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1 Introduction 

1.1 Background 

Computer simulation can be used to reproduce physical phenomena and behaviors with a 

mathematical model. This model represents key characteristics of an object or a system it is 

reflecting. The model is executed on a computer, that exceeds the human capabilities on 

numerical computing and data processing.  

 

Simulation can be applied to a large number of use cases, which leads to the development of 

several types of simulation software (Mourtzis, et al., 2014). Simulation has become im-

portant tool in the production domain for the design, analysis and visualization of manufac-

turing systems. Discrete-event based simulation tools, have established their position as a 

standard method of validating and optimizing manufacturing systems. The operation of these 

tools is based on simulation components and their interaction. Typically, these components 

resemble the physical devices on the factory floor. (Modrak and Semanco, 2014, p. 89-115)    

 

The process of creating a simulation of a manufacturing system, starts with the creation of a 

virtual model of the system. This virtual model is the digital representation of the real model 

in the simulation environment. Component modeling plays a key role in the use of produc-

tion simulation. Accurate and appropriate modeling of the components determines the va-

lidity of the results obtained during the simulation. Modern simulation tools allow to reuse 

components from the component libraries, which facilitates the creation of new simulations. 

 

Productivity has been dramatically increased by the different industrial revolutions. From 

the introduction of steam powered machines to the electrification of factories, resulting to 

the emergence of automation. The introduction of information and communication technol-

ogies (ICT), pushed the development of automation technologies to a new level. 

 

Digitalization and simulation technologies have been developing in parallel during the evo-

lution of the ICT technologies. Currently, we are in the midst of a fourth wave of industrial 

revolution. Generally accepted name for the fourth industrial revolution is Industry 4.0. It 

focuses on flexible and autonomous manufacturing systems, that intelligently exploit the 

relevant information from massive amounts of data. All information systems and data will 

be stored in a cloud, where it can be accessed from anywhere. (Lasi, 2014) (Rüssmann, 2015) 

 

Simulation has become one of the nine pillars for building the Industry 4.0, supporting and 

enabling the digital twin in the virtual space. The digital twin reflects a physical object or a 

system in real-time, and it is capable to give feedback, such as optimized values and control 

signals to the physical counterpart. The twin integrates all the relevant data and simulation 

models of a physical counterpart into one entity, and the twin becomes the center point of 

engineering processes. Engineering processes will change from documentation-based to 

model-centric approach, where the importance of simulation increases. (Grieves, 2014) 

(Rüssmann, 2015) 
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1.2 Objectives 

This research focuses on component modeling for Visual Components (VC) production sim-

ulation software. To achieve this wide target, it has been divided into four objectives. First 

objective is to identify and analyze future prospects in production simulation domain.  

 

Second objective targets the classification of simulation components. Classification is a 

method to standardize modeling solutions. To achieve this, selected devices from pre-de-

fined industrial fields have been used as a basis for the classification. Component classifica-

tion has not been previously performed with VC software, which leads to the development 

of a classification method as well.   

 

Third objective is to develop best practices in component modeling. Best practices are guide-

lines for the end-users in the most relevant fields related to modeling. Best practices provide 

proven to be good modeling solutions and standardization of modeling practices to achieve 

standardized and compatible components that are easy to adopt.   

 

Fourth objective is to implement a case example, which utilizes and combines the results 

from component classification and best practices. Selected implementation type is a wizard 

tool that instantly generates predefined and possibly customizable set of attributes to applied 

component, which enables fast and standardized creation of components. 

1.3 Scope 

The examination of the future prospects focuses on the concept of digital twin and on formal 

modeling languages. The examination of digital twin is based on the selected modeling ap-

proaches available in the scientific literature. 

 

The classification of components is based on the industrial devices from the automotive and 

the food & beverage industries, which were pre-defined by Visual Components. In automo-

tive industry, focus is set to all manufacturing areas from chassis manufacturing to finalized 

product. In food & beverage industry, focus is emphasized to packaging area, which is typ-

ical target for simulation. In both industries, the selection of the devices is limited to most 

relevant and generally utilized devices.  

 

The best practices are presented as general guidelines, and no further modeling instructions 

are presented to implement best practices. Best practices are based on the selected topics, 

which are selected based on the most relevant fields from the general modeling point of 

view.  

 

The development of wizard functions as a proof of concept and prototype for the developed 

classes and best practices. This leads to the exclusion of comprehensive testing and finaliza-

tion of the wizard.  

1.4 Structure of Thesis 

Chapter 2 first presents the concept of production simulation software. Thereafter, the con-

cept and modeling approaches of the digital twin are presented. At the end of this chapter, 

the existing formal modeling languages are presented. Chapter 3 first presents automotive 

industry and the selected industrial devices. Thereafter, the chapter presents food & beverage 

industry and the selected industrial devices. Chapter 4 presents the component modeling in 
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the Visual Components software. After that, the development opportunities and approaches 

are presented. Chapter 5 presents and analyzes the result of the implementations. Chapter 6 

presents the outcome of the thesis including conclusions and suggestions for further work. 
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2 Digital Modeling and Manufacturing 

2.1 Production Simulation 

Production simulation software are based on discrete-event simulation (DES). DES utilizes 

discrete time sequenced events to model the operation of a system. Events occur at specific 

time instant, and no change in the system between consecutive events is assumed to occur. 

Because DES is based on the discretely occurring events and not continuous sampling over 

time, it is generally faster to run than continuous simulations. 

 

Production simulation cannot be purely defined as DES software, because some functional-

ities require continuous simulation as well. One example of continuous simulation is visual-

ization of the events, which is based on sampling over simulation time. Some functionalities 

are based on this continuous visualization, such as collision detection and certain types of 

sensors. Other example is the possibility to use physics simulation, which is integrated to the 

production simulation. This enables the use of forces and their interaction between the com-

ponents during the simulation (see Figure 2.1).  

 

Layouts in production simulation are constructed with components, which typically repre-

sents factory floor devices. These components can be imported from component libraries or 

they can be created from the beginning. These components and their operation and interac-

tion define the factory floor operations.  

 

Production simulation software can be used for several purposes. As an example, it can be 

used to find bottlenecks from the production system, validate and optimize production lines, 

validate programmable logic controller (PLC) logics and visualize manufacturing solutions 

as a proof of concept. Figure 2.2 presents a scenario in which simulation is utilized to simu-

late complex welding process in automotive industry. 

 

 

 

    
 

Figure 2.2. Simulation of a welding process in 

automotive industry. 

 

 

 

Figure 2.1. In addition to discrete-

event simulation, continuous simulation 

with physics engine can be utilized, for 

example, in bin picking process 
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Virtual Commissioning in Production Simulation 

Commissioning is the process of testing and verifying system functions, and comparing them 

to designed requirements and specifications. Commissioning of the system can be accom-

plished without the use of simulation, but it can be effectively started only when the system 

to be commissioned is implemented. In this case, every undiscovered problem may delay the 

start of production. (Syväjärvi, 2016, p.4-8) 

 

Virtual commissioning utilizes the use of simulation in the validation of the real control 

systems, such as programmable logic controllers (PLC) (Syväjärvi, 2016, p.4-5). This ena-

bles performing significant amount of commissioning activities before the actual system ex-

ist. With the use of virtual commissioning, even 75% of the time used for real commission-

ing, can be reduced due to enhanced quality of the manufacturing system (Koo, et al., 2011). 

 

In system development, commissioning is the final part that results in a fully operational and 

tested system, ready to be used and delivered to customer. In practice, the commissioning of 

automation systems includes various procedures to check, inspect and test every operational 

component of the system. This includes everything from physical fit of components, con-

nections of electrical wiring to correct operation of work cells and the system as a whole. 

(Liu, et al., 2012) 

 

2.2 Digital Twin 

The first section introduces the digital twin and cyber-physical systems. Second section pre-

sents modeling approaches for the digital twin. In third section, the use of digital twins in 

simulations is examined. Last section discusses the current challenges related to digital twins 

and their applications. 

2.2.1 Introduction to Digital Twins 

The Concept of Digital Twin 

The concept of digital twin was first introduced by Grieves at one of his presentations about 

product lifecycle management in 2003 at University of Michigan. According to Grieves, 

digital twin contains three parts: physical product in real space, virtual product in virtual 

space and the connections of data and information, which ties the virtual and real product 

together (see Figure 2.3). Virtual product is presented as a rich representation of a product 

that is virtually indistinguishable from its physical counterpart. (Grieves, 2014) 

 

 
 

Figure 2.3. The concept of digital twin. (modified from Grieves, 2014) 
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Virtual and physical model can be simultaneously viewed and compared providing several 

benefits, especially in the manufacturing point of view. Instead of simulating what should 

happen on the factory floor, digital twin replicates what has actually happened, at every step 

in manufacturing process. This communication would happen real-time or near real-time, 

and it would transfer information, such as raw sensor data from physical object to virtual 

object. Information flow is not only one directional, but it can also be transferred from virtual 

object to physical object. This information can be, for example, data used for device control.   

 

The digital twin capacity supports three powerful tools in the human knowledge kit. These 

tools are conceptualization, comparison and collaboration. Humans prefer to visually con-

ceptualize situations, rather than look at a table of numbers, reports or other symbolic infor-

mation. The digital twin enables information to be visually reviewed. Comparison is efficient 

tool of reviewing products. Physical product information can be visually and effectively 

compared to ideal characteristics of virtual product information. Collaboration provides 

more expertise, more variability of perspectives and improved problem solving capabilities. 

Digital twin allows sharing ideas and conceptual designs, which can be easily distributed 

between the different shareholders to be visualized, analyzed and improved. This allows 

global comparison between factories, which results in capabilities to improve manufacturing 

solutions immediately across the globe. (Grieves, 2014) 

 

Generally Accepted Definition of Digital Twin 

Based on the concept by Grieves, there are several variating definitions defining the digital 

twin. A general definition of digital twin, which has been recognized and used by most peo-

ple, was given by Glaessegen and Stargel in 2012 (Tao, et al., 2017): digital twin is an inte-

grated multi-physics, multi-scale, probabilistic simulation of a physical object that uses the 

best available physical models, sensor updates, etc., to mirror the life of its corresponding 

twin.  

 

The definition emphasizes the integration of different simulation types. Multi-physics sim-

ulation is definition for coupling different physical phenomena, such as mechanical, electri-

cal, fluid, chemical into one simulation. Multi-scale simulation combines simulations from 

different abstraction levels, which enables the interaction between these levels. Probabilistic 

simulation denotes in this context more advanced probabilistic simulation methods than what 

is currently widely available. Current probabilistic methods are based on assumed similitude 

of conditions, which makes them inadequate. Statistical assessments must also be individu-

ally tailored to fit the needs of each device. (Glaessegen and Stargel, 2012) 

 

Cyber-Physical Systems 

Cyber-physical systems (CPS) are frequently presented in scientific literature with digital 

twins. This is because the digital twin is one of the key enablers in the concept of cyber-

physical systems, which focus more on the opportunities on the factory floor and the system 

level, than on the detailed model level. Cyber-physical systems could be described as a group 

of physical devices, equipment and other objects, which interact with a virtual cyberspace 

through a communication network. (Schroeder G, et al., 2016) (Lee, 2008) (Baheti and Gill, 

2011)  
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2.2.2 Digital Twin Modeling Approaches 

This section presents several modeling approaches for digital twins. Some of the approaches 

are more conceptual, while the others are more focused on specific subjects. These ap-

proaches are generally based on specific approaches published in scientific publications, and 

the most advanced and appropriate information for this thesis has been gathered and pre-

sented in this chapter.  

Digital Twin Types, Lightweight Model and Unified Repository 

First approach is mainly based on the work from Michael Grieves, who is research professor 

at Florida Institute of Technology. Grieves introduced the term digital twin in 2003 at one 

of his presentations about product lifecycle management. (Grieves, 2014) 

 

Digital Twin Types 

Digital Twin could be divided into two different types: digital twin prototype (DTP) and 

digital twin instance (DTI). There could also be digital twin environment (DTE), which pro-

vides operation environment for the digital twins. DTP would describe the physical object 

at a prototype level. It would contain all the information required to describe and produce 

the physical object. DTP would include information, such as product requirements, anno-

tated 3D model, bill of materials, bill of processes, bill of services and bill of disposal. DTI 

would individually mirror the physical product throughout the life of the product. In addition 

to DTP, DTI could contain data such as sensor data, service record, operational states, di-

mension data and other data depending on the use cases. (Grieves and Vickers, 2016) 

 

DTE is an integrated, multi-domain physics application space for operating on digital twins. 

It could be used for variety of purposes such as predictive and interrogative use of digital 

twins. The goal of the predictive mode is to predict future behavior and performance of the 

product. The prediction with DTP would focus on the behavior of the designed products with 

components that, for example, vary between their tolerance values. The prediction with DTI 

would focus on providing a range of possible future states of the product, based on the in-

formation from the actual products and their history records. Interrogative mode of the DTE 

applies to DTI, and it can be used to interrogate the past history of the instances, such as fuel 

amount, geographic location, structural stress and other product specific instances. (Grieves 

and Vickers, 2016) 

 

Lightweight Model 

Lightweight model can be created from the virtual model of the digital twin. Purpose of 

lightweight model is to only select required characteristics, and attributes without anything 

unnecessary. This enables visualization and simulation of complex systems and systems of 

systems within real-time requirements and acceptable computing costs. (Grieves, 2014) 

 

Unified Repository 

Unified Repository (UR) is a two-way connection between physical and virtual products. 

The UR would be populated with virtual development tools and physical collection tools. 

The virtual tool would have knowledge of the identified characteristics, such as dimensions, 

tolerances and torque requirements. These characteristics would have a unique tag in the 

virtual model that provides a placeholder for the data from the physical product. After the 

design is released for production, these tags would be collected from the virtual model and 

used to create the UR. These tags would be included in the manufacturing execution system 

(MES) that is a control system for managing and monitoring processes on a factory floor. 
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MES would output the captured characteristics to the UR according to completed processes.  

