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Summary 

High-speed networks and powerful end-hosts enable new types of Quality of Service 

(QoS) sensitive applications such as Video-On-Demand to be offered. In contrast to 

traditional text and data applications which are burst and elastic in nature, these 

emerging real-time multimedia applications are demanding on system resources such 

as bandwidth and CPU, and are also sensitive to continuous QoS performance. To 

provide end-to-end QoS to users, researchers have spent great efforts in finding 

suitable QoS provisioning mechanisms in areas such as QoS middleware, adaptive 

applications and QoS-aware networks. We find that the approaches of most existing 

researches have been piecemeal, wherein each focusing on a different aspect of the 

QoS provisioning mechanisms. We argue that the real design issue of end-to-end QoS 

is more complex than when each of these QoS mechanisms is considered on its own. It 

is therefore not sufficient to rely merely on, say middleware, applications or networks 

to fulfill end-to-end QoS. Instead, an integrated approach to the overall end-to-end 

QoS provisioning, harmonizing QoS mechanisms in the applications, middleware and 

networks are essential. 

In this thesis, we propose an adaptive end-to-end QoS coordination and management 

framework (QCMF) for the QoS management of multimedia applications. Unlike other 

end-to-end QoS architectures which mainly focus on the interface design between 

adjacent layers, resource reservation or work-flow management, QCMF aims at 

designing an effective end-to-end QoS platform for accommodating and coordinating 

QoS efforts from heterogeneous end-to-end QoS components (e.g., end-host QoS 



 ix

management and network QoS provision). Our solution encompasses existing or new 

QoS mechanisms at three levels: the network level, the middleware level and the 

application level, each of which is abstracted as a meta-model in the end-to-end QoS 

scenario where their behaviors and interactions are studied. The proposed framework 

is adaptive in the sense that it recognizes and coordinates the adaptive behaviors of 

multimedia applications and networks in view of the changing runtime environment 

context. Besides, QCMF provides the ability of dynamic composition of end-hosts’ 

communication stacks, which provides another possible dimension of QoS adaptation 

at the middleware level. 

With the aforementioned methodology in mind, we have proposed a set of techniques 

to fulfill our overall design objectives of a coordinated end-to-end QoS management. 

Firstly, we propose a unified knowledge plane for end-to-end QoS modeling, in which 

QoS information of each end-to-end QoS component is described semantically. The 

semantic approach of modeling QoS knowledge facilitates the deployment of 

multimedia applications in heterogeneous environments where services of desirable (or 

compatible) features can be selected according to runtime service availability. 

Moreover, information sharing among QoS components becomes easier as different 

end-to-end QoS components would have a common understanding of QoS knowledge 

while interacting with each other. Secondly, we propose a novel approach to the 

analysis of QoS violations. By monitoring end-to-end flow statistics and application 

performance, a QoS violation can be quickly identified with high accuracy. Such an 

approach outperforms traditional rule-based violation detection methods which have 

seldom undergone a rigorous testing procedure and require clear margins of QoS 

parameters in asserting a QoS violation. Lastly, we propose an end-to-end QoS 

coordination scheme and algorithms for runtime collaborative end-to-end QoS 
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management. By exchanging QoS information and coordinating adaptation behaviors 

among QoS components, a QoS violation can be solved by either a local adjustment at 

the QoS component where the violation takes place or being processed by another QoS 

component participating in the end-to-end collaboration. Such a decision is made at 

end-hosts in a pure end-to-end fashion without violating the end-to-end design 

principle of the Internet. Our prototype implementation validates our design 

philosophy and demonstrates that QCMF is functional. Performance evaluation results 

of the prototype show that QCMF works effectively in many aspects of end-to-end 

QoS management such as control signaling, knowledge processing, violation detection 

and coordinated adaptation. 
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Chapter 1 Introduction
 

CHAPTER 
 IN T R O D U C T I O N 11
 

Most conventional and legacy network applications have been designed to operate in 

low to moderate speed (a few 10s of Mbps) network environments. These networks 

have been useful and adequate for supporting text and data applications, including 

distributed applications requiring short requests-responses, in which relatively small 

amount of bandwidth is needed for each transmission. Moreover, these applications are 

rather elastic in nature, i.e., they can tolerate great variations in performance such as 

packet delay and throughput rates. In recent years, great advance has been made in 

communication technologies where networks that can support data traffic in gigabits 

per second on every port (e.g., Gigabit Ethernet) are now available off-the-shelf. As a 

result, high-speed networks and powerful end-hosts enable new types of applications 

such as Video-on-Demand, multimedia-based collaborative computing and 

teleconferencing. In contrast to traditional elastic data applications, these emerging 

multimedia applications have different traffic characteristics and are demanding on 

system resources such as network bandwidth and CPU time slice. The challenges in 

designing such applications generally lie in catering for time dependent (or continuous) 

media: audio and video. Besides storage speed, memory size and processing power, 

timely delivery of media data over networks is also an essential factor. It requires not 

only considerable computing resources, but also ensures that these resources will be 

available over a certain period of time. Failure to sustain such provisioning will 

generally compromise the presentation quality of continuous media. Thus, the need for 
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transmission quality assurances for these Quality of Service (QoS) sensitive 

applications arises naturally. 

The question of which suitable mechanisms for the provisioning of QoS has been 

asked and possible answers suggested and issues debated. One interesting but trivial 

suggestion of solution is through over-provisioning of bandwidth. The motivation of 

this thought is that bandwidth, due to increasing availability of fibers and wavelength-

division multiplexing (WDM) technique, is potentially abundant and cheap. We 

believe over-provisioning can greatly ease QoS problems but is not a panacea. This is 

because of at least three main reasons: (1) not all QoS problems are constrained by 

bandwidth, jitter is a classical example; (2) no matter how much bandwidth the 

network can provide, new innovative applications is likely to be created in the near 

future to consume them [1]; (3) unless there is a common physical transmission 

technology (fiber is a potential candidate) for all different network solutions, the vision 

of the abundant bandwidth cannot be materialized for a very simple reason: all 

networks are to be interconnected in one way or the other and hence those networks of 

lower bandwidth will become the QoS bottleneck. Indeed LANs, dial-ups, wireless 

LANs, WANs and broadband co-exist and interconnect to form the global Internet. 

The use of high-speed core networks has not eliminated QoS problems, as we have 

known and experienced today. For example, wireless communication technologies, 

including wireless LAN (IEEE802.11b/g), Bluetooth and 3G mobile networks, are 

being developed and deployed as common services nowadays, which enables wireless 

multimedia streaming to be delivered in light-weighted devices such as handset. As 

end-applications are very likely to run over either fixed wired networks or wireless 

networks, the overall network environment becomes more dynamic and heterogeneous. 

Hence the QoS problems are more difficult to be resolved by relying on a simple 
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mechanism, such as over-provisioning of bandwidth. Suitable QoS mechanisms are 

needed in networks and end-hosts to best assure the timely delivery of multimedia data. 

1.1 MOTIVATION 

For over ten years, researchers have proposed various QoS solutions in either end-

hosts or networks. In QoS provisioning through networks, researches have been 

focused on providing suitable QoS models and service disciplines, as well as 

appropriate admission control and resource reservation protocols. For example, the 

Internet Engineering Task Force (IETF) has defined several standard QoS 

architectures such as Integrated Services (IntServ) [2], Differentiated Services 

(DiffServ) [3], Constraint-based Routing [4] and Multiprotocol Label Switching 

(MPLS) [5]. IntServ and DiffServ are well-known network QoS models, which have 

been studied and compared (through simulation, prototyping and performance 

measurements) by many researchers. IntServ, relying on the Resource Reservation 

Protocol (RSVP) [6], duels with resource allocations and reservations for each data 

flow and hence would have the potential to provide guaranteed QoS service. Many 

network vendors, such as Cisco and Sun Microsystems have IntServ/RSVP 

implementations on their routers [7]. On the other hand, DiffServ is based on a simple 

model where traffic entering a network is aggregated into classes and treated 

differently within a DiffServ-enabled network. There are router prototypes and 

products actually implementing DiffServ service. MPLS is a forwarding scheme that 

has the ability to aggregate traffic flows and hence can provide a basis for both IntServ 

and DiffServ QoS support over core networks. Constraint-based routing intends to 

address QoS from the routing point of view by establishing an appropriate route 

meeting some QoS constraints such as bandwidth or/and delay requirements. 
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In end-hosts, various QoS architectures have been proposed and discussed. According 

to their resource management styles, these solutions can be categorized into 

reservation-based approaches and adaptation-based approaches [8]. Reservation-

based approaches employ resource reservation and admission control mechanisms 

(such as CPU preemption and scheduling) to guarantee the availability of resources 

before multimedia data is delivered [9]. The sustaining of transmission quality depends 

on the QoS technologies of the underlying platform (e.g., QoS capability of the 

operating system and network), in which the data packets are handled. Nevertheless, 

because of the following reasons, multimedia transmission cannot rely solely on such 

resource allocation and reservation mechanisms. 

• QoS degradation in best effort networks is often unavoidable [10], as QoS 

assurance provided by the underlying services may vary from time to time. 

• The Internet traffic produced by end-users exhibits a dynamic behavior. There 

has been no effective QoS reservation mechanism for dueling with the diverse 

QoS requirements of applications and the dynamic behavior of the network 

traffic. 

• QoS guaranteed technologies have yet to be established as common services, 

hence most today’s networks are still operating in best-effort or best assured 

mode. 

In view of the above restrictions, QoS adaptation, which allows a multimedia 

application to react suitably to occurring QoS violations, is essential to ensure that the 

application can sustain certain level of QoS in various runtime environments. An 

adaptation-based QoS approach can operate in best-effort or QoS-enabled network 

environments and manages QoS in a pure end-to-end fashion where QoS monitoring, 

analysis and adaptation are enforced throughout the lifecycle of the transmission to 



 5

smooth the quality fluctuation and best maintain the agreed QoS level. An adaptation-

based approach requires minimum modification to existing network architecture, thus 

makes itself more suitable to be deployed over current non-real-time OS and best-

effort network environments (or future QoS-enabled network environments). 

In adaptation-based QoS researches, progresses have been made in several directions 

such as QoS-aware applications, QoS middleware or QoS-enabled operating systems. 

Most work done in the application layer is related to the transmission of continuous 

media streams (e.g. variable bit rate codec, media compression, frame-dropping and 

layered encoding scheme), and hence is rather media specific and restrictive in certain 

application domains [11][12][13][14][15]. On the other hand, researchers have also 

proposed research prototypes of QoS enabled/sensitive operating systems, applying 

results from real-time scheduling theory to support system level QoS management 

[16][17][18]. However, such an approach would often result in a proprietary OS, 

which is therefore not popular. In recognition of these limitations, more active research 

efforts have been devoted to provide QoS supports as middleware services 

[19][20][21][22][23][24]. The QoS middleware approach is popular for at least two 

main reasons despite of its performance overhead: (1) the QoS solutions are likely to 

be independent of the network and OS platforms, and (2) the QoS controls can be 

specifically designed and possibly be transparent to applications. 

This thesis proposes an adaptive end-to-end QoS Coordination and Management 

Framework (which we call QCMF) for QoS management of end-to-end multimedia 

transmission. Different from most existing work that focuses on a particular QoS 

provisioning domain (e.g., networks or applications), QCMF provides an integrated 

solution for end-to-end QoS management which designs a set of techniques to embrace 
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existing or new QoS efforts from different areas of end-to-end provisioning. Details of 

our approach will be discussed later. 

1.2 PROBLEM STATEMENT 

The need to provide QoS support for networked multimedia applications has long been 

recognized and discussed. As QoS issue has not been part of the design considerations 

of virtually all network architectures, including that of the Internet, the design and 

development of suitable QoS provisioning mechanisms has to be carefully considered 

so as to ensure the stability of current Internet architecture and its compatibility with 

other add-on network services such as Network Address Translation (NAT) [27]. In 

fact, the complexity of QoS provisioning has already resulted in various QoS solutions 

each focusing on a different aspect of the QoS provisioning mechanisms, depending on 

the perspectives and design centric of the designers. As discussed, these solutions can 

be broadly classified into three main design viewpoints: QoS-aware applications, 

dedicated QoS middleware and network QoS models. 

However, the real design issues of QoS provision are far more complex than when 

each of these design viewpoints is considered on its own. This is simply because 

meeting performance requirements of QoS-sensitive applications is fundamentally an 

end-to-end issue. It requires all QoS-enabled facilities along the end-to-end path 

working cohesively to achieve the desired end-to-end performance. As most existing 

QoS solutions focus on their respective areas while paying little attention to the 

interaction with other QoS services on the end-to-end path, QoS can only be sustained 

in their local domains, while no satisfactory end-to-end performance can be provided 

to end-users. In this sense, we believe that a more holistic approach to the overall end-
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to-end QoS provisioning, integrating QoS mechanisms in the applications, middleware 

and the networks is essential. 

An adaptive QoS coordination and management framework (QCMF) has been 

developed based on such a design consideration. The framework embraces QoS 

services along the provisioning path and provides mechanisms for QoS coordination 

and adaptation among them in both build-time instantiation and runtime QoS 

management. Different from existing integrated end-to-end architectures which have 

typically developed a whole set of new end-to-end QoS mechanisms by themselves 

[9][28], QCMF aims at accommodating existing QoS techniques from different 

domains and providing a platform for their interaction. For instance, QCMF does not 

invent any new signaling protocol for QoS negotiation among end-to-end QoS 

components (opposite to [29]), but makes use of any existing protocols capable of 

negotiation. Unlike [30] which designs its own network QoS implementation as part of 

its end-to-end QoS efforts, QCMF assumes a generic network service differentiation 

model for end-to-end collaboration. Such a model can be easily mapped to existing 

standard network QoS models such as DiffServ which is built on the same basic QoS 

discipline of service differentiation. In this way, QCMF requires minimum 

modification of current network architecture and hence has a better chance to be 

accepted and implemented as common utility services over the Internet. 

1.3 THESIS CONTRIBUTIONS 

This thesis proposes an adaptive QCMF framework for QoS management in end-to-

end multimedia transmission. The solution embraces existing and new QoS 

mechanisms at three entity levels: networks, middleware and applications. QCMF 

provides necessary management functions that include, for example, QoS negotiation, 
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monitoring and adaptation. With runtime adaptation, QCMF enables multimedia 

applications to best maintain certain degree of QoS under constrained system and 

network resource availability. In summary, this thesis makes the following key 

contributions: 

1. We propose a new design philosophy with respect to how current communication 

architectures of end-hosts and networks could be modified to accommodate end-to-

end QoS services. Rather than designing a new set of QoS mechanisms for each 

communication layer so that they can be seamlessly integrated together for end-to-

end QoS provisioning, we propose to unify existing isolated QoS solutions at 

different layers so as to fulfill end-to-end QoS requirement. We believe our 

solution is easier to be implemented and deployed in current network environment. 

2. (As the continuation of point 1) we propose a set of techniques to enable the 

collaboration among end-to-end QoS sub-systems. We treat each of the QoS sub-

systems as a meta-component and design an end-to-end framework and methods 

for accommodating and supporting interactions and dynamic adaptations among 

them. In this context, we are not participating in the performance enhancement of 

QoS mechanisms of any individual layer. Instead, our contribution is to provide a 

platform for harmonizing and coordinating existing QoS mechanisms in 

applications, middleware and networks in the context of overall end-to-end QoS 

provisioning. 

3. We propose a uniform semantic approach and meta-models to abstract QoS 

characteristics of applications, middleware and networks. Each of these meta-

models will provide consistent interfaces so as to facilitate interactions among 

adjacent QoS models. Based on such a semantic specification method, we establish 
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a knowledge plane for QoS information exchange among different QoS-

subsystems for the benefit of end-to-end QoS negotiation and management. The 

advantages of such an approach lie in a powerful and expressive method for 

specification as well as an easy way for information processing, matching and 

sharing. 

4. We propose a novel end-to-end approach to QoS management with respect to the 

diagnosis of QoS violations. By monitoring end-to-end flow statistics and 

application performance, a QoS violation can be quickly identified with high 

accuracy as we have tested. Such an approach outperforms a traditional rule-based 

violation detection method which has seldom undergone a rigorous testing 

procedure and requires clear threshold values of QoS parameters in asserting a QoS 

violation.  

5. We demonstrate the design concepts of points 1-4 and the functionality of the 

proposed QCMF framework through prototype implementation. We have 

developed a set of software reflection techniques for the implementation of meta-

QoS models for applications, middleware and networks. In addition, decision-

making algorithms, heuristics and policies have been defined for a collaborative 

end-to-end QoS management. Through physical measurements of our 

implementation, we have shown that QCMF can achieve the aforementioned 

features and functionalities with acceptable overhead.  

1.4 THESIS OUTLINE 

The rest of the thesis is organized as follows.  
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Chapter 2 surveys relevant literatures in areas of end-host QoS research and network 

QoS research. We discuss the features and limitations of existing approaches. The 

differences between QCMF and previous work are also compared.  

Chapter 3 gives an overall picture of QCMF by explaining its design philosophy (i.e., 

design reference model), system architecture and management functionalities. 

Chapter 4 elaborates the knowledge modeling in QCMF whereby characteristics of 

each QoS sub-system with respect to end-to-end collaboration are semantically 

abstracted and processed. 

Chapter 5 explains our approach for runtime QoS monitoring and violation analysis. 

We also give an overview of the violation identification algorithms we have engaged, 

whose performances are compared and discussed in Chapter 7. 

Chapter 6 presents the cross-component adaptation scheme in QCMF. Detailed 

description about our design assumptions, meta-models for end-to-end QoS 

components and coordination algorithms and heuristics are explored. Simulation 

models and results are then introduced which has validated the correctness of our 

approach. 

Chapter 7 describes our prototype implementation and performance measurements of 

QCMF. 

Chapter 8 concludes the thesis and discusses future work. 

Chapter 2 Literature Review
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The open problem of QoS provisioning has been addressed by various research efforts 

in the past years. In this chapter, we will review some of the advance in both network 

and end-host QoS researches. More comprehensive end-to-end QoS solutions such as 

cross-layer architectures and integrated end-to-end QoS systems will also be 

introduced and compared. By examining these related researches, we will show the 

advantages of our work over previous studies. 

2.1 QOS IN COMMUNICATION SYSTEMS 

The term QoS is first introduced to describe characteristics of low-level data 

transmission in communication systems. With the appearance of distributed 

multimedia applications, the meaning of QoS has been re-defined as “the collective 

effect of service performance which determines the degree of satisfaction of a user of 

the service” [31]. In general, QoS represents a set of quantitative and qualitative 

characteristics of a distributed multimedia system that are necessary to achieve the 

required functionality and performance of an application. Here functionality and 

performance refers to both the proper delivery of media data to a multimedia 

application user and the overall user satisfaction [32].  

In practice, QoS is often expressed using measurable QoS parameters. A QoS 

parameter describes a specific attribute of a communication system or a performance 

requirement of a multimedia application. Each QoS parameter can be viewed as a 

typed variable with bounded values. An application’s QoS requirements are conveyed 



 12

in terms of high-level QoS parameters that specify what the application desires. These 

QoS parameters are assessed by the underlying communication system to determine 

whether application requirements can be met or not. 

The underlying system needs resources to promote its service to multimedia 

applications. Essentially, there are two kinds of resources relevant to the performance 

of a multimedia application: end-host resources and network resources. The former 

consists of processing power, memory, data buffer in an end-host and its peripheral 

multimedia devices; the latter includes network bandwidth and packet queuing priority. 

To manage these resources for applications, two camps of QoS researches have been 

established focusing on their respective areas, namely end-host QoS research and 

network QoS research. 

2.2 QOS PROVISIONING ARCHITECTURES 

The open problem of providing end-to-end QoS support has been addressed by various 

research efforts in the past years [9][28][32][33]. This section reviews existing QoS 

researches applicable to areas such as network QoS, end-host QoS and end-to-end QoS. 

2.2.1 Network QoS Models 

To support QoS in the Internet, IETF has defined several standard service models and 

mechanisms to meet the demand for QoS. The IntServ/RSVP [2][6] architecture 

intends to provide end-to-end bandwidth reservation by maintaining per-flow state 

information along the path from the flow sender to the receiver. However, the 

complexity of per flow operations usually increases as a function of the number of 

flows. In addition, it is difficult to maintain the consistency of per flow state in a 

distributed network environment. Thus the IntServ model is not scalable to large 
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networks [1]. Such a scalability problem has resulted in the DiffServ approach [3] 

where QoS is achieved by a coarse level of service differentiation among a small 

number of traffic classes. The main advantage of DiffServ over IntServ is that core 

network will only operate on aggregated flows instead of per flow in IntServ. In edge 

routers, packets are processed and aggregated on the basis of service classes. However, 

the DiffServ solution will become complex when QoS is to be offered over multiple 

DiffServ domains. Notably, there is a widely used QoS reference model merging these 

technologies. This includes the models combining IntServ in access network and 

DiffServ in the backbone network [34]. MPLS [5], on the other hand, is a layer two 

forwarding scheme that has the ability to aggregate traffic flows and hence can provide 

a basis for both IntServ and DiffServ QoS support over the core network. 

Network QoS research in recent years mostly focuses on (1) the functional 

improvement of these standard QoS models through techniques such as traffic 

engineering [35][36], or (2) discusses the impact of these models on existing 

communication facilities such as the performance variation of TCP protocol [37]. 

Nevertheless, we should note that network QoS models or solutions discussed above 

can only deliver end-point to end-point QoS, i.e., from the network egress point of a 

flow sender to the ingress point of a flow receiver. However, the main body of QoS 

communication lies within both end-hosts and their applications. In another word, 

what we want to satisfy is the QoS requirements from multimedia applications, which 

is more precisely, application-to-application QoS. The network QoS models by 

themselves, can not provide application-to-application QoS. A simple example is that, 

the fluent delivery of video frames to an end-user relies on network resources such as 

bandwidth and end-host resources such as CPU time slice. While a network QoS may 

assure the provision of bandwidth, the successful end-to-end QoS provision still 
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depends on the sufficient CPU time slice allocated at both flow sender (for media 

encoding) and receiver (for decoding). The gap between application-to-application 

QoS and network QoS is left for end-host QoS to bridge. Moreover, QoS is not always 

fully guaranteed in these proposed network QoS models. For instance, DiffServ 

provides a sense of resource allocation and service differentiation, but it never 

guarantees the provision of QoS in the network: intra service class bandwidth 

contention in a DiffServ domain is often managed by traffic engineering technologies 

such as statistical admission control [38] and Random Early Detection (RED) [39]. It 

is obvious that such traffic engineering technologies cannot strictly guarantee even 

network-wide QoS. Thus an end-to-end flow may expect temporary quality fluctuation 

during transmission where end-host QoS mechanisms may take their places. 

2.2.2 QoS-aware Operating Systems 

A number of pioneering efforts have produced useful QoS provisioning mechanisms in 

end-hosts, among which QoS-aware operating system research has once been a focus. 

To support the execution of real-time multimedia applications, the operating system of 

a computer has been argued to have the ability to manage and resolve resource 

contentions of these applications so as to ensure timely processing and delivery of 

multimedia data. 

Several research prototype operating systems have emerged, applying results from 

real-time scheduling theory. For example, the DASH kernel [16] uses an admission 

control algorithm based on a timeline and then uses earliest deadline scheduling to 

actually sort all tasks. In order to guarantee the performance of an application, 

computational requirements of the application need to be measured beforehand and be 

analyzed together with its timing constraints such as delay bounds. In this way, an 
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application can be executed within expectation where its timing constraints can be 

satisfied. Similar observation can be found in RT-Mach [17] and Pegasus [18] where 

applications need to specify timing constraints explicitly. Based on that information, 

the OS kernel can calculate its CPU usage and provide fine-grained timestamp and 

synchronization. 

In recent years, great strides have been made to support QoS provisioning in 

commercial OS and network products. Most Windows operating systems are now able 

to signal RSVP and do kernel level packet scheduling [40]. There are also several add-

ons available to win32 platforms which can provide advanced QoS supports such as 

CPU resource reservation [41]. On the other hand, large network vendors, such as 

Cisco and Sun Microsystems have embedded DiffServ on their high end routers [42]. 

However, as the Internet today is still best effort, there is no means to reserve network 

resources such as bandwidth, which is vital to end-to-end QoS provisioning. Thus 

these low level (OS and network) QoS supports are still tentative and premature in 

nature. 

2.2.3 QoS Middleware 

Traditionally, middleware is a layer of software that runs above heterogeneous 

operating systems and communications systems, providing a uniform interface to 

distributed applications. In end-host QoS researches, various projects have been 

proposed to provide QoS supports as middleware services. Typically, a QoS 

middleware provides services ranging from QoS specification, negotiation to runtime 

supervision. The following paragraphs will provide a detailed discussion on some of 

the latest QoS middleware and compare their key features with those of our QCMF. 



 16

DaCaPo++ [43] is a middleware QoS project that supports a range of multimedia 

applications. It automatically configures itself at start-up time to provide suitable 

communication protocols and multimedia oriented services that are adaptable to 

application needs. MCF [20] from the same research group offers flexible multipoint 

communication services through protocol configurations at start-up time. To make 

QoS parameters more application friendly, “types” of media can be specified in both 

MCF and DaCaPo++ where different treatment will be provided to each media type. 

On the other hand, DJINN [24] and Chameleon [44][45] are designed to support 

runtime protocol stack re-composition in addition to build-time composition, which 

offers more flexibility of QoS adaptation than DaCaPo++. DJINN allows application 

developers to create and connect model components in the form of connection 

diagrams. At runtime, such a component graph can be modified if intra-components 

reconfiguration can not solve a QoS violation. In a heavy loaded network environment, 

for example, the congestion control mechanism of TCP may introduce unnecessary 

overhead to a multimedia stream which can tolerate certain degree of packet loss. 

Through runtime re-composition, a TCP protocol component can be replaced with 

light-weighted protocol such as UDP in DJINN. Leveraging on the dynamic protocol 

framework (DPF) [46] component, our QCMF provides similar build-time stack 

composition and runtime re-composition compared with DJINN. In the context of 

QCMF, DPF offers a possible dimension of QoS adaptation at the middleware level. 

However, the QoS adaptation issue (e.g., end-to-end information sharing and decision-

making) in QCMF is more carefully designed compared with aforementioned 

researches in that it also reviews adaptation choices in other domains such as 

multimedia applications (e.g., variable video frame rate) and networks (e.g., service 

class upgrade in DiffServ). In this sense, QCMF offers a more comprehensive end-to-
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end solution where middleware level adaptation is only one of the runtime 

considerations. 

The 2KQ project [47] from UIUC proposes a resource-aware service configuration 

model for heterogeneous distributed environments. 2KQ employs multi-tie QoS 

translation. Firstly, specification of the application is translated into a set of component 

configurations. Secondly, the set of component configurations are translated into QoS-

aware component specification (QoSCSpec). Lastly, QoSCSpec is translated into the 

corresponding system QoS parameters and their resource requirements (e.g., CPU or 

network bandwidth). The QoS specification and mapping process of QCMF is similar 

to that of 2KQ. However, QCMF proposes a systematic semantic model to describe the 

roles and relationships among various QoS entities including middleware components, 

network QoS services and application requirements. As a result, standard high level 

QoS entities can be more easily matched and mapped into system level resource 

specification. 

Agilos [22] is a middleware control architecture to assist application-aware adaptations. 

The main contribution of this project is to introduce a fuzzy control model for the 

decision-making of QoS adaptations. The correctness and efficiency of their model 

have been proven by mathematical analysis and prototyping. Agilos utilizes fuzzy 

rules in the form of “IF-THEN-ELSE” clause to define adaptation behavior. However, 

as system complexity increases, reliable fuzzy rules and membership functions used to 

describe system behavior are difficult to determine. Comparatively, QCMF engages a 

machine learning approach to QoS violation analysis. By examining the end-to-end 

flow statistics and application behavior, QCMF can identify a QoS violation without 

the need to specify threshold values for communication parameters. Moreover, Agilos 
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is specifically designed for those applications that receive control commands from the 

middleware. Hence, Agilos does not allow applications to specify fuzzy rules as 

adaptation decision is solely made by analytical translation through middleware probe 

service [8]. A similar approach is taken in [48] which defines strategic and tactical 

QoS managers. Strategic QoS managers take a global view of QoS provided by a set of 

application components within the manager’s policy domain while tactical QoS 

managers provide local control over application components. In contrast to these 

studies, there is virtually no restriction on the kind of multimedia applications that 

QCMF can serve. For those applications that have their own QoS logics which are out 

of the control of a QoS middleware, QCMF provide information support by 

establishing a knowledge plane for information record and exchange (Chapter 4). For 

other applications that do not have built-in intelligence for QoS management, QCMF 

will guide the behavior of these applications through end-to-end coordination. In both 

scenarios, QCMF allows application-specific policies to be defined, which is used to 

direct the management behavior and adaptation decision-making of the end-to-end 

QoS system (Chapter 6). 

