

AN ADAPTIVE FRAMEWORK FOR END-TO-END
QUALITY OF SERVICE MANAGEMENT

LIFENG ZHOU

(B.S. and M. Eng., Nanjing University)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48630268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

Acknowledgement

First and foremost, I wish to express my deepest gratitude to my supervisor, Dr. Pung

Hung Keng and co-supervisor Dr. Ngoh Lek Heng for their invaluable guidance and

support throughout my research efforts towards this thesis. Their insights and

suggestions to the problems in this thesis have enlightened me in various detailed

aspects throughout the work.

Dr. Ooi Wei Tsang, Dr. Samarjit Chakraborty and Associate Professor Roger

Zimmermann have served as my reviewers at different stages of this thesis. I would

like to express my appreciation for their suggestions and comments and their time in

reviewing this thesis.

I would like to thank all my colleagues in the Network Systems & Services (NSS)

Laboratory. Among them, special thanks go to Dr. He Jun, Dr. Gu Tao, Dr. Long Fei,

Dr. Chen Lei, Ms. Feng Yuan, Ms. An Liming and Mr. Suthon Sae-Whong for their

constant assistance and encouragements.

Last but not least, I would like to thank my parents and my wife for their love,

unconditional support and patience during the course of my doctoral studies.

 iii

Table of Contents

CHAPTER 1 INTRODUCTION.. 1

1.1 MOTIVATION ... 3
1.2 PROBLEM STATEMENT... 6
1.3 THESIS CONTRIBUTIONS .. 7
1.4 THESIS OUTLINE .. 9

CHAPTER 2 LITERATURE REVIEW.. 10

2.1 QOS IN COMMUNICATION SYSTEMS .. 11
2.2 QOS PROVISIONING ARCHITECTURES.. 12

2.2.1 Network QoS Models... 12
2.2.2 QoS-aware Operating Systems.. 14
2.2.3 QoS Middleware ... 15
2.2.4 Multimedia Applications and Media Framework.. 19
2.2.5 Cross-layer QoS Architectures.. 20
2.2.6 End-to-end QoS Schemes .. 22

2.3 DYNAMIC PROTOCOL COMPOSITION.. 23
2.4 SUMMARY.. 25

CHAPTER 3 THE QOS COORDINATION AND MANAGEMENT FRAMEWORK 26

3.1 REFERENCE MODEL FOR QOS MANAGEMENT ... 26
3.2 QCMF MANAGEMENT ARCHITECTURE ... 30
3.3 QCMF MANAGEMENT FUNCTIONS.. 32
3.4 SUMMARY.. 35

CHAPTER 4 END-TO-END QOS KNOWLEDGE MODELING.. 36

4.1 QOS KNOWLEDGE AND QOS ONTOLOGY... 36
4.1.1 Related Work... 36
4.1.2 General QoS Knowledge... 38
4.1.3 QoS Ontology and RDFS Schema... 40
4.1.4 QoS Ontology Predicates.. 42

4.2 APPLICATION QOS KNOWLEDGE MODELING... 44
4.2.1 Motivation and Design Considerations... 44
4.2.2 Two Layer Application QoS Ontology Model ... 48
4.2.3 QoS Domain Specification and Knowledge Acquisition ... 50
4.2.4 QoS Compilation and Mapping .. 55

4.3 MIDDLEWARE QOS KNOWLEDGE MODELING.. 57
4.3.1 Design Considerations .. 57
4.3.2 Ontology Modeling of Protocols ... 61
4.3.3 Semantic Protocol Stack Composition .. 64

4.4 NETWORK QOS KNOWLEDGE MODELING BRIEFING.. 67
4.5 QOS KNOWLEDGE PROCESSING... 68

4.5.1 Knowledge Sharing ... 69
4.5.2 Knowledge Reasoning... 71

4.6 SUMMARY.. 75

CHAPTER 5 END-TO-END QOS VIOLATION ANALYSIS.. 76

5.1 DESIGN CONSIDERATIONS ... 76
5.2 OVERVIEW OF OUR APPROACH.. 80
5.3 END-TO-END QOS VIOLATION ANALYSIS .. 83

5.3.1 End-to-end Monitoring of QoS Violations .. 83
5.3.2 Application QoS Violation Indicator... 84

 iv

5.3.3 Correlate Application QoS Violations with Flow Statistics .. 86
5.4 VIOLATION CLASSIFICATION WITH NEURAL NETWORK ... 89

5.4.1 Neural Network Algorithms Briefing .. 90
5.4.2 Offline Algorithms... 92
5.4.3 Online Algorithms ... 92

5.5 SUMMARY.. 94

CHAPTER 6 CROSS-COMPONENT QOS ADAPTATION.. 95

6.1 END-TO-END QOS MODEL ... 95
6.2 NETWORK QOS MODEL ... 98
6.3 END-HOST QOS MODEL... 101
6.4 END-TO-END COORDINATION AND ADAPTATION.. 103

6.4.1 Information Gathering Algorithm ... 104
6.4.2 Cross-component Adaptation Evaluation Algorithm .. 106
6.4.3 End-to-end Signaling and Adaptation Algorithm.. 113

6.5 SIMULATION RESULTS ... 114
6.6 SUMMARY.. 119

CHAPTER 7 IMPLEMENTATION AND EVALUATIONS.. 121

7.1 IMPLEMENTATION SCENARIO... 121
7.2 QOS KNOWLEDGE PROCESSING... 123

7.2.1 SQS Initiation Delay ... 124
7.2.2 Knowledge Reasoning Performance ... 125

7.3 QOS VIOLATION ANALYSIS ... 127
7.3.1 Testing Cases .. 129
7.3.2 Data Analysis .. 134

7.4 END-TO-END QOS MANAGEMENT ... 140
7.4.1 QCMF Management Procedures .. 140
7.4.2 QCMF Management Performance.. 144
7.4.3 Control Channel Overhead ... 149

7.5 SUMMARY.. 151

CHAPTER 8 CONCLUSIONS AND FUTURE WORK.. 152

8.1 THESIS SUMMARY ... 152
8.2 FUTURE WORK .. 155

APPENDIX A ORTHONORMAL NETWORK FOR CLASSIFICATION............................... 158

A. SINGLE HIDDEN LAYER FEEDFORWARD NETWORK WITH RANDOM HIDDEN NODES 158
B. APPROXIMATION WITH ORTHONORMAL BASIS .. 160
C. GRAM-SCHMIDT ORTHONORMALIZATION ... 162
D. SUMMARY OF ORTHONORMAL TRANSFORMATION .. 164

APPENDIX B AN EXAMPLE ONTOLOGY FOR PROTOCOLS .. 166

A. PROTOCOL.RDF ... 166
B. INSTANCE.RDF... 167

BIBLOGRAPHY…………………………………………………………………………………...…170

 v

List of Tables

TABLE 4-1: QOS PROFILES FOR MOBILE MULTIMEDIA APPLICATIONS... 53
TABLE 4-2: PARTIAL RDFS REASONING RULE SET IN QCMF... 72

TABLE 4-3: EXAMPLE FIRST-ORDER LOGIC RULES FOR COORDINATED QOS ADAPTATION........................ 74
TABLE 5-1: TUNABLE PARAMETERS IN VIDEO TRANSMISSION, APPLICATIONS.. 84

TABLE 5-2: FLOW DESCRIPTORS FOR END-TO-END QOS... 86
TABLE 6-1: SERVICE OPTIONS TABLE OF A NETWORK QOS COMPONENT .. 98
TABLE 6-2: SERVICE STATUS TABLE OF A NETWORK QOS COMPONENT AS IS MAINTAINED BY QMAN

MIDDLEWARE INSIDE THE FLOW RECEIVER; FOR EACH NETWORK QOS COMPONENT, A

CORRESPONDING TABLE IS KEPT BY QMAN AND UPDATED THROUGH EITHER PUSH OR PULL MODE

... 103

TABLE 6-3: SERVICE SUBSCRIPTION SETTINGS OF A FLOW IN SIMULATION AND THE ITS UTILITY FACTOR

... 114

TABLE 7-1: TESTBED CONFIGURATIONS ... 123

TABLE 7-2: QOS VIOLATION CLASSIFICATION IN VIEW OF CONTROLLABLE RESOURCES AND AVAILABLE

END-TO-END ADAPTATION CHOICES.. 128

TABLE 7-3: QOS VIOLATION TEST WITH PLANETLAB NODES (SOURCE FROM NUS) 134

TABLE 7-4: SPECIFICATION OF QOS VIOLATION DATASETS: THE WIRED-LINE CATEGORY CONTAINS DATA

OBTAINED FROM TESTBED, CAMPUS NETWORK AND PLANETLAB PLATFORM 134
TABLE 7-5: CLASSIFICATION ACCURACY OF QOS VIOLATIONS IN DIFFERENT ALGORITHMS................... 135

TABLE 7-6: CLASSIFICATION ACCURACY FOR QOS VIOLATIONS IN OUR ORTHONORMAL ALGORITHM ... 138

TABLE 7-7: USER-DEFINED ADAPTATION POLICIES FOR VIDEO STREAMING.. 144

TABLE 7-8: TIME TAKEN IN END-TO-END QOS MANAGEMENT.. 145

 vi

List of Figures

FIGURE 3-1: REFERENCE MODEL FOR END-TO-END QOS PROVISIONING AND COORDINATION 26

FIGURE 3-2: END-TO-END QOS TRANSMISSION SCENARIO.. 30

FIGURE 3-3: QCMF INCORPORATES BOTH HOST ARCHITECTURES AND NETWORK ARCHITECTURES......... 31

FIGURE 3-4: QCMF DESIGN CONCEPTS: CONTROL PLANE FOR SIGNALING, DATA PLANE FOR MEDIA

TRANSMISSION AND KNOWLEDGE PLANE FOR META-DATA RECORDING .. 32

FIGURE 3-5: MANAGEMENT FUNCTIONS OF QCMF ARE FULFILLED BY ITS SEVERAL BUILD-TIME AND

RUNTIME EXECUTION MODULES: SEMANTIC QOS SPECIFICATION (SQS) FOR KNOWLEDGE

MODELING, MIDDLEWARE QOS MANAGER (QMAN) FOR RUNTIME MANAGEMENT AND DYNAMIC

PROTOCOL FRAMEWORK (DPF) FOR MIDDLEWARE LEVEL ADAPTATION .. 35

FIGURE 4-1: PARTIAL QOS ONTOLOGY FOR ACCESS NETWORK WRITTEN IN RDFS 43
FIGURE 4-2: SEMANTIC MODELING AND SYNTACTICAL QOS SPECIFICATION IN QCMF............................ 47

FIGURE 4-3: THE HIERARCHICAL APPLICATION QOS ONTOLOGY MODEL.. 48
FIGURE 4-4: PARTIAL QOS DOMAIN SPECIFICATION FOR VIDEO STREAMING APPLICATIONS..................... 51

FIGURE 4-5: AN EXAMPLE OF KNOWLEDGE BUILT IN THE VIDEO-AUDITORY QOS DOMAIN 52
FIGURE 4-6: DYNAMIC COMPILATION OF AQOSPEC... 55

FIGURE 4-7: ARCHITECTURE OF DPF WITH ONTOLOGY MODELING .. 61
FIGURE 4-8: PROTOCOL KNOWLEDGE MODELING ENTRY POINT: SERVICE AND CATEGORY CLASSES 62

FIGURE 4-9: TCP IS OF (RDF:) TYPE TRANSPORT AND BELONGS TO TRANSPORT CATEGORY 63
FIGURE 4-10: SEMANTIC PROTOCOL SELECTION AND PROTOCOL STACK BUILDING 65

FIGURE 4-11: RDFS DEFINITION FOR COMPATIBILITY AND DEPENDENCY .. 66
FIGURE 4-12: END-TO-END QOS KNOWLEDGE SHARING AND ADAPTATION SIGNALING............................ 69

FIGURE 4-13: ONTOLOGY DEFINITIONS FOR SOME OS TYPES AND INSTANCES INFORMATION 73
FIGURE 5-1: OBSERVED JITTER VARIATION IN A VIDEO TRANSMISSION .. 79

FIGURE 5-2: SINGLE HIDDEN LAYER FEEDFORWARD NEURAL NETWORKS.. 90
FIGURE 6-1: ABSTRACTED END-TO-END QOS PROVISIONING MODEL ... 95

FIGURE 6-2: END-HOST QOS MANAGEMENT MODEL (QMAN) .. 101

FIGURE 6-3: SKELETON OF THE CROSS-COMPONENT ADAPTATION EVALUATION ALGORITHM................ 107

FIGURE 6-4: DELAY CHANGE AT NETWORK QOS COMPONENT 2 WHERE A VIOLATION HAPPENS AND

COMPONENT 4 WHICH PARTICIPATES IN THE END-TO-END COLLABORATION TO SOLVE THE

VIOLATION.. 118

FIGURE 6-5: EXPERIENCED END-TO-END DELAY BEFORE/AFTER A DELAY VIOLATION............................ 119

FIGURE 6-6: DELAY OVERHEAD OF ADAPTATION ALGORITHMS AEA AND ASU FOR MESSAGE EXCHANGE

AND SIGNALING AMONG NETWORK QOS COMPONENTS AND END-HOSTS...................................... 119

FIGURE 7-1: TESTBED ENVIRONMENTS... 122

 vii

FIGURE 7-2: OVERHEAD OF THE TWO-LAYER ONTOLOGY DESIGN .. 124

FIGURE 7-3: THE ONTOLOGY REASONING PERFORMANCE... 126

FIGURE 7-4: KNOWLEDGE REASONING PERFORMANCE COMPARISON ... 127

FIGURE 7-5: CPU OCCUPIER PROGRAM FOR CPU VIOLATION AT END-HOSTS... 128

FIGURE 7-6: OBSERVATION OF END-TO-END QOS W/ AND W/O CPU CONTENTION................................. 130

FIGURE 7-7: TRAFFIC GENERATOR CAN PRODUCE TRAFFIC OF EITHER CONSTANT RATE OR NORMAL

DISTRIBUTION ... 131

FIGURE 7-8: OBSERVATION OF END-TO-END QOS W/ AND W/O NETWORK CONGESTION......................... 131
FIGURE 7-9: OBSERVATION OF END-TO-END QOS VARIATION IN WIRELESS COMMUNICATION 133

FIGURE 7-10: TESTING CLASSIFICATION ACCURACY COMPARISON BETWEEN LMBP AND ELM 137
FIGURE 7-11: TRAINING TIME COMPARISON BETWEEN LMBP AND ELM... 137

FIGURE 7-12: PERFORMANCE OF THE PROPOSED ORTHONORMAL ALGORITHM IN QOS VIOLATION

CLASSIFICATION: (A) TRAINING AND TESTING ACCURACY CURVES, (B) TRAINING TIME CURVE 138

FIGURE 7-13: AN EXAMPLE QLIST FOR VIDEO STREAMING .. 140
FIGURE 7-14: GRAPHIC USER INTERFACE (GUI) FOR STREAMING.. 142

FIGURE 7-15: NETQ PROGRAM FOR DATA PACKET CAPTURING AT THE MEDIA RECEIVER 143

FIGURE 7-16: SAMPLE SPARQL QUERY FOR ONTOLOGY INTEGRITY CHECK BETWEEN TWO INSTANCE

CLASSES.. 145

FIGURE 7-17: STREAM DELIVERY AND ADAPTATION AT THE MEDIA SENDER.. 147

FIGURE 7-18: STREAM RECEIPT AND ADAPTATION AT THE MEDIA RECEIVER.. 147

FIGURE 7-19: QUALITY FLUCTUATION OF THE RECEIVING FRAME RATE BEFORE, DURING AND AFTER

CONGESTION VIOLATION... 148

FIGURE 7-20: END-TO-END FLOW STATISTICS OF AN AUDIO STREAMING UNDER VIOLATION.................. 149

FIGURE 7-21: RMI INVOCATION DELAY FOR THE CONTROL PLANE (LOGARITHM SCALE)....................... 150

 viii

Summary

High-speed networks and powerful end-hosts enable new types of Quality of Service

(QoS) sensitive applications such as Video-On-Demand to be offered. In contrast to

traditional text and data applications which are burst and elastic in nature, these

emerging real-time multimedia applications are demanding on system resources such

as bandwidth and CPU, and are also sensitive to continuous QoS performance. To

provide end-to-end QoS to users, researchers have spent great efforts in finding

suitable QoS provisioning mechanisms in areas such as QoS middleware, adaptive

applications and QoS-aware networks. We find that the approaches of most existing

researches have been piecemeal, wherein each focusing on a different aspect of the

QoS provisioning mechanisms. We argue that the real design issue of end-to-end QoS

is more complex than when each of these QoS mechanisms is considered on its own. It

is therefore not sufficient to rely merely on, say middleware, applications or networks

to fulfill end-to-end QoS. Instead, an integrated approach to the overall end-to-end

QoS provisioning, harmonizing QoS mechanisms in the applications, middleware and

networks are essential.

In this thesis, we propose an adaptive end-to-end QoS coordination and management

framework (QCMF) for the QoS management of multimedia applications. Unlike other

end-to-end QoS architectures which mainly focus on the interface design between

adjacent layers, resource reservation or work-flow management, QCMF aims at

designing an effective end-to-end QoS platform for accommodating and coordinating

QoS efforts from heterogeneous end-to-end QoS components (e.g., end-host QoS

 ix

management and network QoS provision). Our solution encompasses existing or new

QoS mechanisms at three levels: the network level, the middleware level and the

application level, each of which is abstracted as a meta-model in the end-to-end QoS

scenario where their behaviors and interactions are studied. The proposed framework

is adaptive in the sense that it recognizes and coordinates the adaptive behaviors of

multimedia applications and networks in view of the changing runtime environment

context. Besides, QCMF provides the ability of dynamic composition of end-hosts’

communication stacks, which provides another possible dimension of QoS adaptation

at the middleware level.

With the aforementioned methodology in mind, we have proposed a set of techniques

to fulfill our overall design objectives of a coordinated end-to-end QoS management.

Firstly, we propose a unified knowledge plane for end-to-end QoS modeling, in which

QoS information of each end-to-end QoS component is described semantically. The

semantic approach of modeling QoS knowledge facilitates the deployment of

multimedia applications in heterogeneous environments where services of desirable (or

compatible) features can be selected according to runtime service availability.

Moreover, information sharing among QoS components becomes easier as different

end-to-end QoS components would have a common understanding of QoS knowledge

while interacting with each other. Secondly, we propose a novel approach to the

analysis of QoS violations. By monitoring end-to-end flow statistics and application

performance, a QoS violation can be quickly identified with high accuracy. Such an

approach outperforms traditional rule-based violation detection methods which have

seldom undergone a rigorous testing procedure and require clear margins of QoS

parameters in asserting a QoS violation. Lastly, we propose an end-to-end QoS

coordination scheme and algorithms for runtime collaborative end-to-end QoS

 x

management. By exchanging QoS information and coordinating adaptation behaviors

among QoS components, a QoS violation can be solved by either a local adjustment at

the QoS component where the violation takes place or being processed by another QoS

component participating in the end-to-end collaboration. Such a decision is made at

end-hosts in a pure end-to-end fashion without violating the end-to-end design

principle of the Internet. Our prototype implementation validates our design

philosophy and demonstrates that QCMF is functional. Performance evaluation results

of the prototype show that QCMF works effectively in many aspects of end-to-end

QoS management such as control signaling, knowledge processing, violation detection

and coordinated adaptation.

 xi

Publications

[1] Lifeng Zhou, Lei Chen, Hung Keng Pung and Lek Heng Ngoh, “Identify QoS

Violations through Statistical End-to-end Analysis”, to submit to a journal, 2009

[2] Lei Chen, Lifeng Zhou and Hung Keng Pung, “Universal Approximation and

QoS Violation Applications of Extreme Learning Machine”, accepted by Neural

Processing Letters, Springer, 2008

[3] Lei Chen, Lifeng Zhou and Hung Keng Pung, “Universal Approximation

Analysis and Applications of Orthonormal Neural Networks”, submitted to

International Journal of Pattern Recognition and Artificial Intelligence, 2008

[4] Lifeng Zhou, Lei Chen, Hung Keng Pung and Lek Heng Ngoh, "End-to-end

Diagnosis of QoS Violations using Neural Networks", in Proc. the 33rd IEEE

International Conference on Local Computer Networks (LCN), 2008

[5] Lifeng Zhou, Hung Keng Pung and Lek Heng Ngoh, “An end-to-end Framework

for Coordinated QoS Adaptation”, in Proc. the 33rd IEEE International

Conference on Local Computer Networks (LCN), 2008

[6] Lei Chen, Lifeng Zhou and Hung Keng Pung, “Approximation Capability of

Feedforward Neural Networks with Least Square Solutions”, accept with major

revision by NeuroComputing, 2008

 xii

[7] Lifeng Zhou, Hung Keng Pung, Lek Heng Ngoh and Tao Gu, “Ontology

Modeling of a Dynamic Protocol Stack”, in Proc. the 31st IEEE International

Conference on Local Computer Networks (LCN), 2006

[8] Lifeng Zhou, Hung Keng Pung and Lek Heng Ngoh, “Towards Semantic

Modeling for QoS Specification”, in Proc. the 31st IEEE International

Conference on Local Computer Networks (LCN), 2006

[9] Lifeng Zhou, Hung Keng Pung and Lek Heng Ngoh, “Knowledge Modeling for

End-to-End QoS Management”, in Proc. the 1st International Conference on

Communications and Networking in China (ChinaCom), 2006

[10] Liming An, Hung Keng Pung and Lifeng Zhou, “Design and Implementation of

a Dynamic Protocol Framework”, Computer Communications, Volume 29, Issue

9, pp. 1309-1315, May 2006

[11] Suthon Sae-whong, Hung Keng Pung and Lifeng Zhou, “QMan: an Adaptive

End-to-End QoS Architecture”, in Proc. the 12th IEEE International Conference

on Networks (ICON), 2004

 1

Chapter 1 Introduction

CHAPTER
 IN T R O D U C T I O N 11

Most conventional and legacy network applications have been designed to operate in

low to moderate speed (a few 10s of Mbps) network environments. These networks

have been useful and adequate for supporting text and data applications, including

distributed applications requiring short requests-responses, in which relatively small

amount of bandwidth is needed for each transmission. Moreover, these applications are

rather elastic in nature, i.e., they can tolerate great variations in performance such as

packet delay and throughput rates. In recent years, great advance has been made in

communication technologies where networks that can support data traffic in gigabits

per second on every port (e.g., Gigabit Ethernet) are now available off-the-shelf. As a

result, high-speed networks and powerful end-hosts enable new types of applications

such as Video-on-Demand, multimedia-based collaborative computing and

teleconferencing. In contrast to traditional elastic data applications, these emerging

multimedia applications have different traffic characteristics and are demanding on

system resources such as network bandwidth and CPU time slice. The challenges in

designing such applications generally lie in catering for time dependent (or continuous)

media: audio and video. Besides storage speed, memory size and processing power,

timely delivery of media data over networks is also an essential factor. It requires not

only considerable computing resources, but also ensures that these resources will be

available over a certain period of time. Failure to sustain such provisioning will

generally compromise the presentation quality of continuous media. Thus, the need for

 2

transmission quality assurances for these Quality of Service (QoS) sensitive

applications arises naturally.

The question of which suitable mechanisms for the provisioning of QoS has been

asked and possible answers suggested and issues debated. One interesting but trivial

suggestion of solution is through over-provisioning of bandwidth. The motivation of

this thought is that bandwidth, due to increasing availability of fibers and wavelength-

division multiplexing (WDM) technique, is potentially abundant and cheap. We

believe over-provisioning can greatly ease QoS problems but is not a panacea. This is

because of at least three main reasons: (1) not all QoS problems are constrained by

bandwidth, jitter is a classical example; (2) no matter how much bandwidth the

network can provide, new innovative applications is likely to be created in the near

future to consume them [1]; (3) unless there is a common physical transmission

technology (fiber is a potential candidate) for all different network solutions, the vision

of the abundant bandwidth cannot be materialized for a very simple reason: all

networks are to be interconnected in one way or the other and hence those networks of

lower bandwidth will become the QoS bottleneck. Indeed LANs, dial-ups, wireless

LANs, WANs and broadband co-exist and interconnect to form the global Internet.

The use of high-speed core networks has not eliminated QoS problems, as we have

known and experienced today. For example, wireless communication technologies,

including wireless LAN (IEEE802.11b/g), Bluetooth and 3G mobile networks, are

being developed and deployed as common services nowadays, which enables wireless

multimedia streaming to be delivered in light-weighted devices such as handset. As

end-applications are very likely to run over either fixed wired networks or wireless

networks, the overall network environment becomes more dynamic and heterogeneous.

Hence the QoS problems are more difficult to be resolved by relying on a simple

 3

mechanism, such as over-provisioning of bandwidth. Suitable QoS mechanisms are

needed in networks and end-hosts to best assure the timely delivery of multimedia data.

1.1 MOTIVATION

For over ten years, researchers have proposed various QoS solutions in either end-

hosts or networks. In QoS provisioning through networks, researches have been

focused on providing suitable QoS models and service disciplines, as well as

appropriate admission control and resource reservation protocols. For example, the

Internet Engineering Task Force (IETF) has defined several standard QoS

architectures such as Integrated Services (IntServ) [2], Differentiated Services

(DiffServ) [3], Constraint-based Routing [4] and Multiprotocol Label Switching

(MPLS) [5]. IntServ and DiffServ are well-known network QoS models, which have

been studied and compared (through simulation, prototyping and performance

measurements) by many researchers. IntServ, relying on the Resource Reservation

Protocol (RSVP) [6], duels with resource allocations and reservations for each data

flow and hence would have the potential to provide guaranteed QoS service. Many

network vendors, such as Cisco and Sun Microsystems have IntServ/RSVP

implementations on their routers [7]. On the other hand, DiffServ is based on a simple

model where traffic entering a network is aggregated into classes and treated

differently within a DiffServ-enabled network. There are router prototypes and

products actually implementing DiffServ service. MPLS is a forwarding scheme that

has the ability to aggregate traffic flows and hence can provide a basis for both IntServ

and DiffServ QoS support over core networks. Constraint-based routing intends to

address QoS from the routing point of view by establishing an appropriate route

meeting some QoS constraints such as bandwidth or/and delay requirements.

 4

In end-hosts, various QoS architectures have been proposed and discussed. According

to their resource management styles, these solutions can be categorized into

reservation-based approaches and adaptation-based approaches [8]. Reservation-

based approaches employ resource reservation and admission control mechanisms

(such as CPU preemption and scheduling) to guarantee the availability of resources

before multimedia data is delivered [9]. The sustaining of transmission quality depends

on the QoS technologies of the underlying platform (e.g., QoS capability of the

operating system and network), in which the data packets are handled. Nevertheless,

because of the following reasons, multimedia transmission cannot rely solely on such

resource allocation and reservation mechanisms.

• QoS degradation in best effort networks is often unavoidable [10], as QoS

assurance provided by the underlying services may vary from time to time.

• The Internet traffic produced by end-users exhibits a dynamic behavior. There

has been no effective QoS reservation mechanism for dueling with the diverse

QoS requirements of applications and the dynamic behavior of the network

traffic.

• QoS guaranteed technologies have yet to be established as common services,

hence most today’s networks are still operating in best-effort or best assured

mode.

In view of the above restrictions, QoS adaptation, which allows a multimedia

application to react suitably to occurring QoS violations, is essential to ensure that the

application can sustain certain level of QoS in various runtime environments. An

adaptation-based QoS approach can operate in best-effort or QoS-enabled network

environments and manages QoS in a pure end-to-end fashion where QoS monitoring,

analysis and adaptation are enforced throughout the lifecycle of the transmission to

 5

smooth the quality fluctuation and best maintain the agreed QoS level. An adaptation-

based approach requires minimum modification to existing network architecture, thus

makes itself more suitable to be deployed over current non-real-time OS and best-

effort network environments (or future QoS-enabled network environments).

In adaptation-based QoS researches, progresses have been made in several directions

such as QoS-aware applications, QoS middleware or QoS-enabled operating systems.

Most work done in the application layer is related to the transmission of continuous

media streams (e.g. variable bit rate codec, media compression, frame-dropping and

layered encoding scheme), and hence is rather media specific and restrictive in certain

application domains [11][12][13][14][15]. On the other hand, researchers have also

proposed research prototypes of QoS enabled/sensitive operating systems, applying

results from real-time scheduling theory to support system level QoS management

[16][17][18]. However, such an approach would often result in a proprietary OS,

which is therefore not popular. In recognition of these limitations, more active research

efforts have been devoted to provide QoS supports as middleware services

[19][20][21][22][23][24]. The QoS middleware approach is popular for at least two

main reasons despite of its performance overhead: (1) the QoS solutions are likely to

be independent of the network and OS platforms, and (2) the QoS controls can be

specifically designed and possibly be transparent to applications.

This thesis proposes an adaptive end-to-end QoS Coordination and Management

Framework (which we call QCMF) for QoS management of end-to-end multimedia

transmission. Different from most existing work that focuses on a particular QoS

provisioning domain (e.g., networks or applications), QCMF provides an integrated

solution for end-to-end QoS management which designs a set of techniques to embrace

 6

existing or new QoS efforts from different areas of end-to-end provisioning. Details of

our approach will be discussed later.

1.2 PROBLEM STATEMENT

The need to provide QoS support for networked multimedia applications has long been

recognized and discussed. As QoS issue has not been part of the design considerations

of virtually all network architectures, including that of the Internet, the design and

development of suitable QoS provisioning mechanisms has to be carefully considered

so as to ensure the stability of current Internet architecture and its compatibility with

other add-on network services such as Network Address Translation (NAT) [27]. In

fact, the complexity of QoS provisioning has already resulted in various QoS solutions

each focusing on a different aspect of the QoS provisioning mechanisms, depending on

the perspectives and design centric of the designers. As discussed, these solutions can

be broadly classified into three main design viewpoints: QoS-aware applications,

dedicated QoS middleware and network QoS models.

However, the real design issues of QoS provision are far more complex than when

each of these design viewpoints is considered on its own. This is simply because

meeting performance requirements of QoS-sensitive applications is fundamentally an

end-to-end issue. It requires all QoS-enabled facilities along the end-to-end path

working cohesively to achieve the desired end-to-end performance. As most existing

QoS solutions focus on their respective areas while paying little attention to the

interaction with other QoS services on the end-to-end path, QoS can only be sustained

in their local domains, while no satisfactory end-to-end performance can be provided

to end-users. In this sense, we believe that a more holistic approach to the overall end-

 7

to-end QoS provisioning, integrating QoS mechanisms in the applications, middleware

and the networks is essential.

An adaptive QoS coordination and management framework (QCMF) has been

developed based on such a design consideration. The framework embraces QoS

services along the provisioning path and provides mechanisms for QoS coordination

and adaptation among them in both build-time instantiation and runtime QoS

management. Different from existing integrated end-to-end architectures which have

typically developed a whole set of new end-to-end QoS mechanisms by themselves

[9][28], QCMF aims at accommodating existing QoS techniques from different

domains and providing a platform for their interaction. For instance, QCMF does not

invent any new signaling protocol for QoS negotiation among end-to-end QoS

components (opposite to [29]), but makes use of any existing protocols capable of

negotiation. Unlike [30] which designs its own network QoS implementation as part of

its end-to-end QoS efforts, QCMF assumes a generic network service differentiation

model for end-to-end collaboration. Such a model can be easily mapped to existing

standard network QoS models such as DiffServ which is built on the same basic QoS

discipline of service differentiation. In this way, QCMF requires minimum

modification of current network architecture and hence has a better chance to be

accepted and implemented as common utility services over the Internet.

1.3 THESIS CONTRIBUTIONS

This thesis proposes an adaptive QCMF framework for QoS management in end-to-

end multimedia transmission. The solution embraces existing and new QoS

mechanisms at three entity levels: networks, middleware and applications. QCMF

provides necessary management functions that include, for example, QoS negotiation,

 8

monitoring and adaptation. With runtime adaptation, QCMF enables multimedia

applications to best maintain certain degree of QoS under constrained system and

network resource availability. In summary, this thesis makes the following key

contributions:

1. We propose a new design philosophy with respect to how current communication

architectures of end-hosts and networks could be modified to accommodate end-to-

end QoS services. Rather than designing a new set of QoS mechanisms for each

communication layer so that they can be seamlessly integrated together for end-to-

end QoS provisioning, we propose to unify existing isolated QoS solutions at

different layers so as to fulfill end-to-end QoS requirement. We believe our

solution is easier to be implemented and deployed in current network environment.

2. (As the continuation of point 1) we propose a set of techniques to enable the

collaboration among end-to-end QoS sub-systems. We treat each of the QoS sub-

systems as a meta-component and design an end-to-end framework and methods

for accommodating and supporting interactions and dynamic adaptations among

them. In this context, we are not participating in the performance enhancement of

QoS mechanisms of any individual layer. Instead, our contribution is to provide a

platform for harmonizing and coordinating existing QoS mechanisms in

applications, middleware and networks in the context of overall end-to-end QoS

provisioning.

