simple aggregation rule was used in the test case. It applies to the namespace
’http://www.prosysopc.com/OPCUA/SampleAddressSpace’ and aggregates together
all Nodes that have a type definition with the DisplayName ’MyDeviceType’. A
model of this rule is presented in the figure 23. It was known beforehand that there
is one such instance on each of the servers. Therefore, the expected result for the
test was that these two instances would be aggregated together and located in the
aggregated address space after the procedure is completed.

Figure 23: Model of the aggregation rule used in the first part of the instance
aggregation test case.

Table 4 first presents the new namespaces added to the NamespaceArray of the
Historian by the aggregation mechanism for the use of the instance aggregation. An
instance from one server can have the same NodeId as an instance from another
server. This is also true in the test case where the address spaces of the two source
servers are mainly copies of each other. Nevertheless, the aggregating server must be
able to recognize such instances from each other. Therefore, the Historian creates
new server-specific namespaces for the instances. The NamespaceUri of an aggre-
gated instance is formulated as the sum of the applicationUri of the source server
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and the NamespaceUri of the Node on the source server. The applicationUri is
defined by the OPC UA specification as a globally unique identifier for an application
instance and can therefore be used to reliably identify different servers[14]. For the
servers in the test case, the applicationUri is of the form ’urn:HN:SimulationServer’
and ’urn:HN:SampleConsoleServer’ where the ’HN’ stands for the HostName of the
computer running the servers. In the table 4, additionally the respective Application-
Names ’SimulationServer’ and ’SampleConsoleServer’ are abbreviated to the forms
’SS’ and ’SCS’ to save space.

Table 4: The additions made by the instance aggregation to the namespaces of the
Historian in the first part of the test case.

Instance-specific namespaces used by the Historian after the instance aggregation
urn:HN:SS/http://opcfoundation.org/UA/
urn:HN:SS/urn:HN:SS
urn:HN:SS/http://www.prosysopc.com/OPCUA/SampleAddressSpace
urn:HN:SS/http://www.prosysopc.com/OPCUA/ComplianceNodes
urn:HN:SS/http://www.prosysopc.com/OPCUA/ComplianceNonUaNodes
urn:HN:SS/http://www.prosysopc.com/OPCUA/SampleBigAddressSpace
urn:HN:SCS/http://opcfoundation.org/UA/
urn:HN:SCS/urn:HN:SCS
urn:HN:SCS/http://www.prosysopc.com/OPCUA/SampleAddressSpace
urn:HN:SCS/http://www.prosysopc.com/OPCUA/ComplianceNodes
urn:HN:SCS/http://www.prosysopc.com/OPCUA/ComplianceNonUaNodes
urn:HN:SCS/http://www.prosysopc.com/OPCUA/SampleBigAddressSpace

A view of the aggregated address space of the Historian is displayed in the figure
24. The upper part of the figure shows that the two instances called ’MyDevice’
from different servers were successfully aggregated under an instance of the Aggrega-
teObjectType with the same name. The two aggregated instances are connected to
the AggregateObject with the more general ReferenceType HasModel, because their
type definition does not belong to or extend any companion specification information
model. The lower part of the figure shows how these aggregated instances can be
used as entry points to access information from the source servers, such as reading
the value of the ’MyLevel’ Variable that is highlighted in the figure. The lower part
of the figure also shows that the type definition of the ’MyLevel’ Variable points to a
type in the namespace ’http://www.prosysopc.com/OPCUA/SampleAddressSpace’
that is local to the aggregating server and was generated by the type aggregation
algorithm.