Through reviewing these recent researches, we have identified the following trends in 

the design of emerging QoS middleware. Firstly, QoS middleware are becoming more 

and more flexible. Many QoS middleware today are designed in component-based 

architectures, meaning that various functionalities are encapsulated into components 

and can be swapped in and out on the fly [24][49][50]. In this way, higher flexibility 

can be achieved where customized services can be provided to a multimedia 

application. Secondly, several QoS middleware has incorporated additional features 

such as multipoint and security support [23], which makes them more versatile in 

supporting a wide range of application needs. Lastly, more and more network 
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applications incorporate multimedia contents and require corresponding QoS supports. 

As a result, purposeful middleware has been proposed to serve a specific application in 

a particular environment [51][52]. For example, [53] has designed a distributed 

middleware for networked audio and visual home appliances, which is executed on 

commodity software. Built on Linux platform, such a middleware can control a wide 

range of home appliances. 

2.2.4 Multimedia Applications and Media Framework 

As stated earlier, most QoS researches in the application layer are related to the 

transmission of continuous media streams, and hence are rather media specific and 

restrictive in certain application domains [11][12][13][14][15]. A multimedia 

application typically supports various codecs for media compression such as Motion 

JPEG, MPEG-4 and H.264. These codecs present diverse visual-auditory quality to an 

end-user by incorporating different compression techniques and compression ratio. On 

the other hand, different codecs have different emphasis on resource allocation. 

Theoretically, a highly compressive codec requires more CPU time slice for media 

compression and less network bandwidth for data transmission compared with a low 

compression ratio codec. Hence multimedia applications can choose codecs of 

different resource requirements so as to fit into runtime environments of diverse 

conditions and resource availability.  

A multimedia application in networking environments generally will present delay-

sensitive and loss-tolerant characteristics [54]. Firstly, most multimedia applications 

can cope with certain amount of packet loss depending on the sequence characteristics 

and error concealment strategies (e.g. packet loss up to 5% or more can be tolerated at 

times [55]). Secondly, multimedia applications have stringent delay constraints. For 
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interactive applications such as videoconferencing, delay upper bound is commonly 

known as less than 200 milliseconds. Comparatively, multimedia streaming 

applications can tolerate delay up to 1 or 5 seconds [56]. Typically, data packets that 

arrive after their display time are discarded at the receiver side or, at best, can be used 

for concealing subsequently received multimedia packets. The delay-sensitive, 

resource-intense and loss-tolerant features of multimedia applications suggest that QoS 

management and adaptation can be effective in adjustment of a multimedia 

application’s presentation quality in view of runtime dynamics. 

To assist the design and deployment of multimedia applications, media framework has 

been proposed to provide a semantically rich programming environment and facilitate 

the access of I/O device and synchronization of different media streams. Windows 

Media Technology (WMT) [57] and Java Media Framework (JMF) [58] are two 

popular media frameworks. Platform independent and open source are the advantages 

of JMF over WMT. JMF enables audio, video and other time-based media to be added 

to Java-based applications and can capture, play, stream and transcode multiple media 

formats. It also supports RTP/RTSP [59][60] in order to interoperate with standard-

based, third-party video streaming servers from, for example, Apple, Sun and Kasenna. 

Hence, our prototype implementation of QCMF has chosen JMF as the development 

platform. 

2.2.5 Cross-layer QoS Architectures 

Layering is a common approach for dealing with the high complexity of QoS 

provisioning, so that research issues of each layer can be considered in isolation. 

Existing QoS literatures mainly deal with QoS provisioning within the context of one 

of the individual architecture layers as aforementioned. A QoS researcher in this way 
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would typically focus on one aspect of the QoS provisioning mechanisms for a layer, 

neglecting possible related QoS mechanisms in others. For example, current end-host 

QoS solutions tend to adapt their middleware or applications to the changing network 

QoS conditions. Thus an ongoing session may have to be aborted when the resource 

scarcity in network (e.g., bandwidth shrink) degrades the initially agreed QoS to a 

level beyond any end-host adaptation can cope with. However, we argue that network 

in this case may simply be a better place to exercise QoS adaptation (if the network is 

QoS-enabled such as a DiffServ network) so as to prevent the abortion of the session. 

This example clearly illustrates a serious shortcoming of dealing QoS problems in 

isolation, which leads to a less effective end-to-end QoS solution. Hence, we assert 

that any decent end-to-end QoS solution must consider the interactions of QoS 

mechanisms between layers.  

A number of cross-layer QoS architectures have been proposed to address the QoS 

issue by assuming a centralized solution with a single management point and direction 

of decision-making[61][62][63]. A cross-layer framework jointly analyzes and 

optimizes the different strategies available at various system layers (e.g., physical layer, 

medium access control (MAC) layer, network/transport layers or applications). For 

instance, authors of [64] employ a central coordinator to decide QoS configurations in 

three layers of an end-host (i.e., application task, OS scheduler and CPU speed). It 

should be noticed that the management scope of most cross-layer proposals are within 

one end-host where fine-grained control of different layers can be achieved. Although 

such a federal solution works for local decision-making within one end-host, it may 

not be applicable to end-to-end QoS provisioning in that a local coordinator in one 

QoS subsystem is unlikely able to decide QoS configurations and adaptations for 

others (such as the network or a remote host). In view of this, QCMF tries to 
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coordinate QoS efforts from various sub-systems for the benefit of end-to-end 

provisioning rather than determining their respective configuration and actions. 

2.2.6 End-to-end QoS Schemes 

As isolated QoS provision may lead to localized QoS solutions which are undesirable 

for end-to-end QoS delivery, an overall QoS framework that encompasses QoS 

mechanisms of communication components and facilitates implementation that would 

harmonize their interactions is ideal for end-to-end QoS transmission. Among the few 

reported work in the area of integrated end-to-end QoS schemes [65][66][67][68][69], 

focuses have been put on connecting respective QoS-flows of each architecture layer 

(e.g., interface design, service negotiation protocols [29], specification and translation) 

and supporting the underlying enabling mechanisms in each layer. For example, the 

Enthrone project [30] proposes an integrated management solution which covers an 

entire audio-visual service distribution chain, including content generation and 

protection, distribution across networks and reception at user terminals. Similarly, [70] 

proposes a general QoS management framework to select and configure most 

appropriate system components according to user requirements and runtime available 

resources. In [71], authors propose a content-aware bandwidth broker (CABB) to 

manage QoS for multimedia applications in a DiffServ environment. CABB allocates 

network resources to multimedia flows based on client requirements, the adaptability 

of the application, and its tolerance to network level parameters such as bandwidth, 

delay, and latency. Kim et al. describes an end-to-end performance simulation model 

and methodology for the CDMA 2000 network in [56]. The simulator models all 

protocol layers from physical to the application layers. Details of the packet handling 

characteristics of each network element along the end-to-end path are also considered 

to compare and measure performance of applications under different settings. However, 
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all these work has overlooked the complexity of end-to-end QoS with respect to 

decision-making, especially in the case of QoS adaptation. 

End-to-end QoS in our view is distributed and heterogeneous in nature; each of its QoS 

components may have its own QoS mechanisms and adaptation strategies. In this 

context, for example, QoS middleware may have its own means of adaptation in case 

of QoS violations. Meanwhile, adaptive applications may also be able to transform 

themselves to cope with runtime changes. Things will become more complex if the 

network: (1) is also QoS-enabled where diverse service options are of choices, (2) 

offers heterogeneous QoS in different network domains, some of which, for example 

may employ QoS routing while others may make use of load control or selective 

packet dropping techniques [39]. Given multiple QoS objectives and QoS service 

options on the end-to-end path, a good (coordinated) QoS decision-making will 

certainly become more difficult due to an expanded solution space and possible 

interactions between QoS options. Such a complexity is often not considered in the 

aforementioned end-to-end schemes. With such a consideration, QCMF is designed to 

be an adaptive end-to-end framework with emphasis on system-wide coordinated 

adaptation, leveraging on the capabilities of each end-to-end sub-systems. 

2.3 DYNAMIC PROTOCOL COMPOSITION 

Dynamic protocol framework (DPF) [46] is a middleware component in QCMF, which 

can provide dynamic protocol stack composition at call-setup time and re-composition 

(i.e., protocol inserting or swapping) at runtime. DPF provides the flexibility of 

building a protocol graph of dynamically loaded components supporting media flows, 

in a manner similar to other component-based frameworks. In the context of end-to-

end provisioning, DPF offers one possible dimension of QoS adaptation within the 
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communication protocol stack which can supplement current prevailing QoS solutions 

at application or network level. 

In DPF, protocol components need not to be bound at design time, which provides the 

flexibility in composition of protocol stacks. Instead of specifying the name of a 

protocol, applications now can specify their desired QoS properties. For example, a 

multimedia application may request to reserve resources before its session starts. At 

build-time, available protocol services that match this requirement (e.g., RSVP or 

other signaling protocol with similar resource reservation capability) will be selected. 

Such an approach eases the deployment of multimedia applications in heterogeneous 

network environments in that if a target protocol is not available, other protocols of 

similar functions can be selected so that the end-to-end delivery will not fail (e.g., 

[72]). The flexible composition of protocol stacks also facilitates the QoS adaptation 

process. For instance, two video codecs may present similar presentation quality to an 

end-user, but at different compression rate and hence each demands for different 

amount of network bandwidth. In the case of QCMF/DPF where codec names need not 

be specified by multimedia applications (instead, media quality such as medium or 

high should be specified), a codec that requires more bandwidth may be replaced at 

runtime with another one that consumes less bandwidth in case of network congestion. 

To ensure a consistent description of all end-to-end QoS entities, we have designed a 

semantic scheme for modeling and processing of protocol stacks, which is presented in 

Section 4.3. The semantic model of communication protocols and protocol instances 

are also illustrated in Appendix B. The integrity of protocol and protocol stack 

configuration are ensured with sets of dependencies and supported media formats 

primitives to be defined by protocol developers. Service dependencies and media 
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format compatibility are checked at stages of both build-time configuration and 

runtime reconfiguration to ensure the correctness of a protocol stack. 

2.4 SUMMARY 

The complex QoS problem has led researchers to focus on different aspects of QoS 

provisioning in a fashion similar to the layered approach in network systems design. 

This has resulted in many rigid QoS solutions each addressing one or very few aspects 

of the problems with respect to a set of application scenarios, middleware, or networks. 

These silos of solutions are either too difficult to integrate, or if doable, often would 

lead to overall inefficiency due to poor coordination between respective QoS sub-

systems. Hence, we believe that any satisfactory end-to-end QoS solution must 

consider the coordination of QoS mechanisms between QoS sub-systems (such as 

those in end-hosts and networks) and manage them in a cohesive and coordinated 

fashion. Through comparison and discussion, we have found that most existing end-to-

end QoS schemes focus primarily on the configuration issues such as interface design 

and QoS-flow management, which is essential, but not sufficient for meeting 

performance requirements of multimedia applications. Motivated by these 

observations, we propose our ideas of end-to-end QoS collaboration by 

accommodating and coordinating exiting QoS architectures in applications, 

middleware and networks. Details of our approach will be discussed in the following 

chapters. 
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Chapter 3  The QoS Coordination and Management Framework 
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This chapter gives a high level overview of the architecture and management functions 

of our QoS coordination and management framework (QCMF). We first present a 

reference model for end-to-end QoS provisioning and discuss our design philosophy 

and relevant QoS concepts. Subsequently, we introduce the system architecture and 

management functionalities of QCMF, whereby detailed description of our research 

will be presented in the next few chapters. 

3.1 REFERENCE MODEL FOR QOS MANAGEMENT 

 

 

Figure 3-1: Reference model for end-to-end QoS provisioning and coordination 
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To deal with the complexity of end-to-end QoS provisioning, we introduce a reference 

model to guide the design of our end-to-end QCMF framework as shown in Figure 3-1. 

This model outlines relevant concepts and procedures for end-to-end QoS provisioning 

which can be analyzed from both architecture and management dimensions.  

From the architecture perspective, the model will yield the identification of several 

abstracted QoS layers and their corresponding roles in end-to-end QoS delivery: 

• System QoS includes efforts from a host’s OS and the network which provides 

basic data transmission support between end-hosts. Native packet level QoS 

support can be offered if the OS and the underlying network are QoS-enabled. 

In addition to data link or MAC level QoS provisioning [73], research concerns 

in this area have also included network communication level load balancing and 

fairness issues [74][75]. 

• Middleware QoS offers a rich set of services for the configuration and 

management of the transmission quality (e.g., buffer management, flow 

synchronization and QoS-based handover) outside the kernel space of an end-

host [21][22][23][24]. Middleware QoS solutions are likely to be independent of 

the network and OS platforms and hence are able to work over heterogeneous 

network environments. 

• Application QoS refers to the ability of multimedia applications to self-

configure and respond to the changes of runtime operating conditions or user 

requirements. As discussed, such abilities are commonly related to the 

transmission and performance tuning of particular continuous media streams 

such as audio and video (e.g. variable bit rate codec or layered encoded audio 
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and video) [14][15]. Hence QoS solutions at application level are rather media 

specific and restrictive to a certain application domain. 

For over a decade, researchers have proposed various QoS solutions which according 

to their places of research interest, can be summarized into one of the above categories. 

As has been explained in Chapter 2, QoS researchers in this way would typically focus 

on their own domains of QoS provisioning while neglect (possible related) QoS 

mechanisms in others. Such a layered QoS research leads to an independent and local 

optimized implementation, but would often result in sub-optimal end-to-end 

performance. In this sense, an overall QoS framework that encompasses QoS 

mechanisms of various layers is essential for the satisfaction of an end-user. 

Furthermore, end-to-end QoS in our view would be distributed and heterogeneous in 

that each QoS layer (subsystem) may have its own provisioning mechanisms and 

adaptation strategies. An end-to-end QoS framework thus should take into 

consideration the characteristics and restrictions of each end-to-end QoS sub-system 

(e.g., QoS layer) so that a sound overall adaptation solution can be identified among 

multiple available end-to-end choices at runtime.  

Based on the above design philosophy, we have arrived at the design of QCMF as an 

adaptive end-to-end QoS coordination and management framework. Our solution 

embraces existing and new QoS mechanisms at three entity levels: the network level, 

the middleware level and the application level. We treat each of these QoS sub-

systems as a QoS component in our end-to-end framework and try to devise an 

effective platform and methods for accommodating and supporting interactions and 

dynamic adaptations among them. In this context, we are not participating in the 

performance tuning or enhancement in QoS mechanisms of a particular QoS 

component. Instead, our focus is to provide a management platform for harmonizing 
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and coordinating QoS mechanisms in applications, middleware and networks in the 

context of end-to-end QoS provisioning. The proposed framework is adaptive in the 

sense that it recognizes and coordinates the adaptive behaviors of multimedia 

applications and networks in view of the changing runtime environment context. 

Furthermore, QCMF provides the ability of dynamic (re-)composition of end-hosts’ 

communication stacks during runtime as an additional way to duel with QoS violations 

at the middleware level. 

From the management perspective, end-to-end QoS delivery and coordination is 

fulfilled through three inter-related facilities: QoS knowledge plane, QoS control plane 

and QoS data plane. The data plane is the carrier over which media contents are 

forwarded; the behavior of the data plane is regulated by the control plane via 

management functions such as configuration, signaling and adaptation; the 

enforcement of these control actions relies on the information originated from the 

knowledge plane which abstracts QoS characteristics of each end-to-end QoS 

component and infers QoS status of end-to-end QoS transmission. More detailed 

description about the data plane and control plane can be found in Section 3.2.  

To achieve the aforementioned design objectives of QCMF, we first create abstract 

QoS models for the management of different QoS components (Chapter 4). We shall 

then understand their interactions and establish the coordination requirements among 

these QoS models. Subsequently a QCMF framework can be established for 

implementation of QoS states monitoring, signaling and feedback (Chapter 5), together 

with algorithms and heuristics for distributed decision-making (Chapter 6). 
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3.2 QCMF MANAGEMENT ARCHITECTURE 

 

Figure 3-2: End-to-end QoS transmission scenario 

A typical scenario of end-to-end QoS transmission is illustrated in Figure 3-2 where 

media data is delivered from the source host to the destination via the in-between 

network. The media source can be an audio/video flow either retrieved from a media 

file from the sender’s hard disk or be lively captured from a web camera. The media 

sink typically is a device that consumes and displays the received media flow. In 

QCMF, both media source and sink are abstracted as DataSource1  objects within 

which media processing functions such as data rendering, encoding, packetization, and 

decoding are defined and encapsulated. The actual packet delivery is fulfilled in an 

adaptive data plane which is composed of adaptive communication stacks in two 

participating end-hosts and the network in between. The communication protocol 

stacks of the media sender and receiver are adaptive in the sense that they support 

start-up time semantic composition and runtime re-composition of the stacks (e.g., 

swapping media codecs) so that media flows of different qualities can be delivered at 

the cost of either high or low resource consumption (e.g., bandwidth or CPU cycle 

utilization). Such an adaptation is performed by the dynamic protocol framework (DPF) 

                                                 
1 DataSource, a term of JMF standard, is used to manage the transfer of media contents. A DataSource 
encapsulates both the location of media and the protocol and software used to encapsulate the media. 



 31

QoS module [46] under the guidance of QCMF whereby a decision is made based on 

the runtime monitored QoS conditions. On the other hand, the communication network 

between end-hosts may also be QoS-enabled (e.g., composed of a few DiffServ 

subnets) whereby different service options are of end-hosts’ choices. As an end-to-end 

QoS management architecture, QCMF embraces all these QoS components as part of 

the end-to-end provisioning by modeling their QoS abilities for the consideration of 

build-time QoS orchestration and runtime system-wide adaptation (Figure 3-3). 

 

Figure 3-3: QCMF incorporates both host architectures and network architectures 

While the data plane handles the actual media data transmission and processing, the 

QoS control plane, on the other hand, is responsible for the exchange of control 

information and signaling messages between QoS components (Figure 3-4). Similar to 

the design in other network protocols and systems, QCMF separates the control plane 

from the data plane2. This is to ensure that control overhead will not degrade the 

transmission quality of media data. At both media sender and receiver, QCMF 

establishes a QoS management middleware (QMan) respectively. At the media sender, 

QMan monitors the outputting media flow and cooperates with the receiver’s QMan to 

derive end-to-end QoS status such as end-to-end packet delay and jitter. At the media 

receiver, QMan analyzes end-to-end flow QoS information and makes adaptation 

                                                 
2 In our prototype implementation, the control plane is implemented using both Java Remote Method 
Invocation (RMI) method and native TCP sockets that are separated from data plane sockets (UDP). 
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decisions against runtime QoS violations. Theoretically, such an adaptation choice 

could be a media codec swapping in end-hosts, a service upgrade in QoS-enabled 

networks, a combination of the two or other adaptation choices available in a particular 

end-to-end environment (e.g., reduce application QoS). The final choice is made 

through a system-wide evaluation process performed by QMan middleware in a pure 

end-to-end manner, with details to be presented in Chapter 6. Such an action or 

decision-making is augmented by the meta-data contained in the knowledge plane, 

which will be introduced in Chapter 4. 

 

Figure 3-4: QCMF design concepts: control plane for signaling, data plane for media 
transmission and knowledge plane for meta-data recording 

3.3 QCMF MANAGEMENT FUNCTIONS 

As an adaptive end-to-end QoS management framework, QCMF provides necessary 

management functions for multimedia applications in a fashion similar to other 

component-based end-to-end QoS architectures. Such management services include 

QoS specification, negotiation, enforcement and runtime adaptation. In addition to that, 
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QCMF dips into several end-to-end QoS issues which results in the following research 

merits that distinguish QCMF from existing end-to-end solutions: 

• Build-time QoS specification. QoS specification is the process to capture 

application requirements which are subsequently translated into configurations 

of the underlying communication system. QCMF adopts a language-based 

approach for QoS specification whereby complex specification structures and 

language formats can be defined. Moreover, QCMF defines a semantic model to 

describe QoS requirements of multimedia applications whereby common 

knowledge of the same application domain can be formulated and re-used. Such 

a semantic specification process is handled by the semantic QoS specification 

(SQS) scheme of QCMF and is to be elaborated in Chapter 4. Finally, the same 

semantic approach has been applied to the modeling of QoS knowledge of other 

end-to-end QoS components of QCMF (e.g., networks), which provides a 

uniform knowledge sharing interface that facilitates their interactions. 

• Adaptation rules and policies. As a comprehensive end-to-end QoS 

framework, QCMF acknowledges various adaptation methods from different 

end-to-end QoS components, some of which may achieve similar end-to-end 

effect. For example, an end-to-end delay violation may be alleviated by either 

media buffering technique at the media sink or solved by service upgrade in a 

DiffServ network environment. In view of this, QCMF allows applications to 

define policies regarding adaptation preferences and sequences which can guide 

the runtime selection of adaptation choices and the way application QoS is 

gracefully degraded. Furthermore, application specific management policies can 

be specified whereby, for instance, certain application QoS parameters (e.g., 

video frame resolution) can be traded off first to sustain the quality of other 
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more pertinent parameters (Chapter 4). As a result, application QoS can be 

managed in a desirable manner. 

• Information sharing with applications. In QCMF, applications can query end-

to-end transmission status (e.g., end-to-end delay) and QCMF management 

functions status at any time. In addition, interfaces are defined where QoS status 

reports can be delivered to the application in an event-driven fashion [76]. Such 

a design is specifically for those multimedia applications that have built-in 

adaptation engines and require runtime environment information update from 

the underlying platform (Chapter 4). For other applications that require external 

control for QoS management, QCMF will take into consideration their 

adaptation abilities in making an end-to-end QoS decision-making and 

coordination (Chapter 6). 

• Runtime QoS management. Runtime QoS management in QCMF includes 

QoS negotiation, monitoring, decision-making and adaptation. QoS negotiation 

is intended for the structural composition of end-hosts’ protocol stacks, service 

agreements with network QoS components (if any), as well as communication 

parameter configuration (e.g., streaming port number). Runtime monitoring and 

violation detection is fulfilled through observation and analysis of traffic 

characteristics of an end-to-end flow (Chapter 5). Based on the analysis results, 

decision-making is performed within end-hosts with respect to end-to-end 

coordination and adaptation (Chapter 6). All these runtime QoS management 

tasks are executed in an end-to-end fashion by QCMF (Figure 3-5) so as to 

avoid the possible scalability problem in network QoS management. 
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Figure 3-5: Management functions of QCMF are fulfilled by its several build-time and 
runtime execution modules: Semantic QoS Specification (SQS) for knowledge 
modeling, Middleware QoS Manager (QMan) for runtime management and Dynamic 
Protocol Framework (DPF) for middleware level adaptation 

3.4 SUMMARY 

As has been discussed, end-to-end QoS provisioning is not likely to be a simple issue 

of one communication layer but requires joint efforts from different QoS components 

along the end-to-end path. With such a design philosophy in mind, we have arrived at 

designing QCMF as an adaptive end-to-end QoS architecture that supports multiple 

QoS component models and services at various system levels (i.e., application, 

middleware and network) and manage them in a cohesive and co-operative fashion. An 

overview of management architectures and functions of QCMF is introduced in this 

chapter whereby particular research focuses are outlined and will be elaborated in the 

following chapters. 
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Chapter 4 End-to-End QoS Knowledge Modeling 
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To enable a coordinated end-to-end QoS management, we first model QoS knowledge 

of each end-to-end QoS component so as to facilitate their information sharing and 

interaction. Different from traditional API-based approaches that focus mainly on QoS 

specification for an individual application domain, we propose a uniform semantic-

based approach with meta-models to respectively abstract QoS information of all end-

to-end QoS mechanisms including those in applications, middleware and networks. 

The advantages of such an approach include a more powerful and expressive 

specification method as well as an easy machine processing and end-to-end sharing 

procedure. In this chapter, we first discuss the motivation of our semantic modeling 

approach; detailed design considerations and approaches are presented subsequently. 

Finally, we describe the semantic knowledge meta-models of each end-to-end QoS 

component. 

4.1 QOS KNOWLEDGE AND QOS ONTOLOGY 

4.1.1 Related Work 

Traditional data management is achieved by making use of either programming 

language elements (e.g., read/write of file streams) or special structures such as 

customized XML. However, these proprietary methods do not consider the semantic 



 37

meanings and relations of data, and hence is not suitable for managing meta-data 

featuring a system. Knowledge management of network systems has received much 

attention in recent years. In [77], Clark et al. has proposed a knowledge plane for 

automatic discovery and recovery of the Internet architecture, leveraging on AI tools 

and cognitive systems. Inspired by this idea, several research projects have been 

established for better network management relying on logical languages such as Prolog 

[78][79]. These studies provide general guidance for management and maintenance of 

a specific network infrastructure, which however have not addressed our concern of 

knowledge classification, modeling and processing for end-to-end QoS provisioning. 

In conventional end-to-end QoS provisioning, focuses have been put on the algebraic 

calculations of QoS parameters and resource scheduling [80], an example of which can 

be found in [81] that presents a formal model for mathematical calculation of QoS 

metrics. Our work as proposed in this chapter differs from and supplements these 

existing approaches by proposing a logic model for QoS provisioning where semantic 

meanings and relations of various QoS concepts can be compared and reasoned to 

determine a correct end-to-end QoS configuration. The ontological approach of QoS 

modeling is initiated from the semantic web community. However, reported work 

[82][83][84] so far is mostly limited to the description of web services’ QoS properties 

for service matching and selection. In contrast, we focus on modeling a broad range of 

end-to-end QoS elements for information exchange and distributed QoS coordination, 

encompassing three architectural levels and covering various stages of QoS 

provisioning. 
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4.1.2 General QoS Knowledge 

Within the context of QCMF, a knowledge plane has been established to describe QoS 

information of each end-to-end QoS component. For applications, such information 

mainly refers to application QoS requirements and adaptation strategies. For 

middleware and networks, QoS knowledge to be recorded includes their QoS 

capabilities, work-flow information and dynamic runtime QoS status. At build-time 

and runtime, application QoS requirements will be translated into communication 

configurations (e.g., codec parameters, UDP port number) and protocol stack 

compositions in both end-hosts which will be compared and matched by middleware 

and network service options (to be addressed later).  

Conceptually, four categories of QoS knowledge have been identified and defined in 

the QoS knowledge plane, namely static knowledge, monitored knowledge, profiled 

knowledge and deduced knowledge. 

• Static knowledge represents system and environment information that is likely 

to be constant during a QoS session. This includes description of device type, 

CPU speed, memory size, network service mode, hosts’ OS version and so on. 

The usage of static knowledge is twofold. Firstly, some of the static knowledge 

defines the maximum computational or presentational capability that a QoS 

component can offer to its application. For example, the color depth and screen 

size of a rendering device (e.g. PDA) impose a physical limitation of the display 

quality for a video stream where software configuration should not exceed. 

Secondly, the semantic meaning of static knowledge is helpful in the 

determination of a correct end-to-end QoS configuration. For instance, if a 

media sink is executed on a resource-scare device through a low-bandwidth link, 
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by default, it may be automatically equipped with a series of light-weight 

protocols for information presentation and interaction with a media server. 

• Monitored knowledge refers to those dynamically changing information 

acquired during runtime. Examples of such information include runtime CPU 

availability, memory usage, flow throughput, delay, jitter, packet lost rate and 

CPU usage of the target process. Monitored knowledge in QCMF is updated 

periodically (or on-demand) and is shared among end-to-end QoS components 

for tasks such as inferring the occurrence of a QoS violation; an adaptation 

action will be triggered once a predefined violation pattern matches with 

runtime observation (Chapter 5), which subsequently gives rise to an end-to-end 

coordination and adaptation (Chapter 6). 