3. We propose a uniform semantic approach and meta-models to abstract QoS

characteristics of applications, middleware and networks. Each of these meta-

models will provide consistent interfaces so as to facilitate interactions among

adjacent QoS models. Based on such a semantic specification method, we establish

 9

a knowledge plane for QoS information exchange among different QoS-

subsystems for the benefit of end-to-end QoS negotiation and management. The

advantages of such an approach lie in a powerful and expressive method for

specification as well as an easy way for information processing, matching and

sharing.

4. We propose a novel end-to-end approach to QoS management with respect to the

diagnosis of QoS violations. By monitoring end-to-end flow statistics and

application performance, a QoS violation can be quickly identified with high

accuracy as we have tested. Such an approach outperforms a traditional rule-based

violation detection method which has seldom undergone a rigorous testing

procedure and requires clear threshold values of QoS parameters in asserting a QoS

violation.

5. We demonstrate the design concepts of points 1-4 and the functionality of the

proposed QCMF framework through prototype implementation. We have

developed a set of software reflection techniques for the implementation of meta-

QoS models for applications, middleware and networks. In addition, decision-

making algorithms, heuristics and policies have been defined for a collaborative

end-to-end QoS management. Through physical measurements of our

implementation, we have shown that QCMF can achieve the aforementioned

features and functionalities with acceptable overhead.

1.4 THESIS OUTLINE

The rest of the thesis is organized as follows.

 10

Chapter 2 surveys relevant literatures in areas of end-host QoS research and network

QoS research. We discuss the features and limitations of existing approaches. The

differences between QCMF and previous work are also compared.

Chapter 3 gives an overall picture of QCMF by explaining its design philosophy (i.e.,

design reference model), system architecture and management functionalities.

Chapter 4 elaborates the knowledge modeling in QCMF whereby characteristics of

each QoS sub-system with respect to end-to-end collaboration are semantically

abstracted and processed.

Chapter 5 explains our approach for runtime QoS monitoring and violation analysis.

We also give an overview of the violation identification algorithms we have engaged,

whose performances are compared and discussed in Chapter 7.

Chapter 6 presents the cross-component adaptation scheme in QCMF. Detailed

description about our design assumptions, meta-models for end-to-end QoS

components and coordination algorithms and heuristics are explored. Simulation

models and results are then introduced which has validated the correctness of our

approach.

Chapter 7 describes our prototype implementation and performance measurements of

QCMF.

Chapter 8 concludes the thesis and discusses future work.

Chapter 2 Literature Review

 11

CHAPTER
 LI T E R A T U R E RE V I E W

22

The open problem of QoS provisioning has been addressed by various research efforts

in the past years. In this chapter, we will review some of the advance in both network

and end-host QoS researches. More comprehensive end-to-end QoS solutions such as

cross-layer architectures and integrated end-to-end QoS systems will also be

introduced and compared. By examining these related researches, we will show the

advantages of our work over previous studies.

2.1 QOS IN COMMUNICATION SYSTEMS

The term QoS is first introduced to describe characteristics of low-level data

transmission in communication systems. With the appearance of distributed

multimedia applications, the meaning of QoS has been re-defined as “the collective

effect of service performance which determines the degree of satisfaction of a user of

the service” [31]. In general, QoS represents a set of quantitative and qualitative

characteristics of a distributed multimedia system that are necessary to achieve the

required functionality and performance of an application. Here functionality and

performance refers to both the proper delivery of media data to a multimedia

application user and the overall user satisfaction [32].

In practice, QoS is often expressed using measurable QoS parameters. A QoS

parameter describes a specific attribute of a communication system or a performance

requirement of a multimedia application. Each QoS parameter can be viewed as a

typed variable with bounded values. An application’s QoS requirements are conveyed

 12

in terms of high-level QoS parameters that specify what the application desires. These

QoS parameters are assessed by the underlying communication system to determine

whether application requirements can be met or not.

The underlying system needs resources to promote its service to multimedia

applications. Essentially, there are two kinds of resources relevant to the performance

of a multimedia application: end-host resources and network resources. The former

consists of processing power, memory, data buffer in an end-host and its peripheral

multimedia devices; the latter includes network bandwidth and packet queuing priority.

To manage these resources for applications, two camps of QoS researches have been

established focusing on their respective areas, namely end-host QoS research and

network QoS research.

2.2 QOS PROVISIONING ARCHITECTURES

The open problem of providing end-to-end QoS support has been addressed by various

research efforts in the past years [9][28][32][33]. This section reviews existing QoS

researches applicable to areas such as network QoS, end-host QoS and end-to-end QoS.

2.2.1 Network QoS Models

To support QoS in the Internet, IETF has defined several standard service models and

mechanisms to meet the demand for QoS. The IntServ/RSVP [2][6] architecture

intends to provide end-to-end bandwidth reservation by maintaining per-flow state

information along the path from the flow sender to the receiver. However, the

complexity of per flow operations usually increases as a function of the number of

flows. In addition, it is difficult to maintain the consistency of per flow state in a

distributed network environment. Thus the IntServ model is not scalable to large

 13

networks [1]. Such a scalability problem has resulted in the DiffServ approach [3]

where QoS is achieved by a coarse level of service differentiation among a small

number of traffic classes. The main advantage of DiffServ over IntServ is that core

network will only operate on aggregated flows instead of per flow in IntServ. In edge

routers, packets are processed and aggregated on the basis of service classes. However,

the DiffServ solution will become complex when QoS is to be offered over multiple

DiffServ domains. Notably, there is a widely used QoS reference model merging these

technologies. This includes the models combining IntServ in access network and

DiffServ in the backbone network [34]. MPLS [5], on the other hand, is a layer two

forwarding scheme that has the ability to aggregate traffic flows and hence can provide

a basis for both IntServ and DiffServ QoS support over the core network.

Network QoS research in recent years mostly focuses on (1) the functional

improvement of these standard QoS models through techniques such as traffic

engineering [35][36], or (2) discusses the impact of these models on existing

communication facilities such as the performance variation of TCP protocol [37].

Nevertheless, we should note that network QoS models or solutions discussed above

can only deliver end-point to end-point QoS, i.e., from the network egress point of a

flow sender to the ingress point of a flow receiver. However, the main body of QoS

communication lies within both end-hosts and their applications. In another word,

what we want to satisfy is the QoS requirements from multimedia applications, which

is more precisely, application-to-application QoS. The network QoS models by

themselves, can not provide application-to-application QoS. A simple example is that,

the fluent delivery of video frames to an end-user relies on network resources such as

bandwidth and end-host resources such as CPU time slice. While a network QoS may

assure the provision of bandwidth, the successful end-to-end QoS provision still

 14

depends on the sufficient CPU time slice allocated at both flow sender (for media

encoding) and receiver (for decoding). The gap between application-to-application

QoS and network QoS is left for end-host QoS to bridge. Moreover, QoS is not always

fully guaranteed in these proposed network QoS models. For instance, DiffServ

provides a sense of resource allocation and service differentiation, but it never

guarantees the provision of QoS in the network: intra service class bandwidth

contention in a DiffServ domain is often managed by traffic engineering technologies

such as statistical admission control [38] and Random Early Detection (RED) [39]. It

is obvious that such traffic engineering technologies cannot strictly guarantee even

network-wide QoS. Thus an end-to-end flow may expect temporary quality fluctuation

during transmission where end-host QoS mechanisms may take their places.

2.2.2 QoS-aware Operating Systems

A number of pioneering efforts have produced useful QoS provisioning mechanisms in

end-hosts, among which QoS-aware operating system research has once been a focus.

To support the execution of real-time multimedia applications, the operating system of

a computer has been argued to have the ability to manage and resolve resource

contentions of these applications so as to ensure timely processing and delivery of

multimedia data.

Several research prototype operating systems have emerged, applying results from

real-time scheduling theory. For example, the DASH kernel [16] uses an admission

control algorithm based on a timeline and then uses earliest deadline scheduling to

actually sort all tasks. In order to guarantee the performance of an application,

computational requirements of the application need to be measured beforehand and be

analyzed together with its timing constraints such as delay bounds. In this way, an

 15

application can be executed within expectation where its timing constraints can be

satisfied. Similar observation can be found in RT-Mach [17] and Pegasus [18] where

applications need to specify timing constraints explicitly. Based on that information,

the OS kernel can calculate its CPU usage and provide fine-grained timestamp and

synchronization.

In recent years, great strides have been made to support QoS provisioning in

commercial OS and network products. Most Windows operating systems are now able

to signal RSVP and do kernel level packet scheduling [40]. There are also several add-

ons available to win32 platforms which can provide advanced QoS supports such as

CPU resource reservation [41]. On the other hand, large network vendors, such as

Cisco and Sun Microsystems have embedded DiffServ on their high end routers [42].

However, as the Internet today is still best effort, there is no means to reserve network

resources such as bandwidth, which is vital to end-to-end QoS provisioning. Thus

these low level (OS and network) QoS supports are still tentative and premature in

nature.

2.2.3 QoS Middleware

Traditionally, middleware is a layer of software that runs above heterogeneous

operating systems and communications systems, providing a uniform interface to

distributed applications. In end-host QoS researches, various projects have been

proposed to provide QoS supports as middleware services. Typically, a QoS

middleware provides services ranging from QoS specification, negotiation to runtime

supervision. The following paragraphs will provide a detailed discussion on some of

the latest QoS middleware and compare their key features with those of our QCMF.

 16

DaCaPo++ [43] is a middleware QoS project that supports a range of multimedia

applications. It automatically configures itself at start-up time to provide suitable

communication protocols and multimedia oriented services that are adaptable to

application needs. MCF [20] from the same research group offers flexible multipoint

communication services through protocol configurations at start-up time. To make

QoS parameters more application friendly, “types” of media can be specified in both

MCF and DaCaPo++ where different treatment will be provided to each media type.

On the other hand, DJINN [24] and Chameleon [44][45] are designed to support

runtime protocol stack re-composition in addition to build-time composition, which

offers more flexibility of QoS adaptation than DaCaPo++. DJINN allows application

developers to create and connect model components in the form of connection

diagrams. At runtime, such a component graph can be modified if intra-components

reconfiguration can not solve a QoS violation. In a heavy loaded network environment,

for example, the congestion control mechanism of TCP may introduce unnecessary

overhead to a multimedia stream which can tolerate certain degree of packet loss.

Through runtime re-composition, a TCP protocol component can be replaced with

light-weighted protocol such as UDP in DJINN. Leveraging on the dynamic protocol

framework (DPF) [46] component, our QCMF provides similar build-time stack

composition and runtime re-composition compared with DJINN. In the context of

QCMF, DPF offers a possible dimension of QoS adaptation at the middleware level.

However, the QoS adaptation issue (e.g., end-to-end information sharing and decision-

making) in QCMF is more carefully designed compared with aforementioned

researches in that it also reviews adaptation choices in other domains such as

multimedia applications (e.g., variable video frame rate) and networks (e.g., service

class upgrade in DiffServ). In this sense, QCMF offers a more comprehensive end-to-

 17

end solution where middleware level adaptation is only one of the runtime

considerations.

The 2KQ project [47] from UIUC proposes a resource-aware service configuration

model for heterogeneous distributed environments. 2KQ employs multi-tie QoS

translation. Firstly, specification of the application is translated into a set of component

configurations. Secondly, the set of component configurations are translated into QoS-

aware component specification (QoSCSpec). Lastly, QoSCSpec is translated into the

corresponding system QoS parameters and their resource requirements (e.g., CPU or

network bandwidth). The QoS specification and mapping process of QCMF is similar

to that of 2KQ. However, QCMF proposes a systematic semantic model to describe the

roles and relationships among various QoS entities including middleware components,

network QoS services and application requirements. As a result, standard high level

QoS entities can be more easily matched and mapped into system level resource

specification.

Agilos [22] is a middleware control architecture to assist application-aware adaptations.

The main contribution of this project is to introduce a fuzzy control model for the

decision-making of QoS adaptations. The correctness and efficiency of their model

have been proven by mathematical analysis and prototyping. Agilos utilizes fuzzy

rules in the form of “IF-THEN-ELSE” clause to define adaptation behavior. However,

as system complexity increases, reliable fuzzy rules and membership functions used to

describe system behavior are difficult to determine. Comparatively, QCMF engages a

machine learning approach to QoS violation analysis. By examining the end-to-end

flow statistics and application behavior, QCMF can identify a QoS violation without

the need to specify threshold values for communication parameters. Moreover, Agilos

 18

is specifically designed for those applications that receive control commands from the

middleware. Hence, Agilos does not allow applications to specify fuzzy rules as

adaptation decision is solely made by analytical translation through middleware probe

service [8]. A similar approach is taken in [48] which defines strategic and tactical

QoS managers. Strategic QoS managers take a global view of QoS provided by a set of

application components within the manager’s policy domain while tactical QoS

managers provide local control over application components. In contrast to these

studies, there is virtually no restriction on the kind of multimedia applications that

QCMF can serve. For those applications that have their own QoS logics which are out

of the control of a QoS middleware, QCMF provide information support by

establishing a knowledge plane for information record and exchange (Chapter 4). For

other applications that do not have built-in intelligence for QoS management, QCMF

will guide the behavior of these applications through end-to-end coordination. In both

scenarios, QCMF allows application-specific policies to be defined, which is used to

direct the management behavior and adaptation decision-making of the end-to-end

QoS system (Chapter 6).

Through reviewing these recent researches, we have identified the following trends in

the design of emerging QoS middleware. Firstly, QoS middleware are becoming more

and more flexible. Many QoS middleware today are designed in component-based

architectures, meaning that various functionalities are encapsulated into components

and can be swapped in and out on the fly [24][49][50]. In this way, higher flexibility

can be achieved where customized services can be provided to a multimedia

application. Secondly, several QoS middleware has incorporated additional features

such as multipoint and security support [23], which makes them more versatile in

supporting a wide range of application needs. Lastly, more and more network

 19

applications incorporate multimedia contents and require corresponding QoS supports.

As a result, purposeful middleware has been proposed to serve a specific application in

a particular environment [51][52]. For example, [53] has designed a distributed

middleware for networked audio and visual home appliances, which is executed on

commodity software. Built on Linux platform, such a middleware can control a wide

range of home appliances.

2.2.4 Multimedia Applications and Media Framework

As stated earlier, most QoS researches in the application layer are related to the

transmission of continuous media streams, and hence are rather media specific and

restrictive in certain application domains [11][12][13][14][15]. A multimedia

application typically supports various codecs for media compression such as Motion

JPEG, MPEG-4 and H.264. These codecs present diverse visual-auditory quality to an

end-user by incorporating different compression techniques and compression ratio. On

the other hand, different codecs have different emphasis on resource allocation.

Theoretically, a highly compressive codec requires more CPU time slice for media

compression and less network bandwidth for data transmission compared with a low

compression ratio codec. Hence multimedia applications can choose codecs of

different resource requirements so as to fit into runtime environments of diverse

conditions and resource availability.

A multimedia application in networking environments generally will present delay-

sensitive and loss-tolerant characteristics [54]. Firstly, most multimedia applications

can cope with certain amount of packet loss depending on the sequence characteristics

and error concealment strategies (e.g. packet loss up to 5% or more can be tolerated at

times [55]). Secondly, multimedia applications have stringent delay constraints. For

 20

interactive applications such as videoconferencing, delay upper bound is commonly

known as less than 200 milliseconds. Comparatively, multimedia streaming

applications can tolerate delay up to 1 or 5 seconds [56]. Typically, data packets that

arrive after their display time are discarded at the receiver side or, at best, can be used

for concealing subsequently received multimedia packets. The delay-sensitive,

resource-intense and loss-tolerant features of multimedia applications suggest that QoS

management and adaptation can be effective in adjustment of a multimedia

application’s presentation quality in view of runtime dynamics.

To assist the design and deployment of multimedia applications, media framework has

been proposed to provide a semantically rich programming environment and facilitate

the access of I/O device and synchronization of different media streams. Windows

Media Technology (WMT) [57] and Java Media Framework (JMF) [58] are two

popular media frameworks. Platform independent and open source are the advantages

of JMF over WMT. JMF enables audio, video and other time-based media to be added

to Java-based applications and can capture, play, stream and transcode multiple media

formats. It also supports RTP/RTSP [59][60] in order to interoperate with standard-

based, third-party video streaming servers from, for example, Apple, Sun and Kasenna.

Hence, our prototype implementation of QCMF has chosen JMF as the development

platform.

2.2.5 Cross-layer QoS Architectures

Layering is a common approach for dealing with the high complexity of QoS

provisioning, so that research issues of each layer can be considered in isolation.

Existing QoS literatures mainly deal with QoS provisioning within the context of one

of the individual architecture layers as aforementioned. A QoS researcher in this way

 21

would typically focus on one aspect of the QoS provisioning mechanisms for a layer,

neglecting possible related QoS mechanisms in others. For example, current end-host

QoS solutions tend to adapt their middleware or applications to the changing network

QoS conditions. Thus an ongoing session may have to be aborted when the resource

scarcity in network (e.g., bandwidth shrink) degrades the initially agreed QoS to a

level beyond any end-host adaptation can cope with. However, we argue that network

in this case may simply be a better place to exercise QoS adaptation (if the network is

QoS-enabled such as a DiffServ network) so as to prevent the abortion of the session.

This example clearly illustrates a serious shortcoming of dealing QoS problems in

isolation, which leads to a less effective end-to-end QoS solution. Hence, we assert

that any decent end-to-end QoS solution must consider the interactions of QoS

mechanisms between layers.

A number of cross-layer QoS architectures have been proposed to address the QoS

issue by assuming a centralized solution with a single management point and direction

of decision-making[61][62][63]. A cross-layer framework jointly analyzes and

optimizes the different strategies available at various system layers (e.g., physical layer,

medium access control (MAC) layer, network/transport layers or applications). For

instance, authors of [64] employ a central coordinator to decide QoS configurations in

three layers of an end-host (i.e., application task, OS scheduler and CPU speed). It

should be noticed that the management scope of most cross-layer proposals are within

one end-host where fine-grained control of different layers can be achieved. Although

such a federal solution works for local decision-making within one end-host, it may

not be applicable to end-to-end QoS provisioning in that a local coordinator in one

QoS subsystem is unlikely able to decide QoS configurations and adaptations for

others (such as the network or a remote host). In view of this, QCMF tries to

 22

coordinate QoS efforts from various sub-systems for the benefit of end-to-end

provisioning rather than determining their respective configuration and actions.

2.2.6 End-to-end QoS Schemes

As isolated QoS provision may lead to localized QoS solutions which are undesirable

for end-to-end QoS delivery, an overall QoS framework that encompasses QoS

mechanisms of communication components and facilitates implementation that would

harmonize their interactions is ideal for end-to-end QoS transmission. Among the few

reported work in the area of integrated end-to-end QoS schemes [65][66][67][68][69],

focuses have been put on connecting respective QoS-flows of each architecture layer

(e.g., interface design, service negotiation protocols [29], specification and translation)

and supporting the underlying enabling mechanisms in each layer. For example, the

Enthrone project [30] proposes an integrated management solution which covers an

entire audio-visual service distribution chain, including content generation and

protection, distribution across networks and reception at user terminals. Similarly, [70]

proposes a general QoS management framework to select and configure most

appropriate system components according to user requirements and runtime available

resources. In [71], authors propose a content-aware bandwidth broker (CABB) to

manage QoS for multimedia applications in a DiffServ environment. CABB allocates

network resources to multimedia flows based on client requirements, the adaptability

of the application, and its tolerance to network level parameters such as bandwidth,

delay, and latency. Kim et al. describes an end-to-end performance simulation model

and methodology for the CDMA 2000 network in [56]. The simulator models all

protocol layers from physical to the application layers. Details of the packet handling

characteristics of each network element along the end-to-end path are also considered

to compare and measure performance of applications under different settings. However,

 23

all these work has overlooked the complexity of end-to-end QoS with respect to

decision-making, especially in the case of QoS adaptation.

End-to-end QoS in our view is distributed and heterogeneous in nature; each of its QoS

components may have its own QoS mechanisms and adaptation strategies. In this

context, for example, QoS middleware may have its own means of adaptation in case

of QoS violations. Meanwhile, adaptive applications may also be able to transform

themselves to cope with runtime changes. Things will become more complex if the

network: (1) is also QoS-enabled where diverse service options are of choices, (2)

offers heterogeneous QoS in different network domains, some of which, for example

may employ QoS routing while others may make use of load control or selective

packet dropping techniques [39]. Given multiple QoS objectives and QoS service

options on the end-to-end path, a good (coordinated) QoS decision-making will

certainly become more difficult due to an expanded solution space and possible

interactions between QoS options. Such a complexity is often not considered in the

aforementioned end-to-end schemes. With such a consideration, QCMF is designed to

be an adaptive end-to-end framework with emphasis on system-wide coordinated

adaptation, leveraging on the capabilities of each end-to-end sub-systems.

2.3 DYNAMIC PROTOCOL COMPOSITION

Dynamic protocol framework (DPF) [46] is a middleware component in QCMF, which

can provide dynamic protocol stack composition at call-setup time and re-composition

(i.e., protocol inserting or swapping) at runtime. DPF provides the flexibility of

building a protocol graph of dynamically loaded components supporting media flows,

in a manner similar to other component-based frameworks. In the context of end-to-

end provisioning, DPF offers one possible dimension of QoS adaptation within the

 24

communication protocol stack which can supplement current prevailing QoS solutions

at application or network level.

In DPF, protocol components need not to be bound at design time, which provides the

flexibility in composition of protocol stacks. Instead of specifying the name of a

protocol, applications now can specify their desired QoS properties. For example, a

multimedia application may request to reserve resources before its session starts. At

build-time, available protocol services that match this requirement (e.g., RSVP or

other signaling protocol with similar resource reservation capability) will be selected.

Such an approach eases the deployment of multimedia applications in heterogeneous

network environments in that if a target protocol is not available, other protocols of

similar functions can be selected so that the end-to-end delivery will not fail (e.g.,

[72]). The flexible composition of protocol stacks also facilitates the QoS adaptation

process. For instance, two video codecs may present similar presentation quality to an

end-user, but at different compression rate and hence each demands for different

amount of network bandwidth. In the case of QCMF/DPF where codec names need not

be specified by multimedia applications (instead, media quality such as medium or

high should be specified), a codec that requires more bandwidth may be replaced at

runtime with another one that consumes less bandwidth in case of network congestion.

To ensure a consistent description of all end-to-end QoS entities, we have designed a

semantic scheme for modeling and processing of protocol stacks, which is presented in

Section 4.3. The semantic model of communication protocols and protocol instances

are also illustrated in Appendix B. The integrity of protocol and protocol stack

configuration are ensured with sets of dependencies and supported media formats

primitives to be defined by protocol developers. Service dependencies and media

 25

format compatibility are checked at stages of both build-time configuration and

runtime reconfiguration to ensure the correctness of a protocol stack.

2.4 SUMMARY

The complex QoS problem has led researchers to focus on different aspects of QoS

provisioning in a fashion similar to the layered approach in network systems design.

This has resulted in many rigid QoS solutions each addressing one or very few aspects

of the problems with respect to a set of application scenarios, middleware, or networks.

These silos of solutions are either too difficult to integrate, or if doable, often would

lead to overall inefficiency due to poor coordination between respective QoS sub-

systems. Hence, we believe that any satisfactory end-to-end QoS solution must

consider the coordination of QoS mechanisms between QoS sub-systems (such as

those in end-hosts and networks) and manage them in a cohesive and coordinated

fashion. Through comparison and discussion, we have found that most existing end-to-

end QoS schemes focus primarily on the configuration issues such as interface design

and QoS-flow management, which is essential, but not sufficient for meeting

performance requirements of multimedia applications. Motivated by these

observations, we propose our ideas of end-to-end QoS collaboration by

accommodating and coordinating exiting QoS architectures in applications,

middleware and networks. Details of our approach will be discussed in the following

chapters.

 26

Chapter 3 The QoS Coordination and Management Framework

CHAPTER
 TH E QOS CO O R D I N A T I O N A N D

MA N A G E M E N T FR A M E W O R K
33

This chapter gives a high level overview of the architecture and management functions

of our QoS coordination and management framework (QCMF). We first present a

reference model for end-to-end QoS provisioning and discuss our design philosophy

and relevant QoS concepts. Subsequently, we introduce the system architecture and

management functionalities of QCMF, whereby detailed description of our research

will be presented in the next few chapters.

3.1 REFERENCE MODEL FOR QOS MANAGEMENT

Figure 3-1: Reference model for end-to-end QoS provisioning and coordination

 27

To deal with the complexity of end-to-end QoS provisioning, we introduce a reference

model to guide the design of our end-to-end QCMF framework as shown in Figure 3-1.

This model outlines relevant concepts and procedures for end-to-end QoS provisioning

which can be analyzed from both architecture and management dimensions.

From the architecture perspective, the model will yield the identification of several

abstracted QoS layers and their corresponding roles in end-to-end QoS delivery:

• System QoS includes efforts from a host’s OS and the network which provides

basic data transmission support between end-hosts. Native packet level QoS

support can be offered if the OS and the underlying network are QoS-enabled.

In addition to data link or MAC level QoS provisioning [73], research concerns

in this area have also included network communication level load balancing and

fairness issues [74][75].

• Middleware QoS offers a rich set of services for the configuration and

management of the transmission quality (e.g., buffer management, flow

synchronization and QoS-based handover) outside the kernel space of an end-

host [21][22][23][24]. Middleware QoS solutions are likely to be independent of

the network and OS platforms and hence are able to work over heterogeneous

network environments.

• Application QoS refers to the ability of multimedia applications to self-

configure and respond to the changes of runtime operating conditions or user

requirements. As discussed, such abilities are commonly related to the

transmission and performance tuning of particular continuous media streams

such as audio and video (e.g. variable bit rate codec or layered encoded audio

 28

and video) [14][15]. Hence QoS solutions at application level are rather media

specific and restrictive to a certain application domain.

For over a decade, researchers have proposed various QoS solutions which according

to their places of research interest, can be summarized into one of the above categories.

As has been explained in Chapter 2, QoS researchers in this way would typically focus

on their own domains of QoS provisioning while neglect (possible related) QoS

mechanisms in others. Such a layered QoS research leads to an independent and local

optimized implementation, but would often result in sub-optimal end-to-end

performance. In this sense, an overall QoS framework that encompasses QoS

mechanisms of various layers is essential for the satisfaction of an end-user.

Furthermore, end-to-end QoS in our view would be distributed and heterogeneous in

that each QoS layer (subsystem) may have its own provisioning mechanisms and

adaptation strategies. An end-to-end QoS framework thus should take into

consideration the characteristics and restrictions of each end-to-end QoS sub-system

(e.g., QoS layer) so that a sound overall adaptation solution can be identified among

multiple available end-to-end choices at runtime.

Based on the above design philosophy, we have arrived at the design of QCMF as an

adaptive end-to-end QoS coordination and management framework. Our solution

embraces existing and new QoS mechanisms at three entity levels: the network level,

the middleware level and the application level. We treat each of these QoS sub-

systems as a QoS component in our end-to-end framework and try to devise an

effective platform and methods for accommodating and supporting interactions and

dynamic adaptations among them. In this context, we are not participating in the

performance tuning or enhancement in QoS mechanisms of a particular QoS

component. Instead, our focus is to provide a management platform for harmonizing

 29

and coordinating QoS mechanisms in applications, middleware and networks in the

context of end-to-end QoS provisioning. The proposed framework is adaptive in the

sense that it recognizes and coordinates the adaptive behaviors of multimedia

applications and networks in view of the changing runtime environment context.

Furthermore, QCMF provides the ability of dynamic (re-)composition of end-hosts’

communication stacks during runtime as an additional way to duel with QoS violations

at the middleware level.

From the management perspective, end-to-end QoS delivery and coordination is

fulfilled through three inter-related facilities: QoS knowledge plane, QoS control plane

and QoS data plane. The data plane is the carrier over which media contents are

forwarded; the behavior of the data plane is regulated by the control plane via

management functions such as configuration, signaling and adaptation; the

enforcement of these control actions relies on the information originated from the

knowledge plane which abstracts QoS characteristics of each end-to-end QoS

component and infers QoS status of end-to-end QoS transmission. More detailed

description about the data plane and control plane can be found in Section 3.2.

To achieve the aforementioned design objectives of QCMF, we first create abstract

QoS models for the management of different QoS components (Chapter 4). We shall

then understand their interactions and establish the coordination requirements among

these QoS models. Subsequently a QCMF framework can be established for

implementation of QoS states monitoring, signaling and feedback (Chapter 5), together

with algorithms and heuristics for distributed decision-making (Chapter 6).

 30

3.2 QCMF MANAGEMENT ARCHITECTURE

Figure 3-2: End-to-end QoS transmission scenario

A typical scenario of end-to-end QoS transmission is illustrated in Figure 3-2 where

media data is delivered from the source host to the destination via the in-between

network. The media source can be an audio/video flow either retrieved from a media

file from the sender’s hard disk or be lively captured from a web camera. The media

sink typically is a device that consumes and displays the received media flow. In

QCMF, both media source and sink are abstracted as DataSource1 objects within

which media processing functions such as data rendering, encoding, packetization, and

decoding are defined and encapsulated. The actual packet delivery is fulfilled in an

adaptive data plane which is composed of adaptive communication stacks in two

participating end-hosts and the network in between. The communication protocol

stacks of the media sender and receiver are adaptive in the sense that they support

start-up time semantic composition and runtime re-composition of the stacks (e.g.,

swapping media codecs) so that media flows of different qualities can be delivered at

the cost of either high or low resource consumption (e.g., bandwidth or CPU cycle

utilization). Such an adaptation is performed by the dynamic protocol framework (DPF)

1 DataSource, a term of JMF standard, is used to manage the transfer of media contents. A DataSource
encapsulates both the location of media and the protocol and software used to encapsulate the media.

 31

QoS module [46] under the guidance of QCMF whereby a decision is made based on

the runtime monitored QoS conditions. On the other hand, the communication network

between end-hosts may also be QoS-enabled (e.g., composed of a few DiffServ

subnets) whereby different service options are of end-hosts’ choices. As an end-to-end

QoS management architecture, QCMF embraces all these QoS components as part of

the end-to-end provisioning by modeling their QoS abilities for the consideration of

build-time QoS orchestration and runtime system-wide adaptation (Figure 3-3).

Figure 3-3: QCMF incorporates both host architectures and network architectures

While the data plane handles the actual media data transmission and processing, the

QoS control plane, on the other hand, is responsible for the exchange of control

information and signaling messages between QoS components (Figure 3-4). Similar to

the design in other network protocols and systems, QCMF separates the control plane

from the data plane2. This is to ensure that control overhead will not degrade the

transmission quality of media data. At both media sender and receiver, QCMF

establishes a QoS management middleware (QMan) respectively. At the media sender,

QMan monitors the outputting media flow and cooperates with the receiver’s QMan to

derive end-to-end QoS status such as end-to-end packet delay and jitter. At the media

receiver, QMan analyzes end-to-end flow QoS information and makes adaptation

2 In our prototype implementation, the control plane is implemented using both Java Remote Method
Invocation (RMI) method and native TCP sockets that are separated from data plane sockets (UDP).

Host A Host B

Network

Host
QoS Architecture

Network
QoS Architecture

Layer N
Layer N-1

...
Layer 1

Application

Layer N
Layer N-1

...
Layer 1

Application

 32

decisions against runtime QoS violations. Theoretically, such an adaptation choice

could be a media codec swapping in end-hosts, a service upgrade in QoS-enabled

networks, a combination of the two or other adaptation choices available in a particular

end-to-end environment (e.g., reduce application QoS). The final choice is made

through a system-wide evaluation process performed by QMan middleware in a pure

end-to-end manner, with details to be presented in Chapter 6. Such an action or

decision-making is augmented by the meta-data contained in the knowledge plane,

which will be introduced in Chapter 4.

Figure 3-4: QCMF design concepts: control plane for signaling, data plane for media
transmission and knowledge plane for meta-data recording

3.3 QCMF MANAGEMENT FUNCTIONS

As an adaptive end-to-end QoS management framework, QCMF provides necessary

management functions for multimedia applications in a fashion similar to other

component-based end-to-end QoS architectures. Such management services include

QoS specification, negotiation, enforcement and runtime adaptation. In addition to that,

 33

QCMF dips into several end-to-end QoS issues which results in the following research

merits that distinguish QCMF from existing end-to-end solutions:

• Build-time QoS specification. QoS specification is the process to capture

application requirements which are subsequently translated into configurations

of the underlying communication system. QCMF adopts a language-based

approach for QoS specification whereby complex specification structures and

language formats can be defined. Moreover, QCMF defines a semantic model to

describe QoS requirements of multimedia applications whereby common

knowledge of the same application domain can be formulated and re-used. Such

a semantic specification process is handled by the semantic QoS specification

(SQS) scheme of QCMF and is to be elaborated in Chapter 4. Finally, the same

semantic approach has been applied to the modeling of QoS knowledge of other

end-to-end QoS components of QCMF (e.g., networks), which provides a

uniform knowledge sharing interface that facilitates their interactions.