The second part of the instance aggregation test case concentrates on the aggre-
gation of multiple heterogeneous information sources that model different aspects of
the same entity. The test is performed by first using the UaModeler software from
Unified Automation to create two models that implement different companion speci-
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Figure 24: View of the aggregated address space for instances in the Historian after
the instance aggregation is completed in the first part of the test case.

fications but model the same entity. These models are then saved as NodeSet–files
and loaded to the Prosys OPC UA Simulation Server that is used as the source server
for the aggregation procedure. One of the models utilizes the AutomationML and
the other utilizes the Device Integration companion specification to create mock-up
representations of a very simple manufacturing system from two different viewpoints.
Both models create an instance called ’ManufacturingSystem’ that contains two
elements named ’firstScrewdriver’ and ’secondScrewdriver’. However, each of the
models displays different aspects of these elements and therefore use different type
definitions that extend from their respective companion specifications. The Au-
tomationML model exposes role-based characteristics of the elements, while the
model implementing the DI companion specification displays parameters, such as the
manufacturer and the serial number, of the actual physical device fulfilling that role.
The testing then proceeds with the definition of an aggregation rule in the Historian
that aggregates these two models together based on their namespaces and Display-
Names. The figure 25 shows that the aggregation was successfully completed and the
instances are under the AggregateObject called ’ManufacturingSystem’ with their
correct information model–specific ReferenceTypes ’HasDIModel’ and ’HasAutoma-
tionML’. The AggregateObject ’ManufacturingSystem’ is placed both under the
’Equipment’ and the ’PhysicalAssets’ folders according to the information model
mappings, because the Object groups models that belong to each of the categories.
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Figure 25: View of the aggregated address space for instances in the Historian after
the instance aggregation is completed in the second part of the test case.

5.2 Solution Overview
The aggregation feature developed during the course of this thesis manages to create
a proof-of-concept that meets the desired functionalities. The feature was added
as a modular extension to the existing Historian software and successfully fixes the
type consistency issues that were troubling the aggregating server of the Historian.
In addition, the new aggregation feature manages to provide a fairly simplistic and
generic solution to the problem of aggregating various heterogeneous models from
different source servers. An important aspect is that the aggregation procedure
utilizes aggregation rules that are user configurable and enable the solution to meet
demands of varied use cases. Therefore, the main requirements of type consistency,
user configurability and information integration are well met.

The solution is also highly automated and does not require user input after
the aggregation rules have been configured and the aggregation is enabled. This
improves usability and efficiency. The aggregation functionality also does not require
any changes to made to the source servers. The aggregation procedure is entirely
managed by the aggregating server, which makes it much easier to introduce the
aggregation functionality into existing systems.

5.3 Evaluation of Type Aggregation
The type aggregation works as intended in keeping all types local to the aggregating
server and assigning these type definitions to the aggregated instances so that
they have semantically identical types. However, the aggregation of types has
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some complications that are not properly addressed. Different source servers might
implement different versions of the information models or companion specifications.
These different versions may change the characteristics of the types and therefore
information models may not be compatible between versions. Ideally, information
models would be designed to be always compatible between earlier versions, but in
reality this is not always possible or a realistic assumption. Currently, the aggregation
procedure performs an additive merge of the type hierarchies between the aggregating
server and the newly added source server. Nonetheless, if the new source server does
not merely expand the existing type hierarchy but also changes the upper levels, then
it will result in a type conflict. Types are compared based on their NamespaceUri
and NodeId value, which can be read directly from the NodeId Attribute of a Node
or deduced based on the NamespaceIndex. A type conflict means that type Nodes
with equal identifiers between the aggregating server and the source server have
some mismatch in their characteristics, such as Attributes or References. In the
implemented version, the types existing on the aggregating server have priority over
added types. Therefore, new source servers cannot alter the existing type hierarchy
but only expand it. The aggregation procedure will not allow adding multiple types
with equal identifiers. This can also lead to the changes in the type definitions of
instances as the type definition from a source server is replaced by a definition on
the aggregating server with altered characteristics. It is also possible that a new
source server changes the characteristics of an existing type on the aggregating server
through new References, such as by adding new Properties. The described cases
can lead to the alteration of type characteristics after aggregation and to issues in
using the aggregated type information. In future development, it could be feasible to
request user input when a type conflict is detected or allow the user to change the
parameters of the aggregation procedure and, for example, choose between additive
or replacing merge options. Default parameters for the application cannot be set so
that they would be suitable for every use case and therefore some user modification
should be possible.