• Profiled knowledge as modeled in QCMF at current stage can be summarized 

into two groups: (1) user and application profile, and (2) protocol profile. User 

profile stores QoS preferences of end-users for given application sessions. 

Application profile represents the QoS requirements of applications for an 

expressive application specification and mapping into the underlying QoS 

settings. Protocol profile is a kind of software profile characterizing QoS 

properties (e.g., I/O relations and dependencies) of communication protocols 

resided in an end-host. Through ontology modeling of a dynamic protocol stack, 

QCMF can semantically select appropriate protocols for the composition of a 

protocol stack that meets QoS requirements of an application/user (details to be 

presented in Section 4.3.3). 

• Deduced knowledge describes the kind of indirect knowledge that can be 

derived from aforementioned direct knowledge (i.e., static, monitored and 

profiled knowledge) through aggregation or reasoning processes. For instance, a 
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video streaming receiver’s runtime QoS status (a deduced knowledge) can be 

inferred as RED (a status code indicating the need for an urgent attention) if, for 

example, its video decoding scheme is MPEG-1 (a profiled knowledge) and the 

current CPU availability (a monitored knowledge) is below a predefined level. 

Once such an end-to-end QoS knowledge is asserted by QCMF, an adaptation 

would probably be triggered to solve the violation according to corresponding 

rules and policies. 

Although the actual type and number of QoS knowledge may differ in a real end-to-

end system, the general QoS knowledge presented above gives a guideline with 

respect to the necessary knowledge elements that can be applied so as to achieve the 

desired end-to-end QoS effect. 

4.1.3 QoS Ontology and RDFS Schema 

QCMF utilizes the abovementioned four categories of QoS knowledge for end-to-end 

QoS configuration and runtime QoS management. To facilitate information modeling 

and exchange among QoS components, all knowledge is modeled by ontology in 

RDF/RDFS language [85]. The term “ontology” has a long history in philosophy, in 

which it refers to the subject of existence. In AI literatures, ontology is a formal and 

explicit description of concepts in a domain of discourse. Ontology provides a 

vocabulary for representing knowledge about a domain and for describing specific 

situations in that domain. On the other hand, RDF/RDFS is a W3C standard language 

to instantiate ontology, which enjoys the advantages of extensibility, modularity, 

scalability and logic validity. The selection of RDFS instead of another more powerful 

ontology language - OWL [86] in QCMF is based on a realistic balance between 

language capability and performance: RDFS is sufficient for modeling small scale QoS 

knowledge (as can be seen from the next few sections) and is faster than OWL in 
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knowledge processing which is valuable for QoS management in real-time multimedia 

transmission3. 

Modeling end-to-end QoS knowledge in an ontology-based approach allows us to 

describe QoS information semantically in a way that is independent of programming 

languages, underlying operating systems or QoS middleware. The ontologically 

abstracted QoS knowledge provides a consistent knowledge basis for information 

sharing and interaction among end-to-end QoS components for the following 

observations: 

• Ontology is a formal description of concepts and relationships, which is 

expressive in describing objects, their relations and restrictions. Ontology 

provides a means for formulating semantic meaning and relations of knowledge 

while other schemas such as XML can only produce a data model (which is a 

tree). 

• The use of ontology enables different QoS components in QCMF to have a 

common understanding of QoS knowledge while interacting with each other. 

The identification of the semantic meanings of QoS concepts is essential in a 

heterogeneous environment where clear differentiation of QoS entities is needed 

for understanding and interactions among QoS components (e.g., for service 

negotiation or selection purpose [87]). 

• Ontology modeling of QoS enables machine processing and (potential) formal 

analysis of QoS knowledge through various processing and reasoning 

mechanisms (e.g., first-order logic, temporal logic). Such a semantic processing 

of knowledge is a supplement of traditional mathematical calculation of QoS 

                                                 
3 A migration from RDF/RDFS to OWL is easy to achieve since OWL is backward compatible. OWL 
has more ontology definitions and primitives which can be employed if necessary. 
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parameters that focuses on the quantitative attribute of a QoS parameter. 

Moreover, as an open web standard for easy machine sharing and interpretation, 

RDFS in our view will have a better chance to be widely accepted and adopted 

in practice than other proprietary data representation formats. 

4.1.4 QoS Ontology Predicates 

In our QoS ontology, QoS knowledge is represented as standard first-order predicate 

calculus. The basic primitive has the form of Predicate (subject, value), in which:  

• subject ∈ S*: is a set of names of objects in concern, e.g., throughput, 

slidingWindow or other QoS entities of interest. 

• predicate∈V*: is a set of relations, e.g., hasValue, hasStatus or other property 

indicators. 

• value ∈  O*: is a set of all values of subjects in S*, e.g., 10, FULL/EMPTY and 

so on. 

Each basic primitive pinpoints an attribute of a QoS object. For example, 

hasVaule(throughput, 10) may record the throughput of a TCP flow while 

hasStatus(slidingWindow, FULL) indicates that current TCP transmission is in full rate. 

In addition, each primitive can explore the relation of two QoS objects. For example, 

isInstance(RedHat, Linux) indicates that RedHat is member of Linux family; 

compatible(Linux, Unix) specifies that Linux and Unix are compatible operating 

systems. Finally, pieces of basic primitives can be linked together to form a complex 

QoS knowledge using boolean algebra (e.g., union, intersection and complement). For 

example, hasStatus(accessNetwork, statusVector) – the summarized QoS status of the 

access network, can be represented as the integration of hasvalue(bandwidth, bValue) 

∨ hasRange(jitter, jRange) ∨ hasRange(delay, dRange). 
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The structures and properties of an end-to-end QoS component are described in an 

ontology which includes description of classes, properties and their values. The 

ontology is written in RDFS as a collection of RDF triples, each statement being in the 

form (subject, predicate, object) where subject and object are the ontology’s objects or 

individuals, and predicate as said, is a property relation among them. As a 

demonstration, a machine-interpretable RDFS description of the access network QoS 

ontology is shown in Figure 4-1.  

 

Figure 4-1: Partial QoS ontology for access network written in RDFS 

By applying ontology modeling to QoS elements (as described in Section 4.1.1) in 

each end-to-end QoS component, a knowledge plane can be established within QCMF, 

which records QoS information of each end-to-end QoS component. The knowledge 

plane provides necessary knowledge preparation for QoS information interpretation 
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and sharing so as to empower a coordinated end-to-end QoS decision-making. As 

discussed earlier, the knowledge plane incorporates QoS mechanisms at three generic 

end-to-end QoS components: applications, middleware and networks whereby their 

modeling details are presented in the following sections. 

4.2 APPLICATION QOS KNOWLEDGE MODELING 

Application QoS knowledge modeling is to abstract QoS requirements and capabilities 

(if any) of QoS-sensitive applications. In QCMF, QoS requirements of such 

applications are presented to the underlying middleware and network for configuration 

of communication parameters and control of transmission quality; QoS capabilities of 

applications are exposed to the underlying for runtime adaptation coordination. The 

understanding of application characteristics is fulfilled build-time by a sub-module of 

QCMF – SQS, as is explained below. The runtime interaction and adaptation is 

performed by another QCMF sub-module – QMan middleware, which will be 

discussed in Chapter 6. 

4.2.1 Motivation and Design Considerations 

The task of application QoS knowledge modeling is commonly achieved through QoS 

specification by employing either special application-programming-interfaces (APIs) 

or a language-based QoS specification method [88]. Most traditional QoS middleware 

has adopted the static API-based approach [23][51][89] in which QoS requirements of 

applications are expressed as API parameters. Despite the simplicity of this approach, 

such a specification methodology is restrictive (as has been shown in various 

prototypes) in that it is unlikely to design a set of APIs meeting requirements of 

multimedia applications of different nature. For example, QoS-aware applications 
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(which have built-in adaptive mechanisms and may need information sharing and 

adaptation coordination with the runtime environment) and QoS-transparent 

applications (which purely rely on system level QoS adaptation) possibly need diverse 

QoS treatments from the underlying. Within the category of QoS-aware applications, 

multimedia streaming applications and interactive multimedia applications may have 

varied emphasis on system performance factors such as throughput and delay despite 

the fact that both of them rely on these resources. In this sense, a systematic QoS 

specification method enabling detailed specification for applications of different QoS 

types is desirable. Language-based QoS specification [90][91][92] is a promising 

approach for meeting such a design challenge. This is because languages are inherently 

more declarative, expressive and hence potentially can provide detailed specification 

for applications. For instance, [93] presents an initial insight into QoS specification by 

specifying QoS as a combination of metrics and policies. In their work, QoS metrics is 

defined as performance parameters (i.e., timeliness, precision and accuracy), security 

requirements and their relative importance in a system. However, existing QoS 

specification languages remain at syntax level, i.e., they are strong in the representation 

formats (e.g., language validation) but weak in the specification processing capabilities 

such as semantic specification interpretation and comparison. For example, HQML [94] 

defines a set of generic XML tags (e.g., ServerCluster, LinkList) for specification of 

multimedia application QoS. However, it lacks a formal model to identify and classify 

applications of different kinds so as to provide a customized support to each of them. 

The similar observation can be found in QoS Modeling Language (QML) [95] in 

which static language structures (i.e., contract, contract type and profile) are defined. 

These language elements represent abstractions of application QoS of a general 

meaning, but can not depict application QoS features of a particular context. For 
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instance, the definition of reliability contract type for an audio streaming application 

(counting packet lost ratio) leveraging on TCP transmission is surely different from 

that of a complex online banking service (measuring transaction successful rate) which 

employs various reliable modules possibly covering from the application, middleware 

proxy to the link layer. Such difference arising from diverse application contexts can 

not be reflected in a generic language abstraction defined in QML since a black-box 

approach is taken to treat application QoS. Hence we conclude that these languages 

cannot provide detailed and customized specification support for applications of 

various QoS categories. 

Another key aspect of application QoS knowledge modeling is the application policy 

specification. Policies allow applications to describe preferred actions to be taken in 

case that an application QoS requirement is not satisfied in certain circumstances. Such 

actions may include where to send a notification or tradeoffs among different 

performance metrics. However, we argue that such application level policies may not 

be adequate enough to cover all possible runtime variations. This is because current 

and future Internet computing is getting more and more complex and heterogeneous 

where combinations of different end-devices (e.g., a light-weighted PDA or a powerful 

desktop), networks (e.g., wired or wireless) and software (e.g., a standard 5-layer 

protocol stack or a lightweight protocol stack) will produce runtime platforms of 

different performance and characteristics. Surely, application level policies which are 

formed offline at application design stage can only provide partial and coarse-grained 

guidance for problem-solving in some of the runtime scenarios. All these facts suggest 

that other sources of QoS knowledge need to be identified. On the other hand, we 

acknowledge that end-users can also express their preferences in QoS adaptation. 

However, realizing that end-users may not wish to be bothered by intricate QoS 
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management issues (or even not quite clear about the details), it would be much better 

if runtime QoS systems can exhibit some kind of intelligence for automatic response to 

most QoS problems based on known or derived QoS knowledge. Our application QoS 

specification framework aims to provide such a means for (semi)automatic end-to-end 

QoS regulation with minimum external intervention. 

 

Figure 4-2: Semantic modeling and syntactical QoS specification in QCMF 

Based on the above considerations, we propose a semantic QoS specification module 

(SQS) inside QCMF, which emphasizes on (1) application QoS classification and 

semantic modeling for detailed QoS specification and clear-cut QoS mapping, and (2) 

domain specific QoS knowledge definition and accumulation for automatic QoS 

management. It should be noted that SQS is a semantic QoS specification model for a 

better understanding of application QoS and its interaction with the underlying 

platform. SQS is positioned on top of existing syntax level QoS specification 

languages, which provide language structure support for specification and focus on the 
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grammatical correctness and usability of the language elements (Figure 4-2). We have 

chosen ontology/RDFS to implement our SQS prototype for the aforementioned 

advantages although in principle any QoS specification language can be employed to 

instantiate SQS after appropriate extension. The main features of SQS will be 

introduced in the following sections. 

4.2.2 Two Layer Application QoS Ontology Model 

 

Figure 4-3: The hierarchical application QoS ontology model 

To enable a detailed understanding of application QoS and to provide an accurate QoS 

specification, we propose a hierarchical and extensible application QoS ontology 

model as shown in Figure 4-3. The model is composed of two layers (divided by the 

dotted line), each of which is modeled by ontology in RDFS. The lower layer defines 

semantics of the QoS base-class ontology which is the building block for the upper 

layer QoS domain ontology. Each QoS base-class represents an aspect of QoS and 
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comprises relevant QoS parameters that profile QoS characteristics of that dimension. 

For example, the video base-class defines parameters that describe the presentation 

quality of a video flow such as frame rate and resolution. The final definition of each 

QoS base-class is dependent on the QoS middleware and runtime platform. For 

example, if one QoS middleware can only support audio streaming, then the video 

related base-classes (including video codecs) will not appear in its QoS ontology 

model. Hence, it is possible in practice that different QoS middleware defines ontology 

models of diverse QoS base-classes. However, the semantic meaning of QoS 

parameters in each base-class should be explicit and consistent. 

 The upper layer of the QoS ontology model defines application oriented QoS domain 

ontology. The diverse nature of applications implies the need for a vast set of QoS 

models. To make application QoS interpretable and manageable, we define an 

application-QoS-classification-tree model in this layer which sorts applications 

according to their QoS characteristics. Applications with similar QoS characteristics 

are grouped into the same QoS domain and different QoS domains can be setup for 

applications of different QoS types. The upper part of Figure 4-3 shows such a 

classification tree, in which an entry point QoSEntity and four first-level QoS domains 

are defined (i.e., multimedia networking, remote control, database transaction and 

distributed computing domains). These four preliminary domains provide a high level 

abstraction of application QoS which is further classified into sub-domains for a 

detailed QoS analysis. For example, multimedia networking domain can be classified 

into continuous audio domain, continuous video domain, and visual-auditory domain, 

where the last one may be further extended into A/V streaming domain and interactive 

A/V domain. These two sub-domains differ from each other in their media 

characteristics (e.g., stored vs. live media), while inheriting the same QoS 
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characteristics (A/V transmission) from their parent domain. By categorizing and 

modeling, a hierarchical and extensible application QoS classification tree can thus be 

setup by QoS middleware where new QoS sub-domains are defined as leaf nodes of 

the tree. 

4.2.3 QoS Domain Specification and Knowledge Acquisition 

Essentially for each QoS domain, we define a QoS domain specification that records 

common QoS requirements of applications in that domain. For instance, an example 

QoS specification for A/V streaming domain is shown in Figure 4-4, which lists 

common QoS properties of A/V streaming applications. Each QoS domain 

specification acts as a library to be build-time linked with application inputs so as to 

form a complete application QoS requirement statement. The formation of a QoS 

domain specification is basically realized by merging relevant lower level QoS base-

class ontology. Alternatively, domain specification of a child domain can be derived 

and refined from that of its parent domain. For example, QoS domain specification of 

continuous-video domain can be established by combining ontology of video base-

class, application-general base-class, transportation base-class and codec base-class. 

Such integration is performed in an offline manner each time a QoS middleware is 

launched. The derivation of QoS domain ontology from QoS base-classes ontology 

and the establishment of a QoS classification tree are guided by configuration rules. 

SQS allows the customization of rules for middleware to produce new QoS domains 

and (occasionally) modify the definitions of existing QoS domains. 
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Figure 4-4: Partial QoS domain specification for video streaming applications 

Despite the overhead to construct a hierarchical application QoS classification tree, 

QoS domain specification can be tailored just to the need of a specific application type. 

For example, each QoS domain may define domain-specific parameters to reflect the 

QoS characteristics of applications in that domain. In addition, a QoS domain 

specification may also contain policies about domain specific QoS knowledge which 

will have implications on the runtime configuration and adaptation. For instance, the 

visual-auditory QoS domain may contain knowledge about the significance of audio, 

video and text components to the perceptual quality of end-users. Figure 4-5 shows an 

example of such knowledge which states that video components should be subject to 

flow regulation prior to other media components (e.g., an audio component) in visual-

auditory applications. The definition of such knowledge is based on the observation 

that people are more sensitive to distortions in audio display than in video display in 
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multimedia consumptions [96]. Recognizing such knowledge, QoS middleware 

runtime should first reduce the quality of the video flow while maintaining the quality 

of the audio stream, in the case of insufficient bandwidth by, for example, swapping to 

a less bandwidth-demanding video codec. Unless otherwise specified by end-users, 

such knowledge can be employed as a default solution to deal with runtime bandwidth 

shrinking problem. 

Figure 4-5: An example of knowledge built in the video-auditory QoS domain 

The above QoS knowledge contained in the visual-auditory QoS domain specification 

will automatically be applied to its child domain - A/V streaming QoS domain. In 

addition to such knowledge inheritance from parent domain, A/V streaming QoS 

domain may further define domain particular knowledge for itself, an example of 

which is presented below in first order logic predicates: 

- application (QoS domain, video streaming) ∧  monitor (AudioQuality, ‘LOW’) ∧  

userDefinition (AudioPerception, ‘HIGH’) ├ middleware (Adaptation, throughput) 

As has been revealed by some researches, non-interactive auditory applications (e.g., 

audio flows in an A/V streaming) are more sensitive to throughput than other factors 

such as end-to-end delay and jitter [54]. In the A/V streaming QoS domain, such a 
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property can be described by the above QoS knowledge, which indicates the sequence 

of adaptation (e.g., latency to be compromised first) in case of unsatisfactory audio 

quality.  

To conclude, the benefit of detailed partitioning of QoS domains largely lies in the 

observation that comprehensive QoS specification (i.e., QoS parameters and policies) 

can be realized in sub-domains to further reflect QoS requirements of applications of a 

particular kind. As QoS requirements and corresponding resource demands of most 

today’s QoS-sensitive applications have been extensively studied and resulting QoS 

knowledge been continuously validated, the principle of semantic QoS classification as 

proposed here is feasible and essential for the systematic modeling of application QoS 

requirements. 

 

Table 4-1: QoS profiles for mobile multimedia applications 

The domain specific QoS knowledge can be acquired in QCMF in three ways. Firstly, 

system administrators are assumed to contribute system-wide management policies for 

domain regulation (e.g., what kind of traffic will be regulated or prohibited). Secondly, 

QoS knowledge for classic applications can be established through theoretic and 

experimental studies from the research and industry community. For example, an in-
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depth research has been done in [54], investigating into the QoS requirements of 

advanced applications and their effects on networks. Table 4-1 shows another example 

of QoS profiles for QoS-sensitive applications in a GPRS environment as is proposed 

and tested in [97]. Lastly, QoS domain knowledge can be derived from continuous 

validation through experiments. For instance, recognizing that QoS violations of the 

similar nature may present similar symptoms at runtime, we employ some AI 

techniques to identify and associate a new QoS violation pattern with known QoS 

violations so that the same remedy could be applied to solve the new problem. 

Through application, feedback and validation process, those effective prescriptions to 

new QoS violations would be acknowledged by the QoS management system, which 

could then be turned into new QoS knowledge (Chapter 5). 

It should be noted that several recent literatures have also suggested grouping of 

applications based on their QoS requirements for various purposes. For example, [23] 

defines audio, video and text flows for multimedia applications and designs APIs 

accordingly. In [98], applications are classified into three classes - conventional 

Internet services class, playback streaming class and conversational streaming class - 

each of which is modeled with four attributes: delay, jitter, data rate and packet lost to 

match with network QoS parameters. As these taxonomies assume a fixed number of 

application classes, limited benefit could be derived from such coarse-grained 

classifications. Comparatively, the number of application domains in SQS is not pre-

fixed. The support of new application areas can be achieved by either creation of new 

application types or inheritance and refinement from existing application domains. 
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4.2.4 QoS Compilation and Mapping 

A QoS domain specification serves as a template for instantiating an application QoS 

specification (AQoSpec) for a real application of that QoS domain. The QoS 

specification process in SQS is achieved in the following steps. 

Firstly, SQS will analyze the target application for the purpose of fetching a 

corresponding QoS domain specification at build-time. The determination of a correct 

QoS domain basically relies on its QoS type claimed by the application (e.g., visual-

auditory QoS type). However, such a syntax-based matching may not always identify 

the most precise QoS domain for the application since each QoS middleware is likely 

to define QoS classification trees of different depth (depending on the capability of the 

QoS middleware and runtime platform as explained before) where more detailed 

specification support for an application may be possible in some sub-domain. To 

enable a more precise QoS domain matching, we have designed a light-weighted 

semantic engine that utilizes machine learning and information retrieval techniques to 

identify appropriate QoS domains for applications [99]. 

 

Figure 4-6: Dynamic compilation of AQoSpec 
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After a most precise QoS domain has been found, SQS will secondly extract 

application QoS requirements (e.g., values or ranges of parameters) from inputting 

application QoS documents. We call such a document a QList, which produces 

application QoS requirements including pertinent QoS parameters and associated 

adaptation policies. Such a QList is preliminary and incomplete in nature because (1) 

an application designer has not exhausted all QoS configurations of the applications 

(as discussed earlier, such a complete configuration theoretically is not feasible due to 

the dynamics of runtime environments), (2) an application designer may not be an 

expert to figure out all optimal application configurations and QoS degradation choices. 

In either case, all QoS definitions specified in the QList are compiled according to the 

corresponding QoS domain specification. Those undetermined parameter values or 

adaptation strategies will be examined by QoS middleware by incorporating relevant 

QoS knowledge from corresponding QoS domains4. The output of QoS compilation 

process - an AQoSpec, will provide QoS middleware the most comprehensive 

information for the runtime configuration and supervision. The whole compilation 

process is illustrated in Figure 4-6. 

An AQoSpec, which is encoded in RDFS for easy machine interpretation, is basically 

composed of two parts: QoS parameter definitions and policies. Two kinds of QoS 

parameters are defined in an AQoSpec: quantitative and qualitative parameters. 

Quantitative parameters are countable in nature, which at runtime will be translated 

into resource demands by either analytical or probing QoS mapping mechanisms 

(much work has been done in this area, e.g., [8]). On the other hand, qualitative 

parameters mainly refer to the more fuzzy types of QoS requirements such as 

reliability, security, and availability. At build-time, these parameters will mostly be 
                                                 
4 End-users runtime may also express preferences which have higher priority than default QoS strategies 
and application settings. Such a user input is entertained through a separate GUI. 
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interpreted into middleware and communication protocol stack settings, which will be 

addressed in the next section. An AQoSpec may also contain QoS domain specific 

knowledge (expressed as policies) that helps to perform QoS configuration and 

adaptation at runtime. For example, the knowledge of input/output relations of 

standard codecs (e.g., MPEG-1, and H.263) is stored in codec QoS base-class, whose 

resource requirements can be automatically calculated without the need of QoS 

probing. 

4.3 MIDDLEWARE QOS KNOWLEDGE MODELING 

Middleware QoS knowledge modeling abstracts the capabilities and restrictions of 

QoS middleware for information sharing and adaptation coordination with other end-

to-end QoS components. At current stage of QCMF, our modeling emphasis is on the 

knowledge description of QMan middleware (e.g., adaptation strategies and 

capabilities) and the semantic modeling of a host’s communication protocols and 

protocol stacks though it could be extended to include other aspects (e.g., buffer 

management or session management properties) of a middleware system. 

4.3.1 Design Considerations 

Programming in a typical networked computing environment would have to explicitly 

specify the communication protocols needed in designing an application. Such a static 

approach potentially hinders the portability of applications on different runtime 

platforms: once a protocol stack is established at build-time, runtime re-assembly of 

the stack to deal with transmission quality variation is normally not supported. In view 

of this, much work has been done in the area of flexible protocol stacks 

[24][25][26][49][100], among which our dynamic protocol framework (DPF) is one of 
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the research effort for dynamic protocol stack composition. In the context of QCMF 

framework, DPF offers one possible dimension of QoS adaptation within the 

communication protocol stack (e.g., switch from a computational intensive codec to 

less CPU intensive one in case of CPU overload) which can supplement current 

prevailing QoS solutions at application or network level. The adaptations of DPF (i.e., 

runtime re-composition of stacks) are triggered by QCMF as the outcome of a 

coordinated decision-making process among different end-to-end QoS dimensions and 

are transparent to end-users. Details about DPF and the differences among all these 

work with respect to the build-time functional stack construction and dynamic runtime 

re-composition can be found in [46]. Here we will focus on the semantic modeling of 

protocol stacks in QCMF by comparing approaches taken in related literatures. 

Central to all flexible protocol stack systems is a protocol knowledge base (PKB) 

which is responsible for protocol representation, retrieval and protocol stack 

composition. PKB keeps the meta-data information (e.g., QoS requirements, 

capabilities, I/O relations, restrictions and dependencies) of those protocols supported 

in a system for the benefit of protocol selection and stack validation. However, most 

work reported so far has taken an ad-hoc approach to design proprietary and 

exploratory PKB which lacks formality and expressiveness. For example, Rwanda [44] 

and its successor Chameleon [45] are a series of projects focusing on providing 

tailored protocol services to media streaming of various types. Rwanda models a 

protocol stack as a linear list of protocol objects which represent a kind of QoS such as 

reliable delivery or encrypted communication. All protocol information is 

implemented by a Java class and is runtime retrieved via reflection for configuration. 

However, both Rwanda and Chameleon have only designed a few protocol QoS 

properties for demonstration purpose. The systematic modeling of protocol properties 
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and efficient processing of protocol information for stack configuration has not been 

considered in their projects. 

Dynamic layered protocol stack (DLPS) [101] of Microsoft provides a method to 

dynamically build a protocol stack for data transfer. A stack description file has been 

designed comprising a plurality of individual protocol layer description so that the 

plurality of all these layer description together define which protocol layers will be 

included in the protocol stack when it is constructed. However, DLPS has not 

addressed the issue of modeling properties of protocol stacks as a collection of 

individual protocols. Furthermore, each protocol in DLPS is modeled individually 

without considering the clustering of protocols of similar natures. For example, all 

video codec protocols have common properties such as the number of tracks and 

sampling rate, which can be abstracted as a template for modeling protocols of that 

category. 

In [102], component description is introduced to represent protocol building blocks. 

Each component is described by a list of provided properties and required properties. 

The former declares the functionality that can be provided by a component while the 

latter defines its conditions to be satisfied by others (e.g., downward and upward 

dependencies). An algorithm to select building blocks is also presented where the 

solving strategy of stack composition is to match the requested properties of one 

component with the provided properties of others. However, their work has only 

focused on the dependency properties of protocols and has neglected the importance of 

other protocol properties in runtime stack building. For instance, the selection of G.723 

protocol or MPEG protocol for audio streaming should depend on the runtime resource 

availability (i.e., a resource rich environment may choose a codec of better quality 
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which in turn demands for more resources) since dependency is no longer a factor for 

consideration (i.e., both of the codecs have the same dependency on the underlying 

protocols in the stack). A selection algorithm considering only one searching factor 

(e.g., dependency as used in [102]) surely would not find an optimal stack composition 

in practice. 

In brief, PKB design and management functions of all the abovementioned projects 

have been accomplished by individual efforts making use of either programming 

languages elements or proprietary data structures. These studies often lack generality 

and most likely can not provide customized and expressive description for 

communication protocols and protocol stacks. In line with our semantic modeling of 

other QoS components in QCMF, we present here our ontology-based protocol 

knowledge modeling using RDFS to address these shortcomings. Our semantic 

approach to the modeling and processing of protocol/stack information enjoys the 

advantages of being expressive, flexible and interoperable with other QoS components 

in end-to-end QoS knowledge sharing and coordination. 

As a middleware service, DPF provides flexible protocol stack composition at session-

setup time and dynamic re-composition at runtime. The architecture and workflow of 

DPF is shown in Figure 4-7. As discussed, the key enablers of DPF include (1) a PKB 

which stores and represents protocol information ontologically, and (2) a knowledge 

reasoner which holds a reference of protocol meta-data and interacts with other 

components of DPF throughout the lifecycle of a session for a correct composition and 

re-composition of protocol stacks. The following sections concentrate on the 

ontological design of PKB and semantic protocol processing of the knowledge 

reasoner for the construction of a protocol stack. Particulars about subsequent 



 61

functional manipulation of protocols (.e.g., protocol insertion or swapping) in DPF can 

be found in [46]. 