The UR data is incorporated to factory simulation, where it is used to synchronize the simu-

lation with the actual factory floor. (Grieves, 2014) 

Digital Twin Driven Product Design, Manufacturing and Service 

Second approach is based on the work from Fei Tao et al. (2017). Tao is professor at Beihang 

University and he has specialized in manufacturing systems, intelligent manufacturing and 

digital twins. In this approach, the digital twin plays a central role in the whole lifecycle of 

a product. This approach focuses on three fields: digital twin driven product design, manu-

facturing and service.  

 

First, the concept of product lifecycle is briefly introduced. Product lifecycle starts from 

engineering design and continues through manufacturing and service to disposal of the prod-

uct. Product lifecycle has been generally managed with product lifecycle management 

(PLM) software, which integrates people, data, processes and business systems (see Figure 

2.4). 

 

 
 

Figure 2.4. An example of product lifecycle data. (Tao, et al., 2017) 

 

 

Product Design 

Digital twin-driven product design can be divided to three phases. First phase is the concep-

tual design, second phase is detailed design and the third phase is virtual verification. Illus-

trative example of digital twin in design phases can be seen in Figure 2.5. 

 

Conceptual design is the first and also the most important phase of the whole product design 

process. Designer defines the concept, esthetics and the main functions of the product while 

dealing with various types of information, such as customer satisfaction, product sales, in-

vestment plans and other. The amount of required data is large, and it is in scattered form. 

With a digital twin, scattered data can be integrated, and the twin also enables more trans-

parent communication between clients and designers. (Tao, et al., 2017) 
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In detailed design, the design and construction of a prototype should be completed. In addi-

tion, tools and equipment utilized in production should be developed. The detailed design 

stage also includes simulation tests to verify the fulfillment of performance requirements. 

Due to lack of real-time and environmental-impacted data, simulation results may not be 

accurate. Digital twin plays a major role to solve this problem. It can coevolve with the 

physical object from the start of the lifecycle, as well as it collects product and environment 

related data. (Tao, et al., 2017) 

 

In a traditional verification process, the validity and feasibility of the design cannot be eval-

uated until a small batch of the product has been produced. This delays the start of the actual 

production, which leads to increased financial costs. Digital twin could be used to effectively 

predict the quality of the product before starting the production. Digital twin-driven virtual 

verification allows full utilization of the data from equipment, environment, material, cus-

tomers, physical characteristics, and history data. With this method, possible design defects 

and root causes can be effectively searched. In addition to this, digital twin can be used to 

propose solutions and optimization to the real systems. (Tao, et al., 2017) 

 

 

 
 

Figure 2.5. A digital twin in every phase of design processes. (Tao, et al., 2017) 

 

Product Manufacturing 

Product manufacturing is the entire manufacturing process from the raw materials to finished 

goods. This includes mainly three aspects: resource management, production plan and pro-

cess control. First, resources such as materials, equipment, tools, operators, and others 

should be prepared and allocated. Second, production plan should be devised to predefine 

the manufacturing process. This includes machining, assembly, logistics, and other to 

achieve objectives like cost reduction, shorter manufacturing time and improved quality. 

Last, to ensure the accuracy, stability, and high efficiency of the process, following things 

are required to be monitored and controlled in the execution stage: real-time states, such as 

the production schedule, material storage and product quality. (Tao, et al., 2017) 

 

Tao et al. proposed a new paradigm for product manufacturing: Digital Twin Shop Floor 

(DTS) which is composed of the following components: 
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▪ Physical Shop Floor (PS) 

PS is objective entities set that is responsible for receiving production tasks and prede-

fined orders, and executing the orders to manufacture products. 

 

▪ Virtual Shop Floor (VS) 

VS is an accurate virtual model, which can simulate and forecast production plans and 

processes. It also provides optimization strategies to Shop Floor Service System and 

monitors and regulates the manufacturing process in real-time. 

 

▪ Shop Floor Service System (SSS) 

SSS is the set of service systems, providing support and services for the product manu-

facturing.  

 

▪ Shop Floor Digital Twin Data (SDTD) 

SDTD refers to all data related to PS, VS, and SSS.  

 

Figure 2.6 shows how PS, VS and SSS interact with each other through SDTD to accomplish 

the iterative optimization for resource management, production plan, and process control. 

 

 
 

Figure 2.6. The concept of digital twin shop floor. (Tao, et al., 2017) 

 

Product Service  

Defects in complex products, such as automobiles and aircrafts can lead to malfunctions or 

even serious safety accidents. For this purpose, it is important to carry out recommended 

maintenance for these products. Current maintenance methodologies for complex products 

are inadequately based on similitude and a heuristic understanding instead of the specific 

materials, structural configuration, and usage of an individual product. With a digital twin 

methodology, degradation and anomalous events can be predicted in advance. This provides 
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possibility to individually customize the most relevant services for complex products. (Tao, 

et al., 2017) 

Experimentable Digital Twins 

This approach is based on the work from Michael Schluse et al. at University of Aachen. 

This approach presents the concept of experimental digital twins, which introduces eRobot-

ics as the platform and Virtual Testbeds as the testing framework for digital twins. Also, 

model-based systems engineering is introduced as a tool to model more and more complex 

systems. 

 

Background 

The current use of simulation tools could be described as tool-centric approach where most 

simulation tools are able to solve exactly one specific application. This results in a discon-

tinuous, time consuming, expensive and error-prone use of simulation systems throughout 

the development. To overcome these limitations, it was necessary to develop new concepts 

that can flexibly combine and exchange different simulation aspects. (Schluse, et al., 2016) 

 

First part of the solution was not to have separate individual simulations but to have digital 

twin in the middle of the development process. This results in situation, where the focus 

concentrates on the digital twin objects, which become increasingly more elaborated over 

time. As an example: the lifecycle of a digital twin may start with a simple product related 

data. After that, a discrete event simulation could be added for analysis on a system level. 

At the end of design phase, a combined rigid body and FEM simulation could be utilized for 

analyzation purposes. Different digital twins could also be combined to set up multi-scale 

simulations with different level of details. These digital twins could represent systems, sys-

tems in their environments or system of systems. The same digital twin should be usable in 

various scenarios or even completely different applications as well. (Schluse, et al., 2016) 

 

Second part of the solution addresses the technological challenges. New comprehensive in-

terdisciplinary approach is required to combine the existing realizations of the various as-

pects of simulation technology, integrating various systems and systems of systems to be 

simulated, and providing development methods supporting different development processes. 

(Schluse, et al., 2016) 

 

eRobotics and Virtual Testbeds 

The proposed solution is based on the use of eRobotics and Virtual Testbeds. The aim of 

eRobotics methodology is to provide a platform and a comprehensive software environment 

for the development of complex technical systems. For example, it can be used in user re-

quirements analysis, system design, support for the development and selection of hardware, 

programming, system and process simulation and control design. This allows the use of sim-

ulations right from the beginning of the development process to enable system testing in the 

concept phase. (Schluse, et al., 2016) 

 

Virtual Testbeds in eRobotics are used to design, program, control and optimize complex 

systems and their interaction with prospective environment in simulation. Testbed allows 

engineers to simultaneously examine the entire digital twin in its environment. This allows 

efficient development, test, and verification on a component and system level at any time. 

Virtual Testbed combines data processing system with simulated environment. Example of 

the structure of Virtual Testbed can be seen in Figure 2.7. Combining Virtual Testbeds and 
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digital twins on eRobotics platform, leads to new kind of experimentable digital twins 

(EDT). (Schluse, et al., 2016) 

 

 

 
 

Figure 2.7. The structure of virtual testbed. (Schluse, et al., 2016) 

 

Versatile Simulation Database 

To be able to model and to concurrently simulate digital twins with the presented eRobotics 

concept, new simulator requirements emerges. Simulator can be used to build a model re-

producing a system’s dynamic behavior and processes and to make the model executable. 

To overcome the current limitations in simulation technology, a new micro kernel architec-

ture for simulation systems was developed. This micro kernel is called as Versatile Simula-

tion Database (VSD). VSD is an object-oriented real-time database that provides central 

building blocks for data management, meta information, communication, persistence, and 

user interaction. VSD is not only a static data container, but it also contains the algorithms 

and interfaces to manipulate data. One of the most important features of this architecture is 

that it is capable to integrate various data sources, simulation systems, visualization, inter-

action and feedback devices as well as the real-world counterparts of the digital twins. 

(Schluse, et al., 2016) 

 

Model-based Systems Engineering with Experimentable Digital Twin 

Model-based Systems Engineering (MBSE) focuses on domain models as the primary means 

of information exchange. This allows visualization of the technical system in more abstract 

level without losing necessary information. MBSE is presented in more detail at section 

2.4.1.  
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MBSE and simulation technology play a key role in coping with the more increasing com-

plex technical systems. The first steps of using the MBSE, such as iterative modeling of 

requirements, designs, behaviors and tests, have become standard procedures, but the tran-

sition of MBSE models to simulation is often restricted to simple scenarios. One of the main 

reasons for this is that it would require state-of-the-art simulation technology and simulation 

framework to enable multidisciplinary simulation. This problem could be solved with Ver-

satile Simulation Database. Figure 2.8 presents the Experimentable Digital Twin as the node 

between systems engineering and simulation technology. (Schluse, et al., 2017). 

 

 
 

Figure 2.8. The relation between model-based system engineering and experimentable 

digital twin. (Schluse, et al., 2017) 

Digital Twin Data Modeling with AutomationML 

Schroeder et al. (2016) presents a concept for digital twin data modeling with Automa-

tionML and a communication methodology for data exchange. AutomationML is briefly 

introduced before presenting the concept. 

 

AutomationML 

Automation Markup Language (AutomationML) is a neutral and open standard data ex-

change format, which is based on Extensible Markup Language (XML). Goal of Automa-

tionML is to interconnect engineering tools from different engineering disciplines, such as 

mechanical, electrical, systems and control engineering. AutomationML is standardized in 

IEC 62714. (Schmidt and Lüder, 2015) 

 

AutomationML utilizes four already existing standards. CAEX (Computer Aided Engineer-

ing Exchange, IEC 62424) implements the topology of the model including properties and 

relations of objects in hierarchical structure. COLLADA (COLLAborative Design Activity) 

implements geometry and kinematics. PLCopen XML implements logics. Structure of Au-

tomationML can be seen in Figure 2.9.  (Schmidt and Lüder, 2015) 
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Figure 2.9. The structure of AutomationML elements (AutomationML, 2014). 

 

AutomationML supports integration framework philosophy, in which centralized data bro-

ker is utilized to transfer data between engineering tools (see Figure 2.10). AutomationML 

as standardized data exchange format can be utilized as central data broker between the en-

gineering tools. (Schmidt and Lüder, 2015) 

 

 
 

Figure 2.10. Integration framework as a central data broker for AutomationML format. 

(Schmidt and Lüder, 2015) 

 

AutomationML with Digital Twin 

Digital twin contains different types of models such as systems models, 3D models, multi-

physics models, manufacturing models and other models, which are created during different 

phases of product lifecycle. AutomationML is a proposed solution to be used to create these 

models from physical devices. The aim of the research was to contribute a methodology that 

allows data to be available for data exchange using AutomationML models. (Schroeder, et 

al., 2016) 
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The methodology is based on the steps seen in Figure 2.11. First stage is creating a model of 

a physical device using a modeling tool such as AutomationML. Second stage is to enable 

the exchange of information of the modeled attributes in the model. These models should 

also be available in an open format such as text file model. Providing information to other 

systems can be implemented, for example, with the use of middlewares. The last stage is 

composed by the consumers of information systems such as monitoring applications and 

augmented reality applications. (Schroeder, et al., 2016) 

 

 
 

Figure 2.11. The methodology steps for data exchange with AutomationML. (Schroeder, et 

al., 2016) 

 

2.3 Digital Twin in Simulation 

Digital twin provides comprehensive real-time information of the current state of the system. 

This extends the possibilities for the use of simulation. Instead of using simulation only in 

the design and validation phase, simulation could be used during the system operation in 

real-time. Real-time simulation operations introduce new requirements for simulation soft-

ware to provide automatic operation handling, because operations executed by human oper-

ators do not meet the real-time requirements. 

2.3.1 Real-Time Operations 

Digital twin is a key enabler of the real-time or near real-time operations, such as system 

optimization, production planning and validation, and other operations, in which the 

knowledge of the current state of the system is required.  

 

Based on the concept of digital twin, the twin should always reflect the current state of the 

physical system in real-time or near real-time. However, there could simultaneously exists 

additional digital twins for different purposes. The creation of these additional twins would 

be based on the original digital twin.  

 

Uhlemann et al. (2017) presents a concept, where the original digital twin generates a data-

base from the data it contains. This database is used to generate additional digital twins, 

which reflect the current states of the system. The purpose of the original digital twin is only 

to reflect the physical system and update the database, while the additional digital twins are 

available for other operations. One of these additional digital twins should act as a reference 

of the current system during a comparison, while the other additional twins, would be mod-

ified. Modification operation could be, for example, calculating set of optimized parameters 

for the digital twin. Twin with the optimized set of parameters would be compared to the 
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reference digital twin to acquire knowledge of the achieved outcome. When suitable optimi-

zation values have been found, those could be automatically transferred to production con-

trol system. 

 

Virtual testbed environment presented by Schluse et al. in section Experimentable Digital 

Twins, could provide an effective tool to perform real-time operations as well. The testbed 

has integrated tools that can be used in operations such as optimization. However, optimiza-

tion capabilities and methods of virtual testbeds was no further described by Schluse et al.  