Further improvements to the type aggregation could be added in later devel-
opment. The type aggregation could be optimized in various ways. However, the
size of the type hierarchy is usually not very large and the aggregation process was
found to be quite quick. But it would be possible to read the NamespaceArray
of source servers to find out what information models they use. If they contain
any known companion specifications, the type definitions could be loaded directly
from a NodeSet–file without browsing the type hierarchy from the server. However,
vendor- and application-specific types would still have to be copied from the source
servers. Another possible option is to only add the type definition hierarchies of
instances that are aggregated during the instance aggregation procedure. The current
implementation adds a large amount of type definitions that might not be utilized in
the context of the aggregating server. By optimizing the procedure to only aggregate
types needed by the instance aggregation, it would be possible to greatly reduce
the copying of unnecessary types. However, the overhead to the software caused
by excess type definitions is small. Another issue with the type aggregation is that
added types are not removed from the aggregated server when a source server is
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removed. However, similarly this does not lead to any significant disadvantages.

5.4 Evaluation of Instance Aggregation
The instance aggregation feature enables creating a categorized aggregated address
space where information from different servers can be integrated under common
entry points. It is able to work with any information model if configured so by
the user. The aggregation procedure is flexible and can be configured for different
use cases using the aggregation rules that utilize fairly complex logic. The use of
FeatureIdentifiers brings efficiency to the aggregation rules by allowing one rule
to apply to numerous instances and aggregated entry points. FeatureIdentifiers
can alleviate the need to configure a large number of rules and values in complex
aggregation scenarios. They enable the creation of aggregation rules even in cases
where some of the characteristics of the aggregated information is not known during
the configuration phase.

The implemented information model for the aggregated address space might
not be suitable for every use case or might include unnecessary constructs. Many
applications will only model, for example, physical assets, meaning the other categories
of information are not needed. However, the information model serves mainly as
a preliminary example and could be easily changed based on user feedback from
real-life scenarios.

The aggregation procedure creates container Objects that integrate entry points
for the different models, but more sophisticated aggregation methods that might
integrate and transform the underlying model hierarchies could be possible directions
for further development. Additionally, the aggregation could take into account
overlappings in the different models by combining semantically similar information
from different sources.

New source servers can be added during runtime and the aggregated instances
are removed if the source server is removed. Nevertheless, the aggregation cannot
react to runtime changes, such as additions of new Objects in the underlying servers.
The aggregation process needs to be repeated from the beginning to accomodate
such changes. The aggregation procedure is compatible with custom ReferenceTypes
in the instance hierarchy tree as long as they are subtypes of HierarchicalReferences.
On the other hand, AggregationRules can only utilize ReferenceTypes that are
present in the OPC UA specification. These aspects could be improved upon in later
development efforts.

Further development of the instance aggregation procedure could include more
customization options. Currently, the AggregationFootprint only includes AND-
based logical rules, but these could quite easily be extended with NOT-, XOR- and
OR-logic rules. In addition, the customization of the aggregation parameters and
especially the information model of the aggregated address space could be improved.
The possibility to customize the names of the AggregateObjects could be a useful
addition and easily added to the existing rule architecture.

The configuration of the aggregation rules and parameters could be performed
using a graphical user interface. The GUI could improve usability greatly by ab-
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stracting the underlying aggregation rule constructs to a more easily understandable
form. This would make it possible to configure the rules without the need for special
expertise. The GUI could employ some error-checking and limitations that decrease
the chances for user-related errors in the configuration process. This graphical user
interface feature would be implemented as an addition to the existing Historian
Configurator software that already offers an GUI for modifying the parameters of the
Historian software. Another important addition would be that the aggregation rules
configured through the GUI would be persisted into a SQL database. In this manner,
the aggregation rules could outlive the lifetime of the application process and could
be loaded from the database later when the application is restarted. The database
connection is already implemented in the Historian application but saving the ag-
gregation rules to the database would require creating a suitable object-relational
mapping.
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6 Conclusions
OPC UA is a communication protocol created to meet the varied demands of industrial
information systems with its flexible information modelling capabilities. It is expected
to have wide use in the industry. With developments such as the Industrial Internet
of Things and Industrie 4.0, the amount of data in the industrial environment is
increasing and it is provided by an increasing number of sources. However, gaining a
holistic view of system information from all the multiple heterogeneous providers
can be difficult and inefficient. An aggregating OPC UA server is a paradigm used
to create entry points to numerous source servers from a single OPC UA server.
Nonetheless, no finished solutions exist for utilizing aggregating servers to integrate
numerous sources of information implementing different information models and on
different source servers. This thesis set out to improve the existing version of the
aggregating OPC UA server in the Prosys OPC UA Historian software with the
capability to aggregate such heterogeneous information sources.