 

Figure 4-7: Architecture of DPF with ontology modeling 

4.3.2 Ontology Modeling of Protocols 

Since each protocol in DPF provides a specific service, we define an overall service 

class in RDFS expression (Figure 4-8) as an entry point to capture common properties 

that exist in all protocols. These common properties include layer name (where the 

protocol lies in the stack), protocol name (what is the protocol), class name (where to 

find the functional code of the protocol) and so on. Ontology of each protocol will 

extend this fundamental service class definition. 

We then classify protocols into categories according to their functions and positions 

(i.e., layers) in the protocol stack for an easy characterization and modeling. In each 

protocol category, common characteristics are abstracted for category-wide re-usage, 

which is useful in the case of modeling a new protocol of that type. Each protocol 
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category definition extends the fundamental service class ontology and abstracts 

category specific QoS characteristics. Figure 4-8 shows the ontology definitions of 

service and category classes. An example property specific to the codec category, 

which is for media encoding and decoding is also illustrated. The scope that this 

supportedInputFormats property can be applied to is defined by the rdfs:domain 

expression, which provides an isolation of property usage at the grammatical level. 

The grouping of similar protocols into categories is extensible in that more detailed 

classification is possible to provide fine-grained ontology description for a small group 

of protocols of similar nature. 

 

Figure 4-8: Protocol knowledge modeling entry point: service and category classes 

The ontology of a protocol is built by integration of (templates of) basic service class 

definition, corresponding category definitions and protocol specific properties. 

Protocol knowledge to be modeled includes, for example, input/output relations and 

encoding methods of codec protocols (e.g., VBR, CBR), streaming properties of 

session protocols (e.g., SIP [103]), reliability features (e.g., availability, security) of 
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control protocols, connectivity characters of datagram protocols and finally, their 

relations with other protocols (e.g., dependency and compatibility). Figure 4-9 shows a 

partial ontology definition of TCP protocol for an outgoing session, where 

characteristics of TCP protocol related to data transmission are recorded. Properties 

such as port, which are specific to transport protocols, are defined within transport 

category ontology. Other properties such as slidingWindowSize are derived from 

control protocol category (i.e., multiple inheritances are allowed). Meta-data such as 

className and dependency are derived from the service class ontology. The protocol 

ontology for each supported protocol is collectively stored in PKB and handled by the 

knowledge reasoner to (1) semantically select appropriate protocols that meet 

(application and environment) QoS requirements, and (2) validate the composition of a 

protocol stack for build-time construction and runtime re-composition; the details will 

be presented in the following sections. 

 

Figure 4-9: TCP is of (rdf:) type transport and belongs to transport category 
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4.3.3 Semantic Protocol Stack Composition 

The overall semantic protocol retrieval and stack composition process is illustrated in 

Figure 4-10. In end-to-end QoS provisioning, the selection of a target protocol in 

forming a communication stack is dependent on multiple factors such as the 

availability of that protocol in an end-host and the preference of the communicating 

peer. Hence it is meaningless to explicitly bind an application to a specific protocol 

beforehand. To ensure the runtime portability of QoS-sensitive applications in 

heterogeneous environments, QCMF allows applications to describe their desired 

protocol requirements (e.g., resource reservation capability) in their QLists (which has 

been explained in Section 4.2.4) instead of explicitly designating a specific protocol. 

Based on the semantics of the application QoS domain and available protocol ontology 

at runtime, appropriate protocols will be fetched automatically to compose a protocol 

stack that fulfills application requirements (shown in the left part of Figure 4-10). Note 

that after the classification and semantic modeling of application QoS by SQS, QoS 

characteristics of each kind of application is supposed to be well established. The 

semantic mapping from AQoSpec to middleware and system settings is unambiguous 

under the same ontology namespace. 

In DPF, a protocol stack is a protocol graph that consists of a vector of protocols in the 

sequence of layers. As a protocol stack is dynamically composed at runtime, stack 

ontology, which is formed by integrating ontology of member protocols, is an 

ephemeral model to describe the features of a transient stack. Different combination of 

protocols will produce stacks with different characteristics. The characterization of a 

stack is essential for deciding whether the stack composition can suffice 

application/user requirements or not. For example, <G723, RTP, UDP, IP> is a 

protocol stack for audio transmission. This stack is characterized by having low 
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perception quality (derived from G723 ontology), unreliable data transmission (derived 

from UDP ontology) and supports real time session control (derived from RTP 

ontology). If an end-user can accept medium to low audio perception quality, such a 

stack can be employed at runtime in case of resource scarcity. 

 

Figure 4-10: Semantic protocol selection and protocol stack building 

On the other hand, not every combination of protocols will produce a valid stack. For 

example, the stack composition <JPEG, RTP, UDP, IPX> for video streaming is not 

acceptable because UDP is not compatible with IPX. We define a RDFS property 

element – compatibility – to capture such relationship among protocols in constituting 

a protocol stack (shown as dotted lines in the stack composition step of Figure 4-10). 

Similarly, the deployment of a protocol may rely on the adoption of other supporting 

protocols. For example, H263_RTP is a JMF implementation of standard video codec 

H.263 whose deployment requires the presence of RTP in the protocol stack. Such 

dependency can be described by another RDFS property element – lowerDepd – as the 

desired protocol RTP resides below H263_RTP in the protocol stack. Lastly, it is also 

possible that a protocol requires other protocols to appear on top of it in the stack. For 

example, TCP/UDP and IP are always bundled together in the protocol stack. Thus IP 
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protocol has a dependency on upper side transport layer protocols (either TCP or UDP). 

We also introduce a property element – upperDepd – to address such a requirement 

(shown as solid lines in the stack composition step of Figure 4-10). RDFS definitions 

about these property elements can be found in Figure 4-11. 

 

Figure 4-11: RDFS definition for compatibility and dependency 

Compatibility and dependency are modeled as properties of the basic service class 

since all protocols may have such requirements. The dependency and compatibility 

knowledge of each protocol is to be supplied by protocol developers. To ensure that all 

protocols in the stack can interoperate with each other properly, stack validation is 

enforced once a stack is defined. The stack validation will go through two stages: 

grammatical check and specification check. The former guarantees that dependencies 

of every protocol and compatibility of the stack are satisfied. The latter makes sure that 

the stack is configured in accordance with user/application requirements. Those stacks 

that have passed the validation check are legal stacks and will be negotiated between 
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communication peers for the final decision of stack composition and initiation of data 

transmission. 

4.4 NETWORK QOS KNOWLEDGE MODELING BRIEFING 

As QoS support has not been part of the design considerations for virtually all network 

architectures, including that of the Internet, IETF has proposed several standard 

service models and mechanisms to support QoS delivery in the network since 1990th. 

These include, as said IntServ, DiffServ, MPLS and models that combine these 

technologies for an improved network scalability or utility. However, none of these 

models has now gained predominant acceptance to substitute current best-effort 

network service, which suggests that different QoS techniques may co-exist with QoS-

transparent network to form a heterogeneous network QoS environment in the 

foreseeable future. From end-to-end QoS perspective, it is possible that a multimedia 

flow would traverse several autonomous network domains each employing its own 

QoS traffic models and service disciplines ranging from complex DiffServ to simple 

best-effort service. 

Such a complex network QoS delivery situation has prompted our research initiatives 

in QCMF, which aims at designing an efficient end-to-end QoS framework 

coordinating heterogeneous QoS among end-host and network QoS components in a 

co-operative fashion. As explained earlier, each of such an administrative QoS 

network is modeled as an end-to-end QoS component in the context of QCMF. Here 

QCMF is not competing with any of the above standard network QoS techniques for a 

better performance in a local region; rather, our focus is on accommodating individual 

QoS techniques in each QoS component within QCMF by (1) modeling QoS 

characteristics of each end-to-end QoS component, (2) provide a platform to facilitate 
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their information exchange and interaction, (3) enables a coordinated QoS decision-

making in an end-to-end fashion in view of runtime QoS status.  

At current stage, QCMF considers two network QoS scenarios. In a pure best-effort 

network environment, QCMF would perform end-to-end QoS provisioning leveraging 

on end-host QoS components (such as middleware QoS and application QoS). In a 

heterogeneous network QoS environment which consists of several network QoS 

components each adopting different QoS mechanisms, QCMF will model their QoS 

knowledge and capabilities such as traffic shaping policies at ingress/egress points, 

available service types, QoS parameters associated with each traffic class, current load 

information, packet dropping priority, and pricing strategies. Such knowledge will be 

fetched by end-hosts via signaling protocols so that an up-to-date picture about end-to-

end QoS transmission is always accessible to end-hosts. Based on that, runtime QoS 

adaptations can be coordinated by end-hosts leveraging on a series of decision-making 

policies, heuristics and algorithms. Details about network QoS modeling and end-to-

end coordination can be found in Chapter 6. 

4.5 QOS KNOWLEDGE PROCESSING 

QoS knowledge processing traditionally focuses on the mathematical mapping, 

calculation and comparison of QoS parameter values. For example, in QoS negotiation, 

10ms delay from one party is deemed worse than 5 ms delay from the other. Much 

work in this research area [8][69] has adopted such an approach, whereby a theoretic 

mathematical analysis can be found in [104].  

QCMF provides numerical QoS parameter mapping and negotiation among 

communication peers in a way similar to other end-to-end architectures. (e.g., frame 
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resolution negotiation, socket address selection). In addition to that, the knowledge 

plane established in QCMF specifically addresses the semantic processing of QoS 

information which is often neglected in relevant literatures (Figure 4-12). A knowledge 

plane in QCMF contains two essential functions: (a) semantic modeling of QoS 

knowledge of each end-to-end QoS component (which has just been explained), and (b) 

processing of such knowledge and sharing it among QoS components. An example of 

semantic mapping and composition of protocol stacks based on ontology/RDF has 

been shown in Section 4.3.3. Here we will discuss other essential QoS knowledge 

processing issues including knowledge sharing and first-order reasoning. 

 

Figure 4-12: End-to-end QoS knowledge sharing and adaptation signaling 

4.5.1 Knowledge Sharing 

In QCMF, an end-host establishes three knowledge bases for information storage and 

sharing: 

1) An application knowledge base typically contains applications QoS parameters and 

their relative adjustment priority, application specific configurations and adaptation 
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policies. Such knowledge is generally derived from application requirements input 

and domain ontology templates of applications.  

2) A middleware knowledge base describes QoS capabilities (e.g., middleware 

adaptation choices) and restrictions (e.g., memory physical capacity) of a QoS 

middleware and end-hosts (e.g., device capacity). At the current stage of QCMF, 

focus has been put on the semantic description of QoS properties of 

communication protocols and composition of protocol stacks (as has been 

explained in Section 4.3).  

3) A network knowledge base comprises network configuration and runtime 

conditions within each administrative network domain such as channel capacity, 

network service options, traffic load and pricing metrics.  

In addition to the above static information, middleware knowledge base will also 

include dynamic information such as: (a) runtime monitored local information (e.g., 

current available bandwidth or current application performance) for the purpose of 

QoS analysis of transmission status; (b) the up-to-date QoS status of all network QoS 

components (shared from the network knowledge base; such information is also 

sharable with applications). The actual contents of each knowledge base are dependent 

on the implementation of a real end-to-end system. QCMF only defines the format of 

knowledge representation (i.e., ontology/RDFS as exemplified) to guarantee the 

machine readability and cross-domain inter-operability of QoS knowledge in 

heterogeneous end-to-end environments.  

Knowledge sharing between various distributed QoS components in QCMF is fulfilled 

in both push and pull modes. The push mode is used for regular information exchange 

among QoS components. For example, static information about each QoS component 
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is shared at session initiation stage. Runtime QoS status of a network QoS component 

is automatically updated with end-hosts once there is a significant change in its QoS 

status (e.g., QoS violation or network service re-distribution, details to be found in 

Chapter 6). Pull mode is used when an end-host QoS component is interested in the 

QoS information of other (remote end-host or network) components and hence is 

willing to learn such information. Knowledge sharing in pull mode is achieved via 

query and answer primitives (Figure 4-12), the generic definitions and usages of which 

is presented in Section 6.4.3. In our prototype implementation, we use Java Remote 

Method Invocation (RMI) technique [105] to setup and maintain the knowledge and 

control channel between QoS components. The main advantage of RMI is its 

implementation simplicity, interoperability between heterogeneous platforms and a 

certain degree of security been supported. 

4.5.2 Knowledge Reasoning 

Ontology/RDF-based knowledge modeling also enables a certain degree of QoS 

knowledge reasoning based on first-order logic, which can infer derived knowledge 

from known knowledge (i.e., static knowledge, profiled knowledge and monitored 

knowledge, refer back to Section 4.1.1 for details). Knowledge reasoning in QCMF 

comprises two forms: ontology reasoning and user-defined reasoning. Ontology 

reasoning supports all RDFS entailments described by the RDF Core Working Group. 

The main function of ontology reasoning is to check consistency among RDF/RDFS 

definitions when integrating or matching domain specific ontologies (e.g., AQoSpec to 

protocol stack composition).  
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Properties Ontology Reasoning Rules 

subClassOf (?A rdfs:subClassOf ?B), (?B rdfs:subClassOf ?C) ->  
(?A rdfs:subClassOf ?C) 

type (?P rdf:type ?A), (?A rdfs:range ?B) -> (?P rdfs:range ?B) 

subPropertyOf (?A rdfs:subPropertyOf ?B), (?B rdfs:subPropertyOf ?C) -> (?A 
rdfs:subPropertyOf ?C) 

compatibleWith (?A QCMF:compatibleWith ?B), (?B QCMF: compatibleWith ?C) ->  
(?A compatibleWith ?C) 

lowerDepd (?A QCMF:lowDepd ?B), (?B QCMF: lowDepd ?C) ->  
(?A QCMF:lowDepd ?C) 

upperDepd (?A QCMF: upperDepd?B), (?B QCMF: upperDepd?C) ->  
(?A QCMF:upperDepd?C) 

Table 4-2: Partial RDFS reasoning rule set in QCMF 

Table 4-2 lists examples of RDFS reasoning rules in QCMF which is used to check the 

architecture integrity and correctness of QoS components (e.g., a protocol stack) at 

both build-time and runtime. The first rule shows that an RDF class definition is of 

transitive property while the second one indicates that a real instance of a RDF class 

automatically inherits all attributes from its RDF class definition.  

In addition to standard ontology reasoning rules, QCMF also defines its own reasoning 

rules (i.e., user-defined reasoning) for QoS interpretation. Typical reasoning 

algorithms that can be incorporated include forward-chaining, backward-chaining and 

a hybrid execution model. The most common forward-chaining rule engine is based on 

the standard RETE algorithm [106]. The backward-chaining rule engine uses a logic 

programming engine similar to Prolog engines. A complex hybrid execution mode 

performs reasoning by combining both forward-chaining and backward-chaining 

engines. Rule 4 in Table 4-2 is a forward-chaining rule which specifies the 

compatibility relations among two QoS objects. Such a rule has been used in 
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composition of a protocol stack that matches application requirements, as has been 

shown in Section 4.3.2. Meanwhile, it can be applied to the description and reasoning 

of other QoS objects of interest. For example, Linux and UNIX operating systems can 

be described as compatible systems with respect to packet scheduling (Figure 4-13), 

based on which the relationships among instances of different OS types can be 

identified systematically. 

 

Figure 4-13: Ontology definitions for some OS types and instances information 

An example of backward-chaining rules is a trouble-shooting rule for diagnosing the 

root cause of a QoS violation, which is typically employed in a network QoS 

component. As is shown below, the consequence portion of the rule indicates the 

actions of either checking possible local conditions or forwarding the violation report 

to end-hosts for end-to-end QoS analysis. 

- violation: (packetLost qcmf:violation TRUE) ->  

(localDomain qcmf:fault linkFailure) ∨  (localDomain qcmf:fault routingCorrpution) ∨  

(vioReport qcmf:forward ?QMan) 

Other examples of forward-chaining reasoning in QCMF include QoS adaptation rules. 

Table 4-3 shows some reasoning rules for QoS adaptation defined in QCMF. As stated 
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earlier, some adaptation rules are specific to application domains. The action of each 

rule may involve (a) a local adaptation to solve a violation within a QoS component, (b) 

a query been sent to other QoS components for information correlation, (c) an 

assertion of QoS status based on monitored end-to-end information, or (d) an 

adaptation coordination among QoS components for violation rectification. 

Application Domains User-defined Reasoning Rules 

network: hasSource(violation, Local) ∧ network:status(packet_lost, 

HIGH) ∧ network:status(delay, LOW) -> DivertViolation(middleware, 

vioReport) A/V streaming QoS 

domain 
middleware: hasSource(violation, Network) ∧middleware:status(hasCost, 

Low) -> middleware:action(DPF, selective_retransmission) 

Remote-tracking QoS 

domain 

application:status(tracking_frequency, LOW) 
∧ application:status(object_velocity, MEDIUM) -> 

application:action(application, remove_trakcer) 

network:status(throughtput, LOW) ∧middleware:status(CPU_load, LOW) 
∧middleware: hasSource(violation, local) -> middleware:action (DPF, 

HIGH_COMPRESSION) 

network:status(throughtput, LOW) ∧middleware:status(CPU_load, 

HIGH) -> application:action(application, reduce_picSize) 

Interactive audio QoS 

domain 

network:status(jitter, HIGH) ∧ network: hasSource(violation, 

Local)∧ network:action(cost, HIGH) -> DivertViolation(middleware) 

Distributed computing 

QoS domain 

network:status(bandwidth, LOW) ∧ application: hasSource(violation, 

network) application:status(mirrorServer, TRUE) -> 

application:action(application, handover) 

Table 4-3: Example first-order logic rules for coordinated QoS adaptation 
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4.6 SUMMARY 

In this chapter, we address the knowledge modeling issue within the context of QCMF 

where a wide range of QoS-related knowledge comprising network level, middleware 

level and application level are defined and discussed. In tandem with the control plane 

which is intended for QoS monitoring and signaling among communication peers, the 

knowledge plane forms a basis for information sharing and decision-making with 

respect to QoS logics. A distributed approach for decision-making during QoS 

negotiation, configuration and adaptation is also highlighted to illustrate the necessity 

and advantages of our approach. 
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Chapter 5 End-to-End QoS Violation Analysis
 

CHAPTER 
 EN D-T O-EN D  QOS VI O L A T I O N  
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Current researches tackle QoS violations through handcrafted if-then rules, which 

trigger corresponding actions once pre-described conditions are satisfied. The 

performance of such rigid rules is often not satisfactory in practice as will be discussed 

shortly. This chapter proposes an alternative approach to the diagnosis of QoS 

violations by monitoring and analyzing both end-to-end flow statistics and application 

performance.  

5.1 DESIGN CONSIDERATIONS 

Multimedia transmission over the network demands on end-host and network 

resources and requires in-time data delivery for real-time processing, failing to satisfy 

which will generally incur QoS violations. In view of this, various adaptive QoS 

systems have been proposed within end-hosts to best maintain transmission quality at 

runtime [107]. However, it is essential to identify the cause or nature of a QoS 

violation before an appropriate adaptation solution can be applied. An illustrating 

example is that the same phenomenon of packet loss in wireless communication can be 

due to one or more reasons (e.g., channel error or transmission congestion). Without a 

clear idea of the cause of an observed phenomenon, one may not be able to apply an 

appropriate remedy (e.g., error checking or rate control) toward the recovery of the 

transmission quality. However, existing researches usually ignore the detailed analysis 
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of a QoS violation and instead equip their adaptive QoS systems with a few illustrating 

condition-action rules for the detection of and reaction to violations. Unfortunately, the 

results of such rigid rules are often not satisfactory in practice as will be discussed 

soon. 

In fact, rule-based reasoning has been extensively employed in network management 

researches such as network trouble-shooting, performance monitoring and resource 

scheduling (e.g., [78][108][109][110][111]). Theoretical or empirical studies have 

been conducted in these literatures to demonstrate the correctness or effectiveness of 

their discrimination rules, policies or algorithms for automated interpretation of 

monitoring data in specific network environments. An example is [112] in which 

authors analyze dynamic routing information to detect and identify network 

disruptions.  

End-to-end multimedia transmission has a distinctive two-tier logic in mapping 

application QoS requirements into network level performance metrics. Hence it 

becomes quite difficult to sustain QoS of multimedia applications in the presence of 

possible runtime violations: the causes of application QoS violations lie in low level 

service disruptions which is hard to be clearly identified and correlated. Unfortunately, 

most end-to-end QoS management systems have neglected the detailed analysis of 

QoS violations and focus more on other QoS topics such as service negotiation, 

resource allocation and QoS adaptation. These adaptive QoS systems often incorporate 

a few exampling condition-action rules to demonstrate their adaptation capabilities 

against runtime abnormity. As a result, these handcrafted adaptation rules which have 

seldom undergone serious (theoretic or empirical) studies may not yield satisfactory 
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results (i.e., accurately detect QoS violations) in practice. We now analyze their 

limitations from the following two perspectives. 

Firstly, existing work seldom explores the root cause of a QoS violation. Their 

justification of adaptation is often made on the partially observed phenomenon 

[113][114]. Among these studies, some focus purely on application behavior to 

identify the nature of a violation [115][116]. However, the same QoS degradation of 

multimedia applications could be caused by different reasons, each of which may be 

resolved in a unique way. Relying merely on application QoS metrics, we are unlikely 

able to differentiate among violations each with different nature. For example, an 

observation of inconsistent displaying of video frames in a video conferencing 

application may possibly due to the following causes: the sender machine is too busy 

to regularly generate frames; network is under severe congestion; the receiver 

application process lacks enough CPU time slice for video decoding. If the perceived 

jitter is caused by the CPU starvation problem of the decoding process, increscent of 

receiving buffer size (which is assumed in most literatures for solving jitter-related 

violations) surely will not help. Apart from these studies focusing primary on 

application behavior, a group of other researches examine flow level phenomenon for 

QoS violation identification [80][117]. For instance, some of them monitor flow level 

throughput and increase bandwidth allocation to the application if the detected 

throughput is under expectation [71]. However, the derivation of an application level 

QoS violation from a low level statement may not be accurate considering the complex 

QoS logic of multimedia applications. For instance, most video encoding formats use 

variable bit rate schemes which make it difficult to assert a violation from just the 

evidence of packet level throughput. All these examples suggest that different QoS 
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violations may present similar observations in terms of one or a few parameters and 

hence differentiation is essential to find the actual cause of a violation. 

 

Figure 5-1: Observed jitter variation in a video transmission 

Secondly, most current researches engage a rule/policy/algorithm based method to 

define responses to QoS violations (e.g., [108][118][119][120]). Violation thresholds 

are defined for QoS parameters in these rules. Much work is based on the assumption 

that the environmental impact on multimedia applications is well understood and 

hence can be expressed in simple mathematical formulas expressed in the form of rules. 

However, we found through experiments that it is not easy, if not impossible, to find a 

clear margin for each QoS parameter so as to correctly differentiate between different 

types of violations and a normal transmission. Figure 5-1 shows the packet jitter of a 

video streaming application during and after network congestion as we have observed 

in experiments (more details will be presented in section 7.3.1). It is obvious that 

packet jitter during congestion (appropriately the first 1500 frames) is statistically 
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large and sparse compared with that in the subsequent non-congestion period (the last 

2200 frames). Unfortunately, it is difficult to define a threshold jitter value to 

differentiate a congestion case (violation) from normal transmission. This is because 

some packets in normal transmission (e.g., frames 2300-2500) also exhibit large jitter 

values that is comparable to those transmitted in the previous congestion period. 

However, no QoS violation is observed at the application level in transmission and 

processing of frames 2300-2500 as will be shown later. On the other hand, we are not 

able to tell the cause of a violation by only checking packet jitter value (e.g., whether 

the observed abnormal transmission is due to sender busy or network congestion). To 

conclude, it may be insufficient (or even impossible) to confirm the appearance or the 

type of a QoS violation by merely examining single QoS parameter using a threshold-

kind of approach. More comprehensive investigation into the characteristics of end-to-

end QoS transmission is essential for the determination of QoS violations, as we have 

convinced through experimentation. 

5.2 OVERVIEW OF OUR APPROACH 

As discussed, the performance of existing rule-based QoS violation management is 

often not convincing in that no serious study has been done with respect to the 

relationship between the root cause of a violation and the observed violation 

phenomenon. In view of the above limitations, we propose a statistical classification 

approach to the QoS violation description and analysis. In particular, we hypothesize 

and validate through experiments that: (1) a QoS violation will present a consistent 

“fingerprint” in terms of the performance of the application and its end-to-end traffic 

pattern. Such a violation can be recognized once a similar fingerprint repeats during a 

transmission session, (2) QoS violations of different nature (e.g., caused by shortage of 
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different resources) will exhibit diverse fingerprints. Using a set of end-to-end 

statistics, we are able to describe and differentiate between QoS violations. 

Based on such a methodology, we have developed a machine learning approach to 

identify and differentiate QoS violations. Firstly, we monitor and gather traffic data of 

different types of violations. We examine application performance and correlate it with 

end-to-end packet flow information for a more holistic view of current transmission 

status. All these descriptors together depict the fingerprint of a violation, which is the 

manifestation of a fault in the end-to-end QoS system. Secondly, all violation data is 

fed into a learning machine for training. Runtime, the learning machine can recognize 

a QoS violation once real-time traffic data of similar nature is observed. Once the 

nature of a violation is confirmed, subsequent QoS adaptation which may take the 

form of either resource re-allocation or application behavior adjustment can be 

executed as per normal. Details of our approach will be presented later. 

It should be noted that several recent literatures in QoS management have also 

reported the employment of machine learning algorithms for various purposes. Using 

video streaming datasets from a commercial server [121], Matthew Roughan [122] 

have defined four QoS classes (i.e., interactive, bulk transfer, streaming and 

transactional) and classify streaming traffic into one of these four categories using 

nearest neighbors and linear discriminant analysis algorithms. Similarly, authors of 

[123] have defined four QoS classes of different performance level for ATM network. 

Neural network (BP algorithm) is employed to sort traffic with different QoS 

requirements into one of these classes based on parameters such as cell loss rate and 

cell delay variation. A more up-to-date work following a similar track is [124], in 

which authors have proposed a QoS model for service differentiation in mobile ad hoc 
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networks based on neural networks. They validate their models through simulation and 

show that by correctly assigning each kind of traffic to a proper service class, overall 

end-to-end performance (such as delay and throughput) can be improved. It should be 

noted that [68][71][123][124][125] classify QoS from performance perspective: 

applications of similar business nature and QoS requirements are grouped into the 

same category. In contrast, our work focuses on the identification of QoS violations 

through end-to-end observation and classification. [126] and a wealth of other studies 

differentiate the nature of packet loss in wireless communications. A lost packet can be 

identified as either due to wireless channel error or traffic congestion by examining 

packet inter-arrival time or relative one-way trip time. The determination of thresholds 

for these parameters is an engineering process similar to the way TCP protocol 

polishes its timeout value. These groups of studies focus specifically on the 

differentiation of wireless link error and network congestion. Comparatively, we 

propose in this paper a more general model to identify the causes of QoS violations for 

multimedia transmission in the Internet. Closer to our work is [115] which has also 

mentioned the importance and complexity of end-to-end QoS violation diagnosis. 

They have designed a QoS management architecture that instruments an application 

for violation detection. Such a system continuously adjusts resource allocation to 

multimedia applications until their QoS requirements are fulfilled. In this way, QoS 

violations detection rules and thresholds can be derived through experimentation [127]. 

Comparatively, our work focuses on identifying a QoS violation through 

comprehensive observation of end-to-end QoS and traffic pattern. To the best of our 

knowledge, our work is the first one to statistically deal with end-to-end QoS violation 

diagnosis for multimedia transmission. 
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5.3 END-TO-END QOS VIOLATION ANALYSIS 

Essentially, a few issues need to be addressed to make an adaptive QoS system 

effective in coping with QoS violations. These include (1) the clear-cut definitions, (2) 

effective detection, and (3) timely response to QoS violations. We will address these 

issues step by step in the follow sections. The first step in our QoS violation analysis is 

to assert the existence of a violation (through examining application performance) and 

then annotate it using a set of end-to-end QoS parameters. To achieve this, we take a 

top-down approach in the modeling of end-to-end QoS violations. 