 

In both of these approaches, digital twin plays a major role as the enabler of these real-time 

operations. However, most of the current methods to perform optimization require the defi-

nition of parameters and the evaluation of the solutions by the human operators. Coupling 

between simulation and optimization is still under research (Uhlemann, et al. 2017).  

2.3.2 Autonomous Systems 

Requirements for product complexity and customizability are increasing, while the ramp-up 

time of the production should decrease. Autonomous systems play a key role to solve this 

problem. Autonomous systems are capable to execute high-level tasks independently with-

out detailed human control. These tasks can be production planning after the configuration 

change in the production system or optimization of the production. (Rosen, et al. 2015) 

 

In order to implement autonomous systems, the system will require realistic models describ-

ing the current state of the process and the interaction of their own actions. This can be 

achieved with digital twin. (Rosen, et al., 2015) 

 

One of the key principles in the operation of autonomous systems is to decentralize decision 

making. In centralized decision making, there are clear hierarchy levels, where upper level 

controls the lower levels. When production configuration is changed in centralized decision 

making, reprogramming of the control system is generally required. (Rosen, et al., 2015) 

 

Decentralized decision making is based on less hierarchical and more networked structure 

(see Figure 2.12).   One generally accepted approach of decentralized system is multi-agent 

systems, which are composed of multiple individually functioning and interactive agents. 

There are different types of agents, for example, some can represent factory floor devices, 

and other can represent manufactured products. These agents have sets of skills that define 

the capabilities of the agents. The knowledge of capabilities and interactive communication 

of agents leads to highly modular systems. (Rosen, et al., 2015) (Wang, et al., 2016) 
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Figure 2.12. Illustrative examples of centralized system hierarchy and decentralized sys-

tem network. (Monostori, 2014) 

 

2.4 Formal Modeling Languages 

When systems become more and more complex, modeling languages can be utilized to 

achieve higher level of abstraction to the system model. Formal modeling languages also 

provide widely applied and standardized modeling format, which enables improved possi-

bilities of sharing the information of the model, as well as independency from certain indi-

vidual syntaxes or software. Formal representations also have the major advantage that they 

can be machine readable (Gianni, et al., 2017 p. 150).  

 

This chapter first introduces model-based systems engineering, and thereafter two modeling 

languages: Unified Modeling Language (UML) and Systems Modeling Language (SysML). 

The last section introduces intermediate modeling layer.  

2.4.1 Model-Based Systems Engineering 

The Model-based systems engineering (MBSE) approach was popularized by The Interna-

tional Council on Systems Engineering (INCOSE) in January 2007. MBSE is the formalized 

application of modeling to support system requirements, design, analysis, verification and 

validation activities from the beginning of the conceptual design phase throughout the de-

velopment phase to later lifecycle phases. MBSE methodology focuses on creating and uti-

lizing domain models as the primary means of information exchange between engineers to 

support analysis, specification, design and verification of the system being developed. Do-

main model is a conceptual model that incorporates behavior and data. (Hart, 2015) (Frieden-

thal et al. 2015, p. 15-21) 

 

MBSE is an enabling technology for innovative, interdisciplinary product design. One of the 

main goals of the MBSE is to transfer from document-centric engineering to model-centric 

engineering (Gianni, et al., 2017 p. 158). In addition to being machine readable, the biggest 

advantages of MBSE is the automatic generation of various artifacts for design and analysis 

operations, such as automatic checks, dependency analysis, performance analysis and report 

generation. (Gianni, et al., 2017 p. 178). These operations can save significant amount of 

time from repetitive work as well as reduce human errors.  
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Modeling language used in MBSE is generally SysML that is widely used general purpose 

language based on the UML. SysML is intented to facilitate the applications of an MBSE 

approach. System models, created with SysML, can be used to specify the hardware and 

software components of the system. Software component models can be expressed with lan-

guages such as Unified Modeling Language (UML), while the hardware components can be 

expressed with Computer Aided Design and Computer Aided Engineering (CAD/CAE) 

models (see Figure 2.13). (Friedenthal et al. 2015, p. 15-21) 

 

 

 
 

Figure 2.13. MBSE approach with system models connected to software and hardware 

models. (Friedenthal et al. 2015, p. 18) 

2.4.2 Unified Modeling Language 

The Unified Modeling Language (UML) is general purpose modeling language in software 

engineering field. Goal of the UML is to provide standardized graphical way based on dia-

grams to present the design of a system. UML was adopted as a standard in 1997 by the 

Object Management Group (OMG). In 2005 UML was published as an approved ISO stand-

ard by the International Organization for Standardization (ISO) that is periodically revised 

to cover the current revision of UML. (Weilkiens, 2007, p. 16-17) 

 

Current UML versions since the version 2.0, include thirteen types of diagrams, which can 

be divided into three categories: structure diagrams, behavior diagrams and interaction dia-

grams. Structural diagrams are used to model the organization of the system or the structure 

of the data that is processed by the system. Behavior diagrams are used to model the dynamic 

behavior of the system and how it responds to events. Interaction diagrams are used to model 

the interactions between a system and its environment, or between the components of a sys-

tem. (Weilkiens, 2007, p. 146-147) 
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2.4.3 Systems Modeling Language 

The Systems Modeling Language (SysML) is a general-purpose modeling language in sys-

tems engineering field. It supports the specification, analysis, design, verification and vali-

dation of complex systems. One system may include several elements such as hardware, 

equipment, software, data, personnel and other. SysML can be used to specify and architect 

systems, as well as to specify components, that can be designed with other domain-specific 

languages, such as UML for software design and CAD modeling for mechanical designs. 

(Friedenthal et al. 2015, p. 16-19, 31-32) (OMG, 2018) (SysML, 2015) 

 

The SysML was introduced in 2007. OMG and INCOSE developed the UML for system 

engineering request for proposal in 2003, which specified the requirements for extending 

UML to support the needs of system engineering community. In response to these require-

ments, the SysML was developed by diverse group of vendors, end users, academia, and 

government representatives. The SysML was then adopted by the OMG. (OMG, 2018) 

(SysML, 2015) 

 

SysML offers improvements over UML for systems engineers. SysML provides more flex-

ible and expressive semantics and the software-centric restrictions of UML are reduced. 

SysML is also smaller language than UML, which makes it easier to adopt. Illustrative com-

parison of UML and SysML can be seen in Figure 2.14. (Friedenthal et al. 2015, p. 33-36) 

(OMG, 2018) 
 

 
 

Figure 2.14. The relation between UML 2 and SysML. (OMG, 2018) 

 

Example model of SysML can be seen in Figure 2.15. This example model consists of struc-

tures, behaviors, requirements and parametrics. The structure contains the blocks to deter-

mine the structure and hierarchy of the system. The behaviors contain an activity diagram 

that specifies the external and indirect interactions. The requirements contain a set of re-

quirements that would generally be found in a system specification. The parametrics blocks 

contain the system properties that are bound to the parameters. (Friedenthal et al. 2015, p. 

33-36) 
 

https://en.wikipedia.org/wiki/Analysis
https://en.wikipedia.org/wiki/Design
https://en.wikipedia.org/wiki/Verification_and_validation
https://en.wikipedia.org/wiki/Verification_and_validation
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Figure 2.15. An example of a structure of a system model. (Friedenthal et al. 2015, p. 17) 

 

2.4.4 Intermediate Modeling Layer 

The engineering of production systems is collaborative work of many different engineering 

disciplines, which typically utilize specialized software tools that are used to define the be-

havior of manufacturing system. Engineering also includes different development stages 

from rough overall description of production system to more detailed system, and results in 

fully specified and ready to use system. (Mayerhofer, 2016) 

 

The factory behavior is typically defined with representation data formats, such as Gantt 

charts, impulse diagrams, and sequential function charts. Example of Gantt chart can be seen 

in Figure 2.16. However, the compatibility of the software tools utilized in engineering pro-

cesses is not generally satisfactory, which leads to manually performed data exchange. 

(Mayerhofer, 2016) 

 

AutomationML introduces an intermediate format named as Intermediate Modeling Layer 

(IML), which functions as an adapter to transform plant behaviors to target format of PLCo-

pen XML. PLCopen XML is based on the standard IEC 61131-3, which is noted one of the 

most successful global standards for industrial control software (Vyatkin, 2013) (PLCopen, 

p. 6-9).  

 

PLCopen XML can define control logics with the following PLC programming languages 

defined by the IEC 61131-3: sequential function charts (SFC), function block diagrams 

(FBD), ladder diagrams (LD), structured texts (ST) and instruction lists (IL). Example of 

SFC language can be seen in Figure 2.16. (PLCopen, p. 6-9) 
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Figure 2.16. The upper chart represents a Gantt chart and the lower chart represents se-

quential function chart. Both charts represent identical behavior. (Drath, et al., 2008) 

 

To transform plant behavior data formats to IML, transformation rules require to be defined. 

These transformation rules also enable the creation of data formats from IML, which enables 

possibility to transform from one data format into another. One major benefit of IML is that 

complex transformation rules between IML and PLCopen XML require to be defined only 

once for IML. Illustrative example from the IML operations can be seen in Figure 2.17.  

(Mayerhofer, 2016) 

 

 
 

Figure 2.17. Intermediate Modeling Layer between data formats and PLCopen XML. 

(Mayerhofer, 2016) 

 

The IML, and the mappings between the IML and the languages of PLCopen XML are only 

semi-formally described. To constitute first step towards formalization and validation of 

IML data exchange, Mayerhofer (2016) proposed a metamodel and operational semantics 

for the IML.   
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3 Selection of Industrial Devices 
One of the main goals of this thesis is the development of component classification for sim-

ulation components. To develop component classes, potential industrial devices must to be 

selected, which constitute the basis of the classification. The industrial domains are limited 

to the automotive industry and the food & beverage industry with focus in the packaging 

area. 

 

In the first section of this chapter, automotive industry is introduced and the selected devices 

from automotive industry are introduced. In the second section, food & beverage industry is 

introduced, and the selected devices from the industry are presented. 

3.1 Use Case: Automotive Industry 

3.1.1 Automotive Industry 

Automotive industry includes manufacturing and assembly of complex products, high pro-

duction rate and dangerous work environment. These factors drive automotive industry to 

utilize increasingly more automation. Weyer et al. (2016) described automotive as one of the 

most competitive, advanced and complex industrial sector.  

 

One challenge in the automotive factory is to convey the chassis of the car through every 

process step. This results in several types of conveyor systems, from simple belt conveyors 

to sophisticated fully programmable and automated conveyors systems that are capable to 

communicate with each other. In addition, automotive factories require large amounts of 

factory floor and space, which increase the need for space saving solutions. Because of this, 

the automotive industry has exploited the factory space vertically. Several conveyor solu-

tions are built as overhead conveyors, that can significantly reduce the required space and 

material flow distances.   

 

Automotive factory typically consists of the stamping shop, body shop, paint shop, assembly 

shop and powertrain shop as seen in Figure 3.1. In the stamping shop, chassis is manufac-

tured from pressed sheet metal parts. These parts will be used as assembly parts for the main 

chassis, doors, hoods and other chassis related objects. Manufacturing starts from blank sheet 

metal coils which are straightened and cut. These sheet metal parts are transported to presses 

where they obtain their final form. 

 

 

 
Figure 3.1. Typical domains in the automotive factory. 

 

 

 



23 

 

 

In body shop, these pressed parts are assembled to form the chassis of a car (see Figure 3.2). 

This assembly is typically performed by robots and the parts are attached with spot welding 

techniques. Some of the assembly work can be performed in separate robot cells, but the 

main chassis is moving on a conveyor, which is surrounded by robots performing assembly 

work. (BMW Body Shop, 2018) 

 

 

 
 

Figure 3.2. An illustrative and simplified example of a production line in the body shop. 

(ISRA vision, 2018) 

 

After body shop the chassis is transferred to the paint shop. At first, chemical treatments are 

given to the chassis by typically dipping the chassis to a pool of chemicals. These treatments 

provide protective layer on the surface to protect against environmental conditions. Next 

step is to seal the chassis before painting. The chassis is coated with multiple layers of paint. 

Between the painting and dipping processes, the chassis may be warmed and cooled to ac-

celerate painting processes. After the chassis is painted, the paint quality is inspected. (Dürr 

Paint, 2018) 

 

After the chassis is painted, it goes to the assembly shop, where the cars are assembled. One 

process step is to remove painted doors from the chassis to ease the assembly processes. The 

exactly same doors will be attached to the chassis later during the final assembly to ensure 

the color compatibility. Early process steps in assembly shop is the marriage process be-

tween powertrain and the chassis. In this process, powertrain is inserted and attached to the 

chassis. During the assembly process interior of the car is assembled to the chassis. In the 

final assembly phase, seats and doors will be inserted to the car. (BMW Assembly, 2018) 

3.1.2 Selected Devices from Automotive Industry 

Progressive Press Tooling 

Chassis of the car is assembled from pressed sheet metal parts. The final form of these 

pressed parts is typically complex and it cannot be achieved with single press cycle. Having 

one press for each process step is not always feasible. Presses capable of operating with 

progressive tooling are used in automotive industry (see Figure 3.3). These presses contain 

multiple stage forming tools that are used simultaneously during one process cycle. After 

the process, parts are transported to the next process location and the process is executed. 

Progressive press takes sheet metal plates as an input without first cutting it to product units. 