• Adaptation rules and policies. As a comprehensive end-to-end QoS

framework, QCMF acknowledges various adaptation methods from different

end-to-end QoS components, some of which may achieve similar end-to-end

effect. For example, an end-to-end delay violation may be alleviated by either

media buffering technique at the media sink or solved by service upgrade in a

DiffServ network environment. In view of this, QCMF allows applications to

define policies regarding adaptation preferences and sequences which can guide

the runtime selection of adaptation choices and the way application QoS is

gracefully degraded. Furthermore, application specific management policies can

be specified whereby, for instance, certain application QoS parameters (e.g.,

video frame resolution) can be traded off first to sustain the quality of other

 34

more pertinent parameters (Chapter 4). As a result, application QoS can be

managed in a desirable manner.

• Information sharing with applications. In QCMF, applications can query end-

to-end transmission status (e.g., end-to-end delay) and QCMF management

functions status at any time. In addition, interfaces are defined where QoS status

reports can be delivered to the application in an event-driven fashion [76]. Such

a design is specifically for those multimedia applications that have built-in

adaptation engines and require runtime environment information update from

the underlying platform (Chapter 4). For other applications that require external

control for QoS management, QCMF will take into consideration their

adaptation abilities in making an end-to-end QoS decision-making and

coordination (Chapter 6).

• Runtime QoS management. Runtime QoS management in QCMF includes

QoS negotiation, monitoring, decision-making and adaptation. QoS negotiation

is intended for the structural composition of end-hosts’ protocol stacks, service

agreements with network QoS components (if any), as well as communication

parameter configuration (e.g., streaming port number). Runtime monitoring and

violation detection is fulfilled through observation and analysis of traffic

characteristics of an end-to-end flow (Chapter 5). Based on the analysis results,

decision-making is performed within end-hosts with respect to end-to-end

coordination and adaptation (Chapter 6). All these runtime QoS management

tasks are executed in an end-to-end fashion by QCMF (Figure 3-5) so as to

avoid the possible scalability problem in network QoS management.

 35

Figure 3-5: Management functions of QCMF are fulfilled by its several build-time and
runtime execution modules: Semantic QoS Specification (SQS) for knowledge
modeling, Middleware QoS Manager (QMan) for runtime management and Dynamic
Protocol Framework (DPF) for middleware level adaptation

3.4 SUMMARY

As has been discussed, end-to-end QoS provisioning is not likely to be a simple issue

of one communication layer but requires joint efforts from different QoS components

along the end-to-end path. With such a design philosophy in mind, we have arrived at

designing QCMF as an adaptive end-to-end QoS architecture that supports multiple

QoS component models and services at various system levels (i.e., application,

middleware and network) and manage them in a cohesive and co-operative fashion. An

overview of management architectures and functions of QCMF is introduced in this

chapter whereby particular research focuses are outlined and will be elaborated in the

following chapters.

 36

Chapter 4 End-to-End QoS Knowledge Modeling

CHAPTER
 EN D-T O-EN D QOS KN O W L E D G E

MO D E L I N G
44

To enable a coordinated end-to-end QoS management, we first model QoS knowledge

of each end-to-end QoS component so as to facilitate their information sharing and

interaction. Different from traditional API-based approaches that focus mainly on QoS

specification for an individual application domain, we propose a uniform semantic-

based approach with meta-models to respectively abstract QoS information of all end-

to-end QoS mechanisms including those in applications, middleware and networks.

The advantages of such an approach include a more powerful and expressive

specification method as well as an easy machine processing and end-to-end sharing

procedure. In this chapter, we first discuss the motivation of our semantic modeling

approach; detailed design considerations and approaches are presented subsequently.

Finally, we describe the semantic knowledge meta-models of each end-to-end QoS

component.

4.1 QOS KNOWLEDGE AND QOS ONTOLOGY

4.1.1 Related Work

Traditional data management is achieved by making use of either programming

language elements (e.g., read/write of file streams) or special structures such as

customized XML. However, these proprietary methods do not consider the semantic

 37

meanings and relations of data, and hence is not suitable for managing meta-data

featuring a system. Knowledge management of network systems has received much

attention in recent years. In [77], Clark et al. has proposed a knowledge plane for

automatic discovery and recovery of the Internet architecture, leveraging on AI tools

and cognitive systems. Inspired by this idea, several research projects have been

established for better network management relying on logical languages such as Prolog

[78][79]. These studies provide general guidance for management and maintenance of

a specific network infrastructure, which however have not addressed our concern of

knowledge classification, modeling and processing for end-to-end QoS provisioning.

In conventional end-to-end QoS provisioning, focuses have been put on the algebraic

calculations of QoS parameters and resource scheduling [80], an example of which can

be found in [81] that presents a formal model for mathematical calculation of QoS

metrics. Our work as proposed in this chapter differs from and supplements these

existing approaches by proposing a logic model for QoS provisioning where semantic

meanings and relations of various QoS concepts can be compared and reasoned to

determine a correct end-to-end QoS configuration. The ontological approach of QoS

modeling is initiated from the semantic web community. However, reported work

[82][83][84] so far is mostly limited to the description of web services’ QoS properties

for service matching and selection. In contrast, we focus on modeling a broad range of

end-to-end QoS elements for information exchange and distributed QoS coordination,

encompassing three architectural levels and covering various stages of QoS

provisioning.

 38

4.1.2 General QoS Knowledge

Within the context of QCMF, a knowledge plane has been established to describe QoS

information of each end-to-end QoS component. For applications, such information

mainly refers to application QoS requirements and adaptation strategies. For

middleware and networks, QoS knowledge to be recorded includes their QoS

capabilities, work-flow information and dynamic runtime QoS status. At build-time

and runtime, application QoS requirements will be translated into communication

configurations (e.g., codec parameters, UDP port number) and protocol stack

compositions in both end-hosts which will be compared and matched by middleware

and network service options (to be addressed later).

Conceptually, four categories of QoS knowledge have been identified and defined in

the QoS knowledge plane, namely static knowledge, monitored knowledge, profiled

knowledge and deduced knowledge.

• Static knowledge represents system and environment information that is likely

to be constant during a QoS session. This includes description of device type,

CPU speed, memory size, network service mode, hosts’ OS version and so on.

The usage of static knowledge is twofold. Firstly, some of the static knowledge

defines the maximum computational or presentational capability that a QoS

component can offer to its application. For example, the color depth and screen

size of a rendering device (e.g. PDA) impose a physical limitation of the display

quality for a video stream where software configuration should not exceed.

Secondly, the semantic meaning of static knowledge is helpful in the

determination of a correct end-to-end QoS configuration. For instance, if a

media sink is executed on a resource-scare device through a low-bandwidth link,

 39

by default, it may be automatically equipped with a series of light-weight

protocols for information presentation and interaction with a media server.

• Monitored knowledge refers to those dynamically changing information

acquired during runtime. Examples of such information include runtime CPU

availability, memory usage, flow throughput, delay, jitter, packet lost rate and

CPU usage of the target process. Monitored knowledge in QCMF is updated

periodically (or on-demand) and is shared among end-to-end QoS components

for tasks such as inferring the occurrence of a QoS violation; an adaptation

action will be triggered once a predefined violation pattern matches with

runtime observation (Chapter 5), which subsequently gives rise to an end-to-end

coordination and adaptation (Chapter 6).

• Profiled knowledge as modeled in QCMF at current stage can be summarized

into two groups: (1) user and application profile, and (2) protocol profile. User

profile stores QoS preferences of end-users for given application sessions.

Application profile represents the QoS requirements of applications for an

expressive application specification and mapping into the underlying QoS

settings. Protocol profile is a kind of software profile characterizing QoS

properties (e.g., I/O relations and dependencies) of communication protocols

resided in an end-host. Through ontology modeling of a dynamic protocol stack,

QCMF can semantically select appropriate protocols for the composition of a

protocol stack that meets QoS requirements of an application/user (details to be

presented in Section 4.3.3).

• Deduced knowledge describes the kind of indirect knowledge that can be

derived from aforementioned direct knowledge (i.e., static, monitored and

profiled knowledge) through aggregation or reasoning processes. For instance, a

 40

video streaming receiver’s runtime QoS status (a deduced knowledge) can be

inferred as RED (a status code indicating the need for an urgent attention) if, for

example, its video decoding scheme is MPEG-1 (a profiled knowledge) and the

current CPU availability (a monitored knowledge) is below a predefined level.

Once such an end-to-end QoS knowledge is asserted by QCMF, an adaptation

would probably be triggered to solve the violation according to corresponding

rules and policies.

Although the actual type and number of QoS knowledge may differ in a real end-to-

end system, the general QoS knowledge presented above gives a guideline with

respect to the necessary knowledge elements that can be applied so as to achieve the

desired end-to-end QoS effect.

4.1.3 QoS Ontology and RDFS Schema

QCMF utilizes the abovementioned four categories of QoS knowledge for end-to-end

QoS configuration and runtime QoS management. To facilitate information modeling

and exchange among QoS components, all knowledge is modeled by ontology in

RDF/RDFS language [85]. The term “ontology” has a long history in philosophy, in

which it refers to the subject of existence. In AI literatures, ontology is a formal and

explicit description of concepts in a domain of discourse. Ontology provides a

vocabulary for representing knowledge about a domain and for describing specific

situations in that domain. On the other hand, RDF/RDFS is a W3C standard language

to instantiate ontology, which enjoys the advantages of extensibility, modularity,

scalability and logic validity. The selection of RDFS instead of another more powerful

ontology language - OWL [86] in QCMF is based on a realistic balance between

language capability and performance: RDFS is sufficient for modeling small scale QoS

knowledge (as can be seen from the next few sections) and is faster than OWL in

 41

knowledge processing which is valuable for QoS management in real-time multimedia

transmission3.

Modeling end-to-end QoS knowledge in an ontology-based approach allows us to

describe QoS information semantically in a way that is independent of programming

languages, underlying operating systems or QoS middleware. The ontologically

abstracted QoS knowledge provides a consistent knowledge basis for information

sharing and interaction among end-to-end QoS components for the following

observations:

• Ontology is a formal description of concepts and relationships, which is

expressive in describing objects, their relations and restrictions. Ontology

provides a means for formulating semantic meaning and relations of knowledge

while other schemas such as XML can only produce a data model (which is a

tree).

• The use of ontology enables different QoS components in QCMF to have a

common understanding of QoS knowledge while interacting with each other.

The identification of the semantic meanings of QoS concepts is essential in a

heterogeneous environment where clear differentiation of QoS entities is needed

for understanding and interactions among QoS components (e.g., for service

negotiation or selection purpose [87]).

• Ontology modeling of QoS enables machine processing and (potential) formal

analysis of QoS knowledge through various processing and reasoning

mechanisms (e.g., first-order logic, temporal logic). Such a semantic processing

of knowledge is a supplement of traditional mathematical calculation of QoS

3 A migration from RDF/RDFS to OWL is easy to achieve since OWL is backward compatible. OWL
has more ontology definitions and primitives which can be employed if necessary.

 42

parameters that focuses on the quantitative attribute of a QoS parameter.

Moreover, as an open web standard for easy machine sharing and interpretation,

RDFS in our view will have a better chance to be widely accepted and adopted

in practice than other proprietary data representation formats.

4.1.4 QoS Ontology Predicates

In our QoS ontology, QoS knowledge is represented as standard first-order predicate

calculus. The basic primitive has the form of Predicate (subject, value), in which:

• subject ∈ S*: is a set of names of objects in concern, e.g., throughput,

slidingWindow or other QoS entities of interest.

• predicate∈V*: is a set of relations, e.g., hasValue, hasStatus or other property

indicators.

• value ∈ O*: is a set of all values of subjects in S*, e.g., 10, FULL/EMPTY and

so on.

Each basic primitive pinpoints an attribute of a QoS object. For example,

hasVaule(throughput, 10) may record the throughput of a TCP flow while

hasStatus(slidingWindow, FULL) indicates that current TCP transmission is in full rate.

In addition, each primitive can explore the relation of two QoS objects. For example,

isInstance(RedHat, Linux) indicates that RedHat is member of Linux family;

compatible(Linux, Unix) specifies that Linux and Unix are compatible operating

systems. Finally, pieces of basic primitives can be linked together to form a complex

QoS knowledge using boolean algebra (e.g., union, intersection and complement). For

example, hasStatus(accessNetwork, statusVector) – the summarized QoS status of the

access network, can be represented as the integration of hasvalue(bandwidth, bValue)

∨ hasRange(jitter, jRange) ∨ hasRange(delay, dRange).

 43

The structures and properties of an end-to-end QoS component are described in an

ontology which includes description of classes, properties and their values. The

ontology is written in RDFS as a collection of RDF triples, each statement being in the

form (subject, predicate, object) where subject and object are the ontology’s objects or

individuals, and predicate as said, is a property relation among them. As a

demonstration, a machine-interpretable RDFS description of the access network QoS

ontology is shown in Figure 4-1.

Figure 4-1: Partial QoS ontology for access network written in RDFS

By applying ontology modeling to QoS elements (as described in Section 4.1.1) in

each end-to-end QoS component, a knowledge plane can be established within QCMF,

which records QoS information of each end-to-end QoS component. The knowledge

plane provides necessary knowledge preparation for QoS information interpretation

 44

and sharing so as to empower a coordinated end-to-end QoS decision-making. As

discussed earlier, the knowledge plane incorporates QoS mechanisms at three generic

end-to-end QoS components: applications, middleware and networks whereby their

modeling details are presented in the following sections.

4.2 APPLICATION QOS KNOWLEDGE MODELING

Application QoS knowledge modeling is to abstract QoS requirements and capabilities

(if any) of QoS-sensitive applications. In QCMF, QoS requirements of such

applications are presented to the underlying middleware and network for configuration

of communication parameters and control of transmission quality; QoS capabilities of

applications are exposed to the underlying for runtime adaptation coordination. The

understanding of application characteristics is fulfilled build-time by a sub-module of

QCMF – SQS, as is explained below. The runtime interaction and adaptation is

performed by another QCMF sub-module – QMan middleware, which will be

discussed in Chapter 6.

4.2.1 Motivation and Design Considerations

The task of application QoS knowledge modeling is commonly achieved through QoS

specification by employing either special application-programming-interfaces (APIs)

or a language-based QoS specification method [88]. Most traditional QoS middleware

has adopted the static API-based approach [23][51][89] in which QoS requirements of

applications are expressed as API parameters. Despite the simplicity of this approach,

such a specification methodology is restrictive (as has been shown in various

prototypes) in that it is unlikely to design a set of APIs meeting requirements of

multimedia applications of different nature. For example, QoS-aware applications

 45

(which have built-in adaptive mechanisms and may need information sharing and

adaptation coordination with the runtime environment) and QoS-transparent

applications (which purely rely on system level QoS adaptation) possibly need diverse

QoS treatments from the underlying. Within the category of QoS-aware applications,

multimedia streaming applications and interactive multimedia applications may have

varied emphasis on system performance factors such as throughput and delay despite

the fact that both of them rely on these resources. In this sense, a systematic QoS

specification method enabling detailed specification for applications of different QoS

types is desirable. Language-based QoS specification [90][91][92] is a promising

approach for meeting such a design challenge. This is because languages are inherently

more declarative, expressive and hence potentially can provide detailed specification

for applications. For instance, [93] presents an initial insight into QoS specification by

specifying QoS as a combination of metrics and policies. In their work, QoS metrics is

defined as performance parameters (i.e., timeliness, precision and accuracy), security

requirements and their relative importance in a system. However, existing QoS

specification languages remain at syntax level, i.e., they are strong in the representation

formats (e.g., language validation) but weak in the specification processing capabilities

such as semantic specification interpretation and comparison. For example, HQML [94]

defines a set of generic XML tags (e.g., ServerCluster, LinkList) for specification of

multimedia application QoS. However, it lacks a formal model to identify and classify

applications of different kinds so as to provide a customized support to each of them.

The similar observation can be found in QoS Modeling Language (QML) [95] in

which static language structures (i.e., contract, contract type and profile) are defined.

These language elements represent abstractions of application QoS of a general

meaning, but can not depict application QoS features of a particular context. For

 46

instance, the definition of reliability contract type for an audio streaming application

(counting packet lost ratio) leveraging on TCP transmission is surely different from

that of a complex online banking service (measuring transaction successful rate) which

employs various reliable modules possibly covering from the application, middleware

proxy to the link layer. Such difference arising from diverse application contexts can

not be reflected in a generic language abstraction defined in QML since a black-box

approach is taken to treat application QoS. Hence we conclude that these languages

cannot provide detailed and customized specification support for applications of

various QoS categories.

Another key aspect of application QoS knowledge modeling is the application policy

specification. Policies allow applications to describe preferred actions to be taken in

case that an application QoS requirement is not satisfied in certain circumstances. Such

actions may include where to send a notification or tradeoffs among different

performance metrics. However, we argue that such application level policies may not

be adequate enough to cover all possible runtime variations. This is because current

and future Internet computing is getting more and more complex and heterogeneous

where combinations of different end-devices (e.g., a light-weighted PDA or a powerful

desktop), networks (e.g., wired or wireless) and software (e.g., a standard 5-layer

protocol stack or a lightweight protocol stack) will produce runtime platforms of

different performance and characteristics. Surely, application level policies which are

formed offline at application design stage can only provide partial and coarse-grained

guidance for problem-solving in some of the runtime scenarios. All these facts suggest

that other sources of QoS knowledge need to be identified. On the other hand, we

acknowledge that end-users can also express their preferences in QoS adaptation.

However, realizing that end-users may not wish to be bothered by intricate QoS

 47

management issues (or even not quite clear about the details), it would be much better

if runtime QoS systems can exhibit some kind of intelligence for automatic response to

most QoS problems based on known or derived QoS knowledge. Our application QoS

specification framework aims to provide such a means for (semi)automatic end-to-end

QoS regulation with minimum external intervention.

Figure 4-2: Semantic modeling and syntactical QoS specification in QCMF

Based on the above considerations, we propose a semantic QoS specification module

(SQS) inside QCMF, which emphasizes on (1) application QoS classification and

semantic modeling for detailed QoS specification and clear-cut QoS mapping, and (2)

domain specific QoS knowledge definition and accumulation for automatic QoS

management. It should be noted that SQS is a semantic QoS specification model for a

better understanding of application QoS and its interaction with the underlying

platform. SQS is positioned on top of existing syntax level QoS specification

languages, which provide language structure support for specification and focus on the

 48

grammatical correctness and usability of the language elements (Figure 4-2). We have

chosen ontology/RDFS to implement our SQS prototype for the aforementioned

advantages although in principle any QoS specification language can be employed to

instantiate SQS after appropriate extension. The main features of SQS will be

introduced in the following sections.

4.2.2 Two Layer Application QoS Ontology Model

Figure 4-3: The hierarchical application QoS ontology model

To enable a detailed understanding of application QoS and to provide an accurate QoS

specification, we propose a hierarchical and extensible application QoS ontology

model as shown in Figure 4-3. The model is composed of two layers (divided by the

dotted line), each of which is modeled by ontology in RDFS. The lower layer defines

semantics of the QoS base-class ontology which is the building block for the upper

layer QoS domain ontology. Each QoS base-class represents an aspect of QoS and

 49

comprises relevant QoS parameters that profile QoS characteristics of that dimension.

For example, the video base-class defines parameters that describe the presentation

quality of a video flow such as frame rate and resolution. The final definition of each

QoS base-class is dependent on the QoS middleware and runtime platform. For

example, if one QoS middleware can only support audio streaming, then the video

related base-classes (including video codecs) will not appear in its QoS ontology

model. Hence, it is possible in practice that different QoS middleware defines ontology

models of diverse QoS base-classes. However, the semantic meaning of QoS

parameters in each base-class should be explicit and consistent.

 The upper layer of the QoS ontology model defines application oriented QoS domain

ontology. The diverse nature of applications implies the need for a vast set of QoS

models. To make application QoS interpretable and manageable, we define an

application-QoS-classification-tree model in this layer which sorts applications

according to their QoS characteristics. Applications with similar QoS characteristics

are grouped into the same QoS domain and different QoS domains can be setup for

applications of different QoS types. The upper part of Figure 4-3 shows such a

classification tree, in which an entry point QoSEntity and four first-level QoS domains

are defined (i.e., multimedia networking, remote control, database transaction and

distributed computing domains). These four preliminary domains provide a high level

abstraction of application QoS which is further classified into sub-domains for a

detailed QoS analysis. For example, multimedia networking domain can be classified

into continuous audio domain, continuous video domain, and visual-auditory domain,

where the last one may be further extended into A/V streaming domain and interactive

A/V domain. These two sub-domains differ from each other in their media

characteristics (e.g., stored vs. live media), while inheriting the same QoS

 50

characteristics (A/V transmission) from their parent domain. By categorizing and

modeling, a hierarchical and extensible application QoS classification tree can thus be

setup by QoS middleware where new QoS sub-domains are defined as leaf nodes of

the tree.

4.2.3 QoS Domain Specification and Knowledge Acquisition

Essentially for each QoS domain, we define a QoS domain specification that records

common QoS requirements of applications in that domain. For instance, an example

QoS specification for A/V streaming domain is shown in Figure 4-4, which lists

common QoS properties of A/V streaming applications. Each QoS domain

specification acts as a library to be build-time linked with application inputs so as to

form a complete application QoS requirement statement. The formation of a QoS

domain specification is basically realized by merging relevant lower level QoS base-

class ontology. Alternatively, domain specification of a child domain can be derived

and refined from that of its parent domain. For example, QoS domain specification of

continuous-video domain can be established by combining ontology of video base-

class, application-general base-class, transportation base-class and codec base-class.

Such integration is performed in an offline manner each time a QoS middleware is

launched. The derivation of QoS domain ontology from QoS base-classes ontology

and the establishment of a QoS classification tree are guided by configuration rules.

SQS allows the customization of rules for middleware to produce new QoS domains

and (occasionally) modify the definitions of existing QoS domains.

 51

Figure 4-4: Partial QoS domain specification for video streaming applications

Despite the overhead to construct a hierarchical application QoS classification tree,

QoS domain specification can be tailored just to the need of a specific application type.

For example, each QoS domain may define domain-specific parameters to reflect the

QoS characteristics of applications in that domain. In addition, a QoS domain

specification may also contain policies about domain specific QoS knowledge which

will have implications on the runtime configuration and adaptation. For instance, the

visual-auditory QoS domain may contain knowledge about the significance of audio,

video and text components to the perceptual quality of end-users. Figure 4-5 shows an

example of such knowledge which states that video components should be subject to

flow regulation prior to other media components (e.g., an audio component) in visual-

auditory applications. The definition of such knowledge is based on the observation

that people are more sensitive to distortions in audio display than in video display in

 52

multimedia consumptions [96]. Recognizing such knowledge, QoS middleware

runtime should first reduce the quality of the video flow while maintaining the quality

of the audio stream, in the case of insufficient bandwidth by, for example, swapping to

a less bandwidth-demanding video codec. Unless otherwise specified by end-users,

such knowledge can be employed as a default solution to deal with runtime bandwidth

shrinking problem.

Figure 4-5: An example of knowledge built in the video-auditory QoS domain

The above QoS knowledge contained in the visual-auditory QoS domain specification

will automatically be applied to its child domain - A/V streaming QoS domain. In

addition to such knowledge inheritance from parent domain, A/V streaming QoS

domain may further define domain particular knowledge for itself, an example of

which is presented below in first order logic predicates:

- application (QoS domain, video streaming) ∧ monitor (AudioQuality, ‘LOW’) ∧

userDefinition (AudioPerception, ‘HIGH’) ├ middleware (Adaptation, throughput)

As has been revealed by some researches, non-interactive auditory applications (e.g.,

audio flows in an A/V streaming) are more sensitive to throughput than other factors

such as end-to-end delay and jitter [54]. In the A/V streaming QoS domain, such a

 53

property can be described by the above QoS knowledge, which indicates the sequence

of adaptation (e.g., latency to be compromised first) in case of unsatisfactory audio

quality.

To conclude, the benefit of detailed partitioning of QoS domains largely lies in the

observation that comprehensive QoS specification (i.e., QoS parameters and policies)

can be realized in sub-domains to further reflect QoS requirements of applications of a

particular kind. As QoS requirements and corresponding resource demands of most

today’s QoS-sensitive applications have been extensively studied and resulting QoS

knowledge been continuously validated, the principle of semantic QoS classification as

proposed here is feasible and essential for the systematic modeling of application QoS

requirements.

Table 4-1: QoS profiles for mobile multimedia applications

The domain specific QoS knowledge can be acquired in QCMF in three ways. Firstly,

system administrators are assumed to contribute system-wide management policies for

domain regulation (e.g., what kind of traffic will be regulated or prohibited). Secondly,

QoS knowledge for classic applications can be established through theoretic and

experimental studies from the research and industry community. For example, an in-

 54

depth research has been done in [54], investigating into the QoS requirements of

advanced applications and their effects on networks. Table 4-1 shows another example

of QoS profiles for QoS-sensitive applications in a GPRS environment as is proposed

and tested in [97]. Lastly, QoS domain knowledge can be derived from continuous

validation through experiments. For instance, recognizing that QoS violations of the

similar nature may present similar symptoms at runtime, we employ some AI

techniques to identify and associate a new QoS violation pattern with known QoS

violations so that the same remedy could be applied to solve the new problem.

Through application, feedback and validation process, those effective prescriptions to

new QoS violations would be acknowledged by the QoS management system, which

could then be turned into new QoS knowledge (Chapter 5).

It should be noted that several recent literatures have also suggested grouping of

applications based on their QoS requirements for various purposes. For example, [23]

defines audio, video and text flows for multimedia applications and designs APIs

accordingly. In [98], applications are classified into three classes - conventional

Internet services class, playback streaming class and conversational streaming class -

each of which is modeled with four attributes: delay, jitter, data rate and packet lost to

match with network QoS parameters. As these taxonomies assume a fixed number of

application classes, limited benefit could be derived from such coarse-grained

classifications. Comparatively, the number of application domains in SQS is not pre-

fixed. The support of new application areas can be achieved by either creation of new

application types or inheritance and refinement from existing application domains.

 55

4.2.4 QoS Compilation and Mapping

A QoS domain specification serves as a template for instantiating an application QoS

specification (AQoSpec) for a real application of that QoS domain. The QoS

specification process in SQS is achieved in the following steps.

Firstly, SQS will analyze the target application for the purpose of fetching a

corresponding QoS domain specification at build-time. The determination of a correct

QoS domain basically relies on its QoS type claimed by the application (e.g., visual-

auditory QoS type). However, such a syntax-based matching may not always identify

the most precise QoS domain for the application since each QoS middleware is likely

to define QoS classification trees of different depth (depending on the capability of the

QoS middleware and runtime platform as explained before) where more detailed

specification support for an application may be possible in some sub-domain. To

enable a more precise QoS domain matching, we have designed a light-weighted

semantic engine that utilizes machine learning and information retrieval techniques to

identify appropriate QoS domains for applications [99].

Figure 4-6: Dynamic compilation of AQoSpec

 56

After a most precise QoS domain has been found, SQS will secondly extract

application QoS requirements (e.g., values or ranges of parameters) from inputting

application QoS documents. We call such a document a QList, which produces

application QoS requirements including pertinent QoS parameters and associated

adaptation policies. Such a QList is preliminary and incomplete in nature because (1)

an application designer has not exhausted all QoS configurations of the applications

(as discussed earlier, such a complete configuration theoretically is not feasible due to

the dynamics of runtime environments), (2) an application designer may not be an

expert to figure out all optimal application configurations and QoS degradation choices.

In either case, all QoS definitions specified in the QList are compiled according to the

corresponding QoS domain specification. Those undetermined parameter values or

adaptation strategies will be examined by QoS middleware by incorporating relevant

QoS knowledge from corresponding QoS domains4. The output of QoS compilation

process - an AQoSpec, will provide QoS middleware the most comprehensive

information for the runtime configuration and supervision. The whole compilation

process is illustrated in Figure 4-6.

An AQoSpec, which is encoded in RDFS for easy machine interpretation, is basically

composed of two parts: QoS parameter definitions and policies. Two kinds of QoS

parameters are defined in an AQoSpec: quantitative and qualitative parameters.

Quantitative parameters are countable in nature, which at runtime will be translated

into resource demands by either analytical or probing QoS mapping mechanisms

(much work has been done in this area, e.g., [8]). On the other hand, qualitative

parameters mainly refer to the more fuzzy types of QoS requirements such as

reliability, security, and availability. At build-time, these parameters will mostly be

4 End-users runtime may also express preferences which have higher priority than default QoS strategies
and application settings. Such a user input is entertained through a separate GUI.

 57

interpreted into middleware and communication protocol stack settings, which will be

addressed in the next section. An AQoSpec may also contain QoS domain specific

knowledge (expressed as policies) that helps to perform QoS configuration and

adaptation at runtime. For example, the knowledge of input/output relations of

standard codecs (e.g., MPEG-1, and H.263) is stored in codec QoS base-class, whose

resource requirements can be automatically calculated without the need of QoS

probing.

4.3 MIDDLEWARE QOS KNOWLEDGE MODELING

Middleware QoS knowledge modeling abstracts the capabilities and restrictions of

QoS middleware for information sharing and adaptation coordination with other end-

to-end QoS components. At current stage of QCMF, our modeling emphasis is on the

knowledge description of QMan middleware (e.g., adaptation strategies and

capabilities) and the semantic modeling of a host’s communication protocols and

protocol stacks though it could be extended to include other aspects (e.g., buffer

management or session management properties) of a middleware system.

4.3.1 Design Considerations

Programming in a typical networked computing environment would have to explicitly

specify the communication protocols needed in designing an application. Such a static

approach potentially hinders the portability of applications on different runtime

platforms: once a protocol stack is established at build-time, runtime re-assembly of

the stack to deal with transmission quality variation is normally not supported. In view

of this, much work has been done in the area of flexible protocol stacks

[24][25][26][49][100], among which our dynamic protocol framework (DPF) is one of

 58

the research effort for dynamic protocol stack composition. In the context of QCMF

framework, DPF offers one possible dimension of QoS adaptation within the

communication protocol stack (e.g., switch from a computational intensive codec to

less CPU intensive one in case of CPU overload) which can supplement current

prevailing QoS solutions at application or network level. The adaptations of DPF (i.e.,

runtime re-composition of stacks) are triggered by QCMF as the outcome of a

coordinated decision-making process among different end-to-end QoS dimensions and

are transparent to end-users. Details about DPF and the differences among all these

work with respect to the build-time functional stack construction and dynamic runtime

re-composition can be found in [46]. Here we will focus on the semantic modeling of

protocol stacks in QCMF by comparing approaches taken in related literatures.

Central to all flexible protocol stack systems is a protocol knowledge base (PKB)

which is responsible for protocol representation, retrieval and protocol stack

composition. PKB keeps the meta-data information (e.g., QoS requirements,

capabilities, I/O relations, restrictions and dependencies) of those protocols supported

in a system for the benefit of protocol selection and stack validation. However, most

work reported so far has taken an ad-hoc approach to design proprietary and

exploratory PKB which lacks formality and expressiveness. For example, Rwanda [44]

and its successor Chameleon [45] are a series of projects focusing on providing

tailored protocol services to media streaming of various types. Rwanda models a

protocol stack as a linear list of protocol objects which represent a kind of QoS such as

reliable delivery or encrypted communication. All protocol information is

implemented by a Java class and is runtime retrieved via reflection for configuration.

However, both Rwanda and Chameleon have only designed a few protocol QoS

properties for demonstration purpose. The systematic modeling of protocol properties

 59

and efficient processing of protocol information for stack configuration has not been

considered in their projects.

Dynamic layered protocol stack (DLPS) [101] of Microsoft provides a method to

dynamically build a protocol stack for data transfer. A stack description file has been

designed comprising a plurality of individual protocol layer description so that the

plurality of all these layer description together define which protocol layers will be

included in the protocol stack when it is constructed. However, DLPS has not

addressed the issue of modeling properties of protocol stacks as a collection of

individual protocols. Furthermore, each protocol in DLPS is modeled individually

without considering the clustering of protocols of similar natures. For example, all

video codec protocols have common properties such as the number of tracks and

sampling rate, which can be abstracted as a template for modeling protocols of that

category.

In [102], component description is introduced to represent protocol building blocks.

Each component is described by a list of provided properties and required properties.

The former declares the functionality that can be provided by a component while the

latter defines its conditions to be satisfied by others (e.g., downward and upward

dependencies). An algorithm to select building blocks is also presented where the

solving strategy of stack composition is to match the requested properties of one

component with the provided properties of others. However, their work has only

focused on the dependency properties of protocols and has neglected the importance of

other protocol properties in runtime stack building. For instance, the selection of G.723

protocol or MPEG protocol for audio streaming should depend on the runtime resource

availability (i.e., a resource rich environment may choose a codec of better quality

 60

which in turn demands for more resources) since dependency is no longer a factor for

consideration (i.e., both of the codecs have the same dependency on the underlying

protocols in the stack). A selection algorithm considering only one searching factor

(e.g., dependency as used in [102]) surely would not find an optimal stack composition

in practice.

