45 research outputs found

    G-QoSM: Grid Service Discovery Using QoS Properties

    Get PDF
    We extend the service abstraction in the Open Grid Services Architecture citeogsa for Quality of Service (QoS) properties. The realization of QoS often requires mechanisms such as advance or on-demand reservation of resources, varying in type and implementation, and independently controlled and monitored. Foster et al. propose the GARA citeFostKessl99 architecture. The GARA library provides a restricted representation scheme for encoding resource properties and the associated monitoring of Service Level Agreements (SLAs). Our focus is on the application layer, whereby a given service may indicate the QoS properties it can offer, or where a service may search for other services based on particular QoS properties

    Network sharing through service outsourcing in inter-domain IMS frameworks

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 161-167).Resource sharing can be used as a short-term solution to the imbalance between the supply and demand of network resources. Resources sharing enables operators to provide services to their subscribers using networks belonging to other operators. Resource sharing in mobile networks is increasingly becoming an option for operators to provide service to their subscribers. In this thesis we explore a mechanism for sharing access network resources that utilises negotiable short-term Service Level Agreements (SLA) that can easily adapt to changing network conditions. Through this mechanism operators of resource constrained networks may use near real time dynamic SLAs to negotiate network access services for their subscribers. We refer to this form of resource sharing as 'Service Outsourcing'

    An adaptive framework for end-to-end quality of service management

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A QoS-aware architecture for mobile internet

    Get PDF
    Tese de doutoramento InformáticaHoje em dia, as pessoas pretendem ter simultaneamente mobilidade, qualidade de serviço e estar sempre connectados à Internet. No intuito, de satisfazer estes clientes muito exigentes, os mercados das telecomunicações estão a impor novos e dificeis desafios às redes móveis, através da demanda, de heterogeneidade em termos de tecnologias de acesso rádio, novos serviços, niveis de qualidade de serviço adequados aos requisitos das aplicações de tempo real, elevada taxa de utilização do recursos disponiveis e melhor capacidade de desempenho. A Internet foi concebida para fornecer serviços sem qualquer tipo de garantias de qualidade às aplicações, apenas se comprometendo em oferecer o melhor serviço possível. No entanto, nos útlimos anos diversos esforços foram levados a cabo no sentido de dotar a Internet com o suporte à qualidade de serviço. Dos esforços desenvolvidos resultaram dois paradigmas para o suporte da qualidade de serviço: o modelo de Serviços Integrados (Integrated Services - IntServ) e o modelo de Serviços Diferenciados (Differentiated Services - DiffServ). Todavia, estes modelos de qualidade de serviço (QoS) foram concebido antes da existência da Internet móvel, portanto o desenvolvimento destes modelos não teve em consideração a questão da mobilidade. Por outro lado, o protocolo padrão actual para a Internet móvel, o MIPv6, revela algumas limitações nos cenários onde os utilizadores estão constantemente a moverem-se para outros pontos de acesso. Neste tipo de cenários, o MIPv6 introduz tempos de latência que não são sustentáveis para aplicações com requisitos de QoS mais restritos. Os factos revelados, demonstram que existe uma emergente necessidade de adaptar o actual protocolo de mobilidade, e também de adaptar os modelos de QoS, ou então criar modelos alternativos de QoS, para satisfazer às exigências do utilizador de hoje de redes móveis. Para alcançar este objectivo o presente trabalho propõe melhorias no sistema de gestão da mobilidade do protocolo MIPv6 e na gestão de recursos do modelo DiffServ. O MIPv6 foi melhorado para os cenários de micro-mobilidade com a abordagem para micro-mobilidade do F-HMIPv6. Enquanto que, o modelo DiffServ foi melhorado para os ambientes móveis com funcionalidades dinâmicas e adaptativas através da utilização de sinalização de QoS e da gestão distribuida dos recursos. A gestão da mobilidade e dos recursos foi também acoplada na solução proposta com o propósito de optimizar a utilização dos recursos num meio onde os recursos são tipicamente escassos. O modelo proposto é simples, é de fácil implementação, tem em consideração os requisitos da Internet móvel, e provou ser eficiente e capaz de fornecer serviços com QoS de elevada fiabilidade às aplicações.Over the last few years, several network communication challenges have arisen as a result of the growing number of users demanding Quality of Service (QoS) and mobility simultaneously. In order to satisfy these very demanding customers, the markets are imposing new challenges to wireless networks by demanding heterogeneity in terms of wireless access technologies, new services, suited QoS levels to real-time applications, high usability and improved performance. However, the Internet has been designed for providing application services without quality guarantees. That explains why, in the last years several efforts have been made to endow Internet with QoS support. From the developed efforts have resulted two QoS paradigms: Integrated Services (IntServ) which offers the guaranteed service model and the Differentiated Services (DiffServ) which offers the predictive service model. Although these QoS models have been designed before the existence of mobile Internet, so they do not consider the mobility issue. For instance, the guaranteed service model requires that whenever a Mobile Node (MN) wants to move to a new location, the allocated resources in the old path must be released and a new resource reservation in a new path must be made, resulting in extra signaling overhead, heavy processing and state load. Therefore, if handovers are frequent, large mobility and QoS signaling messages will be created in the access networks. Consequently, significant scalability problems may arise with this type of service model. The predicted service model, on the other hand, requires an additional features such as dynamic and adaptive resource management in order to be efficient in a very dynamic network such as a mobile network. A QoS solution for mobile environments must provide the capacity to adapt its resource utilization to a changeable nature of wireless networks because they have a more dynamic behavior due to incoming or outgoing handovers. For this reason, a QoS signalization for dynamic resource provisioning is necessary in order to supply adequate QoS levels to mobile users. On the other hand, the current standard protocol for mobile Internet, Mobile IPv6 (MIPv6), reveals limitations in scenarios where users are constantly moving to another point of attachment. In these situations, MIPv6 introduces latency times that are not sustainable for applications with strict QoS requirements. All things considered, reveal the emerging need to adapt the current standard mobility protocol and QoS models to satisfy today’s mobile user’s requirements. To accomplish this goal, the present work proposes enhancements in terms of the MIPv6 protocol mobility management scheme as well as in DiffServ QoS model resource management. The former was enhanced for micro-mobility scenarios with a specific combination of FMIPv6 (Fast Mobile IPv6) and HMIPv6 (Hierarchical Mobile IPv6) protocols. Whereas, the latter was enhanced for mobile environments with dynamic and adaptive features by using QoS signalization as well as distributed resource management. The mobility and resource management has also been coupled in the proposed solution with the objective of optimizing the resource utilization in a environment where resources are typically scarce. In order to assess model performance as well as its parametrization, a simulation model has been designed and implemented in the Network Simulator version two (NS-2). The model´s performance evaluation has been conducted based on the respective data acquired from statistical analysis in order to validate and consolidate the conclusions. Simulation results indicate that the solution avoids network congestion and starvation of less priority DiffServ classes. Moreover, the results also indicate that bandwidth utilization for priority classes increases and the QoS offered to MN’s applications, in each DiffServ class, remains unchangeable with MN mobility. The proposed model is simple and easy to implement. It considers mobile Internet requirements and has proven to be effective and capable of providing services with highly reliable QoS to mobile applications.Fundação para a Ciência e a Tecnologia (FCT) - Bolsa SFRH/BD/35245/200