5.3.1 End-to-end Monitoring of QoS Violations 

We describe a QoS violation using monitoring data collected end-to-end, which 

includes both application level QoS parameters and flow level metrics for a more 

complete review of a violation. To collect these performance metrics, software 

monitors are placed at different layers of the media receiver. In the following sections, 

we explain our approach to QoS violation analysis through an example of video 

transmission that we have designed and used in experiments. Such a video flow can be 

either lively captured from a web camera or fetched from a media file on the hard disk 

of the media sender. The original video flow is transcoded into RTP compatible 

formats (e.g., MPEG_RTP format) and encapsulated into RTP packets for streaming5. 

The media source constantly produces video frames at the rate of 30 frames per second 

(fps). Due to various interferences on the end-to-end path, the receiving and displaying 

frame rate at the media sink may deviate significantly from the sending rate and hence 

gives rise to our violation analysis. 

                                                 
5 The Real-time Transport Protocol (RTP) is a packetization standard for delivering multimedia (e.g., 
audio and video) contents over the Internet and is defined in RFC 3550 [59]. 
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5.3.2 Application QoS Violation Indicator 

QoS dimensions Options 

Frame rate (fps) 30, 25, 20, … 

Resolution (pixels) 656*272, 352*266, 176*144, … 

Color depth (bits) 32, 16, 8, … 

A/V synchronization (app. specific) High, Medium, Low  

Packet loss ratio (app. specific) High, Medium, Low  

Table 5-1: Tunable parameters in video transmission, applications 

An adaptive QoS system aims at detecting and reacting to runtime quality degradation 

to the best of its ability. The identification of QoS violations in such a system hence 

should project on the performance variation of multimedia applications. In view of this, 

we use application QoS metrics to assert the appearance of a QoS violation: if the 

observed application QoS is below expectation, a violation is said to happen. 

Most multimedia applications in practice would have more than one QoS parameters, 

the entirety of which constitutes the application QoS. For example, a video 

transmission application (such as the one developed and used in our experiments, 

details to be presented in Section 7.3.1) typically has several tunable QoS parameters 

as listed in (Table 5-1). These parameters may compete on the same set of system 

resources for their respective performance. For instance, the performance of both 

picture resolution and color depth relies on end-host resources (e.g., CPU time slice) 

and network resources (e.g., link bandwidth). In many application scenarios, there 

exists a most important QoS parameter to sustain, whereby other parameters can be 

traded off in case of insufficient resources (e.g., [8]). We define such a QoS parameter 

to be best assured as a principal QoS parameter, failing to sustain which indicates the 

existence of a QoS violation. In this sense, such a principal QoS parameter serves as an 
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application level indicator for QoS violations. In other cases where graceful QoS 

degradation is desired among all QoS dimensions, Quality of Perception (QoP) 

investigations can be conducted as in those relevant literatures (e.g., [48][128]) which 

derive the application QoS violation indicator as the weighted sum of all QoS 

parameters. In either case, the application QoS violation indicator marks out the 

appearance of an application QoS violation which triggers our end-to-end QoS 

violation diagnosis. 

To focus more on our discussion, we use “video frame rate” as an example application 

QoS violation indicator in our video transmission experiment6. As said, the media 

sender constantly produces video frames at 30fps during experiments (while the flow 

bit rate is varying). Due to various interferences or impairments along the end-to-end 

path, the receiving and displaying frame rate may deviate significantly from the 

sending rate. Once the video frame rate has dropped below user expectation, a QoS 

violation is asserted to happen. Corresponding flow level performance metrics will 

subsequently be collected for analysis through software monitors placed at the media 

receiver.  

In line with other relevant studies [96], we set the boundary value of video frame rate 

to 25fps, below which signifies the appearance of a QoS violation. Upon that, flow 

level analysis will be executed to find out the nature of that violation (e.g., frame jitter 

due to server busy or network congestion). We sample the video transmission 

application every 2 seconds to check for the displaying frame rate at the media sink. 

The selection of this sampling interval is a tuning process during experiments that 

seeks the balance between measurement accuracy and overhead: higher monitoring 

                                                 
6 As can be easily found out, other single QoS parameter or a weighted QoP value can be engaged in the 
same way. 
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accuracy demands more frequent sampling which in turn, consumes more resources 

(e.g., CPU cycle) and hence threatens the performance of the target application [10]. 

5.3.3 Correlate Application QoS Violations with Flow Statistics 

Once a QoS violation is asserted through examining the application QoS violation 

indicator, corresponding flow information will be collected for a complete review of 

current end-to-end QoS status. As explained before, a QoS violation will present a 

consistent fingerprint in terms of the observed end-to-end application behavior and 

flow traffic pattern. Meanwhile, different violations will present diverse end-to-end 

QoS fingerprints, which also differ from that of a normal transmission. We use flow 

descriptors listed in Table 5-2 to portrait flow characteristics of a QoS violation. These 

descriptors together with application QoS parameters, can well describe a QoS 

violation as is to be shown in the experiments. 

Flow descriptors Remark 

Packet delay Average packet delay in a frame 

Delay jitter Average packet jitter in a frame 

Packet loss Total packet loss in a frame 

Receiving throughput Calculated for each sampling interval 

Other metrics Specific to individual QoS domains 

Table 5-2: Flow descriptors for end-to-end QoS  

A real-time QoS management system should detect and react to QoS violations in the 

magnitude of seconds. In view of this, the sampling interval for violation detection is 

commonly set to a few seconds (we set the interval to 2s as explained). A media 

receiver which processes approximately 30 video frames per second will receive a few 

hundred of packets that carry media contents. These packets are typically of similar 
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size except the last one of each media frame. Using these facts, we can estimate that 

hundreds of (or even a few thousand of) packets will reach and be processed by the 

media receiver within one sampling interval. Once a violation is asserted through 

checking the application QoS violation indicator, there arises a problem as how to 

efficiently discover those packets (among hundreds or thousands of packets) which 

most precisely depict the fingerprint of the current QoS violation. 

We correlate an application QoS violation with flow manifestation using RTP 

timestamp and sequence number. In RTP transmission, the sequence number increases 

by one for each RTP packet been sent and hence can be used by the receiver to detect 

packet loss or restore packet sequence. The timestamp of each RTP packet, on the 

other hand, reflects the sampling instant of the first octet in the RTP data packet at 

media sender. As a result, RTP packets that carry payload of the same media frame 

will share the same timestamp. 

Assuming that we have received a trace of (sorted) RTP packets, namely 

nppp ,..., 21 during two sampling points 1−kt  and kt . These packets are assembled into m  

frames mfff ,..., 21  for decoding and display. A QoS violation is ascertained at time kt  

by digesting the average frame rate during the last sampling interval. We find 

representatives of those “violated” frames as follows: 

• We identify all member RTP packets of the first and last frames 1f and mf  

received during this interval based on the RTP timestamp. Among the rest, we 

randomly choose a frame, say if  and also examine its member RTP packets.  

• We compute flow descriptors for frames 1f , if and mf . Average packet delay id  

and jitter ij  for the thi  frame are calculated as mean values of delay and jitter of 
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all member RTP packets (denoted as pd and pj ) of that frame7. Throughput is 

measured as the packet arriving rate in the sampling interval. For example, the 

average frame delay and jitter for frame if are calculated based on the following 

formulas: 

　 kkidididid /),...2,1,( ++= ,  

　 kjjjj kiiii /)...( ,2,1, ++= ,  

　 for all RTP packets that have 
ikttt fppp TStampTStampTStampTStamp ====

,1,
... . 

• For each candidate frame (i.e., 1f , jf and mf ), flow descriptors and application 

QoS parameters (e.g., frame rate, resolution) are sent to the violation 

classification algorithm for analysis (see next section). If all the three tests 

conclude the same type of violation, a QoS violation is confirmed and 

corresponding adaptation action can be triggered. 

The approach of our flow summarization and violation analysis is designed in light of 

the following considerations. Firstly, we are not obligated to investigate into all media 

frames of a sampling interval for violation justification, which is much more time 

consuming. Hence we choose three “typical” delegate frames for violation analysis. 

Secondly, for each delegate frame, we calculate average statistics covering all member 

RTP packets of that frame for a comprehensive representation of frame QoS statistics. 

Lastly, we require the identical results from three testing to acknowledge a violation. 

Otherwise, the algorithm will advance to the next round of examination. As will be 

shown in Section 7.3.2, the classification accuracy for each test is between 86%-97% 

in those environments we have tested. Hence, if all three tests hit the same results, 

statistically we have a good chance to assure the nature of a QoS violation. 
                                                 
7 The computation is done on correctly received and identified packets only. Those lost or corrupted 
packets are not counted in. 
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 Our approach requires the continuous monitoring of a RTP flow so as to correlate a 

violation with flow statistics. We achieve this by listening to the network interface card 

(NIC) of the media receiver. We insert a sending packet timestamp in each IP packet 

(distinguishable from the RTP frame timestamp for frame re-construction) so that 

traffic statistics of the IP packet can be calculated once it reaches the receiver host. We 

have found through experiments that the overhead to log RTP packets is not noticeable 

to the performance of a multimedia application since we have designed it as a system-

level utility. However, in those environments that require minimal resource occupation 

(e.g., mobile devices such as handsets), selective sampling techniques (e.g., [129]) can 

be engaged. The violation analysis algorithm listed in this section can be applied with 

comparable performance considering the statistical nature of our method. 

5.4 VIOLATION CLASSIFICATION WITH NEURAL NETWORK 

We have engaged several neural network algorithms for the identification and 

classification of QoS violations. Once a QoS violation is asserted runtime and end-to-

end statistics are collected, relevant data will be fed into the neural network for the 

identification of the nature of a violation. This section briefly discusses the various 

neural network algorithms we have employed for QoS violation classification, 

including the one proposed by us for a fast learning and classification. 
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Figure 5-2: Single Hidden Layer Feedforward Neural Networks 

5.4.1 Neural Network Algorithms Briefing 

Neural networks have been successfully applied to a wide range of real world 

classification problems in the past decades [130]. Figure 5-2 is a standard single 

hidden-layer feedforward neural network (SLFN) model. The output of a SLFN with 

L  hidden neurons can be represented by ),,()(
1

XbagXf ii
L
i iL ∑ =

= β , where ia  and ib  are 

the learning parameters of the thi  hidden neurons, and iβ  is the weight connecting the 

thi  hidden neuron to the output neuron (also called the hidden-to-output weight). 

),,( Xbag ii  is the output of the thi  hidden neuron with respect to input X . Based on 

different parameter combinations of the activation functions, two main neural network 

models has been widely used in SLFN: for additive neurons with activation function g , 

g is defined as RbRabXagXg i
d

iii
∈∈+⋅= ,),()( , where Xai ⋅  denotes the inner product 

of vectors ia and X  in dR ; for RBF (radial basis function) hidden neurons with 
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activation function g , g  is defined as +∈∈
−

= RbRa
b

aX
gXg i

d
i

i

i

,),()( , where +R  

indicates the set of all positive real value. 

In applying neural network algorithms to the classification of QoS violations, the input 

vector X  consists of flow parameters such as packet delay, jitter and frame rate that 

we have runtime collected. The target vector t , which indicates the classification result, 

shows the category a violation belongs to. The configuration of other internal 

calculating vectors and matrixes will be explained in Section 7.3. 

In search of suitable neural network algorithms for QoS violation classification, our 

focus has been put on their respective learning speed. This is due to a special design 

consideration of our end-to-end QoS management system: the initially available 

training data which is (1) provided by the system designer (or network administrator), 

or (2) collected through a few online testing clips, may not be accurate (or complete) 

enough to effectively differentiate all QoS violations. In view of this, an execution-

feedback process is proposed to “refine” the neural network structure for a more 

precise violation snapshot: the end-to-end QoS system is firstly trained with the initial 

data; once a QoS violation is detected, a predefined adaptation will be invoked 

according to the analysis result; the effect of the adaptation is then observed, which in 

turn verifies whether a QoS violation has been correctly identified and solved. After 

such a cycle, fresh violation data (i.e., monitored data of the violation that has just 

been confirmed and solved) will be treated as new training data and learned by the 

neural network algorithm. In this way, QCMF will update its violation profiles and 

becomes more and more accurate in identification of QoS violations as the 

transmission goes on. As can be found out, our QoS management system requires a 

fast neural network algorithm for online QoS violation learning [131]. Hence, we 
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group and analyze those algorithms we have engaged during experiments into offline 

and online categories according to their training speed. 

5.4.2 Offline Algorithms 

• RANEKF. An important sequential learning algorithm of RBF networks is 

proposed by Platt through the development of a resource allocation network 

(RAN) [132]. RANEKF [133], which is known as an enhancement of RAN, 

use an extended Kalman filter to update the neural network parameters so as to 

improve the accuracy and achieve a more compact network architecture. 

• MRAN. RANEKF can only add neurons to the network and cannot prune the 

insignificant neurons from the network. A major performance improvement of 

RANEKF is achieved in [134] by introducing pruning strategy based on the 

relative contribution of each neuron. 

• Levenberg-Marquardt BP (LMBP). LMBP [135] is adjusted from Newton’s 

method through the approximate Hessian matrix. As has been recognized, 

Newton’s method is faster and more accurate near an error minimum. In view 

of this property, the objective of LMBP is to shift towards Newton’s method as 

quick as possible. So far LMBP has been known as one of the fastest gradient 

based learning algorithms. 

5.4.3 Online Algorithms 

• Stochastic BP. In stochastic BP [136], weights may move down along the 

random gradient in each iteration. Therefore, it may result in a better 

classification solution since it avoids the probability of achieving local 
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minimum. Due to its random characteristic, stochastic BP can provide good 

generalization performance in a short time. 

• Extreme Learning Machine (ELM). Huang proposed a simple learning 

algorithm for SLFN called ELM [137] which randomly chooses hidden 

neurons and analytically determines output weights by using generalized 

inverse matrix. Neural networks with ELM can provide good generalization 

performance at quite fast learning speed. 

• Orthonormal algorithm. In Appendix A, we will prove that an orthonormal 

network is universal approximation and hence can be used for classification. In 

addition, we will extend the scope of hidden neurons from kernel functions to 

additive functions, the latter of which is commonly known of higher 

classification accuracy [138]. Our orthonormal algorithm for QoS violation 

classification is also presented in Appendix A. 

A major concern that we employ neural network algorithms to replace traditional rule-

based methods in QoS violation identification is that the former approach enjoys much 

more flexibility. For example, neural networks can automatically find the weight of 

and relationship among each contributing parameter. Furthermore, no clear margin of a 

QoS parameter is needed to identify the type of a violation owe to its statistical nature. 

However, conventional neural networks (e.g., offline algorithms as listed above) have 

heavy computational burden involved in solving highly complex functions with a large 

number of variables, which will lead to a long training time. As fast QoS violation 

training and identification is crucial in runtime QoS management, online algorithms 

which exhibits quick response are more in favor, as we will demonstrate in Section 
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7.3.2. Those offline algorithms engaged in our experiments are mainly for comparison 

purpose. 

5.5 SUMMARY 

Common approaches to QoS violation analysis involve hypothesis to violation 

identification through checking threshold(s) of one or a few QoS parameters. They 

often ignore the fact that different QoS violations may present similar phenomenon in 

the observation of one or a few QoS parameters. We argue that more comprehensive 

survey is needed to recognize the cause of a violation so that a correct adaptation 

remedy can be applied. In this chapter, we propose a statistical approach to QoS 

violation analysis which involves (1) violation assertion through inspection of the 

application QoS violation indicator, (2) violation modeling through a collection of 

application performance and flow statistics, and (3) violation classification using fast 

machine learning algorithms. The performance of our statistical approach to QoS 

violation identification will be introduced in the experiment sections. 
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Chapter 6 Cross-component QoS Adaptation 
 

CHAPTER 
 CR O S S-C O M P O N E N T  QOS  AD A P T A T I O N 66
 

Meeting performance requirements of QoS-sensitive applications is fundamentally an 

end-to-end issue, which requires all QoS-enabled facilities along the end-to-end path to 

work cohesively to achieve the desired end-to-end effect. However, most of the 

existing QoS solutions focus on their respective areas while paying little attention to 

the interaction of other QoS facilities on the end-to-end path. As a result, QoS can be 

sustained in their local domains while no satisfactory end-to-end performance can be 

provided to end-users. This chapter presents the cross-component QoS coordination 

scheme in QCMF, whereby QoS adaptation assumptions, strategies, heuristics and 

algorithms are discussed in detail. 

6.1 END-TO-END QOS MODEL 

 

Figure 6-1: Abstracted end-to-end QoS provisioning model 

An end-to-end QoS framework is a management system for organizing all QoS 

mechanisms along the end-to-end path. We abstract the end-to-end QoS provisioning 
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model in Figure 6-1 in which each QoS network administrated by an Internet Service 

Provider (ISP) is represented as a bubble. Compared with the QoS reference model 

introduced in Section 3.1, Figure 6-1 provides a more high level yet comprehensive 

overview of end-to-end QoS whereby (1) diverse QoS facilities in end-hosts (e.g., 

QoS-enabled OS, middleware or application) are summarized and represented by a 

single end-host QoS architecture in the overall picture of end-to-end QoS provisioning, 

(2) autonomous networks of different QoS characteristics are modeled respectively as 

end-to-end QoS components. These networks interconnect with each other and form 

the end-to-end communication path for packet delivery. It is possible that each 

network may employ distinctive QoS mechanisms in its local region. For example, 

some ISPs may adopt DiffServ QoS model while others may choose MPLS tunneling 

technique. Engaging the same DiffServ techniques, different network domains may 

further define domain-specific configurations and policies. Irrespective of these 

implementation details, we denote each autonomous network that has specific QoS 

mechanisms as a network QoS component in our end-to-end QoS provisioning 

scenario.  

In QCMF, end-to-end QoS delivery is decomposed into two hierarchical levels: intra-

domain provision and inter-domain collaboration. The former enforces QoS delivery 

within a QoS component via management functions such as resource allocation and 

scheduling while the latter manages end-to-end QoS by dividing global QoS objectives 

into QoS commitment of each QoS component.  

When an end-to-end transmission session is established, QoS parameters are 

negotiated among all QoS components along the end-to-end path. A consistent service 

is thus provided to an end-user in which the overall QoS objective is divided into 
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service contracts with each end-to-end QoS component. For example, the end-to-end 

latency requirement of a multimedia application can be decomposed into specification 

of transmission delay in each network QoS component and processing delays in end-

hosts, such that their sum equals or is less than the end-to-end delay constraint. A 

negotiation protocol (e.g., RSVP or [29]) can be engaged to reach such service level 

agreements (SLAs) among end-to-end QoS components.  

Runtime, each QoS component will try to meet the obligation of its SLA specification. 

However, QoS violations may occur within a QoS component for various reasons such 

as temporary traffic overload, hardware failure of a router or routing cycle. QoS 

violation handling in QCMF is correspondingly divided into two hierarchical levels: a 

violation can be tackled by QoS adaptation within the QoS component where the 

violation has occurred (known as the source QoS component of a violation, vioC ) or 

through coordination and adaptation at another QoS component whose adaptation can 

compensate for the QoS degradation at vioC . 

For example, delay/jitter violation at QoS component i  can be solved by local service 

upgrade, compensated by QoS upgrade at QoS component j , or by data buffering 

and/or timeout/retransmission mechanisms at the flow receiver. As discussed in 

Section 2.2.1, the last solution is often not a sustainable one, but can still provide 

certain degree of QoS preservation in the case that other end-to-end adaptation choices 

are not applicable. On the other hand, a bandwidth starvation problem can be resolved 

by either increasing bandwidth allocation in the network or by adopting a higher 

compression rate codec at the media sender so that less bandwidth is to be consumed 

by the media flow. In the worst case where QoS is no longer sustainable no matter 

what kind of end-to-end adaptation is enforced, QoS component handover is necessary 
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which replaces vioC  with another candidate component of better QoS services8 (e.g., 

[72]). For instance, a DiffServ subnet in the end-to-end path that suffers from severe 

traffic congestion can be substituted by another one of shorter transmission delay so 

that the overall end-to-end latency can still be kept within user expectation. However, 

the dynamic composition of end-to-end provisioning path is technically more complex 

(e.g., depending on the availability of routing topology) and time-consuming. To focus 

more on our research, we restrict our discussion to the scenario where runtime resource 

fluctuation and QoS violations can be sufficiently solved within current end-to-end 

QoS settings through end-to-end coordination and adaptation and hence no handover 

of QoS components is needed. Particularly, we concentrate on the end-to-end 

delay/jitter violation and show how QCMF solves it through runtime coordination and 

adaptation. We will first describe our models for both network QoS and end-host QoS. 

After that, we discuss the end-to-end evaluation and adaptation heuristics and 

algorithms in Section 6.4. 

Table 6-1: Service options table of a network QoS component 

6.2 NETWORK QOS MODEL 

From the end-to-end perspective, each network QoS component on the provisioning 

path appears as a service provider which allocates local resources to guarantee the 

                                                 
8 Such a handover relies on the possible alternative routes between the media sender and receiver. Hence, 
a routing algorithm or protocol should be engaged together with our scheme to dynamically figure out 
the network topology. 

Service Class Delay 
Performance (s) 

Bandwidth 
Capacity (Mbps) 

Unit Price 
(/hour/Mbps) 

Available Bandwidth 
(Mbps) 

1. Predictive 0.5 100 $2 70 

2. Predictive 5 300 $0.8 10 

3. Predictive 15 450 $0.25 200 

4. Best Effort Unspecified 150 - 60 
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performance of an end-to-end flow within the scope of its operation. Typically a QoS 

service provider can offer its service at different levels of quality to a service requester 

(i.e., an end-to-end flow), some of which are better than others in terms of QoS 

performance. We denote a service class h  offered by network QoS component i  as 

hiS , . ...)3,2,1(, =hS hi  constitutes a service degradation path which lists all possible 

service options of that QoS component. As is shown in the example service options 

table (Table 6-1), a network QoS component can offer four service classes to an end-

to-end flow, each with different local QoS support (e.g., delay assurance) at different 

subscription cost. On the other hand, each service class has limited bandwidth capacity 

and hence can accommodate limited number of users. A practical example of a 

network QoS component with multiple service levels is the DiffServ model which 

defines three service classes for the differentiation of traffic nature and routing of 

packets. However, our definition and discussion of service class and service 

degradation here is more general (i.e., we do not endorse specific meanings for each 

service class) and is purely from end-to-end QoS perspective, which is different from 

the design initiatives of DiffServ (e.g., scalability and utility of networks). 

The definition of service class and service degradation path allows a network QoS 

component to abstract and expose its status and resource availability to an end-to-end 

flow in a manageable and tractable manner so that a coordinated end-to-end adaptation 

becomes possible. Suppose that an end-to-end flow subscribes to service class 2 of a 

network QoS component as illustrated in Table 6-1, which currently undergoes a local 

delay violation due to temporary network congestion. A local QoS adaptation can be 

executed (through an request from the flow sender/receiver) which upgrades the flow 

to service class 1 of better QoS support so as to eliminate such a delay QoS violation. 

Alternatively, QoS adaptation may take place in another network QoS component 
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(possibly also through local service upgrade) so that end-to-end delay is still kept 

within the acceptable range. Such coordinated end-to-end adaptations require each 

network QoS component to define and manage (e.g., update with end-hosts) its service 

options table so that a correct choice could be identified with respect to where to issue 

the adaptation request and how to do the adaptation. Details about the decision-making 

process are to be elaborated in Section 6.4.3.  

For the benefit of end-to-end coordination and adaptation, we require each network 

QoS component to (1) monitor the service status of its service classes, and (2) notify 

the flow receiver the appearance of a local violation which has just happened in the 

service class it has subscribed. The first task can be fulfilled capitalizing on existing 

monitoring facilities of an autonomous network. For example, DiffServ employs 

network monitoring facilities to understand updated network load in each service class 

for the purpose of admission control of a new flow. On the other hand, an end-to-end 

flow needs to sign a SLA before it can enjoy any service from a network QoS 

component. Hence the second requirement (QoS violation notification) can be satisfied 

by a network QoS component (e.g., through a bandwidth broker in the DiffServ case) 

which has the addresses of all end-hosts in the SLAs. Such a notification is intended 

for end-hosts to double-confirm the appearance of a QoS violation (recall that the flow 

receiver can identify a violation through end-to-end monitoring flow traffic as 

introduced in Chapter 5). We assume that all the control messages are transmitted in an 

out-of-band mode and hence are not affected by the appearance of a QoS violation. It 

should be noted that we do not require a network QoS component to monitor the 

performance of an individual end-to-end flow; instead it needs to watch the service 

status of each service class. Hence, such a scheme will not cause any scalability issue 

in network management. 
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Figure 6-2: End-host QoS management model (QMan) 

6.3 END-HOST QOS MODEL 

In our QCMF framework, end-hosts are responsible for the overall management of 

end-to-end QoS. These include tasks such as QoS negotiation, which is conducted at 

session initiation stage to sign service contracts with network QoS components, and 

QoS adaptation, which is enforced at runtime to best maintain transmission quality 

against possible violations. A QMan middleware has been developed within QCMF to 

fulfill these tasks, as has been introduced in Section 3.3. 

As mentioned earlier, QoS adaptation can be performed either at the QoS component 

where the violation happens (i.e., vioC ) or at another QoS component that can 

compensate for the service degradation at vioC . In QCMF, such an adaptation selection 

is done by the QMan middleware at the receiving end-host which has the information 

of all end-to-end QoS components. The logical model of QMan is illustrated in Figure 

6-2. Upon the appearance of a QoS violation, an evaluation unit is responsible for 

selecting an end-to-end QoS component best suitable for QoS adaptation. Such a 

decision is made based on the information exchanged in the knowledge plane (Chapter 
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4). Once an adaptation decision is made, an execution unit communicates with the 

selected QoS component for adaptation control and signaling. Finally, a detection unit 

(1) continuously monitors the performance of end-to-end flow to detect a QoS 

violation (Chapter 5), and (2) evaluates the effect of QoS adaptation for validation of 

violation problem-solving. 

A prevailing requirement of end-to-end QoS adaptation is to timely recover 

multimedia transmission quality. It suggests that a complex end-to-end framework that 

seeks a globally optimal solution may not be applicable in a real-time transmission 

scenario due to its long convergence period. Hence QCMF aims at identifying an 

“acceptable” adaptation solution, which can quickly bring end-to-end QoS back to a 

normal state in a short time. Please note that the normal state after adaptation may not 

be the same as the initial state of QoS delivery but is acceptable to the performance of 

a multimedia application. Hence the result of such an adaptation strategy may not be 

end-to-end optimal but is effective in that it can quickly restore the transmission 

quality. On the other hand, a QoS framework employing fine-grained QoS control over 

all the end-to-end QoS components may not yield the desired effect in a distributed 

end-to-end scenario due to its stability problem and validity in the context of possible 

tussles and intricate entanglements among various QoS factors [139]. In view of this, 

QCMF does not care about the implementation details and inner behaviors of each 

QoS component, but aims at designing a platform for abstracting those QoS features of 

a QoS component that are pertinent to end-to-end coordination. For instance, a 

DiffServ subnet may engage traffic policing techniques to regulate the performance of 

packet flows of an overloaded service class. Therefore a minor local network 

congestion violation could be decently solved within the subnet before any end-to-end 

QoS adaptation action is raised. In this sense, a two layer QoS adaptation scheme is 
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designed in QCMF as said, namely a rapid local adaptation (done by individual QoS 

components through self-configuration) and an end-to-end re-scheduling (achieved 

through end-to-end analysis and coordination). While the former adjustment may not 

be noticeable to the end-hosts, QCMF concentrate on the latter end-to-end QoS 

adaptations that target at severe QoS violations beyond the ability of local adaptation. 

Bearing the above design considerations in mind, we have designed a set of adaptation 

algorithms within the QCMF framework, which is to be elaborated in the next section. 

Table 6-2: Service status table of a network QoS component as is maintained by QMan 
middleware inside the flow receiver; for each network QoS component, a 
corresponding table is kept by QMan and updated through either push or pull mode 

6.4 END-TO-END COORDINATION AND ADAPTATION 

In this section, we introduce several algorithms that run in end-hosts for a coordinated 

end-to-end QoS adaptation. These include an information gathering algorithm which 

keeps the media receiver updated with the QoS status of each network QoS component, 

an evaluation algorithm which reviews all possible choices and selects a QoS 

component for adaptation, and finally an execution algorithm, which uses defined 

primitives for adaptation control, signaling and feedback. As stated, these algorithms 

are executed by QMan middleware at the receiving end-host in a pure end-to-end 

manner. 