First the information modelling characteristics of OPC UA were studied along
with the companion specification information models. This knowledge, along with
the needs of the perceived use cases for the new functionality, were used to create
a set of requirements for the implementation. The implementation phase started
by examination of the source code and software structure of the existing Historian
software that utilizes Java programming language and the Prosys Java OPC UA
SDK. The new aggregation functionality was then implemented as a new modular
feature in the Historian application.

The implemented software feature consisted of three main parts: type aggregation,
instance aggregation and service mappings. Firstly, type aggregation is responsible
for accessing type information from configured source servers and copying it to
the aggregating server. This is required by the aggregation procedure to keep
types consistent across different instances from various source servers. Secondly,
the instance aggregation integrates different information instances together in the
aggregated address space of the OPC UA server in the Historian, thus creating a
central access point to the different models. Aggregation rules were created to allow
the user to configure how the instance aggregation is performed. In this manner, the
aggregation procedure can meet various requirements in diverse use environments.
Finally, new service mappings were created to combine the two previous elements by
allowing the aggregated instances to make use of the common aggregated types on
the Historian server.

The implemented solution manages to create a proof-of-concept prototype that
meets the defined requirements. The aggregation feature is able to integrate disparate
information from different information models and different source servers. The
type definitions of these instances are kept consistent through the use of the type
aggregation and the service mappings. The feature is a fairly generic framework that
can be applied in a wide array of application areas and can be configured through the
aggregation rules to be compatible with different systems and usage environments.
The performance was found to be acceptable, even though it was not a priority
during development.



57

Based on testing, the type aggregation procedure functions properly with all
the companion specifications analyzed in this thesis and also with different custom
information models. Information models are built as extensions of the base structure
defined by the OPC UA specification and therefore they should be inherently com-
patible with each other. However, it is possible that a server exposes erroneous type
definitions that will interfere with the type aggregation algorithm. A very realistic
limitation on the type aggregation comes from different versions of information
models. When various servers expose types that have same identifiers but different
characteristics, they will cause issues for the type aggregation. In this case the type
definition characteristics of instances can change between the source server and the
aggregating server or it can even lead to faulty type definition semantics.

The instance aggregation also performed properly in the test cases, managing to
integrate instances from both different servers and from different information models.
The functionality of the instance aggregation can be flexibly configured so that it
functions with different system platforms and information models. Nevertheless, it
should be tested in real-life scenarios to discover how it meets actual user demands.
Likely, more customization options are needed for the aggregation procedure and for
the model of the aggregated address space.

This thesis does not offer an ultimate solution to the issues regarding information
integration in OPC UA, but lays the path ahead for future solutions by offering the
outlines of a prototype solution. This prototype will be used as the starting point for
future incremental development in the Historian software. Before commercial release,
the feature requires refining, testing and more functionality. Clear paths for future
development are the addition of a fully-fledged graphical user interface for configuring
the aggregation rules and parameters. The GUI should be made easy to use, so
that even non-experienced users can control the aggregation process properly. The
aggregation rules should be configured through the GUI to abstract the programming
language–specific and intricate definitions to a more user-friendly form. In addition,
the rules and configuration settings should be saved to a database so that they can
be loaded when the program is restarted. Overall, more customization options and
functionalities should be added in the future, possibly on the basis of feedback from
test users.
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