In brief, PKB design and management functions of all the abovementioned projects

have been accomplished by individual efforts making use of either programming

languages elements or proprietary data structures. These studies often lack generality

and most likely can not provide customized and expressive description for

communication protocols and protocol stacks. In line with our semantic modeling of

other QoS components in QCMF, we present here our ontology-based protocol

knowledge modeling using RDFS to address these shortcomings. Our semantic

approach to the modeling and processing of protocol/stack information enjoys the

advantages of being expressive, flexible and interoperable with other QoS components

in end-to-end QoS knowledge sharing and coordination.

As a middleware service, DPF provides flexible protocol stack composition at session-

setup time and dynamic re-composition at runtime. The architecture and workflow of

DPF is shown in Figure 4-7. As discussed, the key enablers of DPF include (1) a PKB

which stores and represents protocol information ontologically, and (2) a knowledge

reasoner which holds a reference of protocol meta-data and interacts with other

components of DPF throughout the lifecycle of a session for a correct composition and

re-composition of protocol stacks. The following sections concentrate on the

ontological design of PKB and semantic protocol processing of the knowledge

reasoner for the construction of a protocol stack. Particulars about subsequent

 61

functional manipulation of protocols (.e.g., protocol insertion or swapping) in DPF can

be found in [46].

Figure 4-7: Architecture of DPF with ontology modeling

4.3.2 Ontology Modeling of Protocols

Since each protocol in DPF provides a specific service, we define an overall service

class in RDFS expression (Figure 4-8) as an entry point to capture common properties

that exist in all protocols. These common properties include layer name (where the

protocol lies in the stack), protocol name (what is the protocol), class name (where to

find the functional code of the protocol) and so on. Ontology of each protocol will

extend this fundamental service class definition.

We then classify protocols into categories according to their functions and positions

(i.e., layers) in the protocol stack for an easy characterization and modeling. In each

protocol category, common characteristics are abstracted for category-wide re-usage,

which is useful in the case of modeling a new protocol of that type. Each protocol

 62

category definition extends the fundamental service class ontology and abstracts

category specific QoS characteristics. Figure 4-8 shows the ontology definitions of

service and category classes. An example property specific to the codec category,

which is for media encoding and decoding is also illustrated. The scope that this

supportedInputFormats property can be applied to is defined by the rdfs:domain

expression, which provides an isolation of property usage at the grammatical level.

The grouping of similar protocols into categories is extensible in that more detailed

classification is possible to provide fine-grained ontology description for a small group

of protocols of similar nature.

Figure 4-8: Protocol knowledge modeling entry point: service and category classes

The ontology of a protocol is built by integration of (templates of) basic service class

definition, corresponding category definitions and protocol specific properties.

Protocol knowledge to be modeled includes, for example, input/output relations and

encoding methods of codec protocols (e.g., VBR, CBR), streaming properties of

session protocols (e.g., SIP [103]), reliability features (e.g., availability, security) of

 63

control protocols, connectivity characters of datagram protocols and finally, their

relations with other protocols (e.g., dependency and compatibility). Figure 4-9 shows a

partial ontology definition of TCP protocol for an outgoing session, where

characteristics of TCP protocol related to data transmission are recorded. Properties

such as port, which are specific to transport protocols, are defined within transport

category ontology. Other properties such as slidingWindowSize are derived from

control protocol category (i.e., multiple inheritances are allowed). Meta-data such as

className and dependency are derived from the service class ontology. The protocol

ontology for each supported protocol is collectively stored in PKB and handled by the

knowledge reasoner to (1) semantically select appropriate protocols that meet

(application and environment) QoS requirements, and (2) validate the composition of a

protocol stack for build-time construction and runtime re-composition; the details will

be presented in the following sections.

Figure 4-9: TCP is of (rdf:) type transport and belongs to transport category

 64

4.3.3 Semantic Protocol Stack Composition

The overall semantic protocol retrieval and stack composition process is illustrated in

Figure 4-10. In end-to-end QoS provisioning, the selection of a target protocol in

forming a communication stack is dependent on multiple factors such as the

availability of that protocol in an end-host and the preference of the communicating

peer. Hence it is meaningless to explicitly bind an application to a specific protocol

beforehand. To ensure the runtime portability of QoS-sensitive applications in

heterogeneous environments, QCMF allows applications to describe their desired

protocol requirements (e.g., resource reservation capability) in their QLists (which has

been explained in Section 4.2.4) instead of explicitly designating a specific protocol.

Based on the semantics of the application QoS domain and available protocol ontology

at runtime, appropriate protocols will be fetched automatically to compose a protocol

stack that fulfills application requirements (shown in the left part of Figure 4-10). Note

that after the classification and semantic modeling of application QoS by SQS, QoS

characteristics of each kind of application is supposed to be well established. The

semantic mapping from AQoSpec to middleware and system settings is unambiguous

under the same ontology namespace.

In DPF, a protocol stack is a protocol graph that consists of a vector of protocols in the

sequence of layers. As a protocol stack is dynamically composed at runtime, stack

ontology, which is formed by integrating ontology of member protocols, is an

ephemeral model to describe the features of a transient stack. Different combination of

protocols will produce stacks with different characteristics. The characterization of a

stack is essential for deciding whether the stack composition can suffice

application/user requirements or not. For example, <G723, RTP, UDP, IP> is a

protocol stack for audio transmission. This stack is characterized by having low

 65

perception quality (derived from G723 ontology), unreliable data transmission (derived

from UDP ontology) and supports real time session control (derived from RTP

ontology). If an end-user can accept medium to low audio perception quality, such a

stack can be employed at runtime in case of resource scarcity.

Figure 4-10: Semantic protocol selection and protocol stack building

On the other hand, not every combination of protocols will produce a valid stack. For

example, the stack composition <JPEG, RTP, UDP, IPX> for video streaming is not

acceptable because UDP is not compatible with IPX. We define a RDFS property

element – compatibility – to capture such relationship among protocols in constituting

a protocol stack (shown as dotted lines in the stack composition step of Figure 4-10).

Similarly, the deployment of a protocol may rely on the adoption of other supporting

protocols. For example, H263_RTP is a JMF implementation of standard video codec

H.263 whose deployment requires the presence of RTP in the protocol stack. Such

dependency can be described by another RDFS property element – lowerDepd – as the

desired protocol RTP resides below H263_RTP in the protocol stack. Lastly, it is also

possible that a protocol requires other protocols to appear on top of it in the stack. For

example, TCP/UDP and IP are always bundled together in the protocol stack. Thus IP

 66

protocol has a dependency on upper side transport layer protocols (either TCP or UDP).

We also introduce a property element – upperDepd – to address such a requirement

(shown as solid lines in the stack composition step of Figure 4-10). RDFS definitions

about these property elements can be found in Figure 4-11.

Figure 4-11: RDFS definition for compatibility and dependency

Compatibility and dependency are modeled as properties of the basic service class

since all protocols may have such requirements. The dependency and compatibility

knowledge of each protocol is to be supplied by protocol developers. To ensure that all

protocols in the stack can interoperate with each other properly, stack validation is

enforced once a stack is defined. The stack validation will go through two stages:

grammatical check and specification check. The former guarantees that dependencies

of every protocol and compatibility of the stack are satisfied. The latter makes sure that

the stack is configured in accordance with user/application requirements. Those stacks

that have passed the validation check are legal stacks and will be negotiated between

 67

communication peers for the final decision of stack composition and initiation of data

transmission.

4.4 NETWORK QOS KNOWLEDGE MODELING BRIEFING

As QoS support has not been part of the design considerations for virtually all network

architectures, including that of the Internet, IETF has proposed several standard

service models and mechanisms to support QoS delivery in the network since 1990th.

These include, as said IntServ, DiffServ, MPLS and models that combine these

technologies for an improved network scalability or utility. However, none of these

models has now gained predominant acceptance to substitute current best-effort

network service, which suggests that different QoS techniques may co-exist with QoS-

transparent network to form a heterogeneous network QoS environment in the

foreseeable future. From end-to-end QoS perspective, it is possible that a multimedia

flow would traverse several autonomous network domains each employing its own

QoS traffic models and service disciplines ranging from complex DiffServ to simple

best-effort service.

Such a complex network QoS delivery situation has prompted our research initiatives

in QCMF, which aims at designing an efficient end-to-end QoS framework

coordinating heterogeneous QoS among end-host and network QoS components in a

co-operative fashion. As explained earlier, each of such an administrative QoS

network is modeled as an end-to-end QoS component in the context of QCMF. Here

QCMF is not competing with any of the above standard network QoS techniques for a

better performance in a local region; rather, our focus is on accommodating individual

QoS techniques in each QoS component within QCMF by (1) modeling QoS

characteristics of each end-to-end QoS component, (2) provide a platform to facilitate

 68

their information exchange and interaction, (3) enables a coordinated QoS decision-

making in an end-to-end fashion in view of runtime QoS status.

At current stage, QCMF considers two network QoS scenarios. In a pure best-effort

network environment, QCMF would perform end-to-end QoS provisioning leveraging

on end-host QoS components (such as middleware QoS and application QoS). In a

heterogeneous network QoS environment which consists of several network QoS

components each adopting different QoS mechanisms, QCMF will model their QoS

knowledge and capabilities such as traffic shaping policies at ingress/egress points,

available service types, QoS parameters associated with each traffic class, current load

information, packet dropping priority, and pricing strategies. Such knowledge will be

fetched by end-hosts via signaling protocols so that an up-to-date picture about end-to-

end QoS transmission is always accessible to end-hosts. Based on that, runtime QoS

adaptations can be coordinated by end-hosts leveraging on a series of decision-making

policies, heuristics and algorithms. Details about network QoS modeling and end-to-

end coordination can be found in Chapter 6.

4.5 QOS KNOWLEDGE PROCESSING

QoS knowledge processing traditionally focuses on the mathematical mapping,

calculation and comparison of QoS parameter values. For example, in QoS negotiation,

10ms delay from one party is deemed worse than 5 ms delay from the other. Much

work in this research area [8][69] has adopted such an approach, whereby a theoretic

mathematical analysis can be found in [104].

QCMF provides numerical QoS parameter mapping and negotiation among

communication peers in a way similar to other end-to-end architectures. (e.g., frame

 69

resolution negotiation, socket address selection). In addition to that, the knowledge

plane established in QCMF specifically addresses the semantic processing of QoS

information which is often neglected in relevant literatures (Figure 4-12). A knowledge

plane in QCMF contains two essential functions: (a) semantic modeling of QoS

knowledge of each end-to-end QoS component (which has just been explained), and (b)

processing of such knowledge and sharing it among QoS components. An example of

semantic mapping and composition of protocol stacks based on ontology/RDF has

been shown in Section 4.3.3. Here we will discuss other essential QoS knowledge

processing issues including knowledge sharing and first-order reasoning.

Figure 4-12: End-to-end QoS knowledge sharing and adaptation signaling

4.5.1 Knowledge Sharing

In QCMF, an end-host establishes three knowledge bases for information storage and

sharing:

1) An application knowledge base typically contains applications QoS parameters and

their relative adjustment priority, application specific configurations and adaptation

 70

policies. Such knowledge is generally derived from application requirements input

and domain ontology templates of applications.

2) A middleware knowledge base describes QoS capabilities (e.g., middleware

adaptation choices) and restrictions (e.g., memory physical capacity) of a QoS

middleware and end-hosts (e.g., device capacity). At the current stage of QCMF,

focus has been put on the semantic description of QoS properties of

communication protocols and composition of protocol stacks (as has been

explained in Section 4.3).

3) A network knowledge base comprises network configuration and runtime

conditions within each administrative network domain such as channel capacity,

network service options, traffic load and pricing metrics.

In addition to the above static information, middleware knowledge base will also

include dynamic information such as: (a) runtime monitored local information (e.g.,

current available bandwidth or current application performance) for the purpose of

QoS analysis of transmission status; (b) the up-to-date QoS status of all network QoS

components (shared from the network knowledge base; such information is also

sharable with applications). The actual contents of each knowledge base are dependent

on the implementation of a real end-to-end system. QCMF only defines the format of

knowledge representation (i.e., ontology/RDFS as exemplified) to guarantee the

machine readability and cross-domain inter-operability of QoS knowledge in

heterogeneous end-to-end environments.

Knowledge sharing between various distributed QoS components in QCMF is fulfilled

in both push and pull modes. The push mode is used for regular information exchange

among QoS components. For example, static information about each QoS component

 71

is shared at session initiation stage. Runtime QoS status of a network QoS component

is automatically updated with end-hosts once there is a significant change in its QoS

status (e.g., QoS violation or network service re-distribution, details to be found in

Chapter 6). Pull mode is used when an end-host QoS component is interested in the

QoS information of other (remote end-host or network) components and hence is

willing to learn such information. Knowledge sharing in pull mode is achieved via

query and answer primitives (Figure 4-12), the generic definitions and usages of which

is presented in Section 6.4.3. In our prototype implementation, we use Java Remote

Method Invocation (RMI) technique [105] to setup and maintain the knowledge and

control channel between QoS components. The main advantage of RMI is its

implementation simplicity, interoperability between heterogeneous platforms and a

certain degree of security been supported.

4.5.2 Knowledge Reasoning

Ontology/RDF-based knowledge modeling also enables a certain degree of QoS

knowledge reasoning based on first-order logic, which can infer derived knowledge

from known knowledge (i.e., static knowledge, profiled knowledge and monitored

knowledge, refer back to Section 4.1.1 for details). Knowledge reasoning in QCMF

comprises two forms: ontology reasoning and user-defined reasoning. Ontology

reasoning supports all RDFS entailments described by the RDF Core Working Group.

The main function of ontology reasoning is to check consistency among RDF/RDFS

definitions when integrating or matching domain specific ontologies (e.g., AQoSpec to

protocol stack composition).

 72

Properties Ontology Reasoning Rules

subClassOf (?A rdfs:subClassOf ?B), (?B rdfs:subClassOf ?C) ->
(?A rdfs:subClassOf ?C)

type (?P rdf:type ?A), (?A rdfs:range ?B) -> (?P rdfs:range ?B)

subPropertyOf (?A rdfs:subPropertyOf ?B), (?B rdfs:subPropertyOf ?C) -> (?A
rdfs:subPropertyOf ?C)

compatibleWith (?A QCMF:compatibleWith ?B), (?B QCMF: compatibleWith ?C) ->
(?A compatibleWith ?C)

lowerDepd (?A QCMF:lowDepd ?B), (?B QCMF: lowDepd ?C) ->
(?A QCMF:lowDepd ?C)

upperDepd (?A QCMF: upperDepd?B), (?B QCMF: upperDepd?C) ->
(?A QCMF:upperDepd?C)

Table 4-2: Partial RDFS reasoning rule set in QCMF

Table 4-2 lists examples of RDFS reasoning rules in QCMF which is used to check the

architecture integrity and correctness of QoS components (e.g., a protocol stack) at

both build-time and runtime. The first rule shows that an RDF class definition is of

transitive property while the second one indicates that a real instance of a RDF class

automatically inherits all attributes from its RDF class definition.

In addition to standard ontology reasoning rules, QCMF also defines its own reasoning

rules (i.e., user-defined reasoning) for QoS interpretation. Typical reasoning

algorithms that can be incorporated include forward-chaining, backward-chaining and

a hybrid execution model. The most common forward-chaining rule engine is based on

the standard RETE algorithm [106]. The backward-chaining rule engine uses a logic

programming engine similar to Prolog engines. A complex hybrid execution mode

performs reasoning by combining both forward-chaining and backward-chaining

engines. Rule 4 in Table 4-2 is a forward-chaining rule which specifies the

compatibility relations among two QoS objects. Such a rule has been used in

 73

composition of a protocol stack that matches application requirements, as has been

shown in Section 4.3.2. Meanwhile, it can be applied to the description and reasoning

of other QoS objects of interest. For example, Linux and UNIX operating systems can

be described as compatible systems with respect to packet scheduling (Figure 4-13),

based on which the relationships among instances of different OS types can be

identified systematically.

Figure 4-13: Ontology definitions for some OS types and instances information

An example of backward-chaining rules is a trouble-shooting rule for diagnosing the

root cause of a QoS violation, which is typically employed in a network QoS

component. As is shown below, the consequence portion of the rule indicates the

actions of either checking possible local conditions or forwarding the violation report

to end-hosts for end-to-end QoS analysis.

- violation: (packetLost qcmf:violation TRUE) ->

(localDomain qcmf:fault linkFailure) ∨ (localDomain qcmf:fault routingCorrpution) ∨

(vioReport qcmf:forward ?QMan)

Other examples of forward-chaining reasoning in QCMF include QoS adaptation rules.

Table 4-3 shows some reasoning rules for QoS adaptation defined in QCMF. As stated

 74

earlier, some adaptation rules are specific to application domains. The action of each

rule may involve (a) a local adaptation to solve a violation within a QoS component, (b)

a query been sent to other QoS components for information correlation, (c) an

assertion of QoS status based on monitored end-to-end information, or (d) an

adaptation coordination among QoS components for violation rectification.

Application Domains User-defined Reasoning Rules

network: hasSource(violation, Local) ∧ network:status(packet_lost,

HIGH) ∧ network:status(delay, LOW) -> DivertViolation(middleware,

vioReport) A/V streaming QoS

domain
middleware: hasSource(violation, Network) ∧middleware:status(hasCost,

Low) -> middleware:action(DPF, selective_retransmission)

Remote-tracking QoS

domain

application:status(tracking_frequency, LOW)
∧ application:status(object_velocity, MEDIUM) ->

application:action(application, remove_trakcer)

network:status(throughtput, LOW) ∧middleware:status(CPU_load, LOW)
∧middleware: hasSource(violation, local) -> middleware:action (DPF,

HIGH_COMPRESSION)

network:status(throughtput, LOW) ∧middleware:status(CPU_load,

HIGH) -> application:action(application, reduce_picSize)

Interactive audio QoS

domain

network:status(jitter, HIGH) ∧ network: hasSource(violation,

Local)∧ network:action(cost, HIGH) -> DivertViolation(middleware)

Distributed computing

QoS domain

network:status(bandwidth, LOW) ∧ application: hasSource(violation,

network) application:status(mirrorServer, TRUE) ->

application:action(application, handover)

Table 4-3: Example first-order logic rules for coordinated QoS adaptation

 75

4.6 SUMMARY

In this chapter, we address the knowledge modeling issue within the context of QCMF

where a wide range of QoS-related knowledge comprising network level, middleware

level and application level are defined and discussed. In tandem with the control plane

which is intended for QoS monitoring and signaling among communication peers, the

knowledge plane forms a basis for information sharing and decision-making with

respect to QoS logics. A distributed approach for decision-making during QoS

negotiation, configuration and adaptation is also highlighted to illustrate the necessity

and advantages of our approach.

 76

Chapter 5 End-to-End QoS Violation Analysis

CHAPTER
 EN D-T O-EN D QOS VI O L A T I O N

AN A L Y S I S
55

Current researches tackle QoS violations through handcrafted if-then rules, which

trigger corresponding actions once pre-described conditions are satisfied. The

performance of such rigid rules is often not satisfactory in practice as will be discussed

shortly. This chapter proposes an alternative approach to the diagnosis of QoS

violations by monitoring and analyzing both end-to-end flow statistics and application

performance.

5.1 DESIGN CONSIDERATIONS

Multimedia transmission over the network demands on end-host and network

resources and requires in-time data delivery for real-time processing, failing to satisfy

which will generally incur QoS violations. In view of this, various adaptive QoS

systems have been proposed within end-hosts to best maintain transmission quality at

runtime [107]. However, it is essential to identify the cause or nature of a QoS

violation before an appropriate adaptation solution can be applied. An illustrating

example is that the same phenomenon of packet loss in wireless communication can be

due to one or more reasons (e.g., channel error or transmission congestion). Without a

clear idea of the cause of an observed phenomenon, one may not be able to apply an

appropriate remedy (e.g., error checking or rate control) toward the recovery of the

transmission quality. However, existing researches usually ignore the detailed analysis

 77

of a QoS violation and instead equip their adaptive QoS systems with a few illustrating

condition-action rules for the detection of and reaction to violations. Unfortunately, the

results of such rigid rules are often not satisfactory in practice as will be discussed

soon.

In fact, rule-based reasoning has been extensively employed in network management

researches such as network trouble-shooting, performance monitoring and resource

scheduling (e.g., [78][108][109][110][111]). Theoretical or empirical studies have

been conducted in these literatures to demonstrate the correctness or effectiveness of

their discrimination rules, policies or algorithms for automated interpretation of

monitoring data in specific network environments. An example is [112] in which

authors analyze dynamic routing information to detect and identify network

disruptions.

End-to-end multimedia transmission has a distinctive two-tier logic in mapping

application QoS requirements into network level performance metrics. Hence it

becomes quite difficult to sustain QoS of multimedia applications in the presence of

possible runtime violations: the causes of application QoS violations lie in low level

service disruptions which is hard to be clearly identified and correlated. Unfortunately,

most end-to-end QoS management systems have neglected the detailed analysis of

QoS violations and focus more on other QoS topics such as service negotiation,

resource allocation and QoS adaptation. These adaptive QoS systems often incorporate

a few exampling condition-action rules to demonstrate their adaptation capabilities

against runtime abnormity. As a result, these handcrafted adaptation rules which have

seldom undergone serious (theoretic or empirical) studies may not yield satisfactory

 78

results (i.e., accurately detect QoS violations) in practice. We now analyze their

limitations from the following two perspectives.

Firstly, existing work seldom explores the root cause of a QoS violation. Their

justification of adaptation is often made on the partially observed phenomenon

[113][114]. Among these studies, some focus purely on application behavior to

identify the nature of a violation [115][116]. However, the same QoS degradation of

multimedia applications could be caused by different reasons, each of which may be

resolved in a unique way. Relying merely on application QoS metrics, we are unlikely

able to differentiate among violations each with different nature. For example, an

observation of inconsistent displaying of video frames in a video conferencing

application may possibly due to the following causes: the sender machine is too busy

to regularly generate frames; network is under severe congestion; the receiver

application process lacks enough CPU time slice for video decoding. If the perceived

jitter is caused by the CPU starvation problem of the decoding process, increscent of

receiving buffer size (which is assumed in most literatures for solving jitter-related

violations) surely will not help. Apart from these studies focusing primary on

application behavior, a group of other researches examine flow level phenomenon for

QoS violation identification [80][117]. For instance, some of them monitor flow level

throughput and increase bandwidth allocation to the application if the detected

throughput is under expectation [71]. However, the derivation of an application level

QoS violation from a low level statement may not be accurate considering the complex

QoS logic of multimedia applications. For instance, most video encoding formats use

variable bit rate schemes which make it difficult to assert a violation from just the

evidence of packet level throughput. All these examples suggest that different QoS

 79

violations may present similar observations in terms of one or a few parameters and

hence differentiation is essential to find the actual cause of a violation.

Figure 5-1: Observed jitter variation in a video transmission

Secondly, most current researches engage a rule/policy/algorithm based method to

define responses to QoS violations (e.g., [108][118][119][120]). Violation thresholds

are defined for QoS parameters in these rules. Much work is based on the assumption

that the environmental impact on multimedia applications is well understood and

hence can be expressed in simple mathematical formulas expressed in the form of rules.

However, we found through experiments that it is not easy, if not impossible, to find a

clear margin for each QoS parameter so as to correctly differentiate between different

types of violations and a normal transmission. Figure 5-1 shows the packet jitter of a

video streaming application during and after network congestion as we have observed

in experiments (more details will be presented in section 7.3.1). It is obvious that

packet jitter during congestion (appropriately the first 1500 frames) is statistically

 80

large and sparse compared with that in the subsequent non-congestion period (the last

2200 frames). Unfortunately, it is difficult to define a threshold jitter value to

differentiate a congestion case (violation) from normal transmission. This is because

some packets in normal transmission (e.g., frames 2300-2500) also exhibit large jitter

values that is comparable to those transmitted in the previous congestion period.

However, no QoS violation is observed at the application level in transmission and

processing of frames 2300-2500 as will be shown later. On the other hand, we are not

able to tell the cause of a violation by only checking packet jitter value (e.g., whether

the observed abnormal transmission is due to sender busy or network congestion). To

conclude, it may be insufficient (or even impossible) to confirm the appearance or the

type of a QoS violation by merely examining single QoS parameter using a threshold-

kind of approach. More comprehensive investigation into the characteristics of end-to-

end QoS transmission is essential for the determination of QoS violations, as we have

convinced through experimentation.

5.2 OVERVIEW OF OUR APPROACH

As discussed, the performance of existing rule-based QoS violation management is

often not convincing in that no serious study has been done with respect to the

relationship between the root cause of a violation and the observed violation

phenomenon. In view of the above limitations, we propose a statistical classification

approach to the QoS violation description and analysis. In particular, we hypothesize

and validate through experiments that: (1) a QoS violation will present a consistent

“fingerprint” in terms of the performance of the application and its end-to-end traffic

pattern. Such a violation can be recognized once a similar fingerprint repeats during a

transmission session, (2) QoS violations of different nature (e.g., caused by shortage of

 81

different resources) will exhibit diverse fingerprints. Using a set of end-to-end

statistics, we are able to describe and differentiate between QoS violations.

Based on such a methodology, we have developed a machine learning approach to

identify and differentiate QoS violations. Firstly, we monitor and gather traffic data of

different types of violations. We examine application performance and correlate it with

end-to-end packet flow information for a more holistic view of current transmission

status. All these descriptors together depict the fingerprint of a violation, which is the

manifestation of a fault in the end-to-end QoS system. Secondly, all violation data is

fed into a learning machine for training. Runtime, the learning machine can recognize

a QoS violation once real-time traffic data of similar nature is observed. Once the

nature of a violation is confirmed, subsequent QoS adaptation which may take the

form of either resource re-allocation or application behavior adjustment can be

executed as per normal. Details of our approach will be presented later.

It should be noted that several recent literatures in QoS management have also

reported the employment of machine learning algorithms for various purposes. Using

video streaming datasets from a commercial server [121], Matthew Roughan [122]

have defined four QoS classes (i.e., interactive, bulk transfer, streaming and

transactional) and classify streaming traffic into one of these four categories using

nearest neighbors and linear discriminant analysis algorithms. Similarly, authors of

[123] have defined four QoS classes of different performance level for ATM network.

Neural network (BP algorithm) is employed to sort traffic with different QoS

requirements into one of these classes based on parameters such as cell loss rate and

cell delay variation. A more up-to-date work following a similar track is [124], in

which authors have proposed a QoS model for service differentiation in mobile ad hoc

 82

networks based on neural networks. They validate their models through simulation and

show that by correctly assigning each kind of traffic to a proper service class, overall

end-to-end performance (such as delay and throughput) can be improved. It should be

noted that [68][71][123][124][125] classify QoS from performance perspective:

applications of similar business nature and QoS requirements are grouped into the

same category. In contrast, our work focuses on the identification of QoS violations

through end-to-end observation and classification. [126] and a wealth of other studies

differentiate the nature of packet loss in wireless communications. A lost packet can be

identified as either due to wireless channel error or traffic congestion by examining

packet inter-arrival time or relative one-way trip time. The determination of thresholds

for these parameters is an engineering process similar to the way TCP protocol

polishes its timeout value. These groups of studies focus specifically on the

differentiation of wireless link error and network congestion. Comparatively, we

propose in this paper a more general model to identify the causes of QoS violations for

multimedia transmission in the Internet. Closer to our work is [115] which has also

mentioned the importance and complexity of end-to-end QoS violation diagnosis.

They have designed a QoS management architecture that instruments an application

for violation detection. Such a system continuously adjusts resource allocation to

multimedia applications until their QoS requirements are fulfilled. In this way, QoS

violations detection rules and thresholds can be derived through experimentation [127].

Comparatively, our work focuses on identifying a QoS violation through

comprehensive observation of end-to-end QoS and traffic pattern. To the best of our

knowledge, our work is the first one to statistically deal with end-to-end QoS violation

diagnosis for multimedia transmission.

 83

5.3 END-TO-END QOS VIOLATION ANALYSIS

Essentially, a few issues need to be addressed to make an adaptive QoS system

effective in coping with QoS violations. These include (1) the clear-cut definitions, (2)

effective detection, and (3) timely response to QoS violations. We will address these

issues step by step in the follow sections. The first step in our QoS violation analysis is

to assert the existence of a violation (through examining application performance) and

then annotate it using a set of end-to-end QoS parameters. To achieve this, we take a

top-down approach in the modeling of end-to-end QoS violations.

5.3.1 End-to-end Monitoring of QoS Violations

We describe a QoS violation using monitoring data collected end-to-end, which

includes both application level QoS parameters and flow level metrics for a more

complete review of a violation. To collect these performance metrics, software

monitors are placed at different layers of the media receiver. In the following sections,

we explain our approach to QoS violation analysis through an example of video

transmission that we have designed and used in experiments. Such a video flow can be

either lively captured from a web camera or fetched from a media file on the hard disk

of the media sender. The original video flow is transcoded into RTP compatible

formats (e.g., MPEG_RTP format) and encapsulated into RTP packets for streaming5.

The media source constantly produces video frames at the rate of 30 frames per second

(fps). Due to various interferences on the end-to-end path, the receiving and displaying

frame rate at the media sink may deviate significantly from the sending rate and hence

gives rise to our violation analysis.

5 The Real-time Transport Protocol (RTP) is a packetization standard for delivering multimedia (e.g.,
audio and video) contents over the Internet and is defined in RFC 3550 [59].

 84

5.3.2 Application QoS Violation Indicator

QoS dimensions Options

Frame rate (fps) 30, 25, 20, …

Resolution (pixels) 656*272, 352*266, 176*144, …

Color depth (bits) 32, 16, 8, …

A/V synchronization (app. specific) High, Medium, Low

Packet loss ratio (app. specific) High, Medium, Low

Table 5-1: Tunable parameters in video transmission, applications

An adaptive QoS system aims at detecting and reacting to runtime quality degradation

to the best of its ability. The identification of QoS violations in such a system hence

should project on the performance variation of multimedia applications. In view of this,

we use application QoS metrics to assert the appearance of a QoS violation: if the

observed application QoS is below expectation, a violation is said to happen.

Most multimedia applications in practice would have more than one QoS parameters,

the entirety of which constitutes the application QoS. For example, a video

transmission application (such as the one developed and used in our experiments,

details to be presented in Section 7.3.1) typically has several tunable QoS parameters

as listed in (Table 5-1). These parameters may compete on the same set of system

resources for their respective performance. For instance, the performance of both

picture resolution and color depth relies on end-host resources (e.g., CPU time slice)

and network resources (e.g., link bandwidth). In many application scenarios, there

exists a most important QoS parameter to sustain, whereby other parameters can be

traded off in case of insufficient resources (e.g., [8]). We define such a QoS parameter

to be best assured as a principal QoS parameter, failing to sustain which indicates the

existence of a QoS violation. In this sense, such a principal QoS parameter serves as an

 85

application level indicator for QoS violations. In other cases where graceful QoS

degradation is desired among all QoS dimensions, Quality of Perception (QoP)

investigations can be conducted as in those relevant literatures (e.g., [48][128]) which

derive the application QoS violation indicator as the weighted sum of all QoS

parameters. In either case, the application QoS violation indicator marks out the

appearance of an application QoS violation which triggers our end-to-end QoS

violation diagnosis.

To focus more on our discussion, we use “video frame rate” as an example application

QoS violation indicator in our video transmission experiment6. As said, the media

sender constantly produces video frames at 30fps during experiments (while the flow

bit rate is varying). Due to various interferences or impairments along the end-to-end

path, the receiving and displaying frame rate may deviate significantly from the

sending rate. Once the video frame rate has dropped below user expectation, a QoS

violation is asserted to happen. Corresponding flow level performance metrics will

subsequently be collected for analysis through software monitors placed at the media

receiver.

In line with other relevant studies [96], we set the boundary value of video frame rate

to 25fps, below which signifies the appearance of a QoS violation. Upon that, flow

level analysis will be executed to find out the nature of that violation (e.g., frame jitter

due to server busy or network congestion). We sample the video transmission

application every 2 seconds to check for the displaying frame rate at the media sink.

The selection of this sampling interval is a tuning process during experiments that

seeks the balance between measurement accuracy and overhead: higher monitoring

6 As can be easily found out, other single QoS parameter or a weighted QoP value can be engaged in the
same way.

 86

accuracy demands more frequent sampling which in turn, consumes more resources

(e.g., CPU cycle) and hence threatens the performance of the target application [10].