After every press cycle, the sheet metal is moved one step to the next process position. At 

the end of the process steps, the products are cut from the sheet metal strip. (Hyundai, 2017) 
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Figure 3.3. An assembly picture of progressive press tools and product preforms. (STM, 

2018) 
 

Tandem Press 

For larger products, progressive press tooling approach is not as feasible as with smaller 

products. Tandem presses are used for pressing larger products. These presses are located 

near each other and the operation is automated with robots (see Figure 3.4). Robots can be 

integrated to the presses or they can be mounted separately. (Hyundai, 2017) 

    

 
 

Figure 3.4. A side picture of a tandem press line with robots. (GR IAS, 2016) 

 

Robots 

Robots are effective at executing repetitive tasks, such as material flow handling, assembly, 

welding and painting, which are ergonomically difficult and dangerous for humans. Robots 

are capable to maintain uniform execution of tasks, which is a significant advantage in an 

industry, where the pace of production should be predictable. In automotive industry, robots 

are typically located in robot cells or next to the conveyor line. 

 

End Effectors - Robots 

End effectors are mounted to the end of the kinematic chain of a robot. End effectors are 

used to perform actions that interact with products. In automotive industry, typical actions 

are welding, painting and clamping. Typical end effectors for welding purposes are spot 

welding and arc welding guns.  
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Workpiece Positioners 

Workpiece positioner positions the workpiece for robots (see Figure 3.5). The joints of the 

workpiece positioner can be controlled by a robot controller to improve the accessibility of 

the workpiece for the robot. These positioners can be applied for several purposes, for ex-

ample, welding of large and complex products. 

 

 
 

Figure 3.5. A robot workpiece positioner. (KUKA, 2018) 

 

Robot Positioners 

Robot positioners positions the robot to improves the reachability of the robot (see Figure 

3.6). The joints of the robot positioner can be controlled by a robot controller.  

 
Figure 3.6. A robot mounted onto a robot positioner. (Direct Industry Positioner, 2018) 

 

Chain Conveyor 

Chain conveyor is a conveyor, which consists of a track, trolleys and carriers. The trolleys 

are moving on the track and they are mechanically attached to the chain of the track. When 

the chain is powered, the trolleys will move according to the movement of the chain. Carriers 

are typically integrated to the trolleys. Carriers are holding the products when the conveyor 

is moving. 
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Power and Free Conveyor 

Power and Free (P&F) conveyor is a chain driven conveyor that consist of individual trolleys 

moving on a track. These trolleys are not mechanically fixed to the chain but they can be 

mechanically connected and disconnected with pusher dog components on the powered 

chain (see Figure 3.7). This feature enables asynchronous behavior which provides several 

benefits, such as collision avoidance, individual stop of specific trolley and trolley buffering. 

(McGuire, 2009, p. 135-140) 

 
Figure 3.7. Trolleys on the conveyor track illustrates the mechanical working principle 

of P&F conveyors. (modified from P&F Mechanics) 

 

The mechanical connection between the track and trolley is accomplished with an interaction 

of a pusher dog and the trolley. These pusher dogs are evenly located in the driving chain. 

When the pusher dog reaches the counterpart in the trolley, it starts pushing the conveyor. 

This connection can be disconnected when mechanically interacting with other trolleys or 

with the specific stop and go switch. After the stop, trolley can reconnect with the pusher 

dog when the next trolley moves or when the stop and go switch is turned on. (McGuire, 

2009, p. 135-140) 

 

The conveyor is not restricted to form a single loop with one powered chain configuration, 

but several chains can be used in one system. This allows trolleys to move from one chain 

to other chains while the trolley is still on the same track. In addition to several chain sys-

tems, there are merge, divert and lift components for the trolleys. This enables complex con-

veyor systems to be built for different purposes (see Figure 3.8). A typical carrier for the 

P&F conveyor in the automotive industry can be seen in Figure 3.9. (McGuire, 2009, p. 135-

140) 

 

 
 

 

Figure 3.9. Carriers can hold the chas-

sis of a car in overhead conveyor systems. 

(DS, 2018) 

Figure 3.8. Track sections of a complex 

power and free system. (IMH, 2017) 
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Mechanical operation principle in P&F conveyor provides several benefits. This conveyor 

can be used in heat treatment without the risk of damaging electronic components. P&F 

conveyors are also rather simple, durable and robust, which is one major factor explaining 

their wide usage in automotive industry. These conveyors are used, for example, in paint and 

assembly shops.  (McGuire, 2009, p. 135-140) (DMW P&F, 2018) 

 

Electrified Monorail System 

Electrified Monorail System contains individually driven vehicles that move independently 

on the rail system. These vehicles include sensor systems that are used to control the vehicle 

and to avoid crashes. The control of the vehicles is fully programmable, which enables so-

phisticated material handling solutions. (ASI, 2018)  

 

Skillet Conveyor 

Skillet conveyor consists of skillets moving in a straight and one directional line. One skillet 

consists of a ground level pad and a vertically moving holder, that can hold the chassis (see 

Figure 3.10). The pad allows workers to step on the conveyor and move with it, which eases 

assembly operations. Skillet conveyors have been typically utilized in the assembly shop 

before the cars are capable to stand on their tires. (DMW, 2018) 

 

 
 

Figure 3.10. A skillet conveyor holding a chassis. (ASAS, 2018) 

 

Skid Conveyor 

A skid conveyor consists of skids and roller beds. Skids are moving on the roller beds and 

they are capable to carry products. The skid is not mechanically fixed to any part in the 

conveyor system, which enables modular systems to be built (see Figure 3.11). In addition 

to roller beds, skid conveyor system can include turntables, cross transfers, lifts and other 

solutions that enable complex conveyor systems. Skid conveyors can be used in all manu-

facturing areas from body shop to final assembly. (Dürr, 2018) 
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Figure 3.11. A skid conveyor system with a cross transfer and chassis storage system.  

(Lenze, 2018) 
 

 

Inspection and Conditioning 

Inspection process is typically applied to verify the painting quality after paint shop. Painted 

chassis is conveyed through an inspection room, where the reflection of light is used as in-

spection criterion. Inspection can be performed by a robot as well with an inspection tool as 

an end effector (Micro-Epsilon, 2018). Conditioning is typically heating or cooling of the 

chassis to accelerate paint shop processes. Heat treatment is performed to accelerate the cur-

ing of the paint, and cooling is performed to accelerate the cooling of the chassis after the 

heat treatment. (Dürr Paint, 2018)    

 

Lift Assist 

Despite the large utilization of automation, human operators perform some assembly opera-

tions. These operations may include lifting of heavy objects, which requires the utilization 

of lift tools. Lift tools can be used to pick, hold and place heavy objects. It can also include 

tools, such as pneumatic screwdrivers (see Figure 3.12). (Knight, 2015) 

 

 
 

Figure 3.12. A human operated lift assist. (Knight, 2015) 
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3.2 Use Case: Food & Beverage Industry 

3.2.1 Food & Beverage Industry 

Food & beverage industry focuses on handling and processing massive amounts of products, 

which need to be effectively transported between processes. Packaging plays a major role in 

the food & beverage industry, providing a physical protection for the products, enabling 

efficient and reliable material handling as well as transmitting product and batch infor-

mation. In addition to these factors, packaging can have additional targets such as portion 

size control and the extension of the product life time.  

 

There are several noticeable phases in the production of food & beverage products. Firstly, 

products are generally transported on conveyor systems, in which the material flow can be 

influenced with devices such as robots, line routers and line pushers. The material flow is 

typically directed through several in-line processes. After the products are produced, they 

are packaged inside cases, which are palletized on top of pallets. Thereafter, pallets are 

wrapped with plastic film.  

3.2.2 Selected Devices from Food & Beverage Industry 

Line Mergers and Diverters 

Line merger takes products from multiple line inputs and merges the products to one output. 

One type of merging solution can be seen in Figure 3.13. This device merges products by 

mechanically forcing them to the output. Line diverters function in the opposite direction 

compared to merging devices. Diverters require additional diverter part that mechanically 

directs products to targeted line output. 

 

 
Figure 3.13. A mechanical line merger with three inputs and one output. (Direct Industry 

Merge) 

 

Indexing Conveyor 

Indexing conveyor consist of holder units that can contain products (see Figure 3.14). Index-

ing conveyors can be driven with constant speed or they can be driven with step motion. 

Triggering signal for step motion can be produced with external control, which utilizes sen-

sors to inform product locations. Step motion can also be achieved with mechanical solu-

tions. These mechanical solutions drive conveyor belt and peripheral devices synchronously 

according to motor speed.  
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Figure 3.14. An indexing conveyor. (MK, 2018) 

 

Package Wrapping, Closing and Sealing Machines 

One typical method to package food & beverage products is to wrap the product with plastic 

film, close and seal the package. There are numerous different machine types and configu-

rations to perform these operations. Form-fill-seal machines (FFS) are able to perform all of 

these actions from wrapping to sealing of the product. Two typical configurations of FFS 

machines can be seen in Figure 3.15 and Figure 3.16. Figure 3.15 presents vertical FFS ma-

chine that also measures the portions to be filled into the packages. Figure 3.16 presents 

horizontal FFS machine that packages products that are conveyed to the machine.  

(ULMA, 2018) 

 

                           

 

Cartoning Machines 

Cartoning machine erects, closes and seals cartons as well as the machine inserts products 

and product accessories inside the carton. Example of cartoning machine process steps can 

be seen in Figure 3.17. 

 

 

Figure 3.16. The principle of horizontal 

form-fill-seal machine. (ULMA Horizon-

tal, 2018) 

Figure 3.15. The principle of vertical 

form-fill-seal process. (ULMA Vertical, 

2018) 
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Case Handling Machines 

Case packaging denotes operations such as case erecting, closing, sealing and labeling. Ex-

ample of a case erecting machine can be seen in Figure 3.18. Stack of case preforms arrives 

to this machine, and these cases are mechanically erected one by one. Thereafter, cases con-

tinue movement to line output, which can be connected to a production line. Other case 

handling machines are typically integrated to a production line. 

 

 

 
 

Figure 3.18. A case erecting machine. (Radpak, 2014) 

 

Palletizing and Wrapping Machines 

Palletizing is a process in which cases are placed layer by layer in a specific formation on a 

pallet. Palletizing is typically performed at the end of production line. The formation of cases 

improves the stability of the loaded pallet but it is not an adequate measure. Wrapping of the 

loaded pallet is used to ensure, that the cases will hold the formation throughout logistical 

processes.  

 

Palletizing operations can be divided to mechanical palletizing and robotic palletizing. In 

mechanical palletizing, cases are buffered at the end of line. One configuration of a mechan-

ical palletizer can be seen in Figure 3.19. This palletizer waits when right amount of cases 

is buffered at the end of the line and then, the row of cases will be simultaneously pushed to 

a pad. This operation is repeated until the pad is full, which represents one pallet layer. This 

layer is conveyed to a lift that lifts the layer on top of a pallet. Robot palletizing utilize robot 

in the palletizing operations. Cases are buffered in a line and robot picks and places them on 

a pallet (see Figure 3.20). Robot enables more configurable palletizing patterns as well as 

Figure 3.17. The principle of a cartoning process. (Direct 

Industry Cartoning, 2018) 
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capabilities to handle varying size of cases. Wrapping machines wrap plastic film around the 

loaded pallet which holds the cases in formation and prevents them from falling. Wrapping 

machines are typically integrated with a conveyor line. 

 

 

  

 

 

 
 

 

 

 

 

 

 

 

Figure 3.20. Mechanical palletizing pro-

cess. (Gebo Cermex, 2017) 
Figure 3.19. Robot palletizing process. 

(Gebo Cermex, 2017) 
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4 Component Modeling 
This chapter introduces basic building blocks and principles of component modeling in VC 

software in section 4.1. In addition, development opportunities in the field of component 

modeling are presented in section 4.2.  

4.1 Component Modeling in Visual Components 

This section firstly presents basic information of what component model comprises. Sec-

ondly, creation process of the components is presented. At the end of this section, an auto-

matic component creation tool wizard is presented. 

4.1.1 Static and Dynamic Components 

Simulation consist of static and dynamic components. Static components exist before the 

start of the simulation, and they typically represent factory floor devices, such as robots, 

conveyors, machines, and others. Static components are stored in component libraries from 

where they can be imported to the simulation environment. These components can also be 

created by end-users.   

 

Dynamic components represent the products that are produced and processed in the layout 

during a simulation. These components are created by static components during the simula-

tion, and they will be removed when the simulation ends. Static and dynamic components 

are equal in terms of component characteristics. However, dynamic components should be 

used as passive components without containing any executable elements, such as Python 

scripts. Figure 4.1 illustrates a static feeder component, which is creating dynamic rim com-

ponents transferred to a static conveyor component. 

 

 
 

Figure 4.1. Dynamic components moving on a static conveyor component. 

 

4.1.2 Structure of a Component 

This section introduces basic and common attributes that comprise a component model. 

Component model consist of VC software specific attributes such as properties, behaviors, 

features within a node structure. Structure of a component model can be seen in Figure 4.2. 

Component consist of nodes that are formed by joints and links. Each node contains its own 

features, such as geometry and frames. The behaviors that describe the behavior of a com-

ponent are typically located in the root node of a component. Parameters are used to para-

metrize the component. 
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Figure 4.2. Structure of components. 

 

Properties  

A component property is a parameter that can be linked to features and behaviors. Properties 

can be read with Python script as well, which enables the possibility to utilize property val-

ues in component logics. There are several types of properties, such as real, integer, Boolean 

and distribution values, as well as string of characters. These types can be used when defin-

ing component dimensions, processing times, product filtering, failure times and probabili-

ties, and other attributes of the component (see Figure 4.3). 

 

 

 
 

Figure 4.3. An example set of properties. 

Features 

Frames 

Components are capable to include frames in their nodes. Frames can be used to define ac-

curate locations and orientations of component behaviors, as well as to coordinate material 

flow.   

 

Geometry 

Geometries can be either imported or created with VC software. Geometries are converted 

into tessellated form, and they are constructed with faces, points and lines. When geometries 

are created with tools provided by VC software, the geometry can be assembled with prim-

itive geometries, which are simple, configurable geometries with pre-defined shapes. There 

are also more advanced tools for the creation of the geometries, as well as there are tools to 

provide mirroring and cloning of the geometries. 