Service 
Class 

Service 
Model 

Capacity 
(Mbps) 

Unit Price 
(/hour) 

Historical record 1 Historical record 2

1. 
Predictive 

11,τλ  100 $2 80Mbps @ 2007-3-
15 17:42 

70Mbps @ 2007-3-
15 17:27 

2. 
Predictive 

22 ,τλ  300 $0.8 200Mbps @ 2007-3-
15 17:37 

170Mbps @ 2007-3-
15 17:17 

3. 
Predictive 

33,τλ  450 $0.25 300Mbps @ 2007-3-
15 17:49 

330Mbps @ 2007-3-
15 17:42 

4. Best 
Effort 

- 150 - - - 
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6.4.1 Information Gathering Algorithm 

The main function of the information gathering algorithm is to update QMan 

middleware QoS information of each network QoS component so that a correct 

adaptation solution can be selected upon the appearance of a QoS violation. For each 

network QoS component, QMan keeps a service status table that describes QoS meta-

data of that component as shown in Table 6-2. QoS Information to be recorded can be 

summarized into static and dynamic categories. The former refers to the service 

information of a network QoS component (e.g., the number of service classes, capacity 

of each class and unit price for purchase), which is advertised by a network QoS 

component in its service options table. The latter refers to the dynamic workload 

information of a network QoS component (e.g., 80 out of 100Mpbs bandwidth of a 

service class have been subscribed at the moment the end-to-end flow logs in), which 

is changing according to the traffic load of a network. 

The information gathering algorithm is executed at two stages. At session initiation 

stage where QoS negotiation is performed, each QoS component reports its service 

information (i.e., static information) and current workload information (i.e., dynamic 

information) to the flow receiver. At runtime, a network QoS component will update 

its current working status and spare capacity to QMan once there is a major update. 

The definition of a major update refers to (a) a local violation due to reasons such as 

temporary traffic congestion, software crash or equipment failure, (b) rejection or 

confirmation of an adaptation request from the flow receiver, (c) regular updates of 

QoS information based on a pre-negotiated timeslot. The first kind of QoS update 

refers to the situation that a network QoS component reports its local QoS violation to 

flow receivers that have subscribed the service (which is already explained in Section 

6.2). Current QoS status of that network QoS component will be appended in that 
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report to update each flow receiver information of the network. The second type of 

QoS update is a reply to the signaling commands from a flow receiver which is to be 

introduced in Section 6.4.3. In such an answer message, a network component will 

similarly report its current QoS status for the information of the flow receiver. The last 

QoS update is a routine information sharing process as is defined in the push mode in 

Section 4.5.1. 

In essence, each service status table records the “most recent” information of a QoS 

component that is known to the flow receiver and QMan middleware. It is used as 

historical data in the evaluation algorithm described below for the selection of a 

suitable network QoS component for end-to-end adaptation. It should be noted that 

runtime QoS status of a network QoS component is always changing, depending on 

factors such as equipment conditions, routing topology and traffic load. Hence QoS 

information regarding a network QoS component, as maintained by QMan, may not 

reflect the “exact current” QoS status of a QoS component. In this sense, the 

adaptation evaluation performed by QMan is actually upon the “last known” 

information of all QoS components. Of course, more up-to-date information about a 

network component can be learned if the signaling frequency between end-hosts and 

networks is to be increased. However, frequent information exchange may pose severe 

overhead on network performance. In a real end-to-end QoS system which requires 

accurate information sharing of network QoS components status, the information 

sharing frequency can be tuned to balance between the signaling overhead and the 

information accuracy. 
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6.4.2 Cross-component Adaptation Evaluation Algorithm 

In QCMF, a QoS violation is identified by a flow receiver in two ways: observation of 

flow abnormal through end-to-end monitoring or receipt of a violation report from a 

network QoS component. The latter is used for the receiver to double-confirm the 

appearance of a QoS violation and to locate the physical place of the violation. In 

either case, the evaluation unit of QMan will select a suitable one, among all end-to-

end (network and end-host) QoS components for adaptation. In view of the need for a 

fast recovery from violations, QCMF defines the following heuristics for end-to-end 

adaptation: (1) system-level end-host adaptations (e.g., swapping media codec) is set 

as a default choice which is typically able to bring the end-to-end QoS back to a 

normal state most quickly, (2) application-level QoS degradation (e.g., reduce video 

frame rate) is defined as the last adaptation choice since it will inevitably affect the 

perceptual quality of an end-user, (3) cross-component adaptation evaluation will be 

performed to find a network adaptation solution that can sustain transmission quality if 

(1) is not achievable. Such heuristics can be modified by end-users so that different 

adaptation sequences can be realized in respective end-to-end environments. 

The cross-component adaptation evaluation algorithm basically considers two factors 

in the selection of a network QoS adaptation: (1) the adaptation cost at a network QoS 

component, and (2) the possibility that an issued adaptation request from QMan would 

be rejected by a network QoS component. We will address these two points one by one. 

The skeleton of the evaluation algorithm is listed in Figure 6-3. 
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Step 1): Review the service status table of a network QoS 
component. 

Step 2): Determine the necessary inter-service adaptation (i.e., 
service class alteration) in that component for the problem solving 
of the QoS violation; caculate corresponding adaptation cost.  

Step 3): Compute the possibility rejectp that the issued adaptation 

request would be rejected by the QoS component based on its service 
model and traffic load information. 

Step 4): Caculate the utility factor of the adaptation at the QoS 

component which is defined as 
rejectpt *cos

1
. 

Step 5): Repeat steps 1-4 for all network QoS components. 

Step 6): Select a QoS component of largest utility factor for 
adaptation. If multiple QoS domains have the same utility, select 
the one with lowest rejectp . 

Figure 6-3: Skeleton of the cross-component adaptation evaluation algorithm 

A. Definition of adaptation cost 

For each network QoS component, the adaptation cost generally refers to a particular 

concern with respect to the additional resource expenditure incurred by that adaptation. 

For example, in mobile terminals where power consumption is a primary concern, the 

cost can be defined as the difference between power usage before and after adaptation. 

In a QoS-enabled network, such cost may be defined as the money paid for service 

upgrade/degrade. Suppose that service class 2 of network QoS component i undergoes 

a traffic overload and hence an end-to-end flow which subscribes to this service class 

encounters a delay violation. As explained, such a delay violation can be solved within 

the source network QoS component i  by service upgrade, or be compensated by QoS 

adaptation from another end-to-end network QoS component j  that participates in the 

end-to-end collaboration. However, the cost for adaptation in different network QoS 

component can be different. The reason is simply that, for example, the unit bandwidth 

allocation price at component j  is higher than that at component i . In view of the 
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comparable QoS adaptation conditions, our evaluation algorithm will try to select a 

adaptation choice with lowest adaptation cost.  

B. Definition of rejectp  

On the other hand, a QoS adaptation request issued by receiver’s QMan middleware 

risks being rejected by a network QoS component, if the requested adaptation is not 

achievable. Recall that the receiver host evaluates the QoS status of each network QoS 

component based on its “latest known information” (Section 6.4.1), which is refreshed 

each time the receiver communicates with that network component. However, such 

information may not precisely reflect the current load information of that network 

component since its traffic conditions is keep changing. For example, a network 

component may have just accommodated several new flows from other end-hosts 

which make its service classes almost full. In the case that such information has not 

been promptly updated with the receiver of the end-to-end flow in concern, a service 

upgrade request from QMan would be rejected by the network due to insufficient 

bandwidth. To conclude, such a situation arises due to the synchronization problem 

between a flow receiver and a network QoS component. Once an inappropriate 

adaptation decision is made, time would be wasted in such request/deny signaling 

process between a flow receiver and a network component. As a result, user perception 

would be interrupted due to continuous transmission quality variation. 

A straightforward solution out of this puzzle is to let a flow receiver grasp the most 

recent QoS information of all network QoS components each time an adaptation 

decision is to be made. However, we find that there are a few intricate problems 

associated with such an idea. Firstly, it may take a quite long time for QMan to collect 

the precise information of all network QoS components. For instance, it will take 
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round trip time to receive status update from each QoS component even if we omit all 

other possible processing delay and assume that propagation delay for all network QoS 

components is the same. Secondly, there is no guarantee that the receiver will obtain 

the precise QoS information of a network component at the moment of QoS evaluation 

even if we frequently exchange information. This is simply because the workload 

status of a QoS component is always changing. It is possible that the working status of 

a network QoS component is altered (1) just after its recent update with a flow receiver, 

or (2) just before a flow receiver finishes evaluation and issues an adaptation request. 

In either case, a wrong decision would be made at the flow receiver based on the 

incorrect end-to-end information. Lastly, frequent message exchange can provide more 

accurate information of a network QoS component, however, at the cost of imposing a 

burden on the network and may not be applicable in practice due to scalability concern. 

As can be concluded, there is no approach that can strictly guarantee the “freshness” of 

information about a network QoS component from a flow receiver’s point of view due 

to the distributed and long physical distance nature of network transmission. 

To smooth the impact of the information synchronization problem and to best avoid 

the case that an adaptation request would be rejected by a network component, we take 

an end-to-end approach to estimate the workload status of a network component. We 

introduce a parameter rejectp  to denote the possibility that an adaptation request would 

be rejected by a network QoS component. Let T  be the throughput of an end-to-end 

flow that requests for an service upgrade adaptation at QoS component m , C  be the 

bandwidth capacity of the target service class bmS ,  (i.e., the service class to upgrade to), 

and ( ii TR , ) be the thi  historical record of the load information of component m  known 

to the receiver (see Table 6-2), rejectp  can be expressed as: 
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where currentR  is the (actual) current work load of service class bmS ,  at network QoS 

component m . 

It can be seen that once the receiver knows the actual load currentR  at service class bmS , , 

it can judge whether a service upgrade is feasible or not. However, currentR  is always 

not available to the receiver due to synchronization problem as discussed. Hence, we 

will try to calculate the statistical value of currentR  based on information such as the 

service model of bmS ,  and the historical data known to the receiver. Once currentR  is 

estimated, rejectp  can be deterministically derived from formula (1) (i.e., the result is 

either 0, meaning that a request will be accepted or 1, meaning rejection). It should be 

noted that as currentR is estimated statistically, the value of rejectp  we get is actually of 

statistical meaning which reflect the most possible situation whether an adaptation 

request would be accepted or not. 

A service class bmS , can be viewed as a queuing system holding limited permits and 

thus can accommodate limited number of customers simultaneously. A couple of 

traffic models have been developed to model the service status of a priority queue [140] 

and its possible QoS characteristics [141]. These models are intended for admission 

control at a QoS-enabled network to check whether there are sufficient resources (e.g., 

bandwidth) to entertain an incoming service request or not. Given parameters such as 

customer arrival rate λ  and service rate τ , these models can statistically compute the 

current queue status which in the general form is:  

),(mod τλelcurrent fR = , where elmod is the established service model of service class bmS , . 
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Typically, parameters λ  and τ  are pre-defined and tuned through runtime traffic 

monitoring and model validation process in respective systems [142]. Making use of 

these researches, we are able to obtain currentR  for each QoS component once its traffic 

model has been setup. The accuracy of currentR  is a reflection of how well the 

established service model has reflected the traffic statistics of the network component 

and is the research focus in many relevant literatures [38][143][144]. 

C. A simple MMM /1//  model for the estimation of rejectp  

In the following sections, we consider a simplified traffic model to calculate rejectp  for 

illustration purpose. Let us assume that all customers subscribing to a service class 

demands for unit amount of bandwidth. Hence a service class can be viewed as a leaky 

bucket system with limited amount of tokens (equals to its bandwidth capacity C ). We 

further assume that the customer arrival rate in that service class conforms to Poisson 

distribution and service rate conforms to exponential distribution. Such a service class 

can be modeled as a MMM /1//  queue [145]. Similar to the classic queuing analysis 

for MMM /1//  system, we have μλ 1+= ii pp , where λ and μ are the arrival rate and 

service rate of the service class respectively and ip  is the probability that i flows stay 

concurrently in the service class. 

Given 1
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Note that due to the memoryless character of the exponential distribution of the service 

rate μ , rejectp is independent of the historical data in this MMM /1//  model. Hence 
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there is no need for the receiver to record the historical information for a QoS 

component. In a more practical queuing system as modeled in [140][141], historical 

information is essential to calculate rejectp  since assumptions such as passion arrival 

rate is broken. Moreover, the load status of a network QoS component is changing 

from time to time which also alters the traffic characteristics of that network. Hence 

configuration parameters of the traffic model such as λ  and τ  are often tuned from 

time to time in relevant traffic engineering researches for a most precise description of 

network traffic status. In the context of end-to-end QoS management, QCMF requires 

these parameters to be updated with the flow receiver once their values have been 

adjusted in a network QoS component. 

D. End-to-end adaptation evaluation criteria 

As discussed, QCMF considers both adaptation cost and rejectp  in selection of an end-

to-end adaptation solution. In principle, a network QoS component of lower adaptation 

cost has a better chance of being selected for adaptation. On the other hand, a QoS 

component of heavy traffic load will present a large rejectp  and in consequence, would 

unlikely be selected so as to avoid a possible adaptation rejection and failure. In view 

of both considerations, the final evaluation is based on the utility factor of each QoS 

component, which is defined as
rejectpt *cos

1 . A utility factor seeks the balance between 

the reward (gain of cost) and penalty (chance of been rejected) of each possible 

adaptation choice. In QCMF, a network QoS component of largest utility factor will be 

finally selected for end-to-end QoS adaptation. 
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6.4.3 End-to-end Signaling and Adaptation Algorithm 

In addition to information sharing and end-to-end adaptation, QCMF also defines the 

following primitives for the signaling and coordination actions among end-hosts and 

network QoS components in the control plane. 

• Notification 

The notification primitive is used by end-hosts and network QoS components to 

inform each other of QoS transactions. Firstly, it is used by a network QoS component 

to inform the flow receiver the appearance of a QoS violation in its local region. 

Information to be reported includes the initial agreed QoS level and current QoS status 

(in the form of parameters such as delay, jitter and traffic model configurations such as 

λ  and τ ). Secondly, the reception of such a message at the receiver end-host will 

trigger an end-to-end adaptation evaluation as discussed. A QoS component of best 

utility factor will be selected for QoS adaptation, which subsequently will receive a 

notification message from the flow receiver for the adaptation details (e.g., the service 

class to upgrade to). 

• ACK & Reject 

Upon receiving an adaptation request, a network QoS component should check its 

service status to see whether the required service upgrade adaptation is achievable or 

not. If the admission test is passed, the QoS component will execute the adaptation 

immediately, after which it will reply the receiver with an ACK message, informing 

the latter the success of QoS adaptation. The updated information of this QoS 

component will also be piggyback in the ACK message. Otherwise if an adaptation is 

not applicable, the QoS component will reply the flow receiver with a Reject message 
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denying the adaptation. Once the receiver receives such a message, it will (1) select the 

network QoS component of second best utility factor for adaptation notification if 

there is no QoS status update from each network component since last decision-

making, or (2) trigger another round of adaptation to calculate utility factor if there is 

any new QoS update. 

• Request 

This primitive is used by the receiver to request for the updated information of a 

network QoS component. As discussed, excess message exchange between the flow 

receiver and a network QoS component can pose a heavy burden on the network and is 

also not scalable in large networks. Hence we restrict the usage of the Request 

message to the scenario where the information of a QoS component has not been 

updated for a period longer than a pre-specified timer. The specification of such a 

timer can be designated and tuned through an engineering process in an actual end-to-

end system. 

6.5 SIMULATION RESULTS 

Network Component Service 
class 

Unit price Bandwidth 
requirement 

Cost of 
adaptation 

Rejection 
probability 

Utility 
factor 

QoS Component 1 2 $4/h/Mbps 2Mbps 8 0.25 0.5 

QoS Component 2 2 $1h/Mbps 2Mbps - - - 

QoS Component 3 3 $7h/Mbps 2Mbps 14 0.20 0.36 

QoS Component 4 3 $2/h/Mbps 2Mbps 4 0.20 1.25 

QoS Component 5 2 $3/h/Mbps 2Mbps 6 0.15 1.11 

Table 6-3: Service subscription settings of a flow in simulation and the its utility factor 

We validate our end-to-end QoS adaptation scheme through simulations under NS-2 

environment [146]. The end-to-end QoS provisioning path is composed of 5 adaptive 

network QoS components in a chain topology (Figure 6-1). Key configurations of the 
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experiments are as follows. In each QoS component, we define 4 service classes of 

limited bandwidth, each of which produces different QoS services in terms of delay 

guarantees. Each network QoS component has a service options table defined similar 

to the one shown in Table 6-1. The QoS information of each network component is 

shared with end-hosts at session start-up time and is updated at runtime. Hence, the 

flow receiver maintains a service status table similar to Table 6-2 for each network 

QoS component. We use a MMM /1//  queuing system to model network QoS 

components where each of them is modeled with different values of λ  and μ . The 

propagation delay between QoS components and the flow receiver is set to around 1ms. 

The processing delay at each network QoS component is set to an average value of 

7ms with normal distribution. 

The simulation is executed as follows. A media flow is delivered from the sender to 

the receiver and subscribes to a certain service class in each network QoS component. 

At time 12s (0.2 minute in Figure 6-5), a delay violation happens at network QoS 

component 2 which is subsequently detected by that component and is subject to 

rectification. Such a delay violation is simulated by sending a network traffic flow to 

the service class that the end-to-end multimedia media flow is entertained. Such a 

traffic flow has overloaded the service class and hence the media flow suffers from a 

delay violation. Upon appearance of such a violation, a violation report is sent by the 

network QoS component to the flow receiver which triggers the end-to-end evaluation 

process to calculate the utility factors of all end-to-end QoS components (Table 6-3). 

After that, network QoS component 4 (which is of the largest utility factor) is selected 

for end-to-end adaptation. An adaptation notification is subsequently sent to QoS 

component 4 where a service upgrade adaptation is conducted. As a result, the overall 

end-to-end delay restores to the acceptable range (at time around 0.25 minute in Figure 
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6-5). Half minute later, the traffic flow is removed and hence the traffic jam disappears 

at QoS component 2 which restores it local QoS status to a normal situation. Another 

QoS status update is sent from component 2 to the flow receiver. By comparing the 

service status tables of both network QoS component 2 and 4, the flow receiver finds 

that current end-to-end subscription cost (the sum of individual subscription cost at 

each network QoS component) is higher than the one before adaptation. This is 

because the unit bandwidth allocation price in current service class of component 4 is 

higher than that in component 2. Hence, the flow receiver notifies both QoS 

component 4 to downgrade its subscription to the original service class.  

The simulation results are shown in Figure 6-4 and Figure 6-5 respectively. The delay 

violation in QoS component 2 (at time 0.2 minute) is compensated by a service level 

upgrade in QoS component 4 (at time 0.22 minute) under the guidance of the flow 

receiver. This time interval is the overhead for the distributed coordination among end-

hosts and networks as well as the utility factor computation and adaptation evaluation 

within the flow receiver. Similar observation can be found in the later “roll-back” 

process (at time 0.6 minute) where the traffic flow is removed from network QoS 

component 2. During the process, the end-to-end delay remains relatively stable as is 

shown in Figure 6-5, except two glitches (at time 0.2 minute and 0.6 minute 

respectively) which reflect the end-to-end QoS fluctuation during violation and 

adaptation. Note that the second stage of adaptation is an optional step in current 

implementation of QCMF. Such an action is a coordinated process which reviews the 

new QoS status of component 2 and 4 and the overall end-to-end subscription cost. 

The benefit of such an additional adaptation is that a more optimal global QoS can be 

achieved, however at the cost of additional information signaling and adaptation 

scheduling. 
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Lastly, we evaluate the performance of our adaptation evaluation algorithm (named as 

AEA for simplicity). We compare it with another aforementioned generic information 

synchronization scheme: no adaptation decision will be made at the flow receiver until 

it synchronize and get the latest QoS information update from all network QoS 

components (denoted as Adaptation after Status Update - ASU). The configuration 

parameter settings are identical to those described in the previous experiment. Both 

AEA and ASU use the same evaluation algorithms and signaling primitives described 

in Section 6.4. As has been explained, an adaptation request issued by a flow receiver 

in both AEA and ASU algorithms risks being rejected by a network QoS component 

due to insufficient resources for service upgrade. However, it takes different time for 

these two algorithms to finish a QoS adaptation process under such a rejection 

situation. Let us denote the propagation delay among network QoS components and 

the end-host as pT , the evaluation delay at the flow receiver as eT , it takes 4 pT + eT  time 

for ASU to work out an adaptation decision, where the four propagation delay is 

consumed by the receiver to (1) receive a violation report from a network QoS 

component, (2) request for information update from all network QoS components, (3) 

receive QoS update of all components based on which end-host evaluation is carried 

out, and finally (4) inform the selected QoS component for adaptation. As said, we 

ignore all other possible processing overhead. If an issued adaptation request as in step 

(4) is rejected by the target network QoS component, it takes another 4 pT + eT  time for 

the receiver to finish the second round of information gathering, adaptation evaluation 

and event notification. Comparatively, AEA takes only 2 pT + eT to evaluate and notify 

an adaptation, where 2 pT  is the delay to receive a violation report from the network 

component in trouble and issue an adaptation request. If the adaptation request is 

denied by a network QoS component, it takes another 2 pT + eT  time for the flow 
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receiver to execute the second round of adaptation. The performance evaluation of two 

algorithms under the simulation setting described before is shown in Figure 6-6. It can 

be concluded that, if a proper traffic model is selected to describe the traffic 

characteristics of a network QoS component, our AEA algorithm can achieve higher 

adaptation efficiency in terms of both adaptation latency and signaling overhead. 

 

Figure 6-4: Delay change at network QoS component 2 where a violation happens and 
component 4 which participates in the end-to-end collaboration to solve the violation 
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Figure 6-5: Experienced end-to-end delay before/after a delay violation 
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Figure 6-6: Delay overhead of adaptation algorithms AEA and ASU for message 

exchange and signaling among network QoS Components and end-hosts 

6.6 SUMMARY 

In this chapter, we propose a cross-component QoS coordination scheme for end-to-

end QoS adaptation. In this scheme, QCMF models all QoS services along the 

provisioning path and provides mechanisms for QoS coordination and adaptation upon 

the occurrence of a QoS violation. Residing in end-hosts, QMan middleware runtime 
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copes with a QoS violation by selecting a suitable QoS adaptation solution among all 

the end-to-end candidate choices. Such a selection focuses on the utility factor of each 

possible choice and is directed by end-to-end heuristics and policies. Analysis and 

preliminary simulation results validate the design and feasibility of our approach for 

end-to-end QoS coordination. 
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Chapter 7 Implementation and Evaluations 
 

CHAPTER 
 IM P L E M E N T A T I O N  A N D  EV A L U A T I O N S 77
 

In this chapter, we present the implementation of our QoS control and management 

framework. The objective of this prototype is to demonstrate the working principle and 

management performance of QCMF. As discussed earlier, the management functions 

of QCMF is mainly composed of two parts: (1) QoS negotiation and configuration at 

build-time, and (2) QoS monitoring and coordinated end-to-end adaptation at runtime. 

We will first describe the experiment scenario and testbed configurations. After that, 

performance analysis of various management functions in QCMF will be introduced 

respectively. 

7.1 IMPLEMENTATION SCENARIO 

We have setup a testbed for experiments as shown in Figure 7-1. Two groups of PCs 

are separated by an IP router in between and hence form two subnets. The 

configuration of each computer is shown in Table 7-1. We deliver audio and video 

flows from the stream sender to the stream receiver. The audio source outputs an audio 

flow of PCM format, 44100Hz and stereo quality. It is transcoded into either 

G723_RTP or MPA_RTP format for media streaming over the network, depending on 

the application QoS requirements and runtime conditions. The video source outputs a 

video flow of format MPEG-1, 640*256 resolution at constant rate of 30fps. It is 

transcoded into either MPEG_RTP or JPEG_RTP format for transmission. We write 

the A/V transmission application on J2SE 6 platform using JMF library [58]. The RTP 
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transmission between the stream sender and receiver uses UDP as the transport layer 

protocol. 

 

Figure 7-1: Testbed environments 

The Linux router in between is capable of adjusting bandwidth allocation a specific 

queue (RED queue or FIFO queue), and hence provide a generic form of service 

differentiation of network traffic. The stream sender, receiver and the router constitute 

the complete end-to-end path where our QCMF serves on. A traffic generator software 

hosted in the traffic sender is engaged to produce huge amount of data traffic to the 

traffic receiver sitting in the other subnet. Such background traffic will influence the 

bandwidth allocation of the audio/video streaming we are testing so that network 

congestion will appear. A software monitor capitalizing on WinPcap library [147] is 

placed at the streaming receiver to capture incoming traffic on the NIC and calculate 

end-to-end traffic statistics. On detecting a QoS violation, QCMF will perform end-to-

end adaptation according to pre-defined heuristics, policies and evaluation algorithms 
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as discussed in Section 6.4.2. The end-host/middleware QoS adaptation is directed by 

QMan and enforced by the DPF. Currently, QCMF supports 11 media protocols, 

namely RTP, TCP, UDP, IP, G711 codec, G723 codec, GSM codec, MPEG codec, 

H263 codec, JPEG codec and affined encryption/decryption at the middleware level. 

We also integrate a frame rate monitor with the multimedia transmission application 

which measures the velocity of video display. As explained, video frame rate is 

defined as the example application QoS violation indicator with the violation delimiter 

set to 25fps. 

Computers Configurations 

Stream sender PC, Core 2 processor 2.13GHz, 2GB RAM, one Gigabit network card, Windows XP SP3 

Stream receiver PC, Pentium 4 processor 2GHz, 1GB RAM, one Gigabit network card, Windows XP SP3 

IP Router PC, Pentium 3, 933 MHz CPU, 512MB RAM PC, two 10/100 Mbps NIC, Fedroa 9 
Traffic generator  PC, 10/100 Mbps NIC, Windows XP SP3 
Traffic receiver PC, 10/100 Mbps NIC, Windows XP SP3 

Table 7-1: Testbed configurations 

7.2 QOS KNOWLEDGE PROCESSING 

We have first established a knowledge plane for information modeling and exchange 

using the aforementioned techniques. All QoS knowledge is modeled by ontology in 

RFDS language; knowledge structures of multimedia applications, QMan/DPF 

middleware and generic QoS-enabled network are established respectively. The overall 

knowledge ontology consists of 91 ontology classes and 224 properties. The Jena 

semantic web toolkit [148] has been chosen as the tool to conduct QoS knowledge 

reasoning. We have evaluated our knowledge plane infrastructure in terms of the 

performance of ontology modeling, knowledge reasoning and knowledge sharing. The 

experiment results are elaborated in the following sections, which in general 

demonstrate the feasibility of our approach for real-time QoS knowledge management. 
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7.2.1 SQS Initiation Delay 

In the first step, we have conducted experiments to evaluate the overhead of the two-

layer application QoS ontology model of SQS. As explained in Section 4.3, different 

QoS middleware may define QoS classification trees of different content and depth, 

depending on the capability of the QoS middleware and runtime environments. In this 

test, QoS middleware at the media sender and receiver is designed of different abilities: 

the media receiver is a light-weighted laptop that defines 9 QoS base-classes and 

derives 4 QoS domains from them; the media sender (server) is more powerful PC 

which defines 9 QoS domains that merge from 13 QoS base-classes. The operation of 

merging QoS base-classes into QoS domains is guided by configuration rules as 

explained before. The latencies for loading of QoS base-classes and merging of QoS 

domains have been recorded and compared in Figure 7-2. It is not surprising to see that 

the delay overhead of SQS is proportional to the size of dataset (i.e., number of QoS 

base-classes and QoS domains). However, such initiation delay is not significant (less 

than 0.6s) at both communication parties. 
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Figure 7-2: Overhead of the two-layer ontology design 
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7.2.2 Knowledge Reasoning Performance 

We have next evaluated the performance of QoS knowledge reasoning over different 

scales of dataset. As mentioned in Section 4.5.2, knowledge reasoning in QCMF 

consists of two parts: ontology reasoning and user-defined reasoning. We first measure 

the performance of ontology reasoning which is guided by reasoning rules built-in 

RDF/RDFS standard. The size of dataset is measured in terms of the number of RDF 

triples, each of which represents a single statement (S-V-O predicate). Technically, 

these triples are generated by the middleware knowledge reasoner through parsing and 

converting all RDF class definitions contained in the knowledge base. Ontology 

reasoning is enforced to derive implied knowledge once all RDFS definitions have 

been compiled into triples at build-time. In addition to offline QoS analysis, ontology 

reasoning may also be executed runtime upon insertion of new QoS knowledge 

through knowledge sharing process. However, such reasoning will only cover partial 

(i.e., those relevant) knowledge for checking and hence is much less time-consuming 

than build-time reasoning. 