5.3.3 Correlate Application QoS Violations with Flow Statistics

Once a QoS violation is asserted through examining the application QoS violation

indicator, corresponding flow information will be collected for a complete review of

current end-to-end QoS status. As explained before, a QoS violation will present a

consistent fingerprint in terms of the observed end-to-end application behavior and

flow traffic pattern. Meanwhile, different violations will present diverse end-to-end

QoS fingerprints, which also differ from that of a normal transmission. We use flow

descriptors listed in Table 5-2 to portrait flow characteristics of a QoS violation. These

descriptors together with application QoS parameters, can well describe a QoS

violation as is to be shown in the experiments.

Flow descriptors Remark

Packet delay Average packet delay in a frame

Delay jitter Average packet jitter in a frame

Packet loss Total packet loss in a frame

Receiving throughput Calculated for each sampling interval

Other metrics Specific to individual QoS domains

Table 5-2: Flow descriptors for end-to-end QoS

A real-time QoS management system should detect and react to QoS violations in the

magnitude of seconds. In view of this, the sampling interval for violation detection is

commonly set to a few seconds (we set the interval to 2s as explained). A media

receiver which processes approximately 30 video frames per second will receive a few

hundred of packets that carry media contents. These packets are typically of similar

 87

size except the last one of each media frame. Using these facts, we can estimate that

hundreds of (or even a few thousand of) packets will reach and be processed by the

media receiver within one sampling interval. Once a violation is asserted through

checking the application QoS violation indicator, there arises a problem as how to

efficiently discover those packets (among hundreds or thousands of packets) which

most precisely depict the fingerprint of the current QoS violation.

We correlate an application QoS violation with flow manifestation using RTP

timestamp and sequence number. In RTP transmission, the sequence number increases

by one for each RTP packet been sent and hence can be used by the receiver to detect

packet loss or restore packet sequence. The timestamp of each RTP packet, on the

other hand, reflects the sampling instant of the first octet in the RTP data packet at

media sender. As a result, RTP packets that carry payload of the same media frame

will share the same timestamp.

Assuming that we have received a trace of (sorted) RTP packets, namely

nppp ,..., 21 during two sampling points 1−kt and kt . These packets are assembled into m

frames mfff ,..., 21 for decoding and display. A QoS violation is ascertained at time kt

by digesting the average frame rate during the last sampling interval. We find

representatives of those “violated” frames as follows:

• We identify all member RTP packets of the first and last frames 1f and mf

received during this interval based on the RTP timestamp. Among the rest, we

randomly choose a frame, say if and also examine its member RTP packets.

• We compute flow descriptors for frames 1f , if and mf . Average packet delay id

and jitter ij for the thi frame are calculated as mean values of delay and jitter of

 88

all member RTP packets (denoted as pd and pj) of that frame7. Throughput is

measured as the packet arriving rate in the sampling interval. For example, the

average frame delay and jitter for frame if are calculated based on the following

formulas:

　 kkidididid /),...2,1,(++= ,

　 kjjjj kiiii /)...(,2,1, ++= ,

　 for all RTP packets that have
ikttt fppp TStampTStampTStampTStamp ====

,1,
... .

• For each candidate frame (i.e., 1f , jf and mf), flow descriptors and application

QoS parameters (e.g., frame rate, resolution) are sent to the violation

classification algorithm for analysis (see next section). If all the three tests

conclude the same type of violation, a QoS violation is confirmed and

corresponding adaptation action can be triggered.

The approach of our flow summarization and violation analysis is designed in light of

the following considerations. Firstly, we are not obligated to investigate into all media

frames of a sampling interval for violation justification, which is much more time

consuming. Hence we choose three “typical” delegate frames for violation analysis.

Secondly, for each delegate frame, we calculate average statistics covering all member

RTP packets of that frame for a comprehensive representation of frame QoS statistics.

Lastly, we require the identical results from three testing to acknowledge a violation.

Otherwise, the algorithm will advance to the next round of examination. As will be

shown in Section 7.3.2, the classification accuracy for each test is between 86%-97%

in those environments we have tested. Hence, if all three tests hit the same results,

statistically we have a good chance to assure the nature of a QoS violation.

7 The computation is done on correctly received and identified packets only. Those lost or corrupted
packets are not counted in.

 89

 Our approach requires the continuous monitoring of a RTP flow so as to correlate a

violation with flow statistics. We achieve this by listening to the network interface card

(NIC) of the media receiver. We insert a sending packet timestamp in each IP packet

(distinguishable from the RTP frame timestamp for frame re-construction) so that

traffic statistics of the IP packet can be calculated once it reaches the receiver host. We

have found through experiments that the overhead to log RTP packets is not noticeable

to the performance of a multimedia application since we have designed it as a system-

level utility. However, in those environments that require minimal resource occupation

(e.g., mobile devices such as handsets), selective sampling techniques (e.g., [129]) can

be engaged. The violation analysis algorithm listed in this section can be applied with

comparable performance considering the statistical nature of our method.

5.4 VIOLATION CLASSIFICATION WITH NEURAL NETWORK

We have engaged several neural network algorithms for the identification and

classification of QoS violations. Once a QoS violation is asserted runtime and end-to-

end statistics are collected, relevant data will be fed into the neural network for the

identification of the nature of a violation. This section briefly discusses the various

neural network algorithms we have employed for QoS violation classification,

including the one proposed by us for a fast learning and classification.

 90

Figure 5-2: Single Hidden Layer Feedforward Neural Networks

5.4.1 Neural Network Algorithms Briefing

Neural networks have been successfully applied to a wide range of real world

classification problems in the past decades [130]. Figure 5-2 is a standard single

hidden-layer feedforward neural network (SLFN) model. The output of a SLFN with

L hidden neurons can be represented by),,()(
1

XbagXf ii
L
i iL ∑ =

= β , where ia and ib are

the learning parameters of the thi hidden neurons, and iβ is the weight connecting the

thi hidden neuron to the output neuron (also called the hidden-to-output weight).

),,(Xbag ii is the output of the thi hidden neuron with respect to input X . Based on

different parameter combinations of the activation functions, two main neural network

models has been widely used in SLFN: for additive neurons with activation function g ,

g is defined as RbRabXagXg i
d

iii
∈∈+⋅= ,),()(, where Xai ⋅ denotes the inner product

of vectors ia and X in dR ; for RBF (radial basis function) hidden neurons with

 91

activation function g , g is defined as +∈∈
−

= RbRa
b

aX
gXg i

d
i

i

i

,),()(, where +R

indicates the set of all positive real value.

In applying neural network algorithms to the classification of QoS violations, the input

vector X consists of flow parameters such as packet delay, jitter and frame rate that

we have runtime collected. The target vector t , which indicates the classification result,

shows the category a violation belongs to. The configuration of other internal

calculating vectors and matrixes will be explained in Section 7.3.

In search of suitable neural network algorithms for QoS violation classification, our

focus has been put on their respective learning speed. This is due to a special design

consideration of our end-to-end QoS management system: the initially available

training data which is (1) provided by the system designer (or network administrator),

or (2) collected through a few online testing clips, may not be accurate (or complete)

enough to effectively differentiate all QoS violations. In view of this, an execution-

feedback process is proposed to “refine” the neural network structure for a more

precise violation snapshot: the end-to-end QoS system is firstly trained with the initial

data; once a QoS violation is detected, a predefined adaptation will be invoked

according to the analysis result; the effect of the adaptation is then observed, which in

turn verifies whether a QoS violation has been correctly identified and solved. After

such a cycle, fresh violation data (i.e., monitored data of the violation that has just

been confirmed and solved) will be treated as new training data and learned by the

neural network algorithm. In this way, QCMF will update its violation profiles and

becomes more and more accurate in identification of QoS violations as the

transmission goes on. As can be found out, our QoS management system requires a

fast neural network algorithm for online QoS violation learning [131]. Hence, we

 92

group and analyze those algorithms we have engaged during experiments into offline

and online categories according to their training speed.

5.4.2 Offline Algorithms

• RANEKF. An important sequential learning algorithm of RBF networks is

proposed by Platt through the development of a resource allocation network

(RAN) [132]. RANEKF [133], which is known as an enhancement of RAN,

use an extended Kalman filter to update the neural network parameters so as to

improve the accuracy and achieve a more compact network architecture.

• MRAN. RANEKF can only add neurons to the network and cannot prune the

insignificant neurons from the network. A major performance improvement of

RANEKF is achieved in [134] by introducing pruning strategy based on the

relative contribution of each neuron.

• Levenberg-Marquardt BP (LMBP). LMBP [135] is adjusted from Newton’s

method through the approximate Hessian matrix. As has been recognized,

Newton’s method is faster and more accurate near an error minimum. In view

of this property, the objective of LMBP is to shift towards Newton’s method as

quick as possible. So far LMBP has been known as one of the fastest gradient

based learning algorithms.

5.4.3 Online Algorithms

• Stochastic BP. In stochastic BP [136], weights may move down along the

random gradient in each iteration. Therefore, it may result in a better

classification solution since it avoids the probability of achieving local

 93

minimum. Due to its random characteristic, stochastic BP can provide good

generalization performance in a short time.

• Extreme Learning Machine (ELM). Huang proposed a simple learning

algorithm for SLFN called ELM [137] which randomly chooses hidden

neurons and analytically determines output weights by using generalized

inverse matrix. Neural networks with ELM can provide good generalization

performance at quite fast learning speed.

• Orthonormal algorithm. In Appendix A, we will prove that an orthonormal

network is universal approximation and hence can be used for classification. In

addition, we will extend the scope of hidden neurons from kernel functions to

additive functions, the latter of which is commonly known of higher

classification accuracy [138]. Our orthonormal algorithm for QoS violation

classification is also presented in Appendix A.

A major concern that we employ neural network algorithms to replace traditional rule-

based methods in QoS violation identification is that the former approach enjoys much

more flexibility. For example, neural networks can automatically find the weight of

and relationship among each contributing parameter. Furthermore, no clear margin of a

QoS parameter is needed to identify the type of a violation owe to its statistical nature.

However, conventional neural networks (e.g., offline algorithms as listed above) have

heavy computational burden involved in solving highly complex functions with a large

number of variables, which will lead to a long training time. As fast QoS violation

training and identification is crucial in runtime QoS management, online algorithms

which exhibits quick response are more in favor, as we will demonstrate in Section

 94

7.3.2. Those offline algorithms engaged in our experiments are mainly for comparison

purpose.

5.5 SUMMARY

Common approaches to QoS violation analysis involve hypothesis to violation

identification through checking threshold(s) of one or a few QoS parameters. They

often ignore the fact that different QoS violations may present similar phenomenon in

the observation of one or a few QoS parameters. We argue that more comprehensive

survey is needed to recognize the cause of a violation so that a correct adaptation

remedy can be applied. In this chapter, we propose a statistical approach to QoS

violation analysis which involves (1) violation assertion through inspection of the

application QoS violation indicator, (2) violation modeling through a collection of

application performance and flow statistics, and (3) violation classification using fast

machine learning algorithms. The performance of our statistical approach to QoS

violation identification will be introduced in the experiment sections.

 95

Chapter 6 Cross-component QoS Adaptation

CHAPTER
 CR O S S-C O M P O N E N T QOS AD A P T A T I O N 66

Meeting performance requirements of QoS-sensitive applications is fundamentally an

end-to-end issue, which requires all QoS-enabled facilities along the end-to-end path to

work cohesively to achieve the desired end-to-end effect. However, most of the

existing QoS solutions focus on their respective areas while paying little attention to

the interaction of other QoS facilities on the end-to-end path. As a result, QoS can be

sustained in their local domains while no satisfactory end-to-end performance can be

provided to end-users. This chapter presents the cross-component QoS coordination

scheme in QCMF, whereby QoS adaptation assumptions, strategies, heuristics and

algorithms are discussed in detail.

6.1 END-TO-END QOS MODEL

Figure 6-1: Abstracted end-to-end QoS provisioning model

An end-to-end QoS framework is a management system for organizing all QoS

mechanisms along the end-to-end path. We abstract the end-to-end QoS provisioning

 96

model in Figure 6-1 in which each QoS network administrated by an Internet Service

Provider (ISP) is represented as a bubble. Compared with the QoS reference model

introduced in Section 3.1, Figure 6-1 provides a more high level yet comprehensive

overview of end-to-end QoS whereby (1) diverse QoS facilities in end-hosts (e.g.,

QoS-enabled OS, middleware or application) are summarized and represented by a

single end-host QoS architecture in the overall picture of end-to-end QoS provisioning,

(2) autonomous networks of different QoS characteristics are modeled respectively as

end-to-end QoS components. These networks interconnect with each other and form

the end-to-end communication path for packet delivery. It is possible that each

network may employ distinctive QoS mechanisms in its local region. For example,

some ISPs may adopt DiffServ QoS model while others may choose MPLS tunneling

technique. Engaging the same DiffServ techniques, different network domains may

further define domain-specific configurations and policies. Irrespective of these

implementation details, we denote each autonomous network that has specific QoS

mechanisms as a network QoS component in our end-to-end QoS provisioning

scenario.

In QCMF, end-to-end QoS delivery is decomposed into two hierarchical levels: intra-

domain provision and inter-domain collaboration. The former enforces QoS delivery

within a QoS component via management functions such as resource allocation and

scheduling while the latter manages end-to-end QoS by dividing global QoS objectives

into QoS commitment of each QoS component.

When an end-to-end transmission session is established, QoS parameters are

negotiated among all QoS components along the end-to-end path. A consistent service

is thus provided to an end-user in which the overall QoS objective is divided into

 97

service contracts with each end-to-end QoS component. For example, the end-to-end

latency requirement of a multimedia application can be decomposed into specification

of transmission delay in each network QoS component and processing delays in end-

hosts, such that their sum equals or is less than the end-to-end delay constraint. A

negotiation protocol (e.g., RSVP or [29]) can be engaged to reach such service level

agreements (SLAs) among end-to-end QoS components.

Runtime, each QoS component will try to meet the obligation of its SLA specification.

However, QoS violations may occur within a QoS component for various reasons such

as temporary traffic overload, hardware failure of a router or routing cycle. QoS

violation handling in QCMF is correspondingly divided into two hierarchical levels: a

violation can be tackled by QoS adaptation within the QoS component where the

violation has occurred (known as the source QoS component of a violation, vioC) or

through coordination and adaptation at another QoS component whose adaptation can

compensate for the QoS degradation at vioC .

For example, delay/jitter violation at QoS component i can be solved by local service

upgrade, compensated by QoS upgrade at QoS component j , or by data buffering

and/or timeout/retransmission mechanisms at the flow receiver. As discussed in

Section 2.2.1, the last solution is often not a sustainable one, but can still provide

certain degree of QoS preservation in the case that other end-to-end adaptation choices

are not applicable. On the other hand, a bandwidth starvation problem can be resolved

by either increasing bandwidth allocation in the network or by adopting a higher

compression rate codec at the media sender so that less bandwidth is to be consumed

by the media flow. In the worst case where QoS is no longer sustainable no matter

what kind of end-to-end adaptation is enforced, QoS component handover is necessary

 98

which replaces vioC with another candidate component of better QoS services8 (e.g.,

[72]). For instance, a DiffServ subnet in the end-to-end path that suffers from severe

traffic congestion can be substituted by another one of shorter transmission delay so

that the overall end-to-end latency can still be kept within user expectation. However,

the dynamic composition of end-to-end provisioning path is technically more complex

(e.g., depending on the availability of routing topology) and time-consuming. To focus

more on our research, we restrict our discussion to the scenario where runtime resource

fluctuation and QoS violations can be sufficiently solved within current end-to-end

QoS settings through end-to-end coordination and adaptation and hence no handover

of QoS components is needed. Particularly, we concentrate on the end-to-end

delay/jitter violation and show how QCMF solves it through runtime coordination and

adaptation. We will first describe our models for both network QoS and end-host QoS.

After that, we discuss the end-to-end evaluation and adaptation heuristics and

algorithms in Section 6.4.

Table 6-1: Service options table of a network QoS component

6.2 NETWORK QOS MODEL

From the end-to-end perspective, each network QoS component on the provisioning

path appears as a service provider which allocates local resources to guarantee the

8 Such a handover relies on the possible alternative routes between the media sender and receiver. Hence,
a routing algorithm or protocol should be engaged together with our scheme to dynamically figure out
the network topology.

Service Class Delay
Performance (s)

Bandwidth
Capacity (Mbps)

Unit Price
(/hour/Mbps)

Available Bandwidth
(Mbps)

1. Predictive 0.5 100 $2 70

2. Predictive 5 300 $0.8 10

3. Predictive 15 450 $0.25 200

4. Best Effort Unspecified 150 - 60

 99

performance of an end-to-end flow within the scope of its operation. Typically a QoS

service provider can offer its service at different levels of quality to a service requester

(i.e., an end-to-end flow), some of which are better than others in terms of QoS

performance. We denote a service class h offered by network QoS component i as

hiS ,)3,2,1(, =hS hi constitutes a service degradation path which lists all possible

service options of that QoS component. As is shown in the example service options

table (Table 6-1), a network QoS component can offer four service classes to an end-

to-end flow, each with different local QoS support (e.g., delay assurance) at different

subscription cost. On the other hand, each service class has limited bandwidth capacity

and hence can accommodate limited number of users. A practical example of a

network QoS component with multiple service levels is the DiffServ model which

defines three service classes for the differentiation of traffic nature and routing of

packets. However, our definition and discussion of service class and service

degradation here is more general (i.e., we do not endorse specific meanings for each

service class) and is purely from end-to-end QoS perspective, which is different from

the design initiatives of DiffServ (e.g., scalability and utility of networks).

The definition of service class and service degradation path allows a network QoS

component to abstract and expose its status and resource availability to an end-to-end

flow in a manageable and tractable manner so that a coordinated end-to-end adaptation

becomes possible. Suppose that an end-to-end flow subscribes to service class 2 of a

network QoS component as illustrated in Table 6-1, which currently undergoes a local

delay violation due to temporary network congestion. A local QoS adaptation can be

executed (through an request from the flow sender/receiver) which upgrades the flow

to service class 1 of better QoS support so as to eliminate such a delay QoS violation.

Alternatively, QoS adaptation may take place in another network QoS component

 100

(possibly also through local service upgrade) so that end-to-end delay is still kept

within the acceptable range. Such coordinated end-to-end adaptations require each

network QoS component to define and manage (e.g., update with end-hosts) its service

options table so that a correct choice could be identified with respect to where to issue

the adaptation request and how to do the adaptation. Details about the decision-making

process are to be elaborated in Section 6.4.3.

For the benefit of end-to-end coordination and adaptation, we require each network

QoS component to (1) monitor the service status of its service classes, and (2) notify

the flow receiver the appearance of a local violation which has just happened in the

service class it has subscribed. The first task can be fulfilled capitalizing on existing

monitoring facilities of an autonomous network. For example, DiffServ employs

network monitoring facilities to understand updated network load in each service class

for the purpose of admission control of a new flow. On the other hand, an end-to-end

flow needs to sign a SLA before it can enjoy any service from a network QoS

component. Hence the second requirement (QoS violation notification) can be satisfied

by a network QoS component (e.g., through a bandwidth broker in the DiffServ case)

which has the addresses of all end-hosts in the SLAs. Such a notification is intended

for end-hosts to double-confirm the appearance of a QoS violation (recall that the flow

receiver can identify a violation through end-to-end monitoring flow traffic as

introduced in Chapter 5). We assume that all the control messages are transmitted in an

out-of-band mode and hence are not affected by the appearance of a QoS violation. It

should be noted that we do not require a network QoS component to monitor the

performance of an individual end-to-end flow; instead it needs to watch the service

status of each service class. Hence, such a scheme will not cause any scalability issue

in network management.

 101

Figure 6-2: End-host QoS management model (QMan)

6.3 END-HOST QOS MODEL

In our QCMF framework, end-hosts are responsible for the overall management of

end-to-end QoS. These include tasks such as QoS negotiation, which is conducted at

session initiation stage to sign service contracts with network QoS components, and

QoS adaptation, which is enforced at runtime to best maintain transmission quality

against possible violations. A QMan middleware has been developed within QCMF to

fulfill these tasks, as has been introduced in Section 3.3.

As mentioned earlier, QoS adaptation can be performed either at the QoS component

where the violation happens (i.e., vioC) or at another QoS component that can

compensate for the service degradation at vioC . In QCMF, such an adaptation selection

is done by the QMan middleware at the receiving end-host which has the information

of all end-to-end QoS components. The logical model of QMan is illustrated in Figure

6-2. Upon the appearance of a QoS violation, an evaluation unit is responsible for

selecting an end-to-end QoS component best suitable for QoS adaptation. Such a

decision is made based on the information exchanged in the knowledge plane (Chapter

 102

4). Once an adaptation decision is made, an execution unit communicates with the

selected QoS component for adaptation control and signaling. Finally, a detection unit

(1) continuously monitors the performance of end-to-end flow to detect a QoS

violation (Chapter 5), and (2) evaluates the effect of QoS adaptation for validation of

violation problem-solving.

A prevailing requirement of end-to-end QoS adaptation is to timely recover

multimedia transmission quality. It suggests that a complex end-to-end framework that

seeks a globally optimal solution may not be applicable in a real-time transmission

scenario due to its long convergence period. Hence QCMF aims at identifying an

“acceptable” adaptation solution, which can quickly bring end-to-end QoS back to a

normal state in a short time. Please note that the normal state after adaptation may not

be the same as the initial state of QoS delivery but is acceptable to the performance of

a multimedia application. Hence the result of such an adaptation strategy may not be

end-to-end optimal but is effective in that it can quickly restore the transmission

quality. On the other hand, a QoS framework employing fine-grained QoS control over

all the end-to-end QoS components may not yield the desired effect in a distributed

end-to-end scenario due to its stability problem and validity in the context of possible

tussles and intricate entanglements among various QoS factors [139]. In view of this,

QCMF does not care about the implementation details and inner behaviors of each

QoS component, but aims at designing a platform for abstracting those QoS features of

a QoS component that are pertinent to end-to-end coordination. For instance, a

DiffServ subnet may engage traffic policing techniques to regulate the performance of

packet flows of an overloaded service class. Therefore a minor local network

congestion violation could be decently solved within the subnet before any end-to-end

QoS adaptation action is raised. In this sense, a two layer QoS adaptation scheme is

 103

designed in QCMF as said, namely a rapid local adaptation (done by individual QoS

components through self-configuration) and an end-to-end re-scheduling (achieved

through end-to-end analysis and coordination). While the former adjustment may not

be noticeable to the end-hosts, QCMF concentrate on the latter end-to-end QoS

adaptations that target at severe QoS violations beyond the ability of local adaptation.

Bearing the above design considerations in mind, we have designed a set of adaptation

algorithms within the QCMF framework, which is to be elaborated in the next section.

Table 6-2: Service status table of a network QoS component as is maintained by QMan
middleware inside the flow receiver; for each network QoS component, a
corresponding table is kept by QMan and updated through either push or pull mode

6.4 END-TO-END COORDINATION AND ADAPTATION

In this section, we introduce several algorithms that run in end-hosts for a coordinated

end-to-end QoS adaptation. These include an information gathering algorithm which

keeps the media receiver updated with the QoS status of each network QoS component,

an evaluation algorithm which reviews all possible choices and selects a QoS

component for adaptation, and finally an execution algorithm, which uses defined

primitives for adaptation control, signaling and feedback. As stated, these algorithms

are executed by QMan middleware at the receiving end-host in a pure end-to-end

manner.

Service
Class

Service
Model

Capacity
(Mbps)

Unit Price
(/hour)

Historical record 1 Historical record 2

1.
Predictive

11,τλ 100 $2 80Mbps @ 2007-3-
15 17:42

70Mbps @ 2007-3-
15 17:27

2.
Predictive

22 ,τλ 300 $0.8 200Mbps @ 2007-3-
15 17:37

170Mbps @ 2007-3-
15 17:17

3.
Predictive

33,τλ 450 $0.25 300Mbps @ 2007-3-
15 17:49

330Mbps @ 2007-3-
15 17:42

4. Best
Effort

- 150 - - -

 104

6.4.1 Information Gathering Algorithm

The main function of the information gathering algorithm is to update QMan

middleware QoS information of each network QoS component so that a correct

adaptation solution can be selected upon the appearance of a QoS violation. For each

network QoS component, QMan keeps a service status table that describes QoS meta-

data of that component as shown in Table 6-2. QoS Information to be recorded can be

summarized into static and dynamic categories. The former refers to the service

information of a network QoS component (e.g., the number of service classes, capacity

of each class and unit price for purchase), which is advertised by a network QoS

component in its service options table. The latter refers to the dynamic workload

information of a network QoS component (e.g., 80 out of 100Mpbs bandwidth of a

service class have been subscribed at the moment the end-to-end flow logs in), which

is changing according to the traffic load of a network.

The information gathering algorithm is executed at two stages. At session initiation

stage where QoS negotiation is performed, each QoS component reports its service

information (i.e., static information) and current workload information (i.e., dynamic

information) to the flow receiver. At runtime, a network QoS component will update

its current working status and spare capacity to QMan once there is a major update.

The definition of a major update refers to (a) a local violation due to reasons such as

temporary traffic congestion, software crash or equipment failure, (b) rejection or

confirmation of an adaptation request from the flow receiver, (c) regular updates of

QoS information based on a pre-negotiated timeslot. The first kind of QoS update

refers to the situation that a network QoS component reports its local QoS violation to

flow receivers that have subscribed the service (which is already explained in Section

6.2). Current QoS status of that network QoS component will be appended in that

 105

report to update each flow receiver information of the network. The second type of

QoS update is a reply to the signaling commands from a flow receiver which is to be

introduced in Section 6.4.3. In such an answer message, a network component will

similarly report its current QoS status for the information of the flow receiver. The last

QoS update is a routine information sharing process as is defined in the push mode in

Section 4.5.1.

In essence, each service status table records the “most recent” information of a QoS

component that is known to the flow receiver and QMan middleware. It is used as

historical data in the evaluation algorithm described below for the selection of a

suitable network QoS component for end-to-end adaptation. It should be noted that

runtime QoS status of a network QoS component is always changing, depending on

factors such as equipment conditions, routing topology and traffic load. Hence QoS

information regarding a network QoS component, as maintained by QMan, may not

reflect the “exact current” QoS status of a QoS component. In this sense, the

adaptation evaluation performed by QMan is actually upon the “last known”

information of all QoS components. Of course, more up-to-date information about a

network component can be learned if the signaling frequency between end-hosts and

networks is to be increased. However, frequent information exchange may pose severe

overhead on network performance. In a real end-to-end QoS system which requires

accurate information sharing of network QoS components status, the information

sharing frequency can be tuned to balance between the signaling overhead and the

information accuracy.

 106

6.4.2 Cross-component Adaptation Evaluation Algorithm

In QCMF, a QoS violation is identified by a flow receiver in two ways: observation of

flow abnormal through end-to-end monitoring or receipt of a violation report from a

network QoS component. The latter is used for the receiver to double-confirm the

appearance of a QoS violation and to locate the physical place of the violation. In

either case, the evaluation unit of QMan will select a suitable one, among all end-to-

end (network and end-host) QoS components for adaptation. In view of the need for a

fast recovery from violations, QCMF defines the following heuristics for end-to-end

adaptation: (1) system-level end-host adaptations (e.g., swapping media codec) is set

as a default choice which is typically able to bring the end-to-end QoS back to a

normal state most quickly, (2) application-level QoS degradation (e.g., reduce video

frame rate) is defined as the last adaptation choice since it will inevitably affect the

perceptual quality of an end-user, (3) cross-component adaptation evaluation will be

performed to find a network adaptation solution that can sustain transmission quality if

(1) is not achievable. Such heuristics can be modified by end-users so that different

adaptation sequences can be realized in respective end-to-end environments.

The cross-component adaptation evaluation algorithm basically considers two factors

in the selection of a network QoS adaptation: (1) the adaptation cost at a network QoS

component, and (2) the possibility that an issued adaptation request from QMan would

be rejected by a network QoS component. We will address these two points one by one.

The skeleton of the evaluation algorithm is listed in Figure 6-3.

 107

Step 1): Review the service status table of a network QoS
component.

Step 2): Determine the necessary inter-service adaptation (i.e.,
service class alteration) in that component for the problem solving
of the QoS violation; caculate corresponding adaptation cost.

Step 3): Compute the possibility rejectp that the issued adaptation

request would be rejected by the QoS component based on its service
model and traffic load information.

Step 4): Caculate the utility factor of the adaptation at the QoS

component which is defined as
rejectpt *cos

1
.

Step 5): Repeat steps 1-4 for all network QoS components.

Step 6): Select a QoS component of largest utility factor for
adaptation. If multiple QoS domains have the same utility, select
the one with lowest rejectp .

Figure 6-3: Skeleton of the cross-component adaptation evaluation algorithm

A. Definition of adaptation cost

For each network QoS component, the adaptation cost generally refers to a particular

concern with respect to the additional resource expenditure incurred by that adaptation.

For example, in mobile terminals where power consumption is a primary concern, the

cost can be defined as the difference between power usage before and after adaptation.

In a QoS-enabled network, such cost may be defined as the money paid for service

upgrade/degrade. Suppose that service class 2 of network QoS component i undergoes

a traffic overload and hence an end-to-end flow which subscribes to this service class

encounters a delay violation. As explained, such a delay violation can be solved within

the source network QoS component i by service upgrade, or be compensated by QoS

adaptation from another end-to-end network QoS component j that participates in the

end-to-end collaboration. However, the cost for adaptation in different network QoS

component can be different. The reason is simply that, for example, the unit bandwidth

allocation price at component j is higher than that at component i . In view of the

 108

comparable QoS adaptation conditions, our evaluation algorithm will try to select a

adaptation choice with lowest adaptation cost.

B. Definition of rejectp

On the other hand, a QoS adaptation request issued by receiver’s QMan middleware

risks being rejected by a network QoS component, if the requested adaptation is not

achievable. Recall that the receiver host evaluates the QoS status of each network QoS

component based on its “latest known information” (Section 6.4.1), which is refreshed

each time the receiver communicates with that network component. However, such

information may not precisely reflect the current load information of that network

component since its traffic conditions is keep changing. For example, a network

component may have just accommodated several new flows from other end-hosts

which make its service classes almost full. In the case that such information has not

been promptly updated with the receiver of the end-to-end flow in concern, a service

upgrade request from QMan would be rejected by the network due to insufficient

bandwidth. To conclude, such a situation arises due to the synchronization problem

between a flow receiver and a network QoS component. Once an inappropriate

adaptation decision is made, time would be wasted in such request/deny signaling

process between a flow receiver and a network component. As a result, user perception

would be interrupted due to continuous transmission quality variation.

A straightforward solution out of this puzzle is to let a flow receiver grasp the most

recent QoS information of all network QoS components each time an adaptation

decision is to be made. However, we find that there are a few intricate problems

associated with such an idea. Firstly, it may take a quite long time for QMan to collect

the precise information of all network QoS components. For instance, it will take

 109

round trip time to receive status update from each QoS component even if we omit all

other possible processing delay and assume that propagation delay for all network QoS

components is the same. Secondly, there is no guarantee that the receiver will obtain

the precise QoS information of a network component at the moment of QoS evaluation

even if we frequently exchange information. This is simply because the workload

status of a QoS component is always changing. It is possible that the working status of

a network QoS component is altered (1) just after its recent update with a flow receiver,

or (2) just before a flow receiver finishes evaluation and issues an adaptation request.

In either case, a wrong decision would be made at the flow receiver based on the

incorrect end-to-end information. Lastly, frequent message exchange can provide more

accurate information of a network QoS component, however, at the cost of imposing a

burden on the network and may not be applicable in practice due to scalability concern.

As can be concluded, there is no approach that can strictly guarantee the “freshness” of

information about a network QoS component from a flow receiver’s point of view due

to the distributed and long physical distance nature of network transmission.

To smooth the impact of the information synchronization problem and to best avoid

the case that an adaptation request would be rejected by a network component, we take

an end-to-end approach to estimate the workload status of a network component. We

introduce a parameter rejectp to denote the possibility that an adaptation request would

be rejected by a network QoS component. Let T be the throughput of an end-to-end

flow that requests for an service upgrade adaptation at QoS component m , C be the

bandwidth capacity of the target service class bmS , (i.e., the service class to upgrade to),

and (ii TR ,) be the thi historical record of the load information of component m known

to the receiver (see Table 6-2), rejectp can be expressed as:

 110

),1()}},,)...(,(),,{(|Pr{ 2211 niTRTRTRCRTp iicurrentreject ∈>+= , (1)

where currentR is the (actual) current work load of service class bmS , at network QoS

component m .

It can be seen that once the receiver knows the actual load currentR at service class bmS , ,

it can judge whether a service upgrade is feasible or not. However, currentR is always

not available to the receiver due to synchronization problem as discussed. Hence, we

will try to calculate the statistical value of currentR based on information such as the

service model of bmS , and the historical data known to the receiver. Once currentR is

estimated, rejectp can be deterministically derived from formula (1) (i.e., the result is

either 0, meaning that a request will be accepted or 1, meaning rejection). It should be

noted that as currentR is estimated statistically, the value of rejectp we get is actually of

statistical meaning which reflect the most possible situation whether an adaptation

request would be accepted or not.