    Service Level Agreement-based adaptation management for Internet Service Provider (ISP) using Fuzzy Q-learning

    Get PDF
    Internet access is the vital catalyst for online users, and the number of mobile subscribers is predicted to grow from dramatically in the next few years. This huge demand is the main issue facing the Internet Service Providers (ISPs) who need to handle users’ expectations along with their current resources. An adaptive mechanism within the ISPs architecture is a promising solution to handle such situation. A Service Level Agreement (SLA)is the legal catalyst to monitor any contract violation between end users and ISPs and is embedded within a Quality of Service (QoS) framework. It strengthens and advances the quality of control over the user’s application and network resources and can be further stretched to fulfill the QoS terms through negotiation and re-negotiation. Moreover, the present literature does not focus on the combination of rule-based approaches and adaptation together to update the established learning repository. Therefore, this mainstream of this research in the context of SLAs is to fill in this gap by addressing the combination of rule-base uncertainties and iteration of the learning ability. The key to the proposed architecture is the utilization of self - * capabilities designed to have self-management over uncertainties and the provision of self-adaptive interactions. Thus, the Monitor, Analyse, Plan, Execute and Knowledge Base (MAPE-K) approach is able to deal with this problem together with the integration of Fuzzy and Q-Learning algorithms. The proposed architecture is in the context of autonomic computing. An adaptation manager is the main proposed component to update admission control on the ISP current resources and the ability to manage SLAs. A general methodology type-2 fuzzy logic is applied to ensure the uncertainties and precise decision-making are well addressed in this research. The proposed solution, demonstrating Q-Learning works adaptive with QoS parameters, e.g. Latency, Availability and Packet Loss. With the combination of fuzzy and Q-Learning, we demonstrate that the proposed adaptation manager is able to handle the uncertainties and learning abilities. Q-Learning is able to identify the initial state from various ISPs iterations and update them with appropriate actions, reflecting the reward configurations. The higher the iterations process the higher is the increase the learning ability,rewards and exploration probability. The research outcomes benefit the SLA framework by incorporating the information for SLA policies and Service Level Objectives (SLOs). Lastly, an important contribution is the ability to demonstrate that the MAPE-K approach is a contender for ISP SLA-based frameworks for QoS provision