 

 



35 

 

 

Other Features 

Transform feature modifies location and orientation of all features under the hierarchy of 

the transform feature. The location and orientation change is based on the values in the ex-

pression field of the transform feature. Switch feature enables to visualize only selected ge-

ometry from the group of geometries under the switch feature. The geometry selection is 

defined by the index number of the switch feature. One use case for this feature is to visual-

ize the progression of the products during processes.  

Behaviors 

Containers and Paths 

Dynamic components always require to be held by a container or a path behavior during the 

simulation, or they will disappear from the simulation. Container behavior is linked to a 

selected frame in a selected node. The part held by the container will move according to the 

frame movement. Path behavior functions as a container, but in addition to that, the part is 

also moving on a path. Path behavior is constituted by set of frames, such as start-frame, 

end-frame, and others depending on the use-case. Path behaviors are capable to transmit and 

receive parts with other paths by input and output ports. Python scripts can also be used to 

grab parts to a selected container or path. 

 

Signals 

Signals are typically used to trigger actions, visualize component states, and transfer infor-

mation. Signals can be used as internal signals within the component or as external signals 

between components. Signals can be connected to Python scripts, where the signal value can 

trigger the execution of the script.  

 

There are several different types of signals such as integer, real, Boolean, string and compo-

nent signals. Boolean signals are frequently used signals, and they are typically used to con-

trol and indicate the status of the component. Component signal is a special type of signal, 

which transfers the component object as a signal. Component objects have information about 

the current location of the component in the simulation environment, which can be further 

used in part picking and placing operations as well.    

 

Sensors 

Path sensor behavior is connected to a selected frame of a path. The sensor can be connected 

to Boolean and component signals, which are triggered when a dynamic component reaches 

the sensor frame.  

 

Interfaces 

Interface behaviors enable connections between components. Interface defines how compo-

nents transfer information to each other without exposing their internal details. There are 

several types of attributes that can be transferred via interface, such as signals, material flow, 

node hierarchy and joint values. To enable interface connection between components, the 

interfaces are required to be compatible and have matching set of interface attributes with 

each other. Interface matching could be illustrated with an electric plug, as seen in Figure 

4.4, where the plug is able to connect only with matching interface. The purpose of restrict-

ing interface connections is to ensure that appropriate components are connected to each 

other.  

 



36 

 

 

 
Figure 4.4. An illustrative example of the connection criteria of interfaces. 

 

Servos 

Servo controller behavior is used to manipulate joints between nodes. Joints can be config-

ured by the user to provide desired motion trajectory characteristics relative to links of the 

component. These joints are then connected to a servo controller. Thereafter, servo controller 

can be driven with a Python script. 

 

Kinematics and Controller 

Kinematics behavior is able calculate forward and inverse kinematic solutions for the kine-

matic chain of the component. This is used, for example, in robots to calculate complex 

motion trajectories. Kinematics behavior is connected to a robot controller behavior, which 

resembles servo controller behavior, but the controller is extended to utilize the kinematic 

behavior in trajectory calculations. Robot controller can be driven with a Python script, ex-

ecutor behavior, or with both. 

 

Executor 

Robots have a program editor tool for motion statement and logic statement planning. In this 

tool, tool center point of a robot can be dragged or snapped to a target location, and the 

current kinematic chain values can be stored to the statements. Robot can be effectively 

programmed using a set of these statements with logics statements. Executor behavior is the 

link between program editor tool and the component model. Executor can be connected and 

utilized with robot controllers and servo controllers. Executor statements can also be ac-

cessed and executed from Python script. 

 

Physics 

Physics behaviors enables the creation of colliders from geometries. These colliders can re-

act to other colliders, which enables the interaction of forces between components. Physics 

behaviors are based on PhysX engine and it has three accuracies for recognizing the form of 

colliders, as seen in Figure 4.5. The utilization of force calculation in simulation requires 

continuous sampling techniques. However, the main simulation model is still based on dis-

crete-event simulation. The use of physics behaviors may require significant amount of ad-

ditional computing power. 

 

 
Figure 4.5. Different accuracies for physics colliders. 
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Statistics 

The statistics behavior is used to collect and visualize data. The statistics can collect data 

from behaviors, such as containers. In addition, the statistics enables the utilization and 

tracking of component states, such as busy, idle and broken. These states can be recorded 

and visualized with the statistics as well. 

4.1.3 Python Scripting 

Python script acts as a glue between properties, behaviors and features, and almost anything 

in the components can be manipulated with a Python script. Python scripts include function 

that starts executing when the simulation starts running. This provides a method to run a 

script in a loop while the simulation is running. In addition, it is possible to execute a function 

every time an event-trigger is received by the script. However, scripts require to be edited 

and compiled when the simulation is not running.  

 

VC software use Python version 2.7.1. Python is an interpreted, object-oriented and high-

level programming language with dynamic semantics. Python syntax is rather simple and 

easy, as well as it emphasizes readability. One of the well-known characteristics of the Py-

thon language is the usage of whitespace indentation to delimit code blocks rather than 

brackets. (Python, 2018) 

4.1.4 Creation of Components 

The purpose of this section is to present creation process of a basic component. However, it 

should be noted that the modeling approach is case-specific, and there is not a single mod-

eling approach for every component.  

 

Import or Create Geometries 

Geometries can be imported from Standard for the Exchange of Product Model Data (STEP) 

-format or created with VC software. If the geometry is imported, the tessellation quality of 

the geometry should be adjusted between quality and performance factor. Node structure is 

not importable, so if the imported geometry should have a node structure, it must be reas-

signed. Geometries can be also separated by specific tools, such as geometry split tool. Ge-

ometry separation is especially useful when working with assembly models, where geome-

tries are merged. If geometries are created with the tools provided by VC software, the cre-

ation is typically performed simultaneously with the creation of features and node structure.   

 

Origin, Features and Node Structure 

The origin of the component should be placed to an appropriate component-specific position 

in the component. Thereafter, nodes are constructed from geometries that are extracted as 

links. The nodes can be organized hierarchically to form a hierarchical node structure. Each 

node can have an individual set of features, such as frames. 

 

Behaviors and Properties 

When the node structure is implemented, behaviors can be created based on the operational 

requirements of the component. Typically, there are several modeling approaches to achieve 

the same result. For this reason, selection of behaviors should be thoroughly considered. 

Properties are typically created during the whole modeling process, depending where they 

are used.  
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Write Scripts and Connect 

When the structure of the components is defined, the last part is to write component logics 

to a script. Selected properties and behaviors are initialized in the Python script and they can 

be accessed and manipulated in the script. When a component is ready for use, it can be 

connected to other components with appropriate interfaces. Complex components might also 

require some debugging during the validation of the component.  

4.1.5 Wizards 

A wizard is a tool that instantly generates pre-defined and possibly configurable set of prop-

erties, features and behaviors to a component. The wizard is basically a Python script that is 

located in the application context, and not in a specific component. The script can provide a 

user-interface for the wizard, which can include objects such as check-boxes and lists. These 

objects can be dynamically hided and created according to interaction with the user.  

 

The main purpose of wizards is to make component modeling faster, more standardized, and 

to reduce human errors and demand for repetitive work. There are different types of wizards 

for different purposes. Some wizards create only a few attributes, while other wizards can 

generate complete components.  

4.2 Development Opportunities and Approaches 

This section firstly presents the development opportunities in the field of component mod-

eling which lead to development of component classification and best practices. This section 

secondly presents the development approaches for component classes and best practices for 

component modeling. 

4.2.1 Development Opportunity: Component Classes 

The classification of components is based on the selected industrial devices from the auto-

motive and food & beverage industries. The selected devices are presented in sections 3.1.2 

and 3.2.2. In some cases, the component class can be directly based on the real industrial 

device. However, in many cases, more creative approaches are required. Purpose of the clas-

sification is not to create classes supporting only specific devices in a certain industry, but 

to provide more widely applicable components. Components could be classified according 

to the operational principles and characteristics of the component, while the attributes related 

to the outfit, such as geometry and dimensions should not have significant impact to the 

classification.  

 

Component classes provide standardized modeling solutions, which is a tool to improve con-

sistency and reliability of the components as well as standardized solutions are easier to 

adopt. Classification has also an important role to define which components will be compat-

ible with each other. In addition to compatible interfaces, components should be able to op-

erate with each other. This may require specific type of operation principles from the com-

ponents, such as a certain process workflow.  In addition, hard-coded naming practices for 

features, behaviors and properties, which components are expecting to find from connected 

components, may be required.     

 

These classes are also an effective tool to influence to the future of component modelling. 

One challenge in current component modelling is that most of the currently available com-

ponents in the component library do not operate like real industrial devices from the control 
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point of view. One reason for the lack of this modeling approach is the unnecessary amount 

of scripting, which may enable some shortcuts to the logic implementations.  

 

Real industrial devices typically operate with signal-based logic, where they utilize use of 

signals, such as sensor signals and communication signals between devices. These signals 

generally represent simple data types, such as Boolean values. The use of signal-based logic 

improves the capabilities of the components to be connected to external systems, which is a 

requirement in further digital twin and virtual commissioning applications.  

 

4.2.2 Development Opportunity: Best Practices 

Component modeling process includes several phases, and there are numerous things that 

the end-user should consider during the modeling process. Some of these things are soft-

ware-specific, which typically requires some level of earlier use experience with the soft-

ware.    

To solve this challenge, best practices provide an effective method to assist end-users to 

utilize the most feasible modeling solutions.  

 

Best practices gather the most relevant guidelines related to modeling into one compact en-

tity. These guidelines include preferred proven to be good modeling solutions from the most 

relevant topics in the modeling field. In addition, best practices can be used to improve 

standardization of the modelling solutions.  

 

4.2.3 Other Development Opportunities 

Wizards 

As automatic component creation tools, wizards have significant potential in component 

modeling. Currently, only a few wizards are provided with a standard installation of the VC 

software. End-users are capable to create and customize wizards for their own specific re-

quirements. However, wizards could be implemented to a more generic level as well. Ge-

neric wizards could provide a customizable component framework, in which required details 

can be supplemented to already functioning component preforms. Generic wizards could 

also utilize information from the component classes.  

 

Digital Twin 

The approaches to develop digital twins are constantly evolving and no unanimous modeling 

solutions or general standardization are currently available. If comprehensively compatible 

digital twin solutions are targeted, then further standardization of digital twins is required. 

There are still development opportunities, that could be implemented for the current compo-

nent modelling field.  

 

To achieve real-time digital twins of production systems, simulation layouts should be ca-

pable to be driven by the physical system. This requires simulation components to be syn-

chronized with the devices in the physical systems. VC software provides a connectivity 

feature that can be utilized to form signal connections between VC software and external 

systems. In addition to connectivity feature, simulation components must correspond the 

behaviors of the physical from the control point of view. Material flow in the physical system 

must be synchronized to simulation as well. This includes challenges in the real-time posi-

tion monitoring of the material flow. If the real system is unable to know exact location of 

the product, neither can the simulation model. 
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A method to synchronize material flow with the simulation model could be developed. This 

method could utilize synchronization data based on the available sensors in the physical 

system. Sensor data could include, for example, position sensors, radio-frequency identifi-

cation (RFID) readers, machine vision, ultrasound tracking and other techniques. If sensor 

data is not available, material flow can be estimated with the simulation model. 

 

Independently functioning layouts without synchronization to physical systems could be still 

used for analyzation purposes. These layouts could provide near real-time feedback and op-

timized control commands to physical systems. Data framework for the components could 

also be developed. This would enable, as an example, manufacturing data to be stored to 

components in real-time. Due to scope of the thesis, further digital twin approaches are not 

implemented. 

 

Formal Modeling Languages 

Formal modeling languages, such as SysML provide abstract level user-interface for system 

design and control. These languages could be used as integrated user-interfaces for digital 

twins. In current component modeling, these languages could be technically applied to create 

complex systems. However, formal modeling languages may form a significant learning 

threshold for an average end-user. Due to the scope of the thesis, formal modeling language 

approaches are not implemented in this thesis. 

 

4.2.4 Development Approach: Component Classes 

This section firstly introduces component class approach for robots and end effectors, which 

are already widely found components in the current component library. Secondly, approach 

for generic machine class is introduced. Thirdly, approach for synchronous and asynchro-

nous carrier conveyor classes are introduced. 

 

Robots and End Effectors 

Robots end effectors are classes derived directly from the selected industrial devices. These 

components are common components in the current component library of VC software. 

These components have already some unofficially classified attributes, which can be utilized 

in the classification.   

 

Generic Machines 

There is numerous amount of different types of machines. It is not feasible to attempt to 

create class for every type of machine. Chosen approach is to create generic machines, which 

are capable to correspond to multiple types of machines. This raises a challenge how to cre-

ate generic machines that are practical, as well as capable to cover multiple types. 

 

Classifying machines based on their process types, is challenging due to the amount and 

variation in different types of processes. A more feasible approach is to classify machines 

based on their material flow. Material flow types can be simplified to flow-based or resource-

based material flow. Flow-based material flow transfers parts to other components with a 

flow interface. For example, a line of conveyors transfers parts with flow interface. Re-

source-based material flow transfers parts to other components with the aid of resources, 

such as humans or robots. These two material flow types provide the basis for the classifi-

cation of generic machines. Generic machines should also utilize signal-based logics.  
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Synchronous and Asynchronous Carrier Conveyors 

A carrier conveyor consists of a track and carriers. These carriers are attached to the track 

and they are capable to convey products. Carrier conveyors are especially common in the 

automotive industry. There are several types of these conveyors, and they may have signifi-

cant differences in their operating principles. The operation of these conveyors could be 

classified as synchronous and asynchronous. In a synchronous conveyor, all carriers move 

synchronously, while in an asynchronous conveyor, the carrier movement is individual ac-

cording to the type of the conveyor application.  