A service class bmS , can be viewed as a queuing system holding limited permits and

thus can accommodate limited number of customers simultaneously. A couple of

traffic models have been developed to model the service status of a priority queue [140]

and its possible QoS characteristics [141]. These models are intended for admission

control at a QoS-enabled network to check whether there are sufficient resources (e.g.,

bandwidth) to entertain an incoming service request or not. Given parameters such as

customer arrival rate λ and service rate τ , these models can statistically compute the

current queue status which in the general form is:

),(mod τλelcurrent fR = , where elmod is the established service model of service class bmS , .

 111

Typically, parameters λ and τ are pre-defined and tuned through runtime traffic

monitoring and model validation process in respective systems [142]. Making use of

these researches, we are able to obtain currentR for each QoS component once its traffic

model has been setup. The accuracy of currentR is a reflection of how well the

established service model has reflected the traffic statistics of the network component

and is the research focus in many relevant literatures [38][143][144].

C. A simple MMM /1// model for the estimation of rejectp

In the following sections, we consider a simplified traffic model to calculate rejectp for

illustration purpose. Let us assume that all customers subscribing to a service class

demands for unit amount of bandwidth. Hence a service class can be viewed as a leaky

bucket system with limited amount of tokens (equals to its bandwidth capacity C). We

further assume that the customer arrival rate in that service class conforms to Poisson

distribution and service rate conforms to exponential distribution. Such a service class

can be modeled as a MMM /1// queue [145]. Similar to the classic queuing analysis

for MMM /1// system, we have μλ 1+= ii pp , where λ and μ are the arrival rate and

service rate of the service class respectively and ip is the probability that i flows stay

concurrently in the service class.

Given 1
1

=∑
=

=

Cn

n
np and μλρ /= ,

we obtain 1
1

0 =∑
=

=

Cn

n

n pρ , then we get
ρ
ρρ

−
−

=
1

)1(
0

C
p , and C

C

nreject pp ρ
ρ
ρρ

−
−

==
1

)1(

Note that due to the memoryless character of the exponential distribution of the service

rate μ , rejectp is independent of the historical data in this MMM /1// model. Hence

 112

there is no need for the receiver to record the historical information for a QoS

component. In a more practical queuing system as modeled in [140][141], historical

information is essential to calculate rejectp since assumptions such as passion arrival

rate is broken. Moreover, the load status of a network QoS component is changing

from time to time which also alters the traffic characteristics of that network. Hence

configuration parameters of the traffic model such as λ and τ are often tuned from

time to time in relevant traffic engineering researches for a most precise description of

network traffic status. In the context of end-to-end QoS management, QCMF requires

these parameters to be updated with the flow receiver once their values have been

adjusted in a network QoS component.

D. End-to-end adaptation evaluation criteria

As discussed, QCMF considers both adaptation cost and rejectp in selection of an end-

to-end adaptation solution. In principle, a network QoS component of lower adaptation

cost has a better chance of being selected for adaptation. On the other hand, a QoS

component of heavy traffic load will present a large rejectp and in consequence, would

unlikely be selected so as to avoid a possible adaptation rejection and failure. In view

of both considerations, the final evaluation is based on the utility factor of each QoS

component, which is defined as
rejectpt *cos

1 . A utility factor seeks the balance between

the reward (gain of cost) and penalty (chance of been rejected) of each possible

adaptation choice. In QCMF, a network QoS component of largest utility factor will be

finally selected for end-to-end QoS adaptation.

 113

6.4.3 End-to-end Signaling and Adaptation Algorithm

In addition to information sharing and end-to-end adaptation, QCMF also defines the

following primitives for the signaling and coordination actions among end-hosts and

network QoS components in the control plane.

• Notification

The notification primitive is used by end-hosts and network QoS components to

inform each other of QoS transactions. Firstly, it is used by a network QoS component

to inform the flow receiver the appearance of a QoS violation in its local region.

Information to be reported includes the initial agreed QoS level and current QoS status

(in the form of parameters such as delay, jitter and traffic model configurations such as

λ and τ). Secondly, the reception of such a message at the receiver end-host will

trigger an end-to-end adaptation evaluation as discussed. A QoS component of best

utility factor will be selected for QoS adaptation, which subsequently will receive a

notification message from the flow receiver for the adaptation details (e.g., the service

class to upgrade to).

• ACK & Reject

Upon receiving an adaptation request, a network QoS component should check its

service status to see whether the required service upgrade adaptation is achievable or

not. If the admission test is passed, the QoS component will execute the adaptation

immediately, after which it will reply the receiver with an ACK message, informing

the latter the success of QoS adaptation. The updated information of this QoS

component will also be piggyback in the ACK message. Otherwise if an adaptation is

not applicable, the QoS component will reply the flow receiver with a Reject message

 114

denying the adaptation. Once the receiver receives such a message, it will (1) select the

network QoS component of second best utility factor for adaptation notification if

there is no QoS status update from each network component since last decision-

making, or (2) trigger another round of adaptation to calculate utility factor if there is

any new QoS update.

• Request

This primitive is used by the receiver to request for the updated information of a

network QoS component. As discussed, excess message exchange between the flow

receiver and a network QoS component can pose a heavy burden on the network and is

also not scalable in large networks. Hence we restrict the usage of the Request

message to the scenario where the information of a QoS component has not been

updated for a period longer than a pre-specified timer. The specification of such a

timer can be designated and tuned through an engineering process in an actual end-to-

end system.

6.5 SIMULATION RESULTS

Network Component Service
class

Unit price Bandwidth
requirement

Cost of
adaptation

Rejection
probability

Utility
factor

QoS Component 1 2 $4/h/Mbps 2Mbps 8 0.25 0.5

QoS Component 2 2 $1h/Mbps 2Mbps - - -

QoS Component 3 3 $7h/Mbps 2Mbps 14 0.20 0.36

QoS Component 4 3 $2/h/Mbps 2Mbps 4 0.20 1.25

QoS Component 5 2 $3/h/Mbps 2Mbps 6 0.15 1.11

Table 6-3: Service subscription settings of a flow in simulation and the its utility factor

We validate our end-to-end QoS adaptation scheme through simulations under NS-2

environment [146]. The end-to-end QoS provisioning path is composed of 5 adaptive

network QoS components in a chain topology (Figure 6-1). Key configurations of the

 115

experiments are as follows. In each QoS component, we define 4 service classes of

limited bandwidth, each of which produces different QoS services in terms of delay

guarantees. Each network QoS component has a service options table defined similar

to the one shown in Table 6-1. The QoS information of each network component is

shared with end-hosts at session start-up time and is updated at runtime. Hence, the

flow receiver maintains a service status table similar to Table 6-2 for each network

QoS component. We use a MMM /1// queuing system to model network QoS

components where each of them is modeled with different values of λ and μ . The

propagation delay between QoS components and the flow receiver is set to around 1ms.

The processing delay at each network QoS component is set to an average value of

7ms with normal distribution.

The simulation is executed as follows. A media flow is delivered from the sender to

the receiver and subscribes to a certain service class in each network QoS component.

At time 12s (0.2 minute in Figure 6-5), a delay violation happens at network QoS

component 2 which is subsequently detected by that component and is subject to

rectification. Such a delay violation is simulated by sending a network traffic flow to

the service class that the end-to-end multimedia media flow is entertained. Such a

traffic flow has overloaded the service class and hence the media flow suffers from a

delay violation. Upon appearance of such a violation, a violation report is sent by the

network QoS component to the flow receiver which triggers the end-to-end evaluation

process to calculate the utility factors of all end-to-end QoS components (Table 6-3).

After that, network QoS component 4 (which is of the largest utility factor) is selected

for end-to-end adaptation. An adaptation notification is subsequently sent to QoS

component 4 where a service upgrade adaptation is conducted. As a result, the overall

end-to-end delay restores to the acceptable range (at time around 0.25 minute in Figure

 116

6-5). Half minute later, the traffic flow is removed and hence the traffic jam disappears

at QoS component 2 which restores it local QoS status to a normal situation. Another

QoS status update is sent from component 2 to the flow receiver. By comparing the

service status tables of both network QoS component 2 and 4, the flow receiver finds

that current end-to-end subscription cost (the sum of individual subscription cost at

each network QoS component) is higher than the one before adaptation. This is

because the unit bandwidth allocation price in current service class of component 4 is

higher than that in component 2. Hence, the flow receiver notifies both QoS

component 4 to downgrade its subscription to the original service class.

The simulation results are shown in Figure 6-4 and Figure 6-5 respectively. The delay

violation in QoS component 2 (at time 0.2 minute) is compensated by a service level

upgrade in QoS component 4 (at time 0.22 minute) under the guidance of the flow

receiver. This time interval is the overhead for the distributed coordination among end-

hosts and networks as well as the utility factor computation and adaptation evaluation

within the flow receiver. Similar observation can be found in the later “roll-back”

process (at time 0.6 minute) where the traffic flow is removed from network QoS

component 2. During the process, the end-to-end delay remains relatively stable as is

shown in Figure 6-5, except two glitches (at time 0.2 minute and 0.6 minute

respectively) which reflect the end-to-end QoS fluctuation during violation and

adaptation. Note that the second stage of adaptation is an optional step in current

implementation of QCMF. Such an action is a coordinated process which reviews the

new QoS status of component 2 and 4 and the overall end-to-end subscription cost.

The benefit of such an additional adaptation is that a more optimal global QoS can be

achieved, however at the cost of additional information signaling and adaptation

scheduling.

 117

Lastly, we evaluate the performance of our adaptation evaluation algorithm (named as

AEA for simplicity). We compare it with another aforementioned generic information

synchronization scheme: no adaptation decision will be made at the flow receiver until

it synchronize and get the latest QoS information update from all network QoS

components (denoted as Adaptation after Status Update - ASU). The configuration

parameter settings are identical to those described in the previous experiment. Both

AEA and ASU use the same evaluation algorithms and signaling primitives described

in Section 6.4. As has been explained, an adaptation request issued by a flow receiver

in both AEA and ASU algorithms risks being rejected by a network QoS component

due to insufficient resources for service upgrade. However, it takes different time for

these two algorithms to finish a QoS adaptation process under such a rejection

situation. Let us denote the propagation delay among network QoS components and

the end-host as pT , the evaluation delay at the flow receiver as eT , it takes 4 pT + eT time

for ASU to work out an adaptation decision, where the four propagation delay is

consumed by the receiver to (1) receive a violation report from a network QoS

component, (2) request for information update from all network QoS components, (3)

receive QoS update of all components based on which end-host evaluation is carried

out, and finally (4) inform the selected QoS component for adaptation. As said, we

ignore all other possible processing overhead. If an issued adaptation request as in step

(4) is rejected by the target network QoS component, it takes another 4 pT + eT time for

the receiver to finish the second round of information gathering, adaptation evaluation

and event notification. Comparatively, AEA takes only 2 pT + eT to evaluate and notify

an adaptation, where 2 pT is the delay to receive a violation report from the network

component in trouble and issue an adaptation request. If the adaptation request is

denied by a network QoS component, it takes another 2 pT + eT time for the flow

 118

receiver to execute the second round of adaptation. The performance evaluation of two

algorithms under the simulation setting described before is shown in Figure 6-6. It can

be concluded that, if a proper traffic model is selected to describe the traffic

characteristics of a network QoS component, our AEA algorithm can achieve higher

adaptation efficiency in terms of both adaptation latency and signaling overhead.

Figure 6-4: Delay change at network QoS component 2 where a violation happens and
component 4 which participates in the end-to-end collaboration to solve the violation

 119

Figure 6-5: Experienced end-to-end delay before/after a delay violation

0
5

10
15
20
25
30
35

1st 2nd 3rd 4th 5th Round

Ti
m

e
(m

s)

ASU
AEA

Figure 6-6: Delay overhead of adaptation algorithms AEA and ASU for message

exchange and signaling among network QoS Components and end-hosts

6.6 SUMMARY

In this chapter, we propose a cross-component QoS coordination scheme for end-to-

end QoS adaptation. In this scheme, QCMF models all QoS services along the

provisioning path and provides mechanisms for QoS coordination and adaptation upon

the occurrence of a QoS violation. Residing in end-hosts, QMan middleware runtime

 120

copes with a QoS violation by selecting a suitable QoS adaptation solution among all

the end-to-end candidate choices. Such a selection focuses on the utility factor of each

possible choice and is directed by end-to-end heuristics and policies. Analysis and

preliminary simulation results validate the design and feasibility of our approach for

end-to-end QoS coordination.

 121

Chapter 7 Implementation and Evaluations

CHAPTER
 IM P L E M E N T A T I O N A N D EV A L U A T I O N S 77

In this chapter, we present the implementation of our QoS control and management

framework. The objective of this prototype is to demonstrate the working principle and

management performance of QCMF. As discussed earlier, the management functions

of QCMF is mainly composed of two parts: (1) QoS negotiation and configuration at

build-time, and (2) QoS monitoring and coordinated end-to-end adaptation at runtime.

We will first describe the experiment scenario and testbed configurations. After that,

performance analysis of various management functions in QCMF will be introduced

respectively.

7.1 IMPLEMENTATION SCENARIO

We have setup a testbed for experiments as shown in Figure 7-1. Two groups of PCs

are separated by an IP router in between and hence form two subnets. The

configuration of each computer is shown in Table 7-1. We deliver audio and video

flows from the stream sender to the stream receiver. The audio source outputs an audio

flow of PCM format, 44100Hz and stereo quality. It is transcoded into either

G723_RTP or MPA_RTP format for media streaming over the network, depending on

the application QoS requirements and runtime conditions. The video source outputs a

video flow of format MPEG-1, 640*256 resolution at constant rate of 30fps. It is

transcoded into either MPEG_RTP or JPEG_RTP format for transmission. We write

the A/V transmission application on J2SE 6 platform using JMF library [58]. The RTP

 122

transmission between the stream sender and receiver uses UDP as the transport layer

protocol.

Figure 7-1: Testbed environments

The Linux router in between is capable of adjusting bandwidth allocation a specific

queue (RED queue or FIFO queue), and hence provide a generic form of service

differentiation of network traffic. The stream sender, receiver and the router constitute

the complete end-to-end path where our QCMF serves on. A traffic generator software

hosted in the traffic sender is engaged to produce huge amount of data traffic to the

traffic receiver sitting in the other subnet. Such background traffic will influence the

bandwidth allocation of the audio/video streaming we are testing so that network

congestion will appear. A software monitor capitalizing on WinPcap library [147] is

placed at the streaming receiver to capture incoming traffic on the NIC and calculate

end-to-end traffic statistics. On detecting a QoS violation, QCMF will perform end-to-

end adaptation according to pre-defined heuristics, policies and evaluation algorithms

 123

as discussed in Section 6.4.2. The end-host/middleware QoS adaptation is directed by

QMan and enforced by the DPF. Currently, QCMF supports 11 media protocols,

namely RTP, TCP, UDP, IP, G711 codec, G723 codec, GSM codec, MPEG codec,

H263 codec, JPEG codec and affined encryption/decryption at the middleware level.

We also integrate a frame rate monitor with the multimedia transmission application

which measures the velocity of video display. As explained, video frame rate is

defined as the example application QoS violation indicator with the violation delimiter

set to 25fps.

Computers Configurations

Stream sender PC, Core 2 processor 2.13GHz, 2GB RAM, one Gigabit network card, Windows XP SP3

Stream receiver PC, Pentium 4 processor 2GHz, 1GB RAM, one Gigabit network card, Windows XP SP3

IP Router PC, Pentium 3, 933 MHz CPU, 512MB RAM PC, two 10/100 Mbps NIC, Fedroa 9
Traffic generator PC, 10/100 Mbps NIC, Windows XP SP3
Traffic receiver PC, 10/100 Mbps NIC, Windows XP SP3

Table 7-1: Testbed configurations

7.2 QOS KNOWLEDGE PROCESSING

We have first established a knowledge plane for information modeling and exchange

using the aforementioned techniques. All QoS knowledge is modeled by ontology in

RFDS language; knowledge structures of multimedia applications, QMan/DPF

middleware and generic QoS-enabled network are established respectively. The overall

knowledge ontology consists of 91 ontology classes and 224 properties. The Jena

semantic web toolkit [148] has been chosen as the tool to conduct QoS knowledge

reasoning. We have evaluated our knowledge plane infrastructure in terms of the

performance of ontology modeling, knowledge reasoning and knowledge sharing. The

experiment results are elaborated in the following sections, which in general

demonstrate the feasibility of our approach for real-time QoS knowledge management.

 124

7.2.1 SQS Initiation Delay

In the first step, we have conducted experiments to evaluate the overhead of the two-

layer application QoS ontology model of SQS. As explained in Section 4.3, different

QoS middleware may define QoS classification trees of different content and depth,

depending on the capability of the QoS middleware and runtime environments. In this

test, QoS middleware at the media sender and receiver is designed of different abilities:

the media receiver is a light-weighted laptop that defines 9 QoS base-classes and

derives 4 QoS domains from them; the media sender (server) is more powerful PC

which defines 9 QoS domains that merge from 13 QoS base-classes. The operation of

merging QoS base-classes into QoS domains is guided by configuration rules as

explained before. The latencies for loading of QoS base-classes and merging of QoS

domains have been recorded and compared in Figure 7-2. It is not surprising to see that

the delay overhead of SQS is proportional to the size of dataset (i.e., number of QoS

base-classes and QoS domains). However, such initiation delay is not significant (less

than 0.6s) at both communication parties.

0

100

200

300

400

500

600

Receiver (laptop)
Middleware

Sender (PC)
Middleware

Ti
m

e
(m

s)

time for
loading QoS
base-class
ontology

time for
merging
QoS domain
ontology

Figure 7-2: Overhead of the two-layer ontology design

 125

7.2.2 Knowledge Reasoning Performance

We have next evaluated the performance of QoS knowledge reasoning over different

scales of dataset. As mentioned in Section 4.5.2, knowledge reasoning in QCMF

consists of two parts: ontology reasoning and user-defined reasoning. We first measure

the performance of ontology reasoning which is guided by reasoning rules built-in

RDF/RDFS standard. The size of dataset is measured in terms of the number of RDF

triples, each of which represents a single statement (S-V-O predicate). Technically,

these triples are generated by the middleware knowledge reasoner through parsing and

converting all RDF class definitions contained in the knowledge base. Ontology

reasoning is enforced to derive implied knowledge once all RDFS definitions have

been compiled into triples at build-time. In addition to offline QoS analysis, ontology

reasoning may also be executed runtime upon insertion of new QoS knowledge

through knowledge sharing process. However, such reasoning will only cover partial

(i.e., those relevant) knowledge for checking and hence is much less time-consuming

than build-time reasoning.

Figure 7-3 shows the results of ontology reasoning on PCs and laptops of different

CPU speeds, which demonstrate that the ontology reasoning latency of RDF is

proportional to the size of dataset. However, as increments are approximately linear in

nature, the delay is still acceptable even for a large dataset of 2261 triples (roughly

correspond to 302 RDFS classes, which are sufficiently large enough for modeling

more than, for example, 100 protocols). The ontology reasoning latency also depends

on the CPU speed of an end-host. A PC with higher CPU clock speed will require less

time to prepare the knowledge reasoner. However, the difference in performance is not

significant as is shown in Figure 7-3.

 126

1000

1200

1400

1600

1800

2000

2200

168 501 1001 1505 2261
Number of triples

Ti
m

e
(m

s)

P4 3.0GHz PC

P4 1.6GHz PC

PM 1.4GHz laptop

Figure 7-3: The ontology reasoning performance

User-defined reasoning is build-time/runtime performed based on user-defined rules.

The main task here is to derive QoS knowledge for the preparation of subsequent QoS

activities (e.g., QoS violation analysis or adaptation coordination). We have measured

the performance of user-defined reasoning and compared it with that of ontology

reasoning. The experiment is also conducted with respect to the different scales of QoS

knowledge as shown in Figure 7-4. The experiment result shows that the time needed

for ontology reasoning is larger than that for user-defined reasoning. This is probably

due to a large set of rules built-in standard ontology definition and reasoning whereas

only 14 rules are defined for user-defined reasoning in QCMF currently (some of

which has been explained in Section 4.5.2). We also notice that latency of ontology

reasoning and user-defined reasoning will becomes unbearable for real-time

processing if the data size grows significantly large (e.g., more than 2000 ontology

classes and properties – artificially replicated here for testing purpose only). Although

we believe most end-to-end QoS ontology would be sufficiently modeled in hundreds

of ontology definitions based on our experiences (e.g., our end-to-end QoS

management prototyping contains a few more than 100 ontology definitions), further

 127

research is needed to improve the performance of knowledge reasoning in an resource-

scare environment (e.g., smart phones with wireless networking).

After the above two knowledge reasoning steps, we found that the knowledge reasoner

can answer a query within tens of milliseconds (i.e., processing delay) in both small

and large scale dataset settings. Such a query may be issued within a QoS component

(e.g., protocol retrieval) or from an external source (e.g., knowledge query from other

QoS components in the pull mode). Meanwhile, the memory consumption for

knowledge reasoning is around 7MB in both small and large data settings. In general,

all these experiment results suggest that it is feasible to employ an ontology-based

approach to model and reason end-to-end QoS knowledge even on less powerful hosts

such as laptops.

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500 3000

no. of triples

tim
e

(s
)

ontology reasoning
user-defined rule-based reasoning

Figure 7-4: Knowledge reasoning performance comparison

7.3 QOS VIOLATION ANALYSIS

We have subsequently conducted experiments for QoS violation analysis in various

environments according to the violation types defined in Table 7-2. We first validate

our ideas and approaches in a controlled testbed environment. We manually create

different kinds of QoS violations and classify them using our end-to-end violation

 128

analysis scheme introduced in Chapter 5. After that, we test our systems on an open

campus network where network QoS violations are observed in both wired and

wireless environments. Lastly, we repeat the experiments in a real Internet

environment - PlanetLab platform [149] and collect violation data accordingly.

Analysis of the collected data in the above environments shows the validity and

effectiveness of our system in terms of both training/classification accuracy and

overhead.

Violation types Possible violation nature Available adaptation solutions

Sender host violation Sender machine busy Switch codec, change streaming server, reduce QoS

Receiver host violation Receiver resource scarcity CPU/buffer re-allocation, switch codec, reduce QoS

Network error Hardware failure, link error Change route, re-transmission, upgrade service class
Network traffic violation Network congestion End-to-end congestion control, media compression

Table 7-2: QoS violation classification in view of controllable resources and available
end-to-end adaptation choices

Figure 7-5: CPU occupier program for CPU violation at end-hosts

 129

7.3.1 Testing Cases

We have first conducted a CPU violation test on the testbed platform and collected

corresponding violation data. A utility program is designed (Figure 7-5) which can

occupy CPU time slices at several scales, e.g., minimal (occupy 10%-20% CPU time),

medium (around 50%) or maximum (80%-90%). By tuning the “volume” of the CPU

occupier program at either media sender or the receiver, a CPU violation can be

observed in the media streaming. Figure 7-6 shows the values of the application QoS

violation indicator (i.e., frame rate) and flow descriptors during a 120-second CPU

contention test. In the first 60 seconds, no external interference is injected and hence

the video streaming presents satisfactory performance. In the next 60 seconds, the CPU

occupier program is launched to contend with the streaming application for CPU time

slice. A few QoS violations can thus be observed where frame rate drops below 25fps

(Figure 7-6(d)). Flow level statistics such as packet delay and jitter are recorded in

Figure 7-6(a) and Figure 7-6(b) respectively which shows their variations before and

during the violation. However, no packet loss is observed in this CPU violation test as

can be seen from Figure 7-6(c).

 130

Figure 7-6: Observation of end-to-end QoS w/ and w/o CPU contention

Secondly, we have designed a network congestion test. A traffic generator is

programmed (Figure 7-7) which can generate traffic of either constant rate (emulate

Internet background traffic such as constant rate FTP flows) or normal distribution

(emulate the arriving traffic experienced by a core Internet router). The traffic

generator is launched during streaming which deliver packets to the traffic receiver

sitting in the other subnet. By outputting a large volume of data, the traffic generator

creates a congestion link on the end-to-end path of the video transmission. Figure 7-8

shows the measured performance of the video streaming in another 120-second test. In

the first 60 seconds, the traffic generator program yields a large volume of traffic of

normal distribution which leads to the performance degradation of the video flow.

Packet loss is observed during this period which indicates overflow of the router queue

(Figure 7-8(c)). The traffic generator is removed in the next 60-second testing. As can

 131

be seen from the last part of Figure 7-8(d), quality of the video flow restores gradually,

where frame rate varies within the acceptable range.

Figure 7-7: Traffic generator can produce traffic of either constant rate or normal
distribution

Figure 7-8: Observation of end-to-end QoS w/ and w/o network congestion

 132

After that, we simultaneously launch the CPU utility program and the traffic generator

and view their combined impacts on video streaming. Through analyzing end-to-end

QoS statistics, we have found that the newly observed QoS pattern is different from

those in the previous individual tests. Hence we enlist it as a new violation type which

marks the co-existence of the above two violations. This observation coincides with

our previous argument that different QoS violations will present different fingerprints

in terms of end-to-end QoS exhibition. Hence a synthesized violation will show

distinct fingerprint that differ from any individual one.

Thirdly, we have tested our scheme on an open campus network. We deliver audio and

video flows in both wired-line and wireless environments. The QoS violation

observation in the wired-line environment is similar to that in the testbed environment.

Figure 7-9 shows the behavior of video streaming in a 54Mpbs wireless LAN

environment. The stream sender and receiver are separated by 4 hops (routers) as we

have identified using Tracert command9 of the Windows XP operating system. We

conduct the experiment in late night so that QoS violations due to excessive user

competition can be minimized. Hence the packet loss and performance degradation as

shown in Figure 7-9 is primary due to wireless link error. It is interesting to see that

jitter happens at the transmission of the 400th video frames (Figure 7-9 (b)) and

meanwhile packet loss is observed (Figure 7-9 (c)). However, the end-to-end

streaming is not seriously affected and no violation is observed at the application level

(Figure 7-9 (d)) at the same time. This is possibly because the network jitter is well

smoothed at the streaming receiver by techniques such as media buffering. This

observation coincides with our previous statement that a drop of value in single low

level parameter (i.e., packet jitter) does not necessarily indicate an application QoS

9 Tracert is a Windows based command-line tool that can be used to trace the path that an Internet
Protocol (IP) packet takes to its destination from a source.

 133

violation since such a variation may be compensated by other parts of the end-to-end

system.

Figure 7-9: Observation of end-to-end QoS variation in wireless communication

Lastly, we have repeated the same CPU violation and network congestion experiments

on the PlanetLab platform. We send audio/video flows to PlanetLab nodes located at

different areas of the world (Table 7-3) and observe their performance in the presence

of QoS violations. The purpose of this series of tests is to assess the correctness of our

end-to-end QoS violation diagnosis scheme in a real Internet environment that has

complex network dynamics. We similarly collect QoS violation data in these

experiments and combine it with that gathered in testbed and wired campus network

tests for the subsequent data analysis under the category of wired-line data.

 134

Media source Destination PlanetLab nodes Hops TTL (ms)

zhoulifeng.ddns.comp.nus.edu.sg planetlab1.singaren.net.sg 15 250

vivijane.ddns.comp.nus.edu.sg planetlab1.iii.u-tokyo.ac.jp 22 410

zhoulifeng.ddns.comp.nus.edu.sg planetlab1.xeno.cl.cam.ac.uk 22 262

Table 7-3: QoS violation test with PlanetLab nodes (source from NUS)

7.3.2 Data Analysis

We have engaged several neural network algorithms to analyze the end-to-end QoS

violation data. These algorithms, according to their training speed and classification

speed, can be summarized into online and offline categories as has been discussed in

Section 5.4. We will first show that online algorithms can achieve real-time processing

capability with high classification accuracy that is comparable to offline algorithms.

They are hence more suitable for runtime QoS violation analysis. Next, we will show

that the orthonormal algorithm we have proposed and validated in Appendix A

presents even better performance compared with other online algorithms.

No. of Observations Name

Training data Testing data

Attributes Classes

Wired-line 4500 3863 4 4

Wireless 3000 2217 4 5

Table 7-4: Specification of QoS violation Datasets: the wired-line category contains
data obtained from testbed, campus network and PlanetLab platform

As explained in Section 5.3, we use both flow descriptors and application QoS

parameters for QoS violation classification. We focus on two typical network scenarios:

wired-line and wireless environments. For experiments in the wired-line environments

(testbed, wired campus network and PlanetLab experiments), we have altogether

collected and combined 8363 groups of data, among which 4500 groups are randomly

selected as training data. The rest are used as testing data. In classification of QoS

violations, flow statistics such as packet delay, jitter, packet loss and frame rate are fed

 135

in as the input vector x ; the output t pinpoints one of the four categories current

streaming is undertaking: normal transmission, a sender side CPU violation, a receiver

side CPU violation and a congestion violation. Data collected in the wireless

environment is used in the performance evaluation of our orthonormal algorithm as

will be discussed later. Table 7-4 gives the characteristics of QoS violation datasets.

All the input data is normalized into the range [-1, 1]. The activation function we have

selected is a sigmoidal function)1/(1)(xexg −+= for additive neurons. The input

weights ia and hidden biases ib are randomly chosen from the range [-1, 1]. For SLFN

with RBF activation function)exp()(2μγφ −−= xx , the centers iμ are randomly chosen

from the range [-1, 1] whereas the impact factor γ is chosen from the range (0, 0.5).

Training Accuracy Algorithms

Mean Dev

Training Time
(seconds)

No. of Neurons

Offline

LMBP 98.33% 0.0087 423.5 30

RANEKF 92.43% N.A. 1.0517e+005 495

MRAN 95.61% 0.0114 5115.5 168.4

Online

Stochastic BP 92.57% 0.0249 3.8543 30

ELM (sigmoid) 94.26% 0.0063 0.1127 30

ELM (RBF) 94.28% 0.0053 0.1398 30

Table 7-5: Classification accuracy of QoS violations in different algorithms

Since the offline algorithm RANEKF takes a quite long training time, we only run it

once. The results of other algorithms are computed based on 30 trials. Both RANEKF

and MRAN automatically determine the number of hidden neurons. For other

algorithms in which neuron numbers need to be specified, we have gradually increased

the number of neurons from 5 to 50 with the increscent pace of 5 in each round and

measure corresponding classification accuracy. For example, the classification

 136

accuracy and training time comparison between LMBP and ELM in each tuning round

is illustrated in Figure 7-10 and Figure 7-11. Figure 7-10 shows that higher

classification accuracy can be achieved with the growth of neuron numbers. However,

the required training time also increases as more neurons are employed, which can be

seen from Figure 7-11. To balance between accuracy and overhead, we have selected

30 neurons in our experiments for QoS violation classification. Table 7-5 shows the

mean training time and accuracy results under such a setting. It can be seen that all

these online and offline classification algorithms can achieve high classification

accuracy while their training times deviate significantly: online algorithms exhibit

much faster training speed compared with offline algorithms. Both Stochastic BP and

ELM can finish training of 4000 groups of data within a few seconds and achieve 92%

and 94% classification accuracy respectively. Hence these algorithms are suitable for

real-time training and diagnosis of QoS violations for their high classification accuracy

and short response time. Finally, the training and testing data are randomly generated

for each round of data analysis. As a result, every trial may lead to different

classification results for the same dataset. The corresponding deviations reflect the

stability of testing accuracy in different configurations of training parameters. From

Table 7-5 we can find that the deviations of the training classification accuracy in all

algorithms are very small which further validates the effectiveness of our neural

network approach in QoS violation classification.

 137

Figure 7-10: Testing classification accuracy comparison between LMBP and ELM

Figure 7-11: Training time comparison between LMBP and ELM

Next, we take a closer look at the performance of our orthonormal algorithm

(Appendix A) for QoS violation analysis. For comparison purpose, we use the same set

of data for training and testing as in the evaluation of aforementioned algorithms. In

addition, we collected 5217 groups of data from the experiment performed within the

wireless environment, among which 3000 groups are randomly selected as training

data. The rest are again, used as testing data. For wireless QoS test, the structure of the

input vector x is the same as that used in the wired-line experiment; the output t refers

 138

current streaming to one of the five possibilities: normal transmission, a (sender or

receiver) CPU violation, a wireless link error case or a congestion violation. The

activation function selected in our orthonormal algorithm is the same sigmoidal

function)1/(1)(xexg −+= for additive neurons. The input weights ia and hidden biases

ib are randomly chosen from the range [-1, 1]. Other neural network configurations are

identical to the aforementioned parameter settings.