    QoS-aware Mobility Management in IP-based Communication Networks

    Get PDF
    Der allgegenwärtige Zugang zu Informationen, jederzeit und überall, ist ein wichtiges Merkmal künftiger All-IP-Mobilfunktnetze, die verschiedene Systeme miteinander verbinden, dabei dynamischer und flexibler sein werden. Der Einsatz dieser Netze erfordert es jedoch, viele Herausforderungen zu überwinden. Eine der wichtigsten im Rahmen dieser Arbeit, ist die Frage, wie Quality of Service (QoS) Eigenschaften in solchen hoch dynamischen, mobilen Umgebungen zu garantieren sind. Bekanntermaßen beeinflusst die Mobilität von Mobilknoten (MN) die Dienstgüte in mobilen Netzen, da QoS-Parameters für die Ende-zu-Ende-Kommunikation vereinbart werden. Daher müssen Lösungen entwickelt werden, die nahtlose Mobilität, bei gleichzeitigen QoS-Garantien nach Handoffs, unterstützen. Diese Herausforderung ist das Hauptziel der vorliegenden Dissertation, die einen umfassenden Überblick über die bestehenden Mobilitäts- und QoS-Managment-Lösungen in IP-basierten Netzen liefert, gefolgt von einem Einblick in Methoden zur Kopplung von Mobilitätsmanagement und QoS-Lösungen. Nach Betrachtung der Vor- und Nachteile bestehender Ansätze, kommt die Dissertation zu dem Schluss, dass hybride Strategien vielversprechend sind und zu praktikablen Lösungen weiterentwickelt werden können, die sowohl Mobilitäts- als auch QoS-Anforderungen auf effiziente Weise,in allen zukünftigen IP-Mobilfunknetzen erfüllen können. Auf dieser Grundlage schlägt die Dissertation ein neues Hybrid-Protokoll, genannt "QoS-aware Mobile IP Fast Authentication Protocol" (QoMIFA), vor. Unser Vorschlag integriert MIFA als Mobilitäts-Management-Protokoll mit RSVP als QoS Reservierungsprotokoll. MI-FA wird aufgrund seiner Fähigkeit zu schnellen, sicheren und robusten Handoffs gewählt. RSVP hingegen dient als Standardlösung zur Bereitstellung von QoS in bestehenden IP-basierten Netzen. Unter Einhaltung der Hybrid-Architektur wird RSVP um ein neues Objekt, genannt "Mobility Object" erweitert, welches MIFA-Kontrollnachrichten kapselt. Nach der Spezifikation des neuen Vorschlags, bewertet die Dissertation auch seine Leistung im Vergleich zu dem bekannten "Simple QoS Signaling Protocol" (Simple QoS), mittels Simulationsstudien, modelliert mit dem "Network Simluator 2" (NS2). In der Auswertung werden der Einflusses der Netzwerklast und der Geschwindigkeit des Mobilknotens untersucht. Die hierzu verwendeten Leistungsparameter umfassen die Ressourcen-Reservierungs-Latenz, die Anzahl verlorener Pakete pro Handoff, die Anzahl der, vor Abschluss der Reservierung, mit Best-Effort-Eigenschaften übertragenen Pakete pro Handoff und die Wahrscheinlichkeit von Verbindungsabbrüchen. Unsere mittels Simulation erzielten Ergebnisse zeigen, dass QoMIFA schnelle und nahtlose Handoffs mit schneller Ressourcenreservierung nach Handoffs kombinieren kann. Unter Berücksichtigung des Einflusses der Netzwerklast, ist nachweisbar, dass QoMIFA eine besser Leistung als Simple QoS in allen untersuchten Szenarien mit geringer, mittlerer und hoher Last erreicht. Bei Betrachtung des Einflusses der Bewegungsgeschwindigkeit des Mobilknotens auf die Leistung, lassen sich unter beiden Protokollen Ping-Pong-Effekte beobachten, welche zu höheren Ressourcen-Reservierungs-Latenzen, mehr verlorenen Paketen und mehr Best-Effort-Paketen pro Handoff bei geringeren Geschwindigkeiten führen. Der stärkste Einfluss dieser Pinp-Pong-Effekte ist jeweils bei 3 km/h zu beobachten. Allerdings verhält sich QoMIFA unter allen untersuchten Bewegungsgeschwindigkeiten besser als Simple QoS und kann Mobilknoten auch bei hohen Geschwindigkeiten bedienen. In Anschluss an die simulationsgestützte Evaluierung, schätzt die Dissertation die Signalisierungskosten beider Protokolle unter Betrachtung der Kosten für Ortslokalise-rung und Paketzustellung. Im Ergebnis erreicht QoMIFA die zuvor genannten Leistungsverbesserungen auf Kosten von größeren Ortslokalisierungskosten und leicht höherer