4.2.5 Development Approach: Best Practices 

Some of the best practices are generally applicable practices in the field of simulation, but 

many of the best practices are software specific. Best input for the development of best prac-

tices is the knowledge gathered from simulation experts, and the input from the simulation 

experts should play a major role in the development of best practices. 

 

The simulation experts may have different type of core knowledge from different fields, such 

as robotics, manufacturing systems, software development and virtual commissioning. All 

of these fields include valuable information to the development of best practices. 

 

Because there are experts with different backgrounds, they may not have similar approach 

and opinions in the same topics. For this reason, suitable approach for gathering input should 

be developed. First, the best practices should be divided into the most relevant topics in the 

field of component modeling. These topics provide a basis where the best practices will be 

supplemented. Thereafter, all ideas and best practice proposals are gathered. Based on this 

collected information, the most relevant best practice proposals will be chosen for further 

discussion. In addition, a discussion session with a group of experts should be arranged, to 

achieve the benefits of a peer review. The purpose of the discussion session is to achieve 

general consensus on the best practices based on the gathered proposals. 

 

Best Practices Interview Form and Group Discussion 

Development of best practices was done in two phases. First, a best practices interview form 

was shared with the group of simulation experts. Purpose of this form was to gather all best 

practice proposals that the simulation experts came up with. To ensure higher response rate, 

this form was stripped from weighting factors and other special formats. Second phase in 

the development of best practices was a group discussion with simulation experts, in which 

ideas and solutions are further developed and peer-reviewed. 
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5 Implementation 
This chapter first presents the results of component classification and development of best 

practices. Thereafter, these results are analyzed. At the end of this chapter, a wizard for the 

generic machine is presented.   

5.1 Results 

5.1.1 Component Classification 

Classification Form 

Classification form defines the component classes, and it also plays a major role to share the 

information of the component classes. The form can be seen in Appendices A-F. The form 

is divided to the abstract and the detailed section.  

 

The abstract section includes description, functional details and compatibility information 

of the class. The description field briefly describes the purpose of the component. Functional 

details describe the most important functional characteristics of the component. The com-

patibility field describes where the component can be connected. The model details describe 

information that is required to model the component such as component properties, behav-

iors, features and a node structure.  

 

Robot and End Effector 

The class of a robot and end effector were derived based on components already found in 

the component library. The most essential attributes from group of these components were 

selected to form these classes. Classification form for the robot and effector can be found 

from the Appendix A and B.  

 

Generic Machines 

Generic machines can be classified to a start-of-line, end-of-line, stand-alone and in-line 

machines (see Figure 5.1) (see Appendices C, D, E and F). The end-of-line machine receives 

part from the previous component via a flow interface and the resource picks the part from 

the machine. The stand-alone machine receives part from the resource and the resource picks 

the part from the machine. The start-of-line machine receives part from the resource and it 

transmit parts to the next component via a flow interface. The in-line machine receives and 

transmit part via a flow interface.  
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Figure 5.1. The concept of generic machine with material flow from left to right. 

 

Material flow is based on transport operations executed by resources, as well as flow inter-

faces. A transport operation requires two Boolean signals from transmitter and receiver com-

ponents. These signals are divided to two one directional signals. Request-signals request 

transport operation from the resource manager, and status-signals indicate when the transport 

operation is completed. This concept can be seen in Figure 5.2. 

 

 
Figure 5.2. The principle of Boolean signal based transport operations. Black arrows af-

ter the signals indicate the direction of the signals. 

 

The first phase of a transport operation is to have true values on both TransportOutReq and 

TransportInReq signals, seen in Figure 5.3. The second phase is to check, if the transport 

operation is possible, which is evaluated by the resource manager. The evaluation criteria 

are user-defined. If the evaluation result is approved, the transport operation can be executed. 

When the part is taken from the component, the value of TransportOutDone is set as true, 

and when the part is transported to the next component, the value of TransportInDone is set 

as true.  

 

To achieve continuous execution of these transport operations, some additional logics are 

required. After a component sets TransportOutDone or TransportInDone signal to true, it 

immediately sets TransportOutReq or TransportInReq signal to false. When the component 

sets TransportOutReq or TransportInReq signal as true, the resource manager sets Transpor-

tOutDone or TransportInDone signal as false. 
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Machines that utilize resources such as robots or humans for the material flow, have con-

tainer behaviors to contain components. These containers are also used to coordinate mate-

rial flow. Containers are used to find the pick and place locations for the transport operations. 

The containers have hard-coded names such as Process1Container and Process2Container, 

which can be accessed from other components while executing transport operations.  

 

Additional functionalities for the machines can utilize signal-based logics as well. Stand-

alone machines may include doors that are operated during process cycles. The door logics 

are implemented with one directional Boolean control and status signals. There can be con-

trol signals for opening and closing the doors, and there can be status signals indicating if 

the doors are at open or closed state. Example set of stand-alone machine signals with door 

logics can be seen in Figure 5.3. 

 

 
 

Figure 5.3. Example set of stand-alone machine signals, including door logics. 

 

Generic machine types provide a basis for the material flow characteristics of the machine. 

However, real machines typically perform processes for products in addition to only routing 

and holding parts for certain amount of time. These processes could be standardized as well. 

Five examples of processes are presented below: 

 

▪ Servo Process 

The servo process moves component joints that are configured in selected servo controller 

behavior. Movement is executed according to motion data stored in a note behavior.  

 

▪ Inspection Process 

The inspection process evaluates products, and gives them a Boolean property value accord-

ing to pre-defined probability, which is defined in a distribution property of the inspector 

component.  

 

▪ Product Packaging Process 

First, a pre-defined amount of product components is collected. Thereafter a package com-

ponent is created, in which the product components are packaged. Product data such as com-

ponent-specific ID and properties are stored to a note behavior in the package component as 

a string value. After the data is stored, product components can be deleted, and the package 

component is ready to be handled. Because all relevant data is stored from the products, the 

packaging process can be reversed.    
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▪ Change Geometry Process 

Geometry of the product is changed with a switch feature. The switch feature requires alter-

native geometries to already exist under the hierarchy of the switch feature. The geometry 

change is triggered by an integer property.  

 

▪ Assembly Process 

The Assembly process assembles products to each other. This process requires products to 

have information of their parent components, and the location and orientation relative to 

their parent components.  

 

Synchronous Carrier Conveyor 

The synchronous carrier conveyor system can be seen in Figure 5.4. Due to time limits of 

this thesis, no detailed classification form, or simulation validation were made. The synchro-

nous carrier conveyor is divided to following classes: 

 

▪ Line 

The line component forms a path for the carriers. Line components are connected to each 

other with flow interfaces. Line components inherit line parameters such as path speed 

from previous line components. 

 

▪ Carrier Feeder – Synchronous 

The carrier feeder component is connected to a selected line component as a child com-

ponent via an interface. The feeder creates carriers to the conveyor line when a simula-

tion starts. In the synchronous conveyor carriers can be created instantly or one by one.  

 

▪ Controller – Synchronous 

The controller component is connected to a selected line component as a child compo-

nent. The controller is connected to the sensors of the conveyor system via a remote 

interface. The controller manages conveyor operations, such as stopping and starting the 

motion of the conveyor line according to the sensor signals. There should be only one 

controller per synchronous conveyor system. 

 

In synchronous conveyor systems, multiple carrier operations such as pick and place of 

products can be executed during one stop cycle. When multiple simultaneous operations 

are executed, carriers have to be stopped simultaneously. However, multiple location 

sensors do not trigger an event at the exact same time instant. Sensors could be grouped 

in the controller component to provide a general condition, in which all sensors in the 

group are required to have true value to continue execution.  

 

▪ Carriers 

Carriers are dynamic components that can be divided to active and passive carriers. Both 

carriers include component containers to carry products. Active carriers are capable to 

execute carrier-specific actions, such as pick and place of products, unlike passive carri-

ers. However, active carriers are not able to execute actions independently via script, 

which is not recommended for any dynamic components. Actions are performed with 

utilizing external components, such as sensors.  
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▪ Location Sensor 

The location sensor is attached to a line, and it indicates if a carrier is at the sensor posi-

tion with a Boolean value.  

 

▪ Stop & Go Sensor – Synchronous 

Stop & go sensor is capable to switch the line motion of a conveyor to on/off state. The 

line motion is controlled with stop and go Boolean signals of the sensor, which are con-

nected to the controller via a remote interface. 

 

▪ Carrier Action Sensors – Synchronous 

Carrier action sensors execute carrier actions and they are compatible only with active 

carriers. The pick sensor controls a carrier to pick a product, while the place sensor is 

utilized to place a product. The process sensor controls a carrier to execute process spe-

cific actions. The action sensors are connected to the controller via a remote interface.  

 

 

  
 

Figure 5.4. An illustrative example of synchronous conveyor system without and with  

carriers. 

 

Asynchronous Carrier Conveyor 

The concept of synchronous carrier conveyor system can be seen in Figure 5.5 and Figure 

5.6. Due to time limits of this thesis, no detailed classification form, or simulation validation 

were made.  

 

In asynchronous carrier conveyors, carriers are capable of moving individually. Two meth-

ods are utilized to handle carrier flow. In the first method, carrier routes are pre-defined. 

Carrier route information is composed of track nodes, which are components capable to in-

fluence the carrier flow such as diverters, routers and lifts. Individual carrier route infor-

mation is stored in each of the carriers. In the second method, list of processes is pre-defined 

for each carrier, and the route is defined dynamically at each track node. The process list and 

process index are stored in each of the carriers. This method also requires the use of the 

controller component.    

 

The asynchronous carrier conveyor is divided to following classes: 

 

▪ Line 

This component is identical to the line component in synchronous carrier conveyors. 
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▪ Carrier Feeder – Asynchronous 

The carrier feeder component is connected to a selected line component as a child com-

ponent. The feeder creates carriers to the conveyor line one by one. Material flow infor-

mation of the carriers is configured in this component. Carrier routes are defined and 

configured in a note behavior of this component and carrier-specific route information 

is given to each carrier as a string property. Routes are defined with track nodes of the 

conveyor track. If the process list is used for material flow instead, the process list is 

given to carriers as a string property. 

 

▪ Line Merger and Diverter – Asynchronous 

The line merger merges two input lines into one output line, and line diverter diverts one 

input line into two line outputs. Both merger and diverter components have an integer 

property to define the currently active port. 

 

▪ Turn Router – Asynchronous 

The turn router is capable to switch the current route configuration. The router reads the 

carrier route information, thereafter the router configuration is switched according to the 

information.  

 

▪ Lift – Asynchronous 

The lift is capable to transports carriers between tracks. The line lift reads the carrier 

route information, which defines the lift action. 

 

▪ Carriers 

Carriers are identical to carrier components in synchronous carrier conveyor, except the 

additional route or process information, which is added by asynchronous carrier feeder 

component. 

 

▪ Location Sensor 

This component is identical to the location sensor component in synchronous carrier 

conveyors.  

 

▪ Stop & Go Sensor – Asynchronous 

The stop & go sensor is capable to switch the motion of a single carrier to on/off. The 

motion is controlled with a stop and go Boolean signals of the sensor.  

 

▪ Carrier Action Sensors – Asynchronous 

These components are based on the carrier action sensor components in synchronous 

carrier conveyors. In asynchronous conveyor system, action sensors are capable to oper-

ate independently without an interface connection to controller. 

 

▪ Controller – Asynchronous 

The controller is optional component for asynchronous conveyor systems. The controller 

can be used when the process list is utilized for dynamic material flow instead of fixed 

carrier routes. The controller is capable to read the status of the sensors and control the 

track nodes to influence the material flow. The controller logic is required to be further 

defined by the user, and one conveyor system could include multiple controllers.  
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Figure 5.5. An illustrative example of an asynchronous conveyor system without carriers. 
 

 

 
 

Figure 5.6. An illustrative example of an asynchronous conveyor system with carriers. 
 

5.1.2 Best Practices 

The development of best practices started by creating topics for the best practices. These 

topics are presented below: 

 

▪ Features, Behaviors, Properties 

These topics discuss modeling practices related to general building blocks of the 

components. 

 

▪ Naming Conventions 

Naming conventions play an important role at expressing how the components 

function. 

 

▪ Python Scripting 

This topic discusses general scripting practices. 

 

▪ Robustness, Reusability 

These topics discuss the reliability and reusability of components. 
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▪ Performance of the Component 

The performance topic discusses methods to reduce the amount of required compu-

ting resources during a simulation.  

 

▪ Component Connectivity 

The component connectivity topic discusses the capabilities of components to be 

connected to external systems, such as logic controllers. 

 

After the topics were selected, an interview form was created based on these topics. The 

interview form and the collected results can be seen in the Appendix G. Based on these 

results, two best practices group discussions were organized. The collected results from the 

interview forms were discussed in the group discussions. These discussions led to the devel-

opment of best practices. The best practices can be seen in the Appendix H. 

 

5.2 Analysis of the Results 

5.2.1 Analysis of the Classification 

Classification Form 

The classification form containing classification criterion can be seen in Appendixes A-F. 

The form provides comprehensive and quickly adoptable method of classifying components. 

However, the form is laborious to fill and because of the amount of manual work, it is error-

prone. In addition, multi-purpose and highly configurable components may be challenging 

to define with the form. 

 

The improved solution could be to utilize a component itself to describe the component de-

tails. This would require the component itself to be well-documented, including descriptions 

of signals, interfaces, frames and other important attributes. This would enable faster, more 

coherent and error-proof creation of the component classes. However, the major disad-

vantage is that the component classes could not be presented in a static 2D format. 