Training Accuracy Testing Accuracy Name

Mean Dev Mean Dev

Time (seconds) No. of Neurons

Wired-line 96.37% 0.0032 95.75% 0.0027 0.2737 30

Wireless 87.28% 0.0041 86.60% 0.0142 0.1596 30

Table 7-6: Classification accuracy for QoS violations in our orthonormal algorithm

Figure 7-12: Performance of the proposed orthonormal algorithm in QoS violation

classification: (a) training and testing accuracy curves, (b) training time curve

The experiment results are similarly computed based on 50 trials. We have gradually

increased the number of neurons from 5 to 50 with the increscent pace of 5 in each

round and measure corresponding classification accuracy and training time. The data

analysis results are shown in Figure 7-12. Figure 7-12(a) shows that higher

classification accuracy can be achieved with the growth of neuron numbers. However,

Figure 7-12(b) illustrates that the required training time also increases as more neurons

 139

are employed. This observation is similar to the corresponding characteristics of other

neural network algorithms such as LMBP and ELM. To balance between accuracy and

overhead, we also selected 30 neurons in our experiments for QoS violation

classification.

Table 7-6 shows the mean training and testing classification accuracy results of our

orthonormal algorithm under the setting of 30th neurons. It can be seen that our

classification algorithm can achieve high classification accuracy in both wired-line and

wireless environments. For QoS violation experiments in wired-line environments, we

have a good chance (95.75%) to correctly assert a violation after training. The

accuracy of wireless testing is comparatively lower due to other (uncontrollable)

impacting factors that blur the margin between, for example, wireless channel error

and traffic congestion (e.g., the possible coexistences of two violations). However,

such 86.60% accuracy still greatly outperforms the traditional rule-based method as

will be explained later. We can also see from the Table 7-6 that the deviations of the

training and testing classification accuracy are very small. Finally, it takes less than 0.3

second for our orthonormal algorithm to train around 4500/3000 sets of 4-dimension

input data, which is competent for real-time processing. In brief, our orthonormal

algorithm can achieve slightly better performance compared with other online neural

network algorithms in runtime QoS violation analysis in terms of classification

accuracy and training/testing speed.

Through feature reduction analysis, we have found that packet delay and jitter play an

important role in identifying a network congestion violation while packet jitter and

receiving frame rate is effective in identifying a CPU violation. There is no single QoS

parameter which can effectively distinguish all violation cases. To show the advantage

 140

of our orthonormal approach over a traditional rule-based method, we have also

developed a set of rules to detect QoS violations. Each rule examines either packet

delay or packet loss rate to identify a QoS violation and trigger an adaptation action.

The violation threshold for each discrimination parameter is defined as its mean value

in a violation period (calculated from collected data in previous experiments). We

repeat the same experiments using such a rule-based method and find that an overall

detection accuracy of only 73% can be achieved. The remaining 27% cases are either

(1) no alarm reported in case of violations, or (2) mis-alarm of QoS violations (e.g., a

CPU violation in a sender host to be asserted as network congestion). All the above

facts show that our orthonormal classification approach presents better results in

diagnosis of QoS violations than a traditional rule-based method.

7.4 END-TO-END QOS MANAGEMENT

7.4.1 QCMF Management Procedures

App. Name := Video_transmitter

App. Type : = video_streaming

Original Video Codec : = MPEG

Supported Video Frame Rate : = 20/25/30 fps

Audio channels := mono

Video Delivery Quality := All quality

Text Delivery Quality := reliable/Nil

Supported platform := Windows/Unix

Figure 7-13: An example QList for video streaming

The QoS management in QCMF is tested through audio/video transmission between

two end-hosts. The testbed configurations have been explained in Section 7.1. At

build-time, a QList which records QoS characteristics (Figure 7-13) of the A/V

 141

streaming application is read in by QCMF. Such a high level specification from an

application designer is enriched by the QoS domain specification held by QCMF and

is subsequently translated into AQoSpec, which in turn is mapped into middleware and

network settings. Here middleware configuration mainly refers to the composition of

protocol stacks and network configuration refers to communication parameters settings

such as socket addresses. We use a Linux router of two traffic queues (i.e., FIFO queue

and RED queue) as a generic model to emulate a QoS-enabled subnet of two service

classes. Before streaming, QoS negotiation is carried out between the media sender

and receiver to reach agreement of end-hosts’ protocol stack settings and

communication parameter configurations (e.g., socket address, synchronization

timeout value).

The GUI interface for user control at the sender side is illustrated in Figure 7-14 where

an end-user can manually configure streaming settings such as the media file to stream,

streaming quality, monitoring facilities and session addresses. Alternatively, an end-

user can choose to use default setting so that all relevant communication settings will

be configured automatically.

 142

Figure 7-14: Graphic User Interface (GUI) for streaming

During streaming, QCMF continuously detect QoS violations at the media receiver. As

explained, this is achieved through monitoring and comparing flow data at the NIC of

the receiver (Figure 7-15). Information to be collected includes receiving time of a

RTP packet, RTP payload type, RTP timestamp and sequence number. The receiving

time of each RTP packet is extracted to calculate flow level traffic statistics such as

packet delay, jitter and throughput. RTP payload type indicates the format of the

multimedia content (e.g., 26 represents JPEG) which has been standardized in [59].

The RTP timestamp and sequence number are, as explained in Section 5.3.3, used to

restore the sequence of RTP packets in assembling application frames.

 143

Figure 7-15: Netq program for data packet capturing at the media receiver

A QoS violation in QCMF is handled by end-to-end evaluation and coordination as

described in Chapter 6. An adaptation solution will be selected by the flow receiver in

view of policies and end-to-end QoS status. Such an adaptation could be a service

upgrade in the network or an end-host solution that tries to maintain the transmission

quality. Some of the end-host adaptation strategies that are defined in QCMF for video

streaming are illustrated in Table 7-7, each of which is activated when its end-to-end

conditions is met (e.g., packet loss rate of the application or CPU availability of a host

machine). Adaptation actions to be taken include changing communication

components (e.g., replace UDP with TCP protocol in the protocol stacks), modifying

configuration parameters (e.g., increase receiving buffer size), or even reduce

application QoS (e.g., resize picture dimension).

 144

Problems Observed End-to-end QoS States Actions

Many lost packets and low frame
delay

Selective retransmission (e.g.,
UDP -> TCP)

Frame rate too low

Many lost packets and high frame
delay

Forward error correction &
smaller picture

Low network bandwidth availability
and low CPU load

Higher compression ratio End-to-end delay too
high

Low network bandwidth availability
and high CPU load

Smaller picture size

Table 7-7: User-defined adaptation policies for video streaming

7.4.2 QCMF Management Performance

Subsequently, we have designed experiments to measure the latency of QCMF in

different phases of QoS operations, ranging from build-time negotiation to runtime

QoS adaptation. Time taken for various QoS management functions is shown in Table

7-8. As can be found out, QCMF exhibits a one time initiation delay around 156 ms at

session initiation stage, which is mainly used to setup the ontology model for QMan

middleware, read QoS requirements from applications (i.e., an I/O operation), and

configure end-to-end QoS settings through signaling. The overhead for knowledge

preparation, as explained, is incurred by Jena to read in and analyze the middleware

ontology knowledge base which contains ontology definitions about protocols (250 ms)

and to perform knowledge reasoning (1313 ms). Start-up training of QoS violation

data absorbs another 252 milliseconds. After that, a QoS violation can be identified

within 10 milliseconds at runtime. The control channel between sender and receiver is

established using Java RMI registry technology which is a server-side name service

that allows RMI clients to get a reference to the server object. In QCMF, this RMI

registry is used for the SyncMaster (at the receiver side) to announce its presence and

for the SyncSlave (at the media sender) to retrieve and register with it. The creation of

these two components at end-hosts takes 453 milliseconds. The signaling among them,

however, takes only 6 ms since the propagation delay in Ethernet is really short.

 145

Operations Time (ms)

Instantiation of QCMF 156

Creation of synchronization objects 453

Knowledge Preparation (total) 1563

 Creation of reasoning model 1313

 Compilation of application QoS ontology 250

Start-up QoS Violation Data Training 252

Control channel signaling 6

Protocol Stack Composition (total) 1446

 Discovery of protocol components 93

 Form of candidate protocol stacks 3

 Check stack validation 31

 Creation of functional protocol stack 103

QoS Adaptation through Protocol Stack Re-composition (total) 948

 Violation Analysis 10

 End-to-end evaluation 272

 Protocol stack re-negotiation 11

 Validate new stack composition 29

 AC stack adaptation 112

Table 7-8: Time taken in end-to-end QoS management

In QCMF, the semantic discovery of appropriate communication protocols is

performed by issuing an SPARQL query on protocol knowledge base, an example of

which is shown in Figure 7-16. Such a SPARQL language [150] is also used to check

the consistency and dependence among protocol entities. After the knowledge

preparation stage just described, we have found that each query can be answered at an

average rate of a few tens of milliseconds.

Figure 7-16: Sample SPARQL query for ontology integrity check between two

instance classes

 146

Runtime QoS adaptation in QCMF may take place at either application level,

middleware level or network level, depending on system policies (refer back to Section

6.4.2 for details) and end-to-end evaluation results. A middleware level adaptation

takes nearly 1 second, which includes the time to determine a violation (20 ms),

evaluate a solution (272 ms) and perform a middleware adaptation (312 ms).

Alternatively, if a network QoS upgrade solution is been selected, the adaptation will

also take around 1 second, in which 7 milliseconds is used for control signaling and the

rest is for the adaptation action performed in the Linux router. The time taken for

application level adaptation largely depends on the business logic of multimedia

applications. In the case of our video streaming application, the action to reduce video

resolution and restart transmission takes around 2 seconds.

The effect of middleware adaptation (i.e., protocol stack swapping) in case of network

congestion is illustrated in Figure 7-19. A video stream is delivered from the streaming

sender (Figure 7-17) to the receiver (Figure 7-18). Upon detection of the congestion

violation, a protocol stack swapping adaptation is enforced which switches the video

stream from original MPEG format to JPEG format. Figure 7-19 shows the variation of

video frame rate before and after the violation.

 147

Figure 7-17: Stream delivery and adaptation at the media sender

Figure 7-18: Stream receipt and adaptation at the media receiver

 148

Figure 7-19: Quality fluctuation of the receiving frame rate before, during and after

congestion violation

We have also conducted experiments to observe QoS violations in audio streaming.

Audio streaming typically requires much less resources (CPU time slice and network

bandwidth) compared with video streaming. Unlike video streaming whose throughput

may vary significantly from time to time (i.e., variable bit rate), audio streaming often

produce traffic of relatively constant rate. Hence the monitoring and analysis of audio

streaming in QCMF is much simpler than that in video streaming since the fingerprint

of a violation can be easily distinguished from that of a normal transmission (even by

eyes). An observation of network congestion in MPA_RTP audio streaming is

recorded in Figure 7-20. The throughput of the audio stream is around 120Kpbs. We

have limited the link bandwidth to 200 Kbps and launched background traffic of

constant rate 100 Kbps. As a result, network congestion takes place at the Linux router

and packet loss is observed in audio streaming. Such a congestion violation can be

easily detected (since the violation traffic pattern is consistent) and solved by QCMF

 149

through either (1) swapping to a less bandwidth demanding audio codec such as G723.

or (2) shifting to another network service class (router queue). The last picture of

Figure 7-20 compares the audio throughput at the flow sender and receiver to show the

effect of network congestion on end-to-end audio flow throughput. On the other hand,

we find that CPU violation has bare effect on audio streaming quality. This is probably

because audio streaming consumes little CPU time slice and hence is not quite CPU-

intensive.

Figure 7-20: End-to-end flow statistics of an audio streaming under violation

7.4.3 Control Channel Overhead

As mentioned in Section 4.5.1, the control channel among end-to-end QoS components

is largely established using Java RMI technology. To illustrate the overhead of RMI

signaling in a large scale network, a series of measurements have been done whereby a

 150

client invokes a remote method and passes difference sizes (16, 32, 64 … 32768bytes)

of control message to the sender. As is shown in Figure 7-21, the first three series

(lower part) were performed in a normal end-to-end transmission (without QoS

violations) under 10Mbps, 100Kbps and 50Kbps environments respectively. The

connection bandwidth other than 10Mbps is emulated by running background traffic

that occupies certain amount of link bandwidth. Another four series of experiments

(upper part) were performed with the presence of end-to-end QoS violation. For

instance, Violated1 was recorded in a 100Kbps environment where the end-to-end

media flow contends with another network flow (produced by the traffic generator

program) of 129Kbps. According to the experiment results, RMI does not significantly

contribute additional delay to QoS functions at binding-time. As the largest control

message is set to 4Kbytes, RMI produces delay that is less than 10ms (under a 10Mbps

network environment and without QoS violation). In the presence of QoS violations,

RMI incurs slightly higher delay because the control message shares the same link

with the data plane (i.e., FIFO queue at the router). However, the size of the control

message in a practice is not likely to exceed 1Kbytes, hence the overall delay of RMI

in both violation and non-violation environments are still acceptable for real-time QoS

processing.

Figure 7-21: RMI invocation delay for the control plane (Logarithm scale)

 151

7.5 SUMMARY

A QCMF prototype has been implemented on J2SE platform. Experiments have been

done to evaluate respective functions of QCMF and measure their performance. These

include the knowledge processing overhead, QoS violation detection efficiency

(accuracy and latency) and overall end-to-end QoS management performance.

Experiment results show that QCMF does not introduce unacceptable overhead while

it offers flexibility to manage QoS in an end-to-end manner. On the other hand, we

observe that ontology processing a relative time-consuming process, which may not be

appropriate for resource-constrained devices such as PDA or handset. Hence, further

research could be conducted in the future to introduce a set of proxies to take over the

ontology processing task in the case of mobile multimedia streaming.

 152

Chapter 8 Conclusions and Future Work

CHAPTER
 CO N C L U S I O N S A N D FU T U R E WO R K 88

This chapter concludes the thesis with a summary of our research contributions and

discussion of topics for future work.

8.1 THESIS SUMMARY

Today more and more multimedia applications are becoming QoS-aware, thus

presenting predictable, configurable and adaptable behaviors. For over a decade the

Internet engineering and research community has debated, designed, and ignored IP

QoS tools and techniques. Some of these techniques, such as DiffServ and RSVP have

shown to be very valuable to QoS-sensitive applications (such as audio and video

transmission). However, till today these solutions are yet to be widely endorsed by

network service providers or the users. There is an urgent sense that something might

be needed, despite the fact that some of the impeding forces working against a wider

deployment of these technologies are non-technical, but has become very important

consideration since Internet become a commercial commodity.

In this thesis, we have analyzed and found several shortcomings in existing QoS

research which may delay the prevailing deployment of QoS as a utility service. Firstly,

layered QoS provision is not a sustainable solution to end-to-end QoS, as has been

shown in various research prototypes. Although each of those projects is keen in its

respective area, end-to-end QoS can hardly be achieved. This is simply because the

 153

performance of a multimedia application relies on both end-host and network

resources, which suggests that QoS management in all these areas is essential.

Secondly, most end-to-end schemes emphasize on the design of end-to-end QoS-flow

and service composition. They have not considered the distributed and collaborative

nature among end-to-end QoS sub-systems. On the other hand, a few end-to-end

projects have designed a chain of new QoS services in each area of end-to-end QoS

provision. Although such a solution may achieve better efficiency due to its

customized and seamless design from network layer to application layer, it is not an

attractive proposition as the cost to replace existing Internet architecture with a brand

new set of technologies.

In view of the above limitations, we propose a semantic-based QoS coordination and

management framework (QCMF) for a cooperative end-to-end QoS delivery. QCMF

aims to accommodate QoS services at different system layers and manage their

interactions for the benefit of end-to-end QoS delivery. Our solution embraces existing

and new QoS mechanisms at three entity levels: the network level, the middleware

level and the application level. We treat each of these QoS facilities as an end-to-end

QoS component and model its capabilities and behavior with respect to the

requirements of end-to-end QoS coordination. A knowledge plane is thus established

which records QoS information of each end-to-end component. Encoded in

RDF/RDFS, the knowledge plane can grasp the relationships among QoS entities

within and among QoS components. Meanwhile, a uniform interface is provided to

different users of an end-to-end QoS system (e.g., network service providers and

multimedia applications), which facilitates the sharing and machine processing of QoS

knowledge. Capitalizing on the knowledge plane, the control plane manages the

transmission quality of multimedia applications whereby (1) QoS knowledge is shared

 154

either on a regular basis (push mode) or upon request (pull mode), (2) QoS signaling

and adaptation is fulfilled in a separate channel so that it will not affect the

performance of data transmission, (3) decision-making respect to QoS configurations

(e.g., network service level selection, communication parameter determination) and

QoS adaptation is done in a pure end-to-end manner so as to avoid the scalability

problem in network QoS management. Other outstanding research features of QCMF

are listed below.

1. At application level, QCMF allows applications to define QoS requirements

either in a precise way or in a “fuzzy” way. In the latter approach, application

programmers do not need to fix the name of QoS services to be engaged at design

stage. Instead, the necessary features of the desired service are to be described.

Semantic mapping will be performed by SQS, an application level service module of

QCMF, which translates application requirements into suitable runtime QoS

configurations. Such an approach enjoys such an advantage that flexible component-

based service composition can be achieved at build-time. In addition, a QoS service

that fails to satisfy application requirements can be transparently replaced by another

component of similar functionality and QoS performance at runtime.

2. At middleware level, QCMF provides one possible dimension of QoS adaptation

within the communication protocol stack. Directed by QMan, a middleware module of

QCMF, protocol stack composition and re-composition can be achieved to cope with

diverse runtime conditions and resource availability. To detect a QoS violation, QMan

monitors the traffic pattern of an end-to-end flow and recognizes a violation once a

similar violation pattern repeats. Upon occurrence of a QoS violation, an adaptation

choice is made by QMan as the outcome of a coordinated decision-making process

 155

among three dimensions (i.e., applications, middleware and networks) in view of the

available end-to-end adaptation choices and administrative policies.

3. At network level, QCMF defines a generic QoS model for QoS service

differentiation which can be easily mapped to existing standard network QoS models

such as DiffServ which has the same basic QoS disciplines. In this generic model, we

define several QoS concepts and principles that are pertinent to the precise description

of a network QoS service and the collaboration among end-host QoS and network QoS.

These concepts include service class, service degradation path, adaptation cost,

adaptation rejection probability and utility factor. A coordinated adaptation decision-

making is made by QCMF in a pure end-to-end manner through information sharing

and control signaling in light of various end-to-end QoS heuristics and policies.

8.2 FUTURE WORK

There are a variety of avenues for the future work, including:

Prediction mechanisms for QoS violations

A possible extension that helps to minimize the impact of QoS violations on

multimedia transmission is to predict the appearance of a QoS violation before it

severely harms an end-to-end transmission. At current stage, we validate through

experiments that a type of QoS violation will present a consistent fingerprint in terms

of the observed application performance and end-to-end traffic pattern. Based on such

an observation, we may further hypothesize that similar flow traffic pattern is likely to

repeat “on the eve of” the happening of the same violation. By observing such a

pattern, prediction of QoS violations may becomes possible which eliminates a QoS

violation just at its beginning.

 156

Supervised learning vs. unsupervised learning

Our QoS violation analysis scheme is currently bounded by the supervised machine

learning method we have chosen. For each kind of QoS violation, a violation class

need to be setup beforehand and corresponding training data be collected. Hence we

are not able to tell the appearance of a new QoS violation type which has never popped

up before. In that case, the neural network learning algorithm will mistakenly classify

a new QoS violation phenomenon into one of the known violation types. To solve this

problem, we will probably look into more flexible unsupervised learning method such

as clustering techniques. Clustering is the process of grouping objects on the basis of

perceived similarities. Many clustering models and algorithms allow the number of

clusters to vary with problem size and let the user control the degree of similarity

between members of the same clusters by means of a user-defined constant [151].

Hence the employment of clustering techniques would probably give more flexibility

in our QoS violation classification.

Refinement of cross-component QoS adaptation scheme

As described in Chapter 6, we have established models for QoS description of end-

hosts and networks and defined primitives to facilitate their interaction. Residing at the

end-hosts, an evaluation and adaptation algorithm runtime selects a network QoS

component for adaptation based on the estimated utility factor. The preliminary

simulation results validate the design of such a collaboration scheme. In the future, we

plan to further research into the interaction among various QoS components. For

example, we are currently investigating into the scenario that multiple QoS

components suffer from QoS violations simultaneously and hence more complex

signaling is required to fulfill the coordination. We tend to solve this problem by

 157

deriving coordination models that mathematically describes the inter-operations among

QoS components, relying possibly on control theory.

Performance evaluation over the global Internet involving multiple QoS domains

Our experiments at current stage are mainly conducted on our testbed. Besides, we

have tested the performance of our QoS violation detection scheme on the university

network (both wired-line and wireless network). Similar experiments have also been

conducted on the PlanetLab platform to test the functionalities of our end-to-end

management system, as has been explained in Section 7.3.

To further study our prototype system in the Internet environment, we are looking into

the possibility to work with large network service providers or router companies to

comprehensively test the functions and performance of our QCMF implementation in a

large scale network. Ideally, such a testing environment should be a heterogeneous

QoS-aware environment where our end-to-end coordination and adaptation scheme

could be deployed and its performance be physically measured.

 158

Appendix A Orthonormal Network for Classification

APPENDIX
 OR T H O N O R M A L N E T W O R K F O R

CL A S S I F I C A T I O N
AA

In this appendix, we will prove that an orthonormal network is universal

approximation and hence can be used for classification. We will also extend the scope

of hidden neurons from kernel functions to additive functions, the latter of which is, as

said, of higher classification accuracy. Our orthonormal algorithm for QoS violation

classification will be summarized in Section D based on the knowledge of orthonormal

basis and Gram-Schmidt orthonormalization method for construction of it presented in

Section B and C respectively.

A. SINGLE HIDDEN LAYER FEEDFORWARD NETWORK WITH

RANDOM HIDDEN NODES

We first introduce some terminologies and background information for later discussion

of our main results. The output of a standard single hidden layer feedforward network

(SLFN) with L hidden nodes can be represented by () ()∑
=

=
L

i
iiiL xbagxf

1
,,β , where ia

and ib are learning parameters of hidden neurons and iβ is the weight connecting the

thi hidden neuron to the output neurons; ()xbag ii ,, is the output of the thi hidden

neuron with respect to the input x . From the network architecture point of view, two

main SLFN network architectures have been investigated, namely additive neurons

and kernel neurons. For additive neurons, the activation function () ℜ→ℜ:xg takes the

 159

form () ()iiii bxagxbag +⋅=,, . For kernel neurons, the activation function () ℜ→ℜ:xg

takes the form () ()iiii axbgxbag −=,, , where +ℜ∈ib is a positive real value.

For a series of N arbitrary distinct training samples ()ii tx , , Ni ,,1L= ,

[] nT
iniii xxxx ℜ∈= ,,, 21 L is an input vector and [] mT

imiii tttt ℜ∈= ,,, 21 L is a target vector.

A standard SLFN with L hidden neurons and activation function ()xg can be

expressed as

() Njoxbag j

L

i
jiii ,,1,,,

1
L==∑

=

β ,

where jo is the actual output of SLFN.

A standard SLFN with L hidden neurons can learn N arbitrary distinct samples ()ii tx , ,

Ni ,,1L= , with zero error, meaning that there exist parameters ia and ib , for Li ,,1L= ,

such that

0
1

=−∑
=

L

i
ii to .

Therefore our ideal objective is to find proper parameters ia and ib such that

() Njtxbag j

L

i
jiii ,,1,,,

1
L==∑

=

β .

The above N equations can be expressed as

TH =β

where []TLβββ ,,1 L= , []TNttT ,,1 L= and

 160

() ()

() () LNNLLN

LL

xbagxbag

xbagxbag
H

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

,,,,

,,,,

11

1111

L

MOM

L

.

The matrix H is called the hidden layer matrix of the SLFN.

Before we present the universal approximation result, we now introduce the following

lemma (as has been proved in [137]) for construction of an orthogonal basis with

random hidden neurons.

Lemma 1 Given a standard SLFN with N hidden neurons and an activation function

()xg which is infinitely differentiable in any interval, for N arbitrary distinct samples

()ii tx , , where n
ix ℜ∈ and m

it ℜ∈ , for any ia and ib randomly chosen from any

intervals of nℜ and ℜ respectively, according to any continuous probability

distribution, then with probability one, the hidden layer output matrix H of the SLFN is

invertible and 0=−THβ .

Lemma 1 illustrates that when the number of neurons L equals to the number of

samples N , by randomly choosing parameters of neurons, the column vectors of

matrix H are linearly independent. In fact, the linearly independent property is also

correct when NL << . In that case, orthonormal neural networks can be constructed by

Gram-Schmidt orthonormal transformation.

B. APPROXIMATION WITH ORTHONORMAL BASIS

Let us assume that training samples are generated with uniform probability distribution

and all functions belong to the integrable space 2L . As in [152], the inner product of

two functions)(),(xvxu can be defined as

 161

∑
=

>=<
N

i
ii xvxuxvxu

1
)()()(),(,

where N is the number of training samples. Here we should note that the above inner

product expression is based on statistics, which can be approximated by interpolation.

In fact, when the number of training data is large enough, the inner product can be

easily deduced by the limitation theory. Thus without loss of generality, we denote the

inner product using interpolation hereinafter.

We say that the nonzero vectors nee ,,1 L are orthogonal if 0, >=< ji ee , for ji ≠ and

orthonormal if 1, >=< ii ee .

For any f and { }∞=1kke in Hilbert space H, the identity

∑
∞

=

=
1

22

k
kaf , where >=< kk efa , ,

which is called Parseval identity, holds if and only if{ }∞=1kke is also an orthonormal

basis ([153], pp.166).

In fact, for any linearly independent sequence { })(,),(),(21 xgxgxg LL in Hilbert space,

we can construct an orthonormal basis { }Leee ,,, 21 L by any orthonormal transformation,

such as the Gram-Schmidt process ([153], pp.167-168). Furthermore, we will prove its

approximation capability under orthonormal basis as follows:

Theorem 1 For any Hf ∈ , suppose L,, 21 ee is an orthonormal basis in H, then

0,
1

→><−∑
=

L

j
jj eeff , as ∞→L .

 162

Proof: We set ∑
∞

=

><−=
1

,ˆ
j

jj eefff . Since Hilbert space H is a complete inner product

space ([154], pp.102), we have Hf ∈ˆ . Since L,, 21 ee is an orthonormal basis in H,

then according to Parseval identity, we have

0

,,

,,,

,,

,ˆˆ

1

2

1

2

1

1

2

1

1

22

=

><−><=

><−><=

><−=

><=

∑

∑ ∑

∑ ∑

∑

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

k
kk

k
k

j
jjk

k
k

j
jj

k
k

efef

eeefef

eeeff

eff

Remark: In the classic textbooks of functional analysis, we can find similar theorem in

one-dimension space. Here we prove that the similar property can be extended into

multi-dimension space.

C. GRAM-SCHMIDT ORTHONORMALIZATION

Based on Theorem 1, our focus is then put on how to construct an orthonormal set of

base functions. According to the above analysis, we should find proper parameters

such that

)()()(11 iiLLi xfxgxg =++ ββ L , Ni ,,1L= ,

where)(ii xft = .

Multiplying the above equation by)(ij xg and adding the corresponding L equations

for Ni ,,1L= , we have

 163

∑∑∑
===

=++
N

i
iji

N

i
ijiLL

N

i
iji xgxfxgxgxgxg

111
11)()()()()()(ββ L , Lj ,,1 L= .

The above equation can be re-written as

>>=<<++><)(),()(),()(),(11 xgxfxgxgxgxg jjLLj ββ L , Lj ,,1 L=

The above L equations can be rewritten as TH ~~ =β ,

where ()TL xgxfxgxfT ><><=)(),(,,)(),(~
1 L and

LLLLL

L

xgxgxgxg

xgxgxgxg
H

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

><><

><><
=

)(),()(),(

)(),()(),(
~

1

111

L

MOM

L

We name H~ as an inner product hidden layer matrix. If { }Lkk xg 1)(= are orthonormal to

each other, the solutions of above equations can be calculated as

∑
=

>==<
N

i
ikikk xgxfxgxf

1
)()()(),(β . However, as [152] has pointed out, the set of

functions { }L
kk xg 1)(= is not orthonormal to each other. Hence similar to [152], we apply

the standard Gram-Schmidt orthonormalization to transform { })(,),(1 xgxg LL into an

orthonormal set of basis functions { })(,),(1 xuxu LL , i.e.,

[] [] Vxgxgxuxu LL ⋅=)(,),()(,),(11 LL

where V is an upper triangular matrix whose detailed expression can be found in Eq.

21 in [152].

According to{ }Lii xu 1)(= ’s orthonormal property and Theorem 1, such weights { }L
ii 1=α can

ensure the approximation capability of neural networks, i.e.,

 164

εα <−∑
=

L

i
ii xuf

1
)(, where >=<)(),(xuxf iiα .

D. SUMMARY OF ORTHONORMAL TRANSFORMATION

Gram-Schmidt Orthonormalization as analyzed above requires the column vectors of

the original hidden matrix H to be independent of each other. Lemma 1 illustrates that

if activation function)(xg is infinitely differentiable, then for almost all the parameters,

the column vectors
L

i ih 1=
⎭
⎬
⎫

⎩
⎨
⎧→ of H are linearly independent of each other. Summarizing

the above results, we have the following theorem:

Theorem 2 For any bounded, integrable function () 2,, Lxbag ii ∈ , if it is an infinitely

differentiable additive function or kernel function, then neural networks by Gram-

Schmidt transformation are universal approximation.

Remark: Theorem 2 shows the approximation capability of orthonormal neural

networks, which further explains why the orthonormal neural networks proposed by

[152] can achieve good generalization performance. Moreover, Theorem 2 extends the

result of [152] from kernel neurons to additive neurons, which as said, is typically of

higher classification accuracy.

The learning procedure of the orthonormal neural networks can be summarized in the

following steps:

Algorithm: given a training set (){ }Nitxtx m
i

n
iii ,,1,,|, L=ℜ∈ℜ∈ and L hidden neurons:

step 1) Randomly configure parameters ia and ib , Li ,,1L= .

step 2) Calculate hidden layer output matrix H.

 165

step 3) Transform matrix H into orthonormal matrix H~ by any orthonormal

transformation.

step 4) Compute the output weights derived by the inner product hidden layer

matrix H~ .

We employ the above Gram-Schmidt orthonormalization algorithm for end-to-end

classification of QoS violations. As explained, x is the input vector for classification

and in our case, consists of flow parameters such as delay, jitter and video frame rate.

t is the target vector which indicates the classification result, which in our case, shows

the category a QoS violation belongs to. Other vectors and matrixes are the internal

calculating parameters of the neural network whose meanings have been explained in

the previous sections.

 166

Appendix B An Example Ontology for Protocols

APPENDIX
 AN EX A M P L E ON T O L O G Y F O R

CO M M U N I C A T I O N PR O T O C O L S
BB

This appendix shows some of the ontology we have developed for QoS middleware

profiling.

A. PROTOCOL.RDF

This file contains the ontology of communication protocols.

<!DOCTYPE rdf:RDF>

<rdf:RDF
 xmlns="http://www.comp.nus.edu.sg/dpf/ProtocolSpec#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://www.comp.nus.edu.sg/dpf/ProtocolSpec#">

 <rdfs:Class rdf:ID="Service"/>

 <rdfs:Class rdf:ID="Codec">
 <rdfs:subClassOf rdf:resource="#Service"/>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Media_aware">
 <rdfs:subClassOf rdf:resource="#Service"/>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Transport">
 <rdfs:subClassOf rdf:resource="#Service"/>
 </rdfs:Class>

 <owl:Class rdf:ID="Network">
 <rdfs:subClassOf rdf:resource="#Service"/>
 </owl:Class>

 <owl:Class rdf:ID="JMFCodec">
 <rdfs:subClassOf rdf:resource="#Codec"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="layerName">
 <rdfs:domain rdf:resource="#Service"/>

 167

 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#String"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="className">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#String"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="protocolName">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#String"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="supportedInputFormats">
 <rdfs:domain rdf:resource="#Codec"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#String"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="supportedOutputFormats">
 <rdfs:domain rdf:resource="#Codec"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#String"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="upperDependency">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="lowerDependency">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="polarity">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rangeValue>1</rangeValue>
 <rangeValue>0</rangeValue>
 <rangeValue>-1</rangeValue>
 </owl:DatatypeProperty>

</rdf:RDF>

B. INSTANCE.RDF

This file describes the protocol instances available in a real end-host.