Figure 7-3 shows the results of ontology reasoning on PCs and laptops of different 

CPU speeds, which demonstrate that the ontology reasoning latency of RDF is 

proportional to the size of dataset. However, as increments are approximately linear in 

nature, the delay is still acceptable even for a large dataset of 2261 triples (roughly 

correspond to 302 RDFS classes, which are sufficiently large enough for modeling 

more than, for example, 100 protocols). The ontology reasoning latency also depends 

on the CPU speed of an end-host. A PC with higher CPU clock speed will require less 

time to prepare the knowledge reasoner. However, the difference in performance is not 

significant as is shown in Figure 7-3. 
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Figure 7-3: The ontology reasoning performance 

User-defined reasoning is build-time/runtime performed based on user-defined rules. 

The main task here is to derive QoS knowledge for the preparation of subsequent QoS 

activities (e.g., QoS violation analysis or adaptation coordination). We have measured 

the performance of user-defined reasoning and compared it with that of ontology 

reasoning. The experiment is also conducted with respect to the different scales of QoS 

knowledge as shown in Figure 7-4. The experiment result shows that the time needed 

for ontology reasoning is larger than that for user-defined reasoning. This is probably 

due to a large set of rules built-in standard ontology definition and reasoning whereas 

only 14 rules are defined for user-defined reasoning in QCMF currently (some of 

which has been explained in Section 4.5.2). We also notice that latency of ontology 

reasoning and user-defined reasoning will becomes unbearable for real-time 

processing if the data size grows significantly large (e.g., more than 2000 ontology 

classes and properties – artificially replicated here for testing purpose only). Although 

we believe most end-to-end QoS ontology would be sufficiently modeled in hundreds 

of ontology definitions based on our experiences (e.g., our end-to-end QoS 

management prototyping contains a few more than 100 ontology definitions), further 



 127

research is needed to improve the performance of knowledge reasoning in an resource-

scare environment (e.g., smart phones with wireless networking). 

After the above two knowledge reasoning steps, we found that the knowledge reasoner 

can answer a query within tens of milliseconds (i.e., processing delay) in both small 

and large scale dataset settings. Such a query may be issued within a QoS component 

(e.g., protocol retrieval) or from an external source (e.g., knowledge query from other 

QoS components in the pull mode). Meanwhile, the memory consumption for 

knowledge reasoning is around 7MB in both small and large data settings. In general, 

all these experiment results suggest that it is feasible to employ an ontology-based 

approach to model and reason end-to-end QoS knowledge even on less powerful hosts 

such as laptops. 
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Figure 7-4: Knowledge reasoning performance comparison 

7.3 QOS VIOLATION ANALYSIS 

We have subsequently conducted experiments for QoS violation analysis in various 

environments according to the violation types defined in Table 7-2. We first validate 

our ideas and approaches in a controlled testbed environment. We manually create 

different kinds of QoS violations and classify them using our end-to-end violation 
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analysis scheme introduced in Chapter 5. After that, we test our systems on an open 

campus network where network QoS violations are observed in both wired and 

wireless environments. Lastly, we repeat the experiments in a real Internet 

environment - PlanetLab platform [149] and collect violation data accordingly. 

Analysis of the collected data in the above environments shows the validity and 

effectiveness of our system in terms of both training/classification accuracy and 

overhead. 

Violation types Possible violation nature Available adaptation solutions 

Sender host violation Sender machine busy Switch codec, change streaming server, reduce QoS

Receiver host violation Receiver resource scarcity CPU/buffer re-allocation, switch codec, reduce QoS

Network error Hardware failure, link error Change route, re-transmission, upgrade service class
Network traffic violation Network congestion End-to-end congestion control, media compression

Table 7-2: QoS violation classification in view of controllable resources and available 
end-to-end adaptation choices 

 

Figure 7-5: CPU occupier program for CPU violation at end-hosts 
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7.3.1 Testing Cases 

We have first conducted a CPU violation test on the testbed platform and collected 

corresponding violation data. A utility program is designed (Figure 7-5) which can 

occupy CPU time slices at several scales, e.g., minimal (occupy 10%-20% CPU time), 

medium (around 50%) or maximum (80%-90%). By tuning the “volume” of the CPU 

occupier program at either media sender or the receiver, a CPU violation can be 

observed in the media streaming. Figure 7-6 shows the values of the application QoS 

violation indicator (i.e., frame rate) and flow descriptors during a 120-second CPU 

contention test. In the first 60 seconds, no external interference is injected and hence 

the video streaming presents satisfactory performance. In the next 60 seconds, the CPU 

occupier program is launched to contend with the streaming application for CPU time 

slice. A few QoS violations can thus be observed where frame rate drops below 25fps 

(Figure 7-6(d)). Flow level statistics such as packet delay and jitter are recorded in 

Figure 7-6(a) and Figure 7-6(b) respectively which shows their variations before and 

during the violation. However, no packet loss is observed in this CPU violation test as 

can be seen from Figure 7-6(c). 
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Figure 7-6: Observation of end-to-end QoS w/ and w/o CPU contention 

Secondly, we have designed a network congestion test. A traffic generator is 

programmed (Figure 7-7) which can generate traffic of either constant rate (emulate 

Internet background traffic such as constant rate FTP flows) or normal distribution 

(emulate the arriving traffic experienced by a core Internet router). The traffic 

generator is launched during streaming which deliver packets to the traffic receiver 

sitting in the other subnet. By outputting a large volume of data, the traffic generator 

creates a congestion link on the end-to-end path of the video transmission. Figure 7-8 

shows the measured performance of the video streaming in another 120-second test. In 

the first 60 seconds, the traffic generator program yields a large volume of traffic of 

normal distribution which leads to the performance degradation of the video flow. 

Packet loss is observed during this period which indicates overflow of the router queue 

(Figure 7-8(c)). The traffic generator is removed in the next 60-second testing. As can 
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be seen from the last part of Figure 7-8(d), quality of the video flow restores gradually, 

where frame rate varies within the acceptable range. 

 

Figure 7-7: Traffic generator can produce traffic of either constant rate or normal 
distribution 

 

Figure 7-8: Observation of end-to-end QoS w/ and w/o network congestion 
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After that, we simultaneously launch the CPU utility program and the traffic generator 

and view their combined impacts on video streaming. Through analyzing end-to-end 

QoS statistics, we have found that the newly observed QoS pattern is different from 

those in the previous individual tests. Hence we enlist it as a new violation type which 

marks the co-existence of the above two violations. This observation coincides with 

our previous argument that different QoS violations will present different fingerprints 

in terms of end-to-end QoS exhibition. Hence a synthesized violation will show 

distinct fingerprint that differ from any individual one. 

Thirdly, we have tested our scheme on an open campus network. We deliver audio and 

video flows in both wired-line and wireless environments. The QoS violation 

observation in the wired-line environment is similar to that in the testbed environment. 

Figure 7-9 shows the behavior of video streaming in a 54Mpbs wireless LAN 

environment. The stream sender and receiver are separated by 4 hops (routers) as we 

have identified using Tracert command9 of the Windows XP operating system. We 

conduct the experiment in late night so that QoS violations due to excessive user 

competition can be minimized. Hence the packet loss and performance degradation as 

shown in Figure 7-9 is primary due to wireless link error. It is interesting to see that 

jitter happens at the transmission of the 400th video frames (Figure 7-9 (b)) and 

meanwhile packet loss is observed (Figure 7-9 (c)). However, the end-to-end 

streaming is not seriously affected and no violation is observed at the application level 

(Figure 7-9 (d)) at the same time. This is possibly because the network jitter is well 

smoothed at the streaming receiver by techniques such as media buffering. This 

observation coincides with our previous statement that a drop of value in single low 

level parameter (i.e., packet jitter) does not necessarily indicate an application QoS 
                                                 
9 Tracert is a Windows based command-line tool that can be used to trace the path that an Internet 
Protocol (IP) packet takes to its destination from a source. 
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violation since such a variation may be compensated by other parts of the end-to-end 

system. 

 

Figure 7-9: Observation of end-to-end QoS variation in wireless communication 

Lastly, we have repeated the same CPU violation and network congestion experiments 

on the PlanetLab platform. We send audio/video flows to PlanetLab nodes located at 

different areas of the world (Table 7-3) and observe their performance in the presence 

of QoS violations. The purpose of this series of tests is to assess the correctness of our 

end-to-end QoS violation diagnosis scheme in a real Internet environment that has 

complex network dynamics. We similarly collect QoS violation data in these 

experiments and combine it with that gathered in testbed and wired campus network 

tests for the subsequent data analysis under the category of wired-line data. 
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Media source Destination PlanetLab nodes Hops TTL (ms) 

zhoulifeng.ddns.comp.nus.edu.sg planetlab1.singaren.net.sg 15 250 

vivijane.ddns.comp.nus.edu.sg planetlab1.iii.u-tokyo.ac.jp 22 410 

zhoulifeng.ddns.comp.nus.edu.sg planetlab1.xeno.cl.cam.ac.uk 22 262 

Table 7-3: QoS violation test with PlanetLab nodes (source from NUS) 

7.3.2 Data Analysis 

We have engaged several neural network algorithms to analyze the end-to-end QoS 

violation data. These algorithms, according to their training speed and classification 

speed, can be summarized into online and offline categories as has been discussed in 

Section 5.4. We will first show that online algorithms can achieve real-time processing 

capability with high classification accuracy that is comparable to offline algorithms. 

They are hence more suitable for runtime QoS violation analysis. Next, we will show 

that the orthonormal algorithm we have proposed and validated in Appendix A 

presents even better performance compared with other online algorithms. 

No. of Observations Name 

Training data Testing data 

Attributes Classes 

Wired-line 4500 3863 4 4 

Wireless 3000 2217 4 5 

Table 7-4: Specification of QoS violation Datasets: the wired-line category contains 
data obtained from testbed, campus network and PlanetLab platform 

As explained in Section 5.3, we use both flow descriptors and application QoS 

parameters for QoS violation classification. We focus on two typical network scenarios: 

wired-line and wireless environments. For experiments in the wired-line environments 

(testbed, wired campus network and PlanetLab experiments), we have altogether 

collected and combined 8363 groups of data, among which 4500 groups are randomly 

selected as training data. The rest are used as testing data. In classification of QoS 

violations, flow statistics such as packet delay, jitter, packet loss and frame rate are fed 
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in as the input vector x ; the output t  pinpoints one of the four categories current 

streaming is undertaking: normal transmission, a sender side CPU violation, a receiver 

side CPU violation and a congestion violation. Data collected in the wireless 

environment is used in the performance evaluation of our orthonormal algorithm as 

will be discussed later. Table 7-4 gives the characteristics of QoS violation datasets. 

All the input data is normalized into the range [-1, 1]. The activation function we have 

selected is a sigmoidal function )1/(1)( xexg −+=  for additive neurons. The input 

weights ia  and hidden biases ib  are randomly chosen from the range [-1, 1]. For SLFN 

with RBF activation function )exp()( 2μγφ −−= xx , the centers iμ  are randomly chosen 

from the range [-1, 1] whereas the impact factor γ  is chosen from the range (0, 0.5). 

Training Accuracy Algorithms 

Mean Dev 

Training Time 
(seconds) 

No. of Neurons 

Offline 

LMBP 98.33% 0.0087 423.5 30 

RANEKF 92.43% N.A. 1.0517e+005 495 

MRAN 95.61% 0.0114 5115.5 168.4 

Online 

Stochastic BP 92.57% 0.0249 3.8543 30 

ELM (sigmoid) 94.26% 0.0063 0.1127 30 

ELM (RBF) 94.28% 0.0053 0.1398 30 

Table 7-5: Classification accuracy of QoS violations in different algorithms 

Since the offline algorithm RANEKF takes a quite long training time, we only run it 

once. The results of other algorithms are computed based on 30 trials. Both RANEKF 

and MRAN automatically determine the number of hidden neurons. For other 

algorithms in which neuron numbers need to be specified, we have gradually increased 

the number of neurons from 5 to 50 with the increscent pace of 5 in each round and 

measure corresponding classification accuracy. For example, the classification 
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accuracy and training time comparison between LMBP and ELM in each tuning round 

is illustrated in Figure 7-10 and Figure 7-11. Figure 7-10 shows that higher 

classification accuracy can be achieved with the growth of neuron numbers. However, 

the required training time also increases as more neurons are employed, which can be 

seen from Figure 7-11. To balance between accuracy and overhead, we have selected 

30 neurons in our experiments for QoS violation classification. Table 7-5 shows the 

mean training time and accuracy results under such a setting. It can be seen that all 

these online and offline classification algorithms can achieve high classification 

accuracy while their training times deviate significantly: online algorithms exhibit 

much faster training speed compared with offline algorithms. Both Stochastic BP and 

ELM can finish training of 4000 groups of data within a few seconds and achieve 92% 

and 94% classification accuracy respectively. Hence these algorithms are suitable for 

real-time training and diagnosis of QoS violations for their high classification accuracy 

and short response time. Finally, the training and testing data are randomly generated 

for each round of data analysis. As a result, every trial may lead to different 

classification results for the same dataset. The corresponding deviations reflect the 

stability of testing accuracy in different configurations of training parameters. From 

Table 7-5 we can find that the deviations of the training classification accuracy in all 

algorithms are very small which further validates the effectiveness of our neural 

network approach in QoS violation classification. 
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Figure 7-10: Testing classification accuracy comparison between LMBP and ELM 

 

Figure 7-11: Training time comparison between LMBP and ELM 

Next, we take a closer look at the performance of our orthonormal algorithm 

(Appendix A) for QoS violation analysis. For comparison purpose, we use the same set 

of data for training and testing as in the evaluation of aforementioned algorithms. In 

addition, we collected 5217 groups of data from the experiment performed within the 

wireless environment, among which 3000 groups are randomly selected as training 

data. The rest are again, used as testing data. For wireless QoS test, the structure of the 

input vector x  is the same as that used in the wired-line experiment; the output t  refers 



 138

current streaming to one of the five possibilities: normal transmission, a (sender or 

receiver) CPU violation, a wireless link error case or a congestion violation. The 

activation function selected in our orthonormal algorithm is the same sigmoidal 

function )1/(1)( xexg −+=  for additive neurons. The input weights ia  and hidden biases 

ib  are randomly chosen from the range [-1, 1]. Other neural network configurations are 

identical to the aforementioned parameter settings. 

Training Accuracy Testing Accuracy Name 

Mean Dev Mean Dev 

Time (seconds) No. of Neurons 

Wired-line 96.37% 0.0032 95.75% 0.0027 0.2737 30 

Wireless 87.28% 0.0041 86.60% 0.0142 0.1596 30 

Table 7-6: Classification accuracy for QoS violations in our orthonormal algorithm 

 
Figure 7-12: Performance of the proposed orthonormal algorithm in QoS violation 

classification: (a) training and testing accuracy curves, (b) training time curve 

The experiment results are similarly computed based on 50 trials. We have gradually 

increased the number of neurons from 5 to 50 with the increscent pace of 5 in each 

round and measure corresponding classification accuracy and training time. The data 

analysis results are shown in Figure 7-12. Figure 7-12(a) shows that higher 

classification accuracy can be achieved with the growth of neuron numbers. However, 

Figure 7-12(b) illustrates that the required training time also increases as more neurons 
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are employed. This observation is similar to the corresponding characteristics of other 

neural network algorithms such as LMBP and ELM. To balance between accuracy and 

overhead, we also selected 30 neurons in our experiments for QoS violation 

classification. 

Table 7-6 shows the mean training and testing classification accuracy results of our 

orthonormal algorithm under the setting of 30th neurons. It can be seen that our 

classification algorithm can achieve high classification accuracy in both wired-line and 

wireless environments. For QoS violation experiments in wired-line environments, we 

have a good chance (95.75%) to correctly assert a violation after training. The 

accuracy of wireless testing is comparatively lower due to other (uncontrollable) 

impacting factors that blur the margin between, for example, wireless channel error 

and traffic congestion (e.g., the possible coexistences of two violations). However, 

such 86.60% accuracy still greatly outperforms the traditional rule-based method as 

will be explained later. We can also see from the Table 7-6 that the deviations of the 

training and testing classification accuracy are very small. Finally, it takes less than 0.3 

second for our orthonormal algorithm to train around 4500/3000 sets of 4-dimension 

input data, which is competent for real-time processing. In brief, our orthonormal 

algorithm can achieve slightly better performance compared with other online neural 

network algorithms in runtime QoS violation analysis in terms of classification 

accuracy and training/testing speed. 

Through feature reduction analysis, we have found that packet delay and jitter play an 

important role in identifying a network congestion violation while packet jitter and 

receiving frame rate is effective in identifying a CPU violation. There is no single QoS 

parameter which can effectively distinguish all violation cases. To show the advantage 
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of our orthonormal approach over a traditional rule-based method, we have also 

developed a set of rules to detect QoS violations. Each rule examines either packet 

delay or packet loss rate to identify a QoS violation and trigger an adaptation action. 

The violation threshold for each discrimination parameter is defined as its mean value 

in a violation period (calculated from collected data in previous experiments). We 

repeat the same experiments using such a rule-based method and find that an overall 

detection accuracy of only 73% can be achieved. The remaining 27% cases are either 

(1) no alarm reported in case of violations, or (2) mis-alarm of QoS violations (e.g., a 

CPU violation in a sender host to be asserted as network congestion). All the above 

facts show that our orthonormal classification approach presents better results in 

diagnosis of QoS violations than a traditional rule-based method. 

7.4 END-TO-END QOS MANAGEMENT 

7.4.1 QCMF Management Procedures 

App. Name := Video_transmitter

App. Type : = video_streaming

Original Video Codec : = MPEG

Supported Video Frame Rate : = 20/25/30 fps

Audio channels := mono

Video Delivery Quality := All quality

Text Delivery Quality := reliable/Nil

Supported platform := Windows/Unix

 
Figure 7-13: An example QList for video streaming 

The QoS management in QCMF is tested through audio/video transmission between 

two end-hosts. The testbed configurations have been explained in Section 7.1. At 

build-time, a QList which records QoS characteristics (Figure 7-13) of the A/V 
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streaming application is read in by QCMF. Such a high level specification from an 

application designer is enriched by the QoS domain specification held by QCMF and 

is subsequently translated into AQoSpec, which in turn is mapped into middleware and 

network settings. Here middleware configuration mainly refers to the composition of 

protocol stacks and network configuration refers to communication parameters settings 

such as socket addresses. We use a Linux router of two traffic queues (i.e., FIFO queue 

and RED queue) as a generic model to emulate a QoS-enabled subnet of two service 

classes. Before streaming, QoS negotiation is carried out between the media sender 

and receiver to reach agreement of end-hosts’ protocol stack settings and 

communication parameter configurations (e.g., socket address, synchronization 

timeout value). 

The GUI interface for user control at the sender side is illustrated in Figure 7-14 where 

an end-user can manually configure streaming settings such as the media file to stream, 

streaming quality, monitoring facilities and session addresses. Alternatively, an end-

user can choose to use default setting so that all relevant communication settings will 

be configured automatically. 
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Figure 7-14: Graphic User Interface (GUI) for streaming 

During streaming, QCMF continuously detect QoS violations at the media receiver. As 

explained, this is achieved through monitoring and comparing flow data at the NIC of 

the receiver (Figure 7-15). Information to be collected includes receiving time of a 

RTP packet, RTP payload type, RTP timestamp and sequence number. The receiving 

time of each RTP packet is extracted to calculate flow level traffic statistics such as 

packet delay, jitter and throughput. RTP payload type indicates the format of the 

multimedia content (e.g., 26 represents JPEG) which has been standardized in [59]. 

The RTP timestamp and sequence number are, as explained in Section 5.3.3, used to 

restore the sequence of RTP packets in assembling application frames.  
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Figure 7-15: Netq program for data packet capturing at the media receiver 

A QoS violation in QCMF is handled by end-to-end evaluation and coordination as 

described in Chapter 6. An adaptation solution will be selected by the flow receiver in 

view of policies and end-to-end QoS status. Such an adaptation could be a service 

upgrade in the network or an end-host solution that tries to maintain the transmission 

quality. Some of the end-host adaptation strategies that are defined in QCMF for video 

streaming are illustrated in Table 7-7, each of which is activated when its end-to-end 

conditions is met (e.g., packet loss rate of the application or CPU availability of a host 

machine). Adaptation actions to be taken include changing communication 

components (e.g., replace UDP with TCP protocol in the protocol stacks), modifying 

configuration parameters (e.g., increase receiving buffer size), or even reduce 

application QoS (e.g., resize picture dimension). 
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Problems Observed End-to-end QoS States Actions 

Many lost packets and low frame 
delay 

Selective retransmission (e.g., 
UDP -> TCP) 

Frame rate too low 

Many lost packets and high frame 
delay 

Forward error correction & 
smaller picture 

Low network bandwidth availability 
and low CPU load 

Higher compression ratio End-to-end delay too 
high 

Low network bandwidth availability 
and high CPU load 

Smaller picture size 

Table 7-7: User-defined adaptation policies for video streaming 

7.4.2 QCMF Management Performance 

Subsequently, we have designed experiments to measure the latency of QCMF in 

different phases of QoS operations, ranging from build-time negotiation to runtime 

QoS adaptation. Time taken for various QoS management functions is shown in Table 

7-8. As can be found out, QCMF exhibits a one time initiation delay around 156 ms at 

session initiation stage, which is mainly used to setup the ontology model for QMan 

middleware, read QoS requirements from applications (i.e., an I/O operation), and 

configure end-to-end QoS settings through signaling. The overhead for knowledge 

preparation, as explained, is incurred by Jena to read in and analyze the middleware 

ontology knowledge base which contains ontology definitions about protocols (250 ms) 

and to perform knowledge reasoning (1313 ms). Start-up training of QoS violation 

data absorbs another 252 milliseconds. After that, a QoS violation can be identified 

within 10 milliseconds at runtime. The control channel between sender and receiver is 

established using Java RMI registry technology which is a server-side name service 

that allows RMI clients to get a reference to the server object. In QCMF, this RMI 

registry is used for the SyncMaster (at the receiver side) to announce its presence and 

for the SyncSlave (at the media sender) to retrieve and register with it. The creation of 

these two components at end-hosts takes 453 milliseconds. The signaling among them, 

however, takes only 6 ms since the propagation delay in Ethernet is really short. 
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Operations Time (ms) 

Instantiation of QCMF 156 

Creation of synchronization objects 453 

Knowledge Preparation (total) 1563 

 Creation of reasoning model 1313 

 Compilation of application QoS ontology 250 

Start-up QoS Violation Data Training 252 

Control channel signaling 6 

Protocol Stack Composition (total) 1446 

 Discovery of protocol components 93 

 Form of candidate protocol stacks 3 

 Check stack validation 31 

 Creation of functional protocol stack 103 

QoS Adaptation through Protocol Stack Re-composition (total) 948 

 Violation Analysis 10 

 End-to-end evaluation 272 

 Protocol stack re-negotiation 11 

 Validate new stack composition 29 

 AC stack adaptation 112 

Table 7-8: Time taken in end-to-end QoS management 

In QCMF, the semantic discovery of appropriate communication protocols is 

performed by issuing an SPARQL query on protocol knowledge base, an example of 

which is shown in Figure 7-16. Such a SPARQL language [150] is also used to check 

the consistency and dependence among protocol entities. After the knowledge 

preparation stage just described, we have found that each query can be answered at an 

average rate of a few tens of milliseconds. 

 
Figure 7-16: Sample SPARQL query for ontology integrity check between two 

instance classes 
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Runtime QoS adaptation in QCMF may take place at either application level, 

middleware level or network level, depending on system policies (refer back to Section 

6.4.2 for details) and end-to-end evaluation results. A middleware level adaptation 

takes nearly 1 second, which includes the time to determine a violation (20 ms), 

evaluate a solution (272 ms) and perform a middleware adaptation (312 ms). 

Alternatively, if a network QoS upgrade solution is been selected, the adaptation will 

also take around 1 second, in which 7 milliseconds is used for control signaling and the 

rest is for the adaptation action performed in the Linux router. The time taken for 

application level adaptation largely depends on the business logic of multimedia 

applications. In the case of our video streaming application, the action to reduce video 

resolution and restart transmission takes around 2 seconds. 

The effect of middleware adaptation (i.e., protocol stack swapping) in case of network 

congestion is illustrated in Figure 7-19. A video stream is delivered from the streaming 

sender (Figure 7-17) to the receiver (Figure 7-18). Upon detection of the congestion 

violation, a protocol stack swapping adaptation is enforced which switches the video 

stream from original MPEG format to JPEG format. Figure 7-19 shows the variation of 

video frame rate before and after the violation.  
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Figure 7-17: Stream delivery and adaptation at the media sender 

 
Figure 7-18: Stream receipt and adaptation at the media receiver 
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Figure 7-19: Quality fluctuation of the receiving frame rate before, during and after 

congestion violation 

We have also conducted experiments to observe QoS violations in audio streaming. 

Audio streaming typically requires much less resources (CPU time slice and network 

bandwidth) compared with video streaming. Unlike video streaming whose throughput 

may vary significantly from time to time (i.e., variable bit rate), audio streaming often 

produce traffic of relatively constant rate. Hence the monitoring and analysis of audio 

streaming in QCMF is much simpler than that in video streaming since the fingerprint 

of a violation can be easily distinguished from that of a normal transmission (even by 

eyes). An observation of network congestion in MPA_RTP audio streaming is 

recorded in Figure 7-20. The throughput of the audio stream is around 120Kpbs. We 

have limited the link bandwidth to 200 Kbps and launched background traffic of 

constant rate 100 Kbps. As a result, network congestion takes place at the Linux router 

and packet loss is observed in audio streaming. Such a congestion violation can be 

easily detected (since the violation traffic pattern is consistent) and solved by QCMF 
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through either (1) swapping to a less bandwidth demanding audio codec such as G723. 

or (2) shifting to another network service class (router queue). The last picture of 

Figure 7-20 compares the audio throughput at the flow sender and receiver to show the 

effect of network congestion on end-to-end audio flow throughput. On the other hand, 

we find that CPU violation has bare effect on audio streaming quality. This is probably 

because audio streaming consumes little CPU time slice and hence is not quite CPU-

intensive. 

 

Figure 7-20: End-to-end flow statistics of an audio streaming under violation 

7.4.3 Control Channel Overhead 

As mentioned in Section 4.5.1, the control channel among end-to-end QoS components 

is largely established using Java RMI technology. To illustrate the overhead of RMI 

signaling in a large scale network, a series of measurements have been done whereby a 
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client invokes a remote method and passes difference sizes (16, 32, 64 … 32768bytes) 

of control message to the sender. As is shown in Figure 7-21, the first three series 

(lower part) were performed in a normal end-to-end transmission (without QoS 

violations) under 10Mbps, 100Kbps and 50Kbps environments respectively. The 

connection bandwidth other than 10Mbps is emulated by running background traffic 

that occupies certain amount of link bandwidth. Another four series of experiments 

(upper part) were performed with the presence of end-to-end QoS violation. For 

instance, Violated1 was recorded in a 100Kbps environment where the end-to-end 

media flow contends with another network flow (produced by the traffic generator 

program) of 129Kbps. According to the experiment results, RMI does not significantly 

contribute additional delay to QoS functions at binding-time. As the largest control 

message is set to 4Kbytes, RMI produces delay that is less than 10ms (under a 10Mbps 

network environment and without QoS violation). In the presence of QoS violations, 

RMI incurs slightly higher delay because the control message shares the same link 

with the data plane (i.e., FIFO queue at the router). However, the size of the control 

message in a practice is not likely to exceed 1Kbytes, hence the overall delay of RMI 

in both violation and non-violation environments are still acceptable for real-time QoS 

processing. 