 

Classes - Robots and Accessories 

The classes for robots and accessories corresponds currently available components in the 

component libraries. For this reason, no further analysis is performed. 

 

Classes - Generic Machines 

The classification of generic machines provides a basis for modular and simple components 

that follow coherent and transparent control methods based on signals. Utilization of signals 

in material flow enables the it to be comprehensively configured without special knowledge 

of complex scripts. In addition, the signal based control methods enable components to be 

externally connected form the software.  

 

However, generic machines introduce a new concept that must be learned. Also, in several 

cases the generic machines provide only a basis for the components. This results in the re-

quirement to create scripts and other logic attributes, such as signals, to achieve a fully func-

tioning component. In some complex and multi-purpose components, signal-based logics 

can suffocate the component with massive amounts of signals, which makes the component 

more challenging to adopt. The generic machines serve certain purposes, and it may not be 
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the most feasible approach for every case. Nevertheless, in many cases it may provide sig-

nificant value for the end-users.  

 

Classes – Synchronous & Asynchronous Carrier Conveyors 

The purpose of both synchronous and asynchronous carrier conveyors is to provide environ-

ment for a wide range of conveyor applications. These conveyors should also be compre-

hensively extensible for additional modifications. The operation principle of asynchronous 

carrier conveyors resembles power and free conveyors, but is not limited to these solutions. 

 

The generic concept of synchronous and asynchronous carrier conveyors retains similar 

challenges as generic machines. These conveyors may require to be further supplemented to 

specific use-cases. Other current challenge with asynchronous conveyor systems is the 

recognition of carrier component collisions that exceed line component boundaries. One 

possible solution is to develop complex script logic to prevent the collisions.  

 

5.2.2 Analysis of Best Practices 

The topics of the best practices provide an effective method to filter less important best prac-

tices according to the current use-case. The best practices are easily adoptable, and they 

facilitate end-users to guide their focus and time with issues that can significantly improve 

the quality of the component. However, the best practices are unable to provide comprehen-

sive solutions in several cases. This is because, the solutions are typically highly case-spe-

cific and inappropriate modeling solutions could be misleading. One possible approach 

would be to link a comprehensive set of examples with the best practices.  

5.3 Case Example: Generic Machine Wizard 

The wizard is implemented to generate generic machines. The wizard consists of a set of 

Python scripts (see Figure 5.7). MachineWizard.py script provides a user-interface to con-

figure the wizard functions. When the wizard is executed, MachineWizard.py script gener-

ates component attributes according to selected user-interface values. Machine scripts 

(StandAloneMachine.py, StartOfLineMachine.py, EndOfLineMachine.py, InLineMa-

chine.py) provide a basis for the component logics (see Appendix I). These scripts can be 

further customized by the MachineWizard.py script. Thereafter, the machine script is in-

serted to a Python script behavior of the generated machine component.  

 

 
Figure 5.7. The structure of the generic machine wizard 
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Wizard in use 

The wizard should be applied to an empty component including only geometry features. An 

exception is made if joint movement is required. In that specific case, joints must be defined 

and the controller behavior must be configured before the execution of the wizard. A com-

ponent with a one joint for door movement and two joints for process motion can be seen in 

Figure 5.8.  

 

 
 

Figure 5.8. A component with three joints ready to be further generated by the wizard. 

 

User-interface of the wizard can be seen in Figure 5.9. The first option is to define the ma-

chine type, which has influence to further configurability options of the wizard. For a stand-

alone machine, the wizard currently provides options to select if doors are included and if a 

process is included. Selecting these options will provide more detailed configurable options, 

such as selecting the appropriate controller behavior or selecting the appropriate node for 

material flow input. Without any additional configuration, the machine wizard will only cre-

ate a machine based on the defined machine classes. 

 

    
 

Figure 5.9. On the left is the wizard user-interface for the stand-alone machine with no 

additional options chosen. On the right is the same user-interface with additional options  

chosen. 

 

The layout with the machines created by the wizard can be seen in Figure 5.10. Signal rep-

resentation is set visible to indicate the values of the signals in the system. The robot seen in 

the figure is controlled by a robot controller component, which operates as a resource man-

ager. The controller receives request signals, transmits material flow status signals, and ex-

ecutes transport actions if the criteria for the transport operations are fulfilled.  
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Figure 5.10. A layout in which end-of-line, start-of-line, and in-line machines are con-

nected to conveyor paths. Signal status of the components is set to visible. 

 

The start-of-line, end-of-line, in-line machines have an extra option to be connected to a path 

behavior of a component. The user-interface for start-of-line machine can be seen in Figure 

5.11. The layout with machines connected to a component path can be seen in Figure 5.12. 

 

 
 

Figure 5.11. The wizard configurability for the start-of-line machine. “PnP” is abbrevi-

ated from plug and play, and the term is typically used when connecting components.  

 

 

 
 

Figure 5.12. A layout in which end-of-line, start-of-line, and in-line machines are con-

nected to the conveyor paths. 
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6 Conclusions and recommendations 

6.1 Conclusions  

This thesis examines potential future prospects of production simulation software. The dig-

ital twin modeling approaches presented in the literature generally indicate that the digital 

twin will become increasingly important tool in engineering processes, and it will integrate 

all relevant information in the whole lifecycle of a product. This results in the current doc-

ument-centric engineering to develop into model-based engineering.  

 

However, there are challenges concerning the digital twin implementations. There is gener-

ally no consensus about the detailed technical solutions in the development of digital twins. 

Due to the lack of standardization, comprehensive digital twin approaches may require a 

lot of resources with no guarantee of compatibility to future systems.  

 

In addition to digital twins, this thesis presents formal modeling languages. These lan-

guages are effective tools to provide abstract and standardized representations of complex 

models. The use of these modeling languages could be integrated to digital twins as well. 

These languages could also play a major role in the creation of formal interfaces between 

different systems. 

 

The component classification is developed based on selected devices from the automotive 

and food & beverage industries. The target of the developed component classes is to create 

interdisciplinary components that are not limited to specific industrial fields. This leads to 

creation of the generic machine and carrier conveyor concepts. These concepts provide 

highly configurable and extensible components. The generic machine is further developed 

to be generated with a wizard. This wizard acts as a proof of concept, and it demonstrates 

the capabilities of configurable and instant component creation solutions.  

 

The development of best practices for component modeling is based on the selected topics 

in the field of component modeling. Input for the best practices is collected from the simu-

lation experts in the case company with an interview form. Based on the input, group dis-

cussion sessions were organized with these experts to review and select the most appropri-

ate best practices. Best practices are an effective method to guide end-users to focus their 

time on the most relevant modeling tasks. 

 

The development of component classes and best practices should be continued. The ge-

neric machine concept could be extended to provide more functionalities, and synchronous 

and asynchronous carrier conveyors could be further tested and validated. More classes 

could be developed based on the concept of generic machines. In addition, the model-

based classification method as mentioned in section 5.2.1 could be further implemented. 

The best practices could be extended. In some practices, more detailed solutions and exam-

ple proposals could be given, as mentioned in section 5.2.2. Best practices for specific clas-

ses could also be developed. These practices would contain more detailed class-specific 

practices. 
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6.2 Suggestions for Further Work 

In the future, the development of digital twin modelling approaches should be pursued. 

The particularly interesting subject is to follow if any digital twin related technical solution 

rises above others. The general trend of industry 4.0 must also be followed. One important 

topic of industry 4.0 is the autonomy, in which the digital twin is expected to play a major 

role (Rosen, et al. 2015). Steps towards the digital twin concept could also be taken in the 

Visual Components software. As presented in section 4.2.3, a data framework behavior to 

gather production data and real-time mirroring capabilities to represent factory floor ac-

tions could be developed.  
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Appendix G. Best Practices Interview For – Collected 
Results 

 
This Appendix includes collected results from best practices interview forms. Five engineers 
responded to the interview form and the engineers are named as Eng. A, B, C, D and E. Some 
of the answers are rephrased to make the answers shorter or more understandable.  

 

Best Practices Interview Form – Collected Results 
Modeling - General  
▪ Features (e.g. use of Frames, Geometries, Transforms, Clones, place of origin …) 

1. What practices should be avoided? 
- Use primitive geometry when possible. It is lighter and prevents VCID errors. [Eng. A] 
- Editing an operation feature before applying it. [Eng. B] 
- Using default names. [Eng. B] 
- Cloning on the fly during simulation. [Eng. B] 
 
2. What practices should be used? 

- Naming of primitives and operators to help future authors. [Eng. A]  

- Organization of feature tree. [Eng. A] 

- Good Origins. Avoid Rot/Trans outside of Transform operator (confusing as to where trans-

formation comes from). [Eng. A] 

- Pick a good origin early and work from it. [Eng. A & D] 

- Use template to build robots. [Eng. B] 

- Create note behavior to contain data sheet, important measurements, and links to documen-

tation and other important files. [Eng. B] 

- If possible, clean up geometry in native CAD editor before import. Then simplify and remove 

geometry that has no purpose. [Eng. B] 

- Simple and clear expressions:  prefer changing parent location, use properties as dimension 

parameters. [Eng. D] 

 

▪ Behaviors (e.g. use of Signals, Paths, Containers …)  

3. What practices should be avoided? 
- Using default names. [Eng. B] 
- Routing rules 5 or more levels deep. [Eng. B]  
- A component creator that does output to a container. [Eng. B] 
 
4. What practices should be used? 

- Descriptive naming. [Eng. A, D] 

- Clear description of interface fields. [Eng. B] 

- Note behavior to describe signal processes. [Eng. B] 

 

▪ Properties (e.g. String, Boolean, Integer, Real …) 

5. What practices should be avoided?
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- Leaving unused behaviors. [Eng. A] [Eng. B] 
- Using default names. [Eng. A] 
6. What practices should be used?  
- Hide where needed. [Eng. A] 

- Putting behaviors in root node. [Eng. A] 
- Good naming. [Eng. A & B] 
- Logical grouping. [Eng. A] 
- Use of tabs and button. [Eng. A] 
- Always assign quantity, if possible [Eng. B] 

 

Naming Conventions (e.g. name of Features/Behaviors/Properties/Script variables/Pa-

rameter names…) 
7. What practices should be used? 
- No underscores for spaces. [Eng. A]  
- Descriptive naming. [Eng. A & C & D]  
- Check spelling. [Eng. A] 
- AmountOf vs NumberOf. [Eng. A] 
- Consistency. [Eng. A & B] 
- Diameter not diagonal. [Eng. A] 

 

Python Scripting (e.g. structure of the script, loops, variables, scripting methods …) 
8. What practices should be avoided? 
- Complexity and obscure programming structures. [Eng. A] 
- No commenting. [Eng. B] 
- Lack of whitespace. [Eng. B] 
- Nested loops. [Eng. B] 
- The use of delays [Eng. D] 
 
9. What practices should be used? 
- Keep it simple. [Eng. A] 
- Clean-up dead code. [Eng. A] 
- Write modular code [Eng. A & D] 
- Maintainable. [Eng. A] 
- Only use if cannot be done with Expressions (Avoid on Event). [Eng. A] 
- Put GUI control in separate script from simulation code and give proper name to it. [Eng. A] 
- Clearly sectioned code. [Eng. B] 
- Comment when profitable. [Eng. D] 

 

Robustness, Reusability and Error Handling of the Model 
10. What reduces the robustness of the model? 
- Complexity and scripting. [Eng. A] 
- The use of delays [Eng. C] 
 
11. What improves the robustness of the model? 

- Simplicity, elegance of design. [Eng. A] 

 

12. What reduces the reusability of the model? 
- Complexity. [Eng. A] 
- Deprecated attributes, such as behaviors and outdated scripts. [Eng. B] 
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13. What improves the reusability of the model? 

- Simplicity. [Eng. A] 

- Modular design when appropriate. E.g. machine built with multiple components. [Eng. B] 

- Contains the latest, most stable parts, e.g. ActionScript. [Eng. B] 

- Appropriate level of quality of the geometry for intended use-case. [Eng. B] 

- Take model extension into account in the design phase [Eng. C] 

 

14. What practices should be used in error handling? 
- Print error messages. [Eng. A] 
- Always check output panel. [Eng. B] 
- Print component name in error messages. Print also other information, such as node name 
when relevant. [Eng. D] 

 

Performance of the Model (e.g. CAD model import characteristics, Python loops, Be-

havior types, communication …) 
15. What practices should be avoided? 
- Avoid delays, and use conditions when needed. [Eng. A] 
- Avoid triggerCondition. Use condition instead. [Eng. A] 
- ComponentFlowProxie, RoutingRule, TwoWayPaths. [Eng. A] 
- Avoid unnecessary geometries. [Eng. B] 
- Exclude unnecessary details [Eng. C] 
- Avoid unnecessary rebuilding in properties when it is not required. [Eng. D] 
- Avoid generating unnecessary property / signal change events. [Eng. E]  
 
16. What practices should be used? 
- Scripting only where needed. [Eng. A] 

 

Component Connectivity 
17. What practices should be avoided? 
- Generic interfaces. [Eng. A] 
- Avoid relying on delays, use sensors or sensor-like logic instead to know when action has 
completed. [Eng. E] 
- Don’t mix input and output. One signal should be either input or output. [Eng. E] 
 
18. What practices should be used? 

- Good naming to interfaces. [Eng. A]  

- Integer compatibility in interfaces. [Eng. A] 

- Begin/End in signals to reduce potential partners. [Eng. A] 

- Check if the PLC logics works before implementation. [Eng. C] 

- Try to think what inputs and outputs the real machine would need to have and expose those 

as signals for external control. [Eng. E] 

- Material handling components should also work with physics for emulation purposes. [Eng. E] 

- Use simple data types for IO signals and properties. [Eng. E] 

- Include state signals that can be used to verify and time actions. [Eng. E] 

- Separate IO variables from the rest with naming conventions (when suitable). [Eng. E] 

- Treat all IOs as asynchronous. [Eng. E] 

Connectivity definition: 
Connectivity and communication with external systems / controllers (e.g. PLC) 
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Appendix H. Best Practices 

1. Modeling – General 

1.1 Features 
Best Practices 
1.1.1 Component origin 

Selecting the origin for the component should be the starting point of modeling process. When compo-

nents are imported to the simulation model, the orientation and the location on the z-axis is defined by 

the origin. Good component origin is component-specific and for this reason origins should be individu-

ally determined.  