<!DOCTYPE rdf:RDF>

<rdf:RDF

 168

 xmlns="http://www.comp.nus.edu.sg/dpf/ProtocolSpec#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://www.comp.nus.edu.sg/dpf/ProtocolSpec#">

 <JMFCodec rdf:ID="MPA_RTP_Encoder">
 <layerName>protocol.service.Codec</layerName>
 <protocolName>MPA_RTP</protocolName>
 <className>protocol.plugin.codec.MPA_RTP_Encoder</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Media_aware</lowerDependency>
 <polarity>1</polarity>
 </JMFCodec>

 <JMFCodec rdf:ID="MPA_RTP_Decoder">
 <layerName>protocol.service.Codec</layerName>
 <protocolName>MPA_RTP</protocolName>
 <className>protocol.plugin.codec.MPA_RTP_Decoder</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Media_aware</lowerDependency>
 <polarity>-1</polarity>
 </JMFCodec>

 <JMFCodec rdf:ID="G723_RTP_Encoder">
 <layerName>protocol.service.Codec</layerName>
 <protocolName>G723_RTP</protocolName>
 <className>protocol.plugin.codec.G723_RTP_Encoder</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Media_aware</lowerDependency>
 <polarity>1</polarity>
 </JMFCodec>

 <JMFCodec rdf:ID="G723_RTP_Decoder">
 <layerName>protocol.service.Codec</layerName>
 <protocolName>G723_RTP</protocolName>
 <className>protocol.plugin.codec.G723_RTP_Decoder</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Media_aware</lowerDependency>
 <polarity>-1</polarity>
 </JMFCodec>

 <JMFCodec rdf:ID="JPEG_RTP_Encoder">
 <layerName>protocol.service.Codec</layerName>
 <protocolName>JPEG_RTP</protocolName>
 <className>protocol.plugin.codec.JPEG_RTP_Encoder</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Media_aware</lowerDependency>
 <polarity>1</polarity>
 </JMFCodec>

 <JMFCodec rdf:ID="JPEG_RTP_Decoder">
 <layerName>protocol.service.Codec</layerName>
 <protocolName>JPEG_RTP</protocolName>
 <className>protocol.plugin.codec.JPEG_RTP_Decoder</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Media_aware</lowerDependency>
 <polarity>-1</polarity>
 </JMFCodec>

 169

 <JMFCodec rdf:ID="H263Encoder">
 <layerName>protocol.service.Codec</layerName>
 <protocolName>H.263</protocolName>
 <className>protocol.plugin.codec.H263Encoder</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Media_aware</lowerDependency>
 <polarity>1</polarity>
 </JMFCodec>

 <JMFCodec rdf:ID="H263Decoder">
 <layerName>protocol.service.Codec</layerName>
 <protocolName>H.263</protocolName>
 <className>protocol.plugin.codec.H263Decoder</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Media_aware</lowerDependency>
 <polarity>-1</polarity>
 </JMFCodec>

 <Media_aware rdf:ID="RTPOut">
 <layerName>protocol.service.Media_aware</layerName>
 <protocolName>RTP</protocolName>
 <className>protocol.plugin.media_aware.RTPOut</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Transport</lowerDependency>
 <polarity>1</polarity>
 </Media_aware>

 <Media_aware rdf:ID="RTPIn">
 <layerName>protocol.service.Media_aware</layerName>
 <protocolName>RTP</protocolName>
 <className>protocol.plugin.media_aware.RTPIn</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Transport</lowerDependency>
 <polarity>-1</polarity>
 </Media_aware>

 <Transport rdf:ID="UDPOut">
 <layerName>protocol.service.Transport</layerName>
 <protocolName>UDP</protocolName>
 <className>protocol.plugin.transport.UDPOut</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Network</lowerDependency>
 <polarity>1</polarity>
 </Transport>

 <Transport rdf:ID="UDPIn">
 <layerName>protocol.service.Transport</layerName>
 <protocolName>UDP</protocolName>
 <className>protocol.plugin.transport.UDPIn</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Network</lowerDependency>
 <polarity>-1</polarity>
 </Transport>

 <Transport rdf:ID="TCPOut">
 <layerName>protocol.service.Transport</layerName>
 <protocolName>TCP</protocolName>
 <className>protocol.plugin.transport.TCPOut</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Network</lowerDependency>
 <polarity>1</polarity>

 170

 </Transport>

 <Transport rdf:ID="TCPIn">
 <layerName>protocol.service.Transport</layerName>
 <protocolName>TCP</protocolName>
 <className>protocol.plugin.transport.TCPIn</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>protocol.service.Network</lowerDependency>
 <polarity>-1</polarity>
 </Transport>

 <Network rdf:ID="DummyIPOut">
 <layerName>protocol.service.Network</layerName>
 <protocolName>IP</protocolName>
 <className>protocol.plugin.network.DummyIPOut</className>
 <upperDependency>NULL</upperDependency>
 <lowerDependency>NULL</lowerDependency>
 <polarity>1</polarity>
 </Network>

 <Network rdf:ID="DummyIPIn">
 <layerName>protocol.service.Network</layerName>
 <protocolName>IP</protocolName>
 <className>protocol.plugin.network.DummyIPIn</className>
 <upperDependency>protocol.service.Transport</upperDependency>
 <lowerDependency>NULL</lowerDependency>
 <polarity>-1</polarity>
 </Network>

</rdf:RDF>

 171

 BIBLIOGRAPHY

[1] X. Xiao and L. M. Ni, “Internet QoS: A big picture”, IEEE Network, 13(2): 8–18,

Mar 1999

[2] S. Shenker J. C. Partridge, R. Guerin, “Specification of Guaranteed Quality of

Service”, RFC 2212, 1997

[3] S. Blake et al., “An Architecture for Differentiated Services,” RFC 2475, 1998

[4] E. Crawley et al., “A Framework for QoS-based Routing in the Internet”, RFC

2386, 1998

[5] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching

Architecture”, RFC 3031, 2001

[6] R. Braden et al., “Resource Reservation Protocol (RSVP) Version 1 Functional

Specification”, RFC 2205, September 1997

[7] Integrated Services - Cisco Systems,

http://www.cisco.com/en/US/products/ps6611/products_ios_protocol_group_ho

me.html

[8] Baochun Li, Klara Nahrstedt, “QualProbes: Middleware QoS Profiling Services

for Configuring Adaptive Applications”, in Proc. IFIP International Conference

on Distributed Systems Platforms and Open Distributed Processing, April 2000

[9] C. Aurrecoechea, A. T. Campbell, L. Hauw, “A survey of QoS architectures”,

Multimedia Systems, Vol. 6, Issue 3, pp. 138-151, May 1998

 172

[10] Yuming Jiang, Chen-Khong Tham, Chi-Chung Ko, “Challenges and approaches

in providing QoS monitoring”, International Journal of Network Management,

Vol. 10, Issue 6, pp. 323-324, November 2000

[11] Jürg Bolliger, Thomas Gross, “A Framework-Based Approach to the

Development of Network-Aware Applications”, IEEE Transactions on Software

Engineering, Vol. 24, No. 5, pp. 376-390, May 1998

[12] X. Wang and H. Schulzrinne, “Comparison of adaptive Internet multimedia

applications”, IEICE Transactions on Communications, Vol. E82-B, No. 6, pp.

806-818, June 1999

[13] Hojung Cha, Jaehak Oh and Rhan Ha, “Dynamic Frame Dropping for Bandwidth

Control in MPEG Streaming System”, Multimedia Tools and Applications, Vol.

19, Number 2, pp. 155-178, February 2003

[14] Viktor S. Wold Eide, Ole-Christoffer Granmo, Frank Eliassen, Jørgen Andreas

Michaelsen, “Real-time video content analysis: QoS-aware application

composition and parallel processing”, ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMCCAP), Vol. 2, Issue 2, pp.

149-172, May 2006

[15] Siddhartha Chattopadhyay, Suchendra M. Bhandarkar, Kang Li, “Ligne-claire

video encoding for power constrained mobile environments”, in Proc. the 15th

international conference on Multimedia (ACM Multimedia), pp. 1036-1045,

September 2007

[16] D. P. Anderson, S. Tzou, R. Wahbe, R. Govindan, and M. Andrews, “Support

for Continuous Media in the DASH System”, in Proc. the 10th International

Conference on Distributed Computing Systems, pages 54-61, May 1990

 173

[17] H. Tokuda, T. Nakajima, and P. Rao, “Real-Time Mach: Toward a Predictable

Real-Time System”, in Proc. USENIX Mach Workshop, pp. 73-82, October 1990

[18] Leslie IM, McAuely D, and Mullender SJ, “Pegasus – Operating Systems

support for Distributed Multimedia Systems”, ACM SIGOPS Operating Systems

Review, Vol. 27, Issue 1, pp. 69 – 78, 1993

[19] N. Klara Nahrstedt, X. Dongyan, W. Duangdao, and L. Baochun, “QoS-aware

middleware for ubiquitous and heterogeneous environments”, IEEE

Communications Magazine, Vol. 39, Issue 11, pp. 140-148, 2001

[20] D. Bauer, B. Stiller, and B. Plattner, “Guaranteed multipoint communication

support for multimedia applications”, in Proc. Broadband European Networks

Conference(SYBEN), pp. 395-404, May 1998

[21] Fabio Panzieri , Marco Roccetti , Vittorio Ghini, “The implementation of

middleware services for QoS-aware distributed multimedia applications”, in

Proc. International Workshop on Multimedia Middleware, October 05, 2001

[22] B. Li and K. Nahrstedt, “A Control-based Middleware Framework for Quality of

Service Adaptations”, IEEE Journal on Selected Areas in Communications,

Special Issue on Service Enabling Platforms, Vol. 17, No. 9, pp. 1632-1650,

September 1999

[23] B. Stiller, C. Class, M. Waldvogel, G. Caronni, and D. Bauer, “A Flexible

Middleware for Multimedia Communication: Design, Implementation, and

Experience”, IEEE Journal on Selected Areas in Communications, Special Issue

on Middleware, Vol. 17, No. 9, pp. 1580-1598, September 1999

[24] Mitchell S., H. Naguib, G. Coulouris, and T. Kindberg, “A QoS support

framework for dynamically Reconfigurable Multimedia Applications”, in Proc.

Distributed Applications and Interoperable Systems II, June 1999

 174

[25] Douglas C. Schmidt, Donald F. Box, Tatsuya Suda, “Adaptive: A dynamically

assembled protocol transformation, integration and evaluation environment”,

Journal of Concurrency: Practice and Experience, Volume 5 Issue 4, pp. 269-

286, 1993

[26] Christian Tschudin, “Flexible protocol stacks”, in Proc. ACM SIGCOMM, pp.

197-205, 1991

[27] G. Tsirtsis, P. Srisuresh, “Network Address Translation - Protocol Translation

(NAT-PT)”, RFC 2766, February 2000

[28] Dan Chalmers and Morris Sloman, “A survey of Quality of Service in mobile

computing environments”, IEEE Communications Surveys, Volume 2, Issue 2,

April 1999

[29] Guenkova-Luy, T.; Kassler, A.J.; Mandato, D., “End-to-end quality-of-service

coordination for mobile multimedia applications”, IEEE Journal on Selected

Areas in Communications, Vol. 22, Issue 5, pp. 889-903, June 2004

[30] Enthrone project, http://www.ist-enthrone.org/

[31] ITU-T, “ITU-T Rec. G.1000 (11/2001)”, online document, International

Telecommunication Union, 2001

[32] A. Vogel, B. Kerhervé, G. von Bochmann, J. Gecsei, “Distributed Multimedia

and QoS: A Survey”, IEEE Multimedia, Vol. 2, Issue 2, pp. 10-18, 1995

[33] T. Bheemarjuna Reddy, I. Karthigeyan, B.S. Manoj and C. Siva Ram Murthy,

“Quality of service provisioning in ad hoc wireless networks: a survey of issues

and solutions”, Ad Hoc Networks, Vol. 4, Issue 1, pp. 83-124, January 2006

[34] Y. Bernet et al., “A Framework for Integrated Services Operation over DiffServ

Networks”, RFC 2998, November 2000

 175

[35] Jaudelice C. de Oliveira, Caterina Scoglio, Ian F. Akyildiz and George Uhl,

“New preemption policies for DiffServ-aware traffic engineering to minimize

rerouting in MPLS networks”, IEEE/ACM Transactions on Networking (TON),

Vol. 12 Issue 4, pp. 733-745, August 2004

[36] Mohsin Iftikhar, Bjorn Landfeldt and Mine Caglar, “Traffic engineering and

QoS control between wireless DiffServ domains using PQ and LLQ”, in Proc.

the 5th ACM International Workshop on Mobility Management and Wireless

Access (MobiWac), pp, 120-129, October 2007

[37] Ikjun Yeom, A. L. Narasimha Reddy, “Modeling TCP behavior in a

differentiated services network”, IEEE/ACM Transactions on Networking (TON),

Volume 9, Issue 1, pp. 31-46, February 2001

[38] Kartik Gopalan, Lan Huang, Gang Peng, Tzi-Cker Chiueh, Yow-Jian Lin,

“Statistical admission control using delay distribution measurements”, ACM

Transactions on Multimedia Computing, Communications, and Applications

(TOMCCAP), Vol. 2 Issue 4, pp. 258-281, November 2006

[39] Dong Lin, Robert Morris, “Dynamics of random early detection”, in Proc. ACM

SIGCOMM, pp. 127-137, October 1997

[40] “Hard Real-Time with Venturcom RTX on Microsoft Windows XP and

Windows XP Embedded”, http://msdn.microsoft.com/en-

us/library/ms838583.aspx

[41] A. Kassler, B. Reiterer, J. Kaiser, “A Framework for scheduling soft real-time

multimedia applications”, in Proc. Internet and Multimedia Systems and

Applications (IMSA), Honolulu, USA, August 2003

[42] “Cisco Completes DiffServ Solution with Value-added Tools for End-to-End

QoS”, http://newsroom.cisco.com/dlls/corp_041001.html

 176

[43] B. Stiller, C. Class, M. Waldvogel, G. Caronni, D. Bauer and B. Plattner, “A

Flexible Middleware for Multimedia Communication: Design, Implementation,

and Experience”, IEEE Journal on Selected Areas in Communications: Special

Issue on Middleware, Vol. 17, No. 9, pp. 1614-1631, 1999

[44] Gerard Parr, Kevin Curran, “A Paradigm Shift in the Distribution of

Multimedia”, Communications of the ACM, Vol. 43, No. 6, pp. 103-109, June

2000

[45] Kevin Curran, Gerard Parr, “A middleware architecture for streaming media

over IP networks to mobile devices”, in Proc. IEEE Wireless Communications

and Networking Conference (WCNC), 2003

[46] Liming An, Hung Keng Pung, Lifeng Zhou, “Design and Implementation of a

Dynamic Protocol Framework”, Computer Communications, Vol. 29, Issue 9, pp.

1309-1315, May 2006

[47] K. Nahrstedt, D. Wichadakul, and D. Xu, “Distributed QoS Compilation and

Runtime Instantiation”, in Proc. the 8th IEEE/IFIP International Workshop on

Quality of Service (IWQoS), pp. 198–207, June 2000

[48] Denise J. Ecklund,Vera Goebel,Thomas Plagemann, Earl F. Ecklund, Jr.,

“Dynamic end-to-end QoS management middleware for distributed multimedia

systems”, Multimedia Systems, Vol. 8 , Issue 5, pp. 431-442, December 2002

[49] Pryce N. G., “Component Interaction in Distributed Systems”, PhD Thesis,

University of London and Diploma of the Imperial College of Science,

Technology and Medicine, January 2000

[50] Santa Fe, New Mexico, “An evaluation of Qinna, a component-based QoS

architecture for embedded systems”, in Proc. ACM symposium on Applied

computing, pp. 998-1002, 2005

 177

[51] Pravin Pawar, Katarzyna Wac, Bert-Jan van Beijnum, Pierre Maret, Aart van

Halteren, Hermie Hermens, “Context-aware middleware architecture for vertical

handover support to multi-homed nomadic mobile services”, in Proc. ACM

Symposium on Applied Computing, pp. 481-488, March 2008

[52] Heinzelman W.B., Murphy A.L., Carvalho, H.S., Perillo, M.A., “Middleware to

support sensor network applications”, IEEE Network, Vol. 18, Issue 1, pp. 6-14,

January-February 2004

[53] Tatsuo Nakajima, “Experiences with building middleware for audio and visual

networked home appliances on commodity software”, in Proc. the tenth ACM

international conference on Multimedia, December 01-06, pp. 611-620, 2002

[54] Internet2 QoS working group, “Network QoS needs of advanced Internet

applications, a survey”, online document, http://qos.internet2.edu/wg/apps-

/fellowship/Docs/Internet2AppsQoSNeeds.pdf

[55] Aravind, R., Civanlar, M. R., Reibman, A.R., “Packet loss resilience of MPEG-2

scalable video coding algorithms”, IEEE Transactions on Circuits and Systems

for Video Technology, Vol. 6, Issue: 5, pp. 426-435, Oct 1996

[56] Jae-Hyun Kim, Hyun-Jin Lee, Sung-Min Oh and Sung-Hyun Cho, “Performance

modeling and evaluation of data/voice services in wireless networks”, Wireless

Networks, Volume 14, Issue 2, pp. 233-246, March 2008

[57] Microsoft Corporation, “Key Concepts in Windows Media Technologies”,

http://msdn.microsoft.com

[58] Sun Microsystems, Inc., “Java Media Framework API”,

http://www.javasoft.com/jmf

[59] H. Schulzrinne, S. Casner, etc., “RTP: A Transport Protocol for Real-Time

Applications”, RFC 3550, 2003

 178

[60] H. Schulzrinne, Columbia U., etc., “Real Time Streaming Protocol (RTSP)”,

RFC 2326, 1998

[61] Lai-U Choi, Wolfgang Kellerer, and Eckehard Steinbach, “Cross-layer

optimization for wireless multi-user video streaming”, in Proc. IEEE

International Conference on Image Processing (ICIP), 2004

[62] Q. Zhang, W. Zhu, and Y-Q. Zhang, “A Cross-layer QoS-supporting framework

for multimedia delivery over wireless Internet”, in Proc. International

Packetvideo workshop, 2002

[63] Toufik Ahmed, Ahmed Mehaoua, etc., “Adaptive Packet Video Streaming Over

IP Networks: A Cross-Layer Approach”, IEEE Journal on Selected Areas in

Communications, Vol. 23, No. 2, pp. 385-401, February 2005

[64] Wanghong Yuana, etc., “Design and Evaluation of a Cross-Layer Adaptation

Framework for Mobile Multimedia Systems”, in Proc. SPIE/ACM Multimedia

Computing and Networking Conference, 2003

[65] Arif Ghafoor, “Distributed multimedia information systems: an end-to-end

perspective”, Multimedia Tools and Applications, Vol. 33, No. 1, pp. 31-56,

April 2007

[66] A. Campbell, G.Coulson, and D. Hutchinson, “A Quality of Service

architecture”, Computer Communications Review, Vol. 20, No. 4, pp. 200-208,

September 1990

[67] Klara Nahrstedt, “An architecture for end-to-end quality of service provision and

its experimental validation”, PhD Thesis, University of Pennsylvania, 1996

[68] Abdelhakim Hafid and Gregor v. Bochmann, “Quality-of-service adaptation in

distributed multimedia applications”, Multimedia Systems, Vol. 6, Issue 5, pp.

299-315, September 1998

 179

[69] Daniel Won-Kyu Hong, Choong Seon Hong, “A QoS management framework

for distributed multimedia systems”, International Journal of Network

Management, Volume 13, Issue 2, pp. 115-127, March/April 2003

[70] Abdelhakim Hafid, Gregor V., Bochmann, “An Approach to Quality of Service

Management in Distributed Multimedia Application: Design and an

Implementation”, Multimedia Tools and Applications, Vol. 9, Issue 2, pp. 167-

191, September 1999

[71] Manish, Mahajan and Parashar, “Managing QoS for Multimedia Applications in

the Differentiated Services Environment”, Journal of Network and Systems

Management, Vol. 11 , Issue 4, pp. 469-498, December 2003

[72] Zahi Jarir and Mohammed Erradi, “A meta-level architecture for QoS awareness

in a mobile environment”, in Proc. 8th international conference on New

technologies in distributed systems, 2008

[73] Wei Zha, Rose Qingyang Hu, Yi Qian, Yu Cheng, “An adaptive MAC scheme to

achieve high channel throughput and QoS differentiation in a heterogeneous

WLAN”, in Proc. the 3rd international conference on Quality of service in

heterogeneous wired/wireless networks (QShine), 2006

[74] Aimin Sang, Xiaodong Wang, etc., “Fairness and load balancing: Coordinated

load balancing, handoff/cell-site selection, and scheduling in multi-cell packet

data systems”, Wireless Networks, pp. 103-120, 2004

[75] Weiguang Shi, M. H. MacGregor, Pawel Gburzynski, “Load balancing for

parallel forwarding”, IEEE/ACM Transactions on Networking, Vol. 13, Issue 4,

pp. 790-801, August 2005

 180

[76] F. Dabek, N. Zeldovich, M. F. Kaashoek, D. Mazières, and R.Morris, “Event-

driven programming for robust software”, in Proc. the 10th ACM SIGOPS

European Workshop, pp. 186-189, September 2002

[77] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A knowledge

plane for the Internet”, in Proc. ACM SIGCOMM, pp. 3-10, August 2003

[78] A. De Paola, S. Fiduccia, S. Gaglio, etc., “Rule-Based Reasoning for Network

Management”, in Proc. International Workshop on Computer Architecture for

Machine Perception (CAMP), pp. 25-30, 2005

[79] M. Wawrzoniak, L. L. Peterson, and T. Roscoe, “Sophia: an information plane

for networked systems”, ACM Computer Communication Review, Vol. 34, No. 1,

pp. 15-20, January 2004

[80] Michael J. Katchabaw, Hanan L. Lutfiyya, Michael A. Bauer, “Driving resource

management with application-level quality of service specifications”, in Proc.

the first International Conference on Information and Computation Economies,

pp. 83-91, 1998

[81] Zoubir Mammeri, “Towards a Formal Model for QoS Specification and

Handling in Networks”, in Proc. International Workshop on Quality of Service

(IWQoS), pp. 148-152, 2004

[82] Chen Zhou, Liang-Tien Chia, and Bu-Sung Lee, “QoS Measurement Issues with

DAML-QoS Ontology”, in Proc. IEEE International Conference on e-Business

Engineering (ICEBE), pp. 395-403, 2005

[83] Glen Dobson, Russell Lock, Ian Sommerville, “QoSOnt: an Ontology for QoS in

Service-Centric Systems”, in Proc. UK e-Science AHM, pp. 80-87, 2005

 181

[84] E. Michael Maximilien, Munindar P. Singh, “A Framework and Ontology for

Dynamic Web Services Selection”, IEEE Internet Computing, 8(5):84-93,

September-October 2004

[85] Dan Brickley, R.V. Guha, “RDF Vocabulary Description Language 1.0: RDF

Schema”, World Wide Web Consortium, January 2003

[86] Deborah L. McGuinness, Frank van Harmelen, “OWL Web Ontology Language

Overview”, World Wide Web Consortium, Feburary 2004

[87] Paolo Bellavista, Antonio Corradi, Rebecca Montanari, Cesare Stefanelli, “A

Mobile Computing Middleware for Location and Context-aware Internet Data

Services”, ACM Transactions on Internet Technology, Volume 6 Issue 4, pp.

356-380, November 2006

[88] Jingwen Jin, Klara Nahrstedt, “QoS Specification Languages for Distributed

Multimedia Applications: A Survey and Taxonomy”, IEEE Multimedia

Magazine, Vol. 11, Issue 3, pp. 74-87, July-September 2004

[89] Richard Staehli, Frank Eliassen, Sten Amundsen, “Designing adaptive

middleware for reuse”, in Proc. the 3rd ACM workshop on Adaptive and

reflective middleware, pp. 189-194, October 2004

[90] Ernesto Exposito, Mathieu Gineste, etc., “XQOS: a Quality of Service

specification language”, in Proc. International Conference on WWW/Internet,

2002

[91] M.A., de Miguel, “QoS modeling language for high quality systems”, in Proc.

International Workshop on Object-Oriented Real-Time Dependable Systems, pp.

210-216, 2003

 182

[92] A.L Murphy, G. P. Picco, G.-C Roman, “Lime: a middleware for physical and

logical mobility”, in Proc. IEEE International Conference on Distributed

Computing Systems, pp. 524-533, 2001

[93] Sabata, B., Chatterjee, S. , etc., “Taxonomy for QoS specifications”, in Proc.

International Workshop on Object-Oriented Real-Time Dependable Systems, pp.

100-107, 1997

[94] G. Xiaohui, N. Klara, Y. Wanghong, W. Duangdao, X. Dongyan, “An XML-

based QoS enabling language for the Web”, Journal of Visual Language and

Computing, Special Issue on Multimedia Languages for the Web, 13(1): 61-95,

February 2002

[95] S. Frlund, J. Koistinen, “Quality-of-Service specification in distributed object

systems design”, in Proc. USENIX Conference on Object-Oriented Technologies

and Systems, pp. 1-1, April 1998

[96] G. Ghinea, J.P. Thomas, “QoS impact on user perception and understanding”, in

Proc. ACM Multimedia, pp. 49-54, 1998

[97] Oliver T. W. Yu, “End-to-end adaptive QoS provisioning over GPRS wireless

mobile network”, Mobile Networks and Applications, Vol. 8, Issue 3, pp. 255-

267, June 2003

[98] Indulska, J., Balasubramaniam, S., “Context-aware vertical handovers between

WLAN and 3G networks”, in Proc. IEEE Vehicular Technology Conference, pp.

3019-3023, 2004

[99] Yuan Feng, “iSSE: an Intelligent search engine for Web service”, MS.C. thesis,

School of Computing, National University of Singapore, 2005

 183

[100] Vangelis Gazis, etc, “Metadata Design for Reconfigurable Protocol Stacks in

Systems Beyond 3G”, Wireless Personal Communications, Volume 36 , Issue 1,

pp. 1-28, January 2006

[101] Pearson Malcom E, “Dynamic layered protocol stack”, US patent US5903754,

1999

[102] I. Sora, etc. “Policies for dynamic stack composition”, Technical Report,

Department of Computer Science, Leuven, Belgium, 2001

[103] M. Handley et al., “SIP: Session Initiation Protocol”, RFC2543, Mar. 1999

[104] Wuttipong Kumwilaisak, Y. Thomas Hou, etc., “A Cross-layer Quality-of-

Service mapping architecture for video delivery in wireless networks”, IEEE

Journal on Selected Areas in Communications, Vol. 21, No. 10, pp. 1685-1698,

December 2003

[105] Sun Microsystems, Inc., “Java Remote Method Invocation”,

http://java.sun.com/products/jdk/rmi/

[106] C.L Forgy, “RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern

Match Problem”, Artificial Intelligence, 1982

[107] L. Combaz, J.-C. Fernandez, J. Sifakis, and L. Strus, “Symbolic quality control

for multimedia applications”, Real-Time Systems, Vol. 40, pp. 1-43, 2008

[108] C. W. A. Al-Ta’ani, A.; Begall, “Trouble shooting in distributed service centers”,

in Proc. ICNS Third International Conference on Networking and Services, pp.

6-6, 2007

[109] G. Cormode and S. Muthukrishnan, “What’s new: finding significant differences

in network data streams”, IEEE/ACM Transactions on Networking, Vol. 13, pp.

1219-1232, 2005

 184

[110] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and L. Palopoli, “QoS

management through adaptive reservations”, Real-Time Systems, Vol. 29, pp.

131-155, March 2005

[111] L. Lymberopoulos, E. Lupu, and M. Sloman, “An adaptive policy based

framework for network services management”, Journal of Network and Systems

Management, Vol. 11, pp. 277-303, 2003

[112] Y. Huang, N. Feamster, A. Lakhina, and J. J. Xu, “Diagnosing network

disruptions with network-wide analysis”, in Proc. ACM SIGMETRICS, pp. 61-72,

June 2007

[113] V. Bharghavan, K.-W. Lee, S. Lu, S. Ha, J.-R. Li, and D. Dwyer, “The timely

adaptive resource management architecture”, IEEE Personal Communications,

Vol. 5, No. 4, pp. 20-31, August 1998

[114] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper, “Adaptive

quality of service management for enterprise services”, ACM Transactions on

the Web, Vol. 2, no. 1, pp. 1-46, February 2008

[115] G. Molenkamp and M. Katchabaw, “Managing soft QoS requirements in

distributed systems”, in Proc. International Workshops on Parallel Processing,

pp. 185-201, 2000

[116] A. Ghafoor, “Distributed multimedia information systems: an end-to-end

perspective”, Multimedia Tools and Applications, Vol. 33, pp. 31-56, 2007

[117] Nishanth Shankaran, Xenofon Koutsoukos, Douglas C. Schmidt, Aniruddha

Gokhale, “Evaluating adaptive resource management for distributed real-time

embedded systems”, in Proc. the 4th workshop on Reflective and adaptive

middleware systems, November 2005

 185

[118] A. Hafid and G. v. Bochmann, “Quality-of-service adaptation in distributed

multimedia applications”, Multimedia Systems, Vol. 6, pp. 299-315, 1998

[119] R. M. Bahati, M. A. Bauer, and E. M. Vieira, “Policy-driven autonomic

management of multi-component systems”, in Proc. conference of the center for

advanced studies on Collaborative Research, pp. 137-151, 2007

[120] R. Iyer, L. Zhao, F. Guo, and etc., “QoS policies and architecture for

cache/memory in CMP platforms”, in Proc. ACM SIGMETRICS, pp. 25-36, June

2007

[121] J. van der Merwe, S. Sen, C. Kalmanek, “Streaming Video Traffic:

Characterization and Network Impact”, in Proc. the 7th International Workshop

on Web Content Caching and Distribution, 2002

[122] O. S. e. M. Roughan, S. Sen, “Class-of-service mapping for QoS: a statistical

signature-based approach to IP traffic classification”, in Proc. the 4th ACM

SIGCOMM conference on Internet measurement, pp. 135-148, 2004

[123] M. Nazeeruddin, M. Mohandes, and H. Cam, “ATM QoS prediction using

neural-networks”, in Proc. the 6th International Conference on Neural

Information Processing, pp. 532-537, 1999

[124] S. Khoukhi, L.; Cherkaoui, “A quality of service approach based on neural

networks for mobile ad hoc networks”, in Proc. the 2nd IFIP International

Conference on Wireless and Optical Communications Networks, pp. 295-301,

2005

[125] A. Nogueira, P. Salvador, and R. Valadas, “Predicting the quality of service of

wireless LANs using neural networks”, in Proc. ACM International Symposium

on Modeling Analysis and Simulation of Wireless and Mobile Systems, pp. 52-60,

2007

 186

[126] S. Cen, P. C. Cosman, and G. M. Voelker, “End-to-end differentiation of

congestion and wireless losses”, IEEE/ACM Transactions on Networking, Vol.

11, No. 5, pp. 703-717, 2003

[127] S. Taylor and H. Lutfiyya, “Predicting violations of QoS requirements in

distributed systems”, in Proc. of IFIP/IEEE International Conference on

Management of Multimedia Networks and Services, pp. 355-367, 2003

[128] S. R. Gulliver and G. Ghinea, “Defining user perception of distributed

multimedia quality”, ACM Transactions on Multimedia Computing,

Communications, and Applications, Vol. 2, No. 4, pp. 241-257, November 2006

[129] N. Hohn and D. Veitch, “Inverting sampled traffic”, IEEE/ACM Transactions on

Networking, Vol. 14, No. 1, pp. 68-80, 2006

[130] M. Leshno, V.Y.Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward

networks with a nonpolynomial activation function can approximate any

function”, Neural Networks, Vol. 6, pp. 861-867, 1993

[131] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Real-time learning capability of

neural networks”, IEEE Transactions on Neural Networks, Vol. 17, No. 4, pp.

863-878, 2006

[132] J. Platt, “A resource-allocating network for function interpolation”, Neural

Computation, 3: 213-225, 1991

[133] Visakan Kadirkamanathan and Mahesan Niranjan, “A Function Estimation

Approach to Sequential Learning with Neural Networks”, Neural Computation,

Vol. 5, pp. 954-975, 1993

[134] Lu Yingwei and P. Saratchandran and Narasimhan Sundararajan, “Performance

Evaluation of A Sequental Minimal Radial Basis Function (RBF) Neural

 187

Networks Learning Algorithm”, IEEE Transactions on Neural Networks, Vol. 9,

No. 2, pp. 308-318, 1998

[135] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the

marquardt algorithm”, IEEE Transactions on Neural Networks, Vol. 5, No. 6, pp.

989-993, 1994

[136] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. MÄuller, “Efficient BackProp”,

Lecture Notes in Computer Science, Vol. 1524, pp. 9-50, 1998

[137] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory

and applications”, Neurocomputing, Vol. 70, pp. 489-501, 2006

[138] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation using

incremental constructive feedforward networks with random hidden nodes”,

IEEE Transactions On Neural Networks, Vol. 17, No. 4, pp. 879-892, 2006

[139] David D. Clark, etc., “Tussle in cyberspace: defining tomorrow’s Internet”, in

Proc. ACM SIGCOMM, pp. 462-475, June 2002

[140] Sugih Jamin, Scott J. Shenker, Peter B. Danzig, “Comparison of Measurement-

based Admission Control Algorithms for