Paketzustellungskosten.Ubiquitous access to information anywhere, anytime and anyhow is an important feature of future all-IP mobile communication networks, which will interconnect various systems and be more dynamic and flexible. The deployment of these networks, however, requires overcoming many challenges. One of the main challenges of interest for this work is how to provide Qual-ity of Service (QoS) guarantees in such highly dynamic mobile environments.As known, mobility of Mobile Nodes (MNs) affects the QoS in mobile networks since QoS parameters are made for end-to-end communications. Therefore, it is a challenge to develop new solutions capable of supporting seamless mobility while simultaneously providing QoS guarantees after handoffs. Addressing this challenge is the main objective of this dissertation, which provides a comprehensive overview of mobility management solutions and QoS mech-anisms in IP-based networks followed by an insight into how mobility management and QoS solutions can be coupled with each other. Following the highlight of the state of art along with the pros and cons of existing approaches, the dissertation concludes that hybrid strategies are promising and can be further developed to achieve solutions that are capable of simultaneous-ly supporting mobility and QoS, simple from the implementation point of view, efficient and applicable to future all-IP mobile communication networks.Based on this, the dissertation proposes a new hybrid proposal named QoS-aware Mobile IP Fast Authentication Protocol (QoMIFA). Our proposal integrates MIFA as a mobility man-agement protocol with RSVP as a QoS reservation protocol. MIFA is selected due to its capa-bility of the provision of fast, secure and robust handoffs, while RSVP is chosen because it presents the standard solution used to support QoS in existing IP-based networks. The hybrid architecture is retained by introducing a new object, called “mobility object”, to RSVP in or-der to encapsulate MIFA control messages.Following the specification of the new proposal, the dissertation also evaluates its perfor-mance compared to the well-known Simple QoS signaling protocol (Simple QoS) by means of simulation studies modeled using the Network Simulator 2 (NS2). The evaluation compris-es the investigation of the impact of network load and MN speed. The performance measures we are interested in studying comprise the resource reservation latency, number of dropped packets per handoff, number of packets sent as best-effort per handoff until the reservation is accomplished and probability of dropping sessions. Our simulation results show that QoMIFA is capable of achieving fast and smooth handoffs in addition to its capability of quickly re-serving resources after handoffs. Considering the impact of network load, QoMIFA outper-forms Simple QoS in all studied scenarios (low- , middle- and high-loaded scenarios). With respect to the impact of MN speed, it can be observed that the impact of ping-pong effects is seen with both protocols and results in higher resource reservation latency, more dropped packets per handoff and more best-effort packets per handoff at low speeds than at higher ones. The worst impact of ping-pong effects is seen at a speed of 3 km/h when employing QoMIFA and Simple QoS, respectively. However, QoMIFA remains performing significantly better than Simple QoS under all studied MN speeds and can even properly serve MNs mov-ing at high speeds.Following the simulative evaluation, the dissertation estimates the signaling cost of both stud-ied protocols with respect to the location update and packet delivery cost. Our results show that QoMIFA achieves the above mentioned performance improvements at the cost of greater location update cost and slightly higher packet delivery cost than Simple QoS

    Provision of Quality of Service in IP-based Mobile Access Networks

    Get PDF

    QOS-Aware and Status-Aware Adaptive Resource Allocation Framework in SDN-Based IOT Middleware