 

When determining the origin, consider following, if no reason to do otherwise:  

• Origin should be on the ground level of the component 

 

• The component should be easily rotated around the origin 

 

• Choose location of the origin based on the component. In conveyors, the origin should be at the 

bottom-middle of the start of the conveyor. In machines, the origin should be at the center bottom 

of the machine.   

 

• Choose orientation of the origin based on the component. In conveyors, the x-axis should have the 

same direction than the length of the conveyor. In machines, the y-axis should have the same direc-

tion than the approach direction to the machine. 

 

• Use symmetry when possible. Symmetry enables origin to stay on appropriate position, even if the 

geometry changes. Also, symmetry enables easier clone geometry operations.  

 

1.1.2 Rename features 

Created features should be descriptively named according to the purpose of the feature. Naming prac-

tices are further discussed in the section 2. Naming Conventions. 

 

1.1.3 Primitive geometries 

Pre-defined primitive geometry features should be used when suitable. They provide parametric light-

weight performance models and prevents VCID errors. 

 

1.1.4 Property values as parameters 

In parametric models, property values should be used as feature parameters. This enables end-user to 

easily configure the model without the need of further examination of the feature tree. 

 

1.1.5 Transform – simple expressions 

Expression of the transform feature should be simple and understandable. Expressions describes the 

translation and rotation of the features under the transform feature. One solution is to use feature 

properties with parent coordinates to modify position and orientation. Other solution is to separate 

complex transforms to multiple and more simple transform features. For example, one transform with 

x-, y-, z-directional translation operations, should be separated to three transform features with each of 

them performing one translation operation.
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1.1.6 Locate frames and geometries under separated transforms 

To improve simplicity and easier change of geometry, frames and geometries should be located under 

separate transform features. 

 

1.1.7 Adding label 

If a label is required to the component, it should be added as a decal. 

 

1.1.8 Remove unused features 

Unused features should be removed to improve simplicity. 

 

 

1.2 Behaviors 
Best Practices 
1.2.1 Behaviors in root node 

Behaviors should be located under the root node, if no reason to do otherwise.  

 

1.2.2 Rename behaviors 

Created behaviors should be descriptively named according to the purpose of the behavior. Naming 

practices are further discussed in section 2. Naming Conventions. 

 

1.2.3 Remove unused behaviors 

Unused behaviors should be removed to improve simplicity. 

 

1.2.4 Avoid complex interfaces 

Interfaces between components should include only necessary information 

 

1.2.5 Interface connection only between matching components 

Interface between components should be possible only with matching components. This can be 

achieved with the use of compatibility integer field in the Interface sections. Compatibility integer re-

quires the same integer value in both sides of the Interface to enable the connection.   

 

Development proposal: Compatibility String 

Compatibility string could provide more practical method to limit and control interface connections. String 

provides more descriptive naming instead of an integer. 

 

1.2.6 Avoid complex routing rules 

Complex routing rules should be avoided. Python script should be considered instead of complex rou-

tine rule logics. 

 

1.2.7 Note to describe signals and interfaces 

Examination of signals and interfaces is effective method to understand the logics of the component. 

However, in some cases the purpose and logic of signals and interfaces is not sufficiently self-explaining, 

which leads to the examination of the script. In these cases, note behavior should include description of 

signals and interfaces.    

 

Development proposal: Description Field  

Most suitable location for descriptions is the behavior itself. Signal and interface behaviors could in-

clude description field, where the description could be added. 
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1.2.8 Note to store component related data and links 

Important information related to the component can be stored in a note behavior. This information can 

include links to reference material, dimension values and other relevant information. When including 

links or other time sensitive material, accessed date should be marked. 

 

 

1.3 Properties 
Best Practices 
1.3.1 Group and hide properties 

Grouping and hiding is effective method to improve the simplicity of the properties when the amount 

of properties increases. Grouping should be performed to separate properties to specific groups by 

their purpose. For example, properties defining the dimensions could form one group, and properties 

defining process parameters could form second group. Properties that are irrelevant for the actual use 

of the component, should be hided. 

 

1.3.2 Rename properties 

Created properties should be descriptively named, according to the purpose of the property. Naming 

practices are further discussed in section “2. Naming Conventions”. 

 

1.3.3 Remove unused properties 

Unused properties should be removed to improve simplicity. 

 

1.3.4 Order of properties 

The order of some specific set of properties should be standardized to improve readability and con-

sistency. For example, properties including x, y, z or length, width, height.  

 

1.3.5 Use appropriate property types 

Appropriate property types should be used. For example, real property should not be used as Integer. 

 

1.3.6 Assign units 

Property should have unit assigned when possible 

 

 

2. Naming Conventions 
Good naming conventions should not be overlooked in modeling process. Naming conventions plays an 

important role at expressing how the model functions.  

 

Best Practices 
2.1 Descriptive and extensible naming 

Naming should describe the purpose and function of the named attribute. Ideal goal of descriptive nam-

ing is to achieve self-explaining names, without the need of additional descriptions. For example, Con-

veyorLength, ProcessTime. 

 

Extensible naming enables the extension of the current naming practice. Extensibility can be achieved, 

for example, with indexing number after the name. For example, ProcessPoint1, ProcessPoint2. 
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2.2 Abbreviations 

Abbreviations should be avoided when possible. However, sometimes the use of abbreviations is profit-

able, especially if it enables to significantly reduce the length of the naming. Abbreviations should be 

consistent to avoid conflicts between similar abbreviation terms.  

 

Development proposal: List of standardized terms and abbreviations 

The list of standardized terms and abbreviations would act as a link between terms and abbreviations. 

 

2.3 Capital letters instead of underscores 

Terms should be separated with capital letters instead of underscores. 

 

2.4 Consistency 

Same naming convention in different use cases should always have the same purpose. 

 

2.5 Check spelling 

Spellings should be checked for errors. 

 

2.6 Signal naming 

Signals are typically separated to control and state signals. Control signals should be named describing 

the action, and state signals should be named describing the state. For example, Boolean signal control-

ling the door could be names as OpenDoor and CloseDoor, as well as Boolean signals indicating the sta-

tus of the door could be named as DoorIsOpen and DoorIsClosed. Status signals could also be named 

based on the sensors, for example, SensorLineIn and SensorLineOut.  

 

In addition, sometimes triggering signal is required in a component to request execution of the compo-

nent. For example, component signal functioning as a trigger, should be named as TriggerSignal. 

 

 

3. Python Scripting 
Scripting is an effective tool, but with incoherent and messy coding practices, it can form a significant 

threshold in the adoption of the model. In addition, end-users may not be very familiar with program-

ming. For these reasons script should be kept as simple and readable as possible.  

 

Best Practices 
3.1 Keep it simple 

Python script should only have necessary amount of code. Complicated structures, such as nested loops 

should be avoided when possible. 

 

3.2 Descriptive code 

Descriptive naming of variables and functions should ideally self-explain how the script functions. In ad-

dition, descriptive commentary is recommended. Commenting is used to describe the script operations 

in detailed and abstract level when profitable. 

 

3.3 Clearly sectioned code 

Script should be clearly sectioned to improve readability. Most important event handlers, such as OnRun 

and OnSignal should be near the top of the script. Functions should be located in one place, after the 

most important event handlers. Variables should be initialized at the bottom of the script. Global decla-

rations should be done at the beginning of the functions. 
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3.4 Modular code 

Modular coding practices, such as modular functions should be used when possible. However, case-spe-

cific naming practices should still be applied. 

 

3.5 Remove unused code 

Unused code, such as variables and functions should be removed to improve simplicity. 

 

3.6 Avoid unnecessary delays 

Unnecessary delays should be avoided. These delays can, for example, distort cycle times. 

 

3.7 Snippets for repetitive code 

Snippets are pre-defined sets of code that can be generated instantly in the script. Snippets could be 

used to create repetitive sets of code, such as variable initialization and functions. 

 

3.8 Event-based logics – condition(), triggerCondition() and OnSignal() 

In event-based logics, events are waited in the script to trigger execution of the script. There are two 

methods to wait events, condition() and triggerCondition(). They both require user-defined condition 

criteria to be true to continue execution of the script. The criteria in condition() is evaluated at the initial 

execution of the method, and every time trigger is received by the script. The criteria in triggerCondi-

tion() is evaluated only when the specific and pre-defined trigger is received. This method contains a risk 

that the trigger occurs before the triggerCondition() method is initially executed, which can lead to a 

deadlock. If there is no specific reason to apply triggerCondition() method, then condition() method 

should be used instead. In addition to these methods, there is OnSignal() function, that is triggered and 

executed every time trigger is received by the script.  

 

3.9 Traceable and descriptive errors print 

Error prints should be printed when the script is not working desirably. Prints are visible in the Output 

panel, and in large layouts, the origin of the print might be challenging to solve. Error prints should in-

clude the name of the component, as well as to be descriptive, to possibly avoid the need of actually 

opening and analyzing the script. Example of error print: “Error in component: X, part not found in node 

Y“.  

 

3.10  Try - Except 

Try and except can be used to avoid errors in the script. End-users should be cautious with the use of try 

and error, because it can hide the sources of errors. 

 

 

4. Robustness, Reusability 
Best Practices 
4.1.1 Simple and coherent model 

Simplicity and coherency plays major roles in the robustness and reusability of the model. When the 

model is simple and coherent, it is easier to adopt, extend and debug.  

 

4.1.2 Avoid execution of logics inside dynamic components 

Dynamic components should be handled as passive components without executing logics, such as Py-

thon script. 

 

4.1.3 Design extensible model 

Reusability of components can be improved with extensible and parametric design. Extensible design 

should include, for example, extensible naming practices. Parametric design should include, for exam-

ple, comprehensive use of parameters in the model configuration.
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4.1.4 Naming of joints 

Name of the component joint should start with “J” or “Joint” characters. Main kinematic chain of the 

component should have either following naming practice J1, J2, J3, …, or node-based naming practice, 

such as JointLeftLeg, JointCables, … Other kinematic chains in the component should utilize node-based 

naming practice, if no reason to do otherwise. 

 

 

5. Performance of the Model 
Performance of the model focuses on the amount of computing resources required during the simula-

tion.  

 

Best Practices 
5.1 Simplify geometry 

Geometry is always compromise between performance and quality. General performance indicator of 

the geometry is polygon count, which is the number of triangles required to construct the geometry. 

This polygon count can be influenced with tessellation quality and with geometry filters. Tessellation 

quality defines the overall quality of the geometry. Geometry filters are used to remove unnecessarily 

detailed geometry based on the filtering criteria. Polygon count should be adjusted to visually sufficient 

level, but without consuming unnecessary amount of resources. 

 

5.2 Avoid unnecessary polling and sampling 

Polling is definition of reading values continuously with certain frequency. For example, script using poll-

ing method can consume significant amount of resources. Unnecessary polling should be avoided and 

event-based methods used instead.  

 

Sampling is definition of performing some operation continuously with certain frequency. Behaviors, 

such as raycast and volume sensor operates using sampling. Functionalities in robot program, such as 

collision detection and limit checking operates with sampling. Physics models is based on sampling as 

well. Unnecessary sampling should be avoided to save computing resources.  

 

5.3 Avoid unnecessary property rebuild 

Properties have option to continuously rebuild the component. This is useful if property is used to de-

fine features or expressions in a node. Otherwise, it is unnecessary and should be avoided to consuming 

resources. 

 

5.4 Physics modeling – Avoid unnecessary colliders 

In physics modeling, colliders are created from component geometries. These colliders can react to 

physical objects that enables the interaction of forces. Unnecessary colliders that does not have purpose 

in the simulation should be avoided. 

 

 

6. Component Connectivity  

The purpose of component connectivity is to enable connection between simulation components and 

external systems.  

 

Best Practices 
6.1 Check if external control logics can function with the system  

It is recommended to consider before implementation that is the current system capable to be exter-

nally controlled.   
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6.2 Example from real machines 

Components should use sensors or sensor-like logic and unnecessary delays should be avoided. Also, 

minimal logic in external control mode should be used when possible. 

 

6.3 Inputs and Outputs 

Signals used as inputs and outputs in component connectivity should be one directional. This denotes 

that one signal should be either input or output. Signals are typically divided to control and state signals. 

Control signals are inputs signals to the component while the state signals are outputs. Separation of the 

signals should be made with naming practices (see Section 2.6 Signal naming).  

 

In addition to separation of inputs and outputs, simple data types should be used for IO signals and 

properties. For example, types as Int/Bool/Real/String. In addition, all IOs should be treated as asynchro-

nous. Nothing happens immediately and IO signal should not be relied to come in specific order. 

 

Development Proposal: optional Begin/End signal attributes 

Reliable method to ensure one directional use of signals would be Begin/End options in signal behavior. 

Therefore, signals with begin attribute could be only connected to signals with end attribute and the 

other way around. 
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Appendix I. Machine Scripts 
Machine scripts are created by the wizard presented at section 5.3. The scripts are located in the 

Python Script behaviors in the generated machine components. These scripts provide the basis 

for the component logics, and they are further customized with modular code sections managed 

by the wizard. 

 

 

StartOfLineMachine.py 
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StandAloneMachine.py 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EndOfLineMachine.py 
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InLineMachine.py 

 

 

       