 

Figure 7-21: RMI invocation delay for the control plane (Logarithm scale) 



 151

7.5 SUMMARY 

A QCMF prototype has been implemented on J2SE platform. Experiments have been 

done to evaluate respective functions of QCMF and measure their performance. These 

include the knowledge processing overhead, QoS violation detection efficiency 

(accuracy and latency) and overall end-to-end QoS management performance. 

Experiment results show that QCMF does not introduce unacceptable overhead while 

it offers flexibility to manage QoS in an end-to-end manner. On the other hand, we 

observe that ontology processing a relative time-consuming process, which may not be 

appropriate for resource-constrained devices such as PDA or handset. Hence, further 

research could be conducted in the future to introduce a set of proxies to take over the 

ontology processing task in the case of mobile multimedia streaming. 
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Chapter 8 Conclusions and Future Work 
 

CHAPTER 
 CO N C L U S I O N S  A N D  FU T U R E  WO R K  88
 

This chapter concludes the thesis with a summary of our research contributions and 

discussion of topics for future work. 

8.1 THESIS SUMMARY 

Today more and more multimedia applications are becoming QoS-aware, thus 

presenting predictable, configurable and adaptable behaviors. For over a decade the 

Internet engineering and research community has debated, designed, and ignored IP 

QoS tools and techniques. Some of these techniques, such as DiffServ and RSVP have 

shown to be very valuable to QoS-sensitive applications (such as audio and video 

transmission). However, till today these solutions are yet to be widely endorsed by 

network service providers or the users. There is an urgent sense that something might 

be needed, despite the fact that some of the impeding forces working against a wider 

deployment of these technologies are non-technical, but has become very important 

consideration since Internet become a commercial commodity. 

In this thesis, we have analyzed and found several shortcomings in existing QoS 

research which may delay the prevailing deployment of QoS as a utility service. Firstly, 

layered QoS provision is not a sustainable solution to end-to-end QoS, as has been 

shown in various research prototypes. Although each of those projects is keen in its 

respective area, end-to-end QoS can hardly be achieved. This is simply because the 
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performance of a multimedia application relies on both end-host and network 

resources, which suggests that QoS management in all these areas is essential. 

Secondly, most end-to-end schemes emphasize on the design of end-to-end QoS-flow 

and service composition. They have not considered the distributed and collaborative 

nature among end-to-end QoS sub-systems. On the other hand, a few end-to-end 

projects have designed a chain of new QoS services in each area of end-to-end QoS 

provision. Although such a solution may achieve better efficiency due to its 

customized and seamless design from network layer to application layer, it is not an 

attractive proposition as the cost to replace existing Internet architecture with a brand 

new set of technologies. 

In view of the above limitations, we propose a semantic-based QoS coordination and 

management framework (QCMF) for a cooperative end-to-end QoS delivery. QCMF 

aims to accommodate QoS services at different system layers and manage their 

interactions for the benefit of end-to-end QoS delivery. Our solution embraces existing 

and new QoS mechanisms at three entity levels: the network level, the middleware 

level and the application level. We treat each of these QoS facilities as an end-to-end 

QoS component and model its capabilities and behavior with respect to the 

requirements of end-to-end QoS coordination. A knowledge plane is thus established 

which records QoS information of each end-to-end component. Encoded in 

RDF/RDFS, the knowledge plane can grasp the relationships among QoS entities 

within and among QoS components. Meanwhile, a uniform interface is provided to 

different users of an end-to-end QoS system (e.g., network service providers and 

multimedia applications), which facilitates the sharing and machine processing of QoS 

knowledge. Capitalizing on the knowledge plane, the control plane manages the 

transmission quality of multimedia applications whereby (1) QoS knowledge is shared 
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either on a regular basis (push mode) or upon request (pull mode), (2) QoS signaling 

and adaptation is fulfilled in a separate channel so that it will not affect the 

performance of data transmission, (3) decision-making respect to QoS configurations 

(e.g., network service level selection, communication parameter determination) and 

QoS adaptation is done in a pure end-to-end manner so as to avoid the scalability 

problem in network QoS management. Other outstanding research features of QCMF 

are listed below. 

1. At application level, QCMF allows applications to define QoS requirements 

either in a precise way or in a “fuzzy” way. In the latter approach, application 

programmers do not need to fix the name of QoS services to be engaged at design 

stage. Instead, the necessary features of the desired service are to be described. 

Semantic mapping will be performed by SQS, an application level service module of 

QCMF, which translates application requirements into suitable runtime QoS 

configurations. Such an approach enjoys such an advantage that flexible component-

based service composition can be achieved at build-time. In addition, a QoS service 

that fails to satisfy application requirements can be transparently replaced by another 

component of similar functionality and QoS performance at runtime. 

2. At middleware level, QCMF provides one possible dimension of QoS adaptation 

within the communication protocol stack. Directed by QMan, a middleware module of 

QCMF, protocol stack composition and re-composition can be achieved to cope with 

diverse runtime conditions and resource availability. To detect a QoS violation, QMan 

monitors the traffic pattern of an end-to-end flow and recognizes a violation once a 

similar violation pattern repeats. Upon occurrence of a QoS violation, an adaptation 

choice is made by QMan as the outcome of a coordinated decision-making process 
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among three dimensions (i.e., applications, middleware and networks) in view of the 

available end-to-end adaptation choices and administrative policies. 

3. At network level, QCMF defines a generic QoS model for QoS service 

differentiation which can be easily mapped to existing standard network QoS models 

such as DiffServ which has the same basic QoS disciplines. In this generic model, we 

define several QoS concepts and principles that are pertinent to the precise description 

of a network QoS service and the collaboration among end-host QoS and network QoS. 

These concepts include service class, service degradation path, adaptation cost, 

adaptation rejection probability and utility factor. A coordinated adaptation decision-

making is made by QCMF in a pure end-to-end manner through information sharing 

and control signaling in light of various end-to-end QoS heuristics and policies. 

8.2 FUTURE WORK 

There are a variety of avenues for the future work, including: 

Prediction mechanisms for QoS violations  

A possible extension that helps to minimize the impact of QoS violations on 

multimedia transmission is to predict the appearance of a QoS violation before it 

severely harms an end-to-end transmission. At current stage, we validate through 

experiments that a type of QoS violation will present a consistent fingerprint in terms 

of the observed application performance and end-to-end traffic pattern. Based on such 

an observation, we may further hypothesize that similar flow traffic pattern is likely to 

repeat “on the eve of” the happening of the same violation. By observing such a 

pattern, prediction of QoS violations may becomes possible which eliminates a QoS 

violation just at its beginning. 
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Supervised learning vs. unsupervised learning 

Our QoS violation analysis scheme is currently bounded by the supervised machine 

learning method we have chosen. For each kind of QoS violation, a violation class 

need to be setup beforehand and corresponding training data be collected. Hence we 

are not able to tell the appearance of a new QoS violation type which has never popped 

up before. In that case, the neural network learning algorithm will mistakenly classify 

a new QoS violation phenomenon into one of the known violation types. To solve this 

problem, we will probably look into more flexible unsupervised learning method such 

as clustering techniques. Clustering is the process of grouping objects on the basis of 

perceived similarities. Many clustering models and algorithms allow the number of 

clusters to vary with problem size and let the user control the degree of similarity 

between members of the same clusters by means of a user-defined constant [151]. 

Hence the employment of clustering techniques would probably give more flexibility 

in our QoS violation classification. 

Refinement of cross-component QoS adaptation scheme 

As described in Chapter 6, we have established models for QoS description of end-

hosts and networks and defined primitives to facilitate their interaction. Residing at the 

end-hosts, an evaluation and adaptation algorithm runtime selects a network QoS 

component for adaptation based on the estimated utility factor. The preliminary 

simulation results validate the design of such a collaboration scheme. In the future, we 

plan to further research into the interaction among various QoS components. For 

example, we are currently investigating into the scenario that multiple QoS 

components suffer from QoS violations simultaneously and hence more complex 

signaling is required to fulfill the coordination. We tend to solve this problem by 
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deriving coordination models that mathematically describes the inter-operations among 

QoS components, relying possibly on control theory. 

Performance evaluation over the global Internet involving multiple QoS domains 

Our experiments at current stage are mainly conducted on our testbed. Besides, we 

have tested the performance of our QoS violation detection scheme on the university 

network (both wired-line and wireless network). Similar experiments have also been 

conducted on the PlanetLab platform to test the functionalities of our end-to-end 

management system, as has been explained in Section 7.3. 

To further study our prototype system in the Internet environment, we are looking into 

the possibility to work with large network service providers or router companies to 

comprehensively test the functions and performance of our QCMF implementation in a 

large scale network. Ideally, such a testing environment should be a heterogeneous 

QoS-aware environment where our end-to-end coordination and adaptation scheme 

could be deployed and its performance be physically measured. 
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Appendix A Orthonormal Network for Classification 
 

APPENDIX 
 OR T H O N O R M A L  N E T W O R K  F O R  

CL A S S I F I C A T I O N 
AA

 
 

In this appendix, we will prove that an orthonormal network is universal 

approximation and hence can be used for classification. We will also extend the scope 

of hidden neurons from kernel functions to additive functions, the latter of which is, as 

said, of higher classification accuracy. Our orthonormal algorithm for QoS violation 

classification will be summarized in Section D based on the knowledge of orthonormal 

basis and Gram-Schmidt orthonormalization method for construction of it presented in 

Section B and C respectively. 

A. SINGLE HIDDEN LAYER FEEDFORWARD NETWORK WITH 

RANDOM HIDDEN NODES 

We first introduce some terminologies and background information for later discussion 

of our main results. The output of a standard single hidden layer feedforward network 

(SLFN) with L  hidden nodes can be represented by ( ) ( )∑
=

=
L

i
iiiL xbagxf

1
,,β , where ia  

and ib  are learning parameters of hidden neurons and iβ  is the weight connecting the 

thi  hidden neuron to the output neurons; ( )xbag ii ,,  is the output of the thi  hidden 

neuron with respect to the input x . From the network architecture point of view, two 

main SLFN network architectures have been investigated, namely additive neurons 

and kernel neurons. For additive neurons, the activation function ( ) ℜ→ℜ:xg  takes the 
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form ( ) ( )iiii bxagxbag +⋅=,, . For kernel neurons, the activation function ( ) ℜ→ℜ:xg  

takes the form ( ) ( )iiii axbgxbag −=,, , where +ℜ∈ib is a positive real value. 

For a series of N arbitrary distinct training samples ( )ii tx , , Ni ,,1L= , 

[ ] nT
iniii xxxx ℜ∈= ,,, 21 L is an input vector and [ ] mT

imiii tttt ℜ∈= ,,, 21 L  is a target vector. 

A standard SLFN with L  hidden neurons and activation function ( )xg  can be 

expressed as 

( ) Njoxbag j

L

i
jiii ,,1,,,

1
L==∑

=

β , 

where jo  is the actual output of SLFN. 

A standard SLFN with L  hidden neurons can learn N  arbitrary distinct samples ( )ii tx , , 

Ni ,,1L= , with zero error, meaning that there exist parameters ia  and ib , for Li ,,1L= , 

such that 

0
1

=−∑
=

L

i
ii to . 

Therefore our ideal objective is to find proper parameters ia  and ib  such that 

( ) Njtxbag j

L

i
jiii ,,1,,,

1
L==∑

=

β . 

The above N  equations can be expressed as 

TH =β  

where [ ]TLβββ ,,1 L= , [ ]TNttT ,,1 L= and  
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( ) ( )

( ) ( ) LNNLLN

LL

xbagxbag

xbagxbag
H

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

,,,,

,,,,

11

1111

L

MOM

L

. 

The matrix H is called the hidden layer matrix of the SLFN. 

Before we present the universal approximation result, we now introduce the following 

lemma (as has been proved in [137]) for construction of an orthogonal basis with 

random hidden neurons. 

Lemma 1 Given a standard SLFN with N hidden neurons and an activation function 

( )xg  which is infinitely differentiable in any interval, for N arbitrary distinct samples 

( )ii tx , , where n
ix ℜ∈  and m

it ℜ∈ , for any ia  and ib  randomly chosen from any 

intervals of nℜ and ℜ  respectively, according to any continuous probability 

distribution, then with probability one, the hidden layer output matrix H of the SLFN is 

invertible and 0=−THβ . 

Lemma 1 illustrates that when the number of neurons L  equals to the number of 

samples N , by randomly choosing parameters of neurons, the column vectors of 

matrix H are linearly independent. In fact, the linearly independent property is also 

correct when NL << . In that case, orthonormal neural networks can be constructed by 

Gram-Schmidt orthonormal transformation. 

B. APPROXIMATION WITH ORTHONORMAL BASIS 

Let us assume that training samples are generated with uniform probability distribution 

and all functions belong to the integrable space 2L . As in [152], the inner product of 

two functions )(),( xvxu  can be defined as 
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∑
=

>=<
N

i
ii xvxuxvxu

1
)()()(),( , 

where N  is the number of training samples. Here we should note that the above inner 

product expression is based on statistics, which can be approximated by interpolation. 

In fact, when the number of training data is large enough, the inner product can be 

easily deduced by the limitation theory. Thus without loss of generality, we denote the 

inner product using interpolation hereinafter. 

We say that the nonzero vectors nee ,,1 L  are orthogonal if 0, >=< ji ee , for ji ≠  and 

orthonormal if 1, >=< ii ee . 

For any f and { }∞=1kke  in Hilbert space H, the identity  

∑
∞

=

=
1

22

k
kaf , where >=< kk efa ,  , 

which is called Parseval identity, holds if and only if{ }∞=1kke  is also an orthonormal 

basis ([153], pp.166). 

In fact, for any linearly independent sequence { })(,),(),( 21 xgxgxg LL  in Hilbert space, 

we can construct an orthonormal basis { }Leee ,,, 21 L  by any orthonormal transformation, 

such as the Gram-Schmidt process ([153], pp.167-168). Furthermore, we will prove its 

approximation capability under orthonormal basis as follows: 

Theorem 1 For any Hf ∈ , suppose L,, 21 ee  is an orthonormal basis in H, then 

0,
1

→><−∑
=

L

j
jj eeff , as ∞→L . 
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Proof: We set ∑
∞

=

><−=
1

,ˆ
j

jj eefff . Since Hilbert space H is a complete inner product 

space ([154], pp.102), we have Hf ∈ˆ . Since L,, 21 ee  is an orthonormal basis in H, 

then according to Parseval identity, we have 

0

,,

,,,

,,

,ˆˆ

1

2

1

2

1

1

2

1

1

22

=
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><=
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∑ ∑
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=
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=

∞

=

k
kk
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k

j
jjk

k
k

j
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k
k

efef

eeefef

eeeff

eff

 

 
Remark: In the classic textbooks of functional analysis, we can find similar theorem in 

one-dimension space. Here we prove that the similar property can be extended into 

multi-dimension space. 

C. GRAM-SCHMIDT ORTHONORMALIZATION 

Based on Theorem 1, our focus is then put on how to construct an orthonormal set of 

base functions. According to the above analysis, we should find proper parameters 

such that 

)()()(11 iiLLi xfxgxg =++ ββ L , Ni ,,1L= , 

where )( ii xft = . 

Multiplying the above equation by )( ij xg  and adding the corresponding L  equations 

for Ni ,,1L= , we have 
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111
11 )()()()()()( ββ L , Lj ,,1 L= . 

The above equation can be re-written as 

>>=<<++>< )(),()(),()(),(11 xgxfxgxgxgxg jjLLj ββ L , Lj ,,1 L=  

The above L  equations can be rewritten as TH ~~ =β , 

where ( )TL xgxfxgxfT ><><= )(),(,,)(),(~
1 L and 

LLLLL

L

xgxgxgxg

xgxgxgxg
H

×
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We name H~  as an inner product hidden layer matrix. If { }Lkk xg 1)( =  are orthonormal to 

each other, the solutions of above equations can be calculated as 

∑
=

>==<
N

i
ikikk xgxfxgxf

1
)()()(),(β . However, as [152] has pointed out, the set of 

functions { }L
kk xg 1)( =  is not orthonormal to each other. Hence similar to [152], we apply 

the standard Gram-Schmidt orthonormalization to transform { })(,),(1 xgxg LL  into an 

orthonormal set of basis functions { })(,),(1 xuxu LL , i.e., 

[ ] [ ] Vxgxgxuxu LL ⋅= )(,),()(,),( 11 LL  

where V is an upper triangular matrix whose detailed expression can be found in Eq. 

21 in [152]. 

According to{ }Lii xu 1)( = ’s orthonormal property and Theorem 1, such weights { }L
ii 1=α  can 

ensure the approximation capability of neural networks, i.e.,  
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εα <−∑
=

L

i
ii xuf

1
)( , where >=< )(),( xuxf iiα . 

D. SUMMARY OF ORTHONORMAL TRANSFORMATION 

Gram-Schmidt Orthonormalization as analyzed above requires the column vectors of 

the original hidden matrix H to be independent of each other. Lemma 1 illustrates that 

if activation function )(xg  is infinitely differentiable, then for almost all the parameters, 

the column vectors 
L

i ih 1=
⎭
⎬
⎫

⎩
⎨
⎧→ of H are linearly independent of each other. Summarizing 

the above results, we have the following theorem: 

Theorem 2 For any bounded, integrable function ( ) 2,, Lxbag ii ∈  , if it is an infinitely 

differentiable additive function or kernel function, then neural networks by Gram-

Schmidt transformation are universal approximation. 

Remark: Theorem 2 shows the approximation capability of orthonormal neural 

networks, which further explains why the orthonormal neural networks proposed by 

[152] can achieve good generalization performance. Moreover, Theorem 2 extends the 

result of [152] from kernel neurons to additive neurons, which as said, is typically of 

higher classification accuracy. 

The learning procedure of the orthonormal neural networks can be summarized in the 

following steps: 

Algorithm: given a training set ( ){ }Nitxtx m
i

n
iii ,,1,,|, L=ℜ∈ℜ∈ and L  hidden neurons: 

step 1) Randomly configure parameters ia  and ib , Li ,,1L= . 

step 2) Calculate hidden layer output matrix H. 
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step 3) Transform matrix H into orthonormal matrix H~ by any orthonormal 

transformation.  

step 4) Compute the output weights derived by the inner product hidden layer 

matrix H~ . 

We employ the above Gram-Schmidt orthonormalization algorithm for end-to-end 

classification of QoS violations. As explained, x is the input vector for classification 

and in our case, consists of flow parameters such as delay, jitter and video frame rate. 

t is the target vector which indicates the classification result, which in our case, shows 

the category a QoS violation belongs to. Other vectors and matrixes are the internal 

calculating parameters of the neural network whose meanings have been explained in 

the previous sections. 
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Appendix B An Example Ontology for Protocols 
 

APPENDIX 
 AN  EX A M P L E  ON T O L O G Y  F O R  

CO M M U N I C A T I O N  PR O T O C O L S  
BB

 

This appendix shows some of the ontology we have developed for QoS middleware 

profiling. 

A. PROTOCOL.RDF 

This file contains the ontology of communication protocols. 
 
<!DOCTYPE rdf:RDF> 
 
<rdf:RDF 
    xmlns="http://www.comp.nus.edu.sg/dpf/ProtocolSpec#" 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:owl="http://www.w3.org/2002/07/owl#" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
    xml:base="http://www.comp.nus.edu.sg/dpf/ProtocolSpec#"> 
  
  <rdfs:Class rdf:ID="Service"/> 
 
  <rdfs:Class rdf:ID="Codec"> 
    <rdfs:subClassOf rdf:resource="#Service"/> 
  </rdfs:Class> 
 
  <rdfs:Class rdf:ID="Media_aware"> 
    <rdfs:subClassOf rdf:resource="#Service"/> 
  </rdfs:Class> 
 
  <rdfs:Class rdf:ID="Transport"> 
    <rdfs:subClassOf rdf:resource="#Service"/> 
  </rdfs:Class> 
   
  <owl:Class rdf:ID="Network"> 
    <rdfs:subClassOf rdf:resource="#Service"/> 
  </owl:Class> 
  
  <owl:Class rdf:ID="JMFCodec"> 
    <rdfs:subClassOf rdf:resource="#Codec"/> 
  </owl:Class> 
 
  <owl:DatatypeProperty rdf:ID="layerName"> 
    <rdfs:domain rdf:resource="#Service"/> 
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    <rdfs:range 
rdf:resource="http://www.w3.org/2001/XMLSchema#String"/> 
  </owl:DatatypeProperty> 
 
  <owl:DatatypeProperty rdf:ID="className"> 
    <rdfs:domain rdf:resource="#Service"/> 
    <rdfs:range 
rdf:resource="http://www.w3.org/2001/XMLSchema#String"/> 
  </owl:DatatypeProperty> 
 
  <owl:DatatypeProperty rdf:ID="protocolName"> 
    <rdfs:domain rdf:resource="#Service"/> 
    <rdfs:range 
rdf:resource="http://www.w3.org/2001/XMLSchema#String"/> 
  </owl:DatatypeProperty> 
 
  <owl:DatatypeProperty rdf:ID="supportedInputFormats"> 
    <rdfs:domain rdf:resource="#Codec"/> 
    <rdfs:range 
rdf:resource="http://www.w3.org/2001/XMLSchema#String"/> 
  </owl:DatatypeProperty> 
 
  <owl:DatatypeProperty rdf:ID="supportedOutputFormats"> 
    <rdfs:domain rdf:resource="#Codec"/> 
    <rdfs:range 
rdf:resource="http://www.w3.org/2001/XMLSchema#String"/> 
  </owl:DatatypeProperty> 
 
  <owl:DatatypeProperty rdf:ID="upperDependency"> 
    <rdfs:domain rdf:resource="#Service"/> 
    <rdfs:range 
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/> 
  </owl:DatatypeProperty> 
 
  <owl:DatatypeProperty rdf:ID="lowerDependency"> 
    <rdfs:domain rdf:resource="#Service"/> 
    <rdfs:range 
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/> 
  </owl:DatatypeProperty> 
 
  <owl:DatatypeProperty rdf:ID="polarity"> 
    <rdfs:domain rdf:resource="#Service"/> 
    <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/> 
    <rangeValue>1</rangeValue> 
    <rangeValue>0</rangeValue> 
    <rangeValue>-1</rangeValue>     
  </owl:DatatypeProperty> 
 
</rdf:RDF> 

B. INSTANCE.RDF 

This file describes the protocol instances available in a real end-host. 
 
<!DOCTYPE rdf:RDF> 
 
<rdf:RDF 
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    xmlns="http://www.comp.nus.edu.sg/dpf/ProtocolSpec#" 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:owl="http://www.w3.org/2002/07/owl#" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
    xml:base="http://www.comp.nus.edu.sg/dpf/ProtocolSpec#"> 
 
  <JMFCodec rdf:ID="MPA_RTP_Encoder"> 
    <layerName>protocol.service.Codec</layerName> 
    <protocolName>MPA_RTP</protocolName> 
    <className>protocol.plugin.codec.MPA_RTP_Encoder</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Media_aware</lowerDependency> 
    <polarity>1</polarity> 
  </JMFCodec> 
 
  <JMFCodec rdf:ID="MPA_RTP_Decoder"> 
    <layerName>protocol.service.Codec</layerName> 
    <protocolName>MPA_RTP</protocolName> 
    <className>protocol.plugin.codec.MPA_RTP_Decoder</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Media_aware</lowerDependency> 
    <polarity>-1</polarity> 
  </JMFCodec> 
 
  <JMFCodec rdf:ID="G723_RTP_Encoder"> 
    <layerName>protocol.service.Codec</layerName> 
    <protocolName>G723_RTP</protocolName> 
    <className>protocol.plugin.codec.G723_RTP_Encoder</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Media_aware</lowerDependency> 
    <polarity>1</polarity> 
  </JMFCodec> 
 
  <JMFCodec rdf:ID="G723_RTP_Decoder"> 
    <layerName>protocol.service.Codec</layerName> 
    <protocolName>G723_RTP</protocolName> 
    <className>protocol.plugin.codec.G723_RTP_Decoder</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Media_aware</lowerDependency> 
    <polarity>-1</polarity> 
  </JMFCodec> 
 
  <JMFCodec rdf:ID="JPEG_RTP_Encoder"> 
    <layerName>protocol.service.Codec</layerName> 
    <protocolName>JPEG_RTP</protocolName> 
    <className>protocol.plugin.codec.JPEG_RTP_Encoder</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Media_aware</lowerDependency> 
    <polarity>1</polarity> 
  </JMFCodec> 
 
  <JMFCodec rdf:ID="JPEG_RTP_Decoder"> 
    <layerName>protocol.service.Codec</layerName> 
    <protocolName>JPEG_RTP</protocolName> 
    <className>protocol.plugin.codec.JPEG_RTP_Decoder</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Media_aware</lowerDependency> 
    <polarity>-1</polarity> 
  </JMFCodec> 
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  <JMFCodec rdf:ID="H263Encoder"> 
    <layerName>protocol.service.Codec</layerName> 
    <protocolName>H.263</protocolName> 
    <className>protocol.plugin.codec.H263Encoder</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Media_aware</lowerDependency> 
    <polarity>1</polarity> 
  </JMFCodec> 
 
  <JMFCodec rdf:ID="H263Decoder"> 
    <layerName>protocol.service.Codec</layerName> 
    <protocolName>H.263</protocolName> 
    <className>protocol.plugin.codec.H263Decoder</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Media_aware</lowerDependency> 
    <polarity>-1</polarity> 
  </JMFCodec> 
 
  <Media_aware rdf:ID="RTPOut"> 
    <layerName>protocol.service.Media_aware</layerName> 
    <protocolName>RTP</protocolName> 
    <className>protocol.plugin.media_aware.RTPOut</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Transport</lowerDependency> 
    <polarity>1</polarity> 
  </Media_aware> 
 
  <Media_aware rdf:ID="RTPIn"> 
    <layerName>protocol.service.Media_aware</layerName> 
    <protocolName>RTP</protocolName> 
    <className>protocol.plugin.media_aware.RTPIn</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Transport</lowerDependency> 
    <polarity>-1</polarity> 
  </Media_aware> 
 
  <Transport rdf:ID="UDPOut"> 
    <layerName>protocol.service.Transport</layerName> 
    <protocolName>UDP</protocolName> 
    <className>protocol.plugin.transport.UDPOut</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Network</lowerDependency> 
    <polarity>1</polarity> 
  </Transport> 
 
  <Transport rdf:ID="UDPIn"> 
    <layerName>protocol.service.Transport</layerName> 
    <protocolName>UDP</protocolName> 
    <className>protocol.plugin.transport.UDPIn</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Network</lowerDependency> 
    <polarity>-1</polarity> 
  </Transport> 
 
  <Transport rdf:ID="TCPOut"> 
    <layerName>protocol.service.Transport</layerName> 
    <protocolName>TCP</protocolName> 
    <className>protocol.plugin.transport.TCPOut</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Network</lowerDependency> 
    <polarity>1</polarity> 
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  </Transport> 
 
  <Transport rdf:ID="TCPIn"> 
    <layerName>protocol.service.Transport</layerName> 
    <protocolName>TCP</protocolName> 
    <className>protocol.plugin.transport.TCPIn</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>protocol.service.Network</lowerDependency> 
    <polarity>-1</polarity> 
  </Transport> 
 
  <Network rdf:ID="DummyIPOut"> 
    <layerName>protocol.service.Network</layerName> 
    <protocolName>IP</protocolName> 
    <className>protocol.plugin.network.DummyIPOut</className> 
    <upperDependency>NULL</upperDependency> 
    <lowerDependency>NULL</lowerDependency> 
    <polarity>1</polarity> 
  </Network> 
 
  <Network rdf:ID="DummyIPIn"> 
    <layerName>protocol.service.Network</layerName> 
    <protocolName>IP</protocolName> 
    <className>protocol.plugin.network.DummyIPIn</className> 
    <upperDependency>protocol.service.Transport</upperDependency> 
    <lowerDependency>NULL</lowerDependency> 
    <polarity>-1</polarity> 
  </Network> 
 
</rdf:RDF> 
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