    Get PDF
    «L’Internet des objets (IdO) est une infrastructure mondiale pour la société de l’information, qui permet de disposer de services évolués en interconnectant des objets (physiques ou virtuels) grâce aux technologies de l’information et de la communication interopérables existantes ou en évolution. »[1] La vision de l’Internet des Objets est d’étendre l’Internet dans nos vies quotidiennes afin d’améliorer la qualité de vie des personnes, de sorte que le nombre d’appareils connectés et d’applications innovantes augmente très rapidement pour amener l’intelligence dans différents secteurs comme la ville, le transport ou la santé. En 2020, les études affirment que les appareils connectés à Internet devraient compter entre 26 milliards et 50 milliards d’unités. [2, 3] La qualité de service d’application IoT dépend non seulement du réseau Internet et de l’infrastructure de communication, mais aussi du fonctionnement et des performances des appareils IoT. Par conséquent, les nouveaux paramètres de QoS tels que la précision des données et la disponibilité des appareils deviennent importants pour les applications IoT par rapport aux applications Internet. Le grand nombre de dispositifs et d’applications IoT connectés à Internet, et le flux de trafic spontané entre eux rendent la gestion de la qualité de service complexe à travers l’infrastructure Internet. D’un autre côté, les dispositifs non-IP et leurs capacités limitées en termes d’énergie et de transmission créent l’environnement dynamique et contraint. De plus, l’interconnexion de bout en bout entre les dispositifs et les applications n’est pas possible. Aussi, les applications sont intéressées par les données collectées, pas à la source spécifique qui les produit. Le Software Defined Networking (SDN) est un nouveau paradigme pour les réseaux informatiques apparu récemment pour cacher la complexité de l’architecture de réseau traditionnelle (par exemple de l’Internet) et briser la fermeture des systèmes de réseau dans les fonctions de contrôle et de données. Il permet aux propriétaires et aux administrateurs de réseau de contrôler et de gérer le comportement du réseau par programme, en découplant le plan de contrôle du plan de données. SDN a le potentiel de révolutionner les réseaux informatiques classiques existants, en offrant plusieurs avantages tels que la gestion centralisée, la programmabilité du réseau, l’efficacité des coûts d’exploitation, et les innovations. Dans cette thèse, nous étudions la gestion de ressources sur l’infrastructure IoT, y compris les réseaux de transport/Internet et de détection. Nous profitons de la technologie SDN comme le futur d’Internet pour offrir un système de support QoS flexible et adaptatif pour les services IoT. Nous présentons un intergiciel basé sur SDN pour définir un cadre de gestion de QoS pour gérer les besoins spécifiques de chaque application à travers l’infrastructure IoT. De plus, nous proposons un nouveau modèle QoS qui prend en compte les préférences de QoS des applications et l’état des éléments de réseau pour allouer efficacement les ressources sur le réseau transport/Internet basé sur SDN tout en maximisant les performances du réseau.----------ABSTRACT: The Internet of Things (IoT) is an integration of various kinds of technologies, wherein heterogeneous objects with capabilities of sensing, actuation, communication, computation, networking, and storage are rapidly developed to collect the data for the users and applications. The IoT vision is to extend the Internet into our everyday lives, so the number of connected devices and innovative applications are growing very fast to bring intelligence into as many domains as possible. The QoS for IoT application not only depends on the Internet network and communication infrastructure, it is also impacted by the operation and performance of IoT sensing infrastructure. Therefore, the new QoS parameters such as data accuracy, sampling rate, and device availability become important for the IoT applications compared to the Internet applications. The huge number of the Internet-connected IoT devices and application, and the spontaneous traffic flow among them make the management of the quality of service complex across the Internet infrastructure. On the other hand, the non-IP devices and their limited capabilities in terms of energy and transmission create the dynamic environment and hinder the direct interaction between devices and applications. The quality of service is becoming one of the critical non-functional IoT element which needs research and studies. A flexible and scalable QoS management mechanism must be implemented in IoT system to keep up with the growth rate of the Internet-connected IoT devices and applications as well as their heterogeneity and diversity. The solution should address the IoT application requirements and user satisfaction while considering the system dynamism, limitations, and characteristics. Software-Defined Networking (SDN) is an emerging paradigm in computer networking which separates the control plane and the data plane of the network elements. It makes the network elements programmable via the centralized control plane. This approach enables more agile management and control over the network behavior. In this thesis, we take advantage of SDN technology as the future of the Internet to offer a flexible and adaptive QoS support scheme for the IoT services. We present an SDN-based middleware to define a QoS management framework to manage the application specific QoS needs across the IoT infrastructure including transport and sensing network. Also, we propose a new QoS model that takes into account the application QoS preferences and the network elements status to allocate effectively the resources for the applications across SDN network while maximizing network performance
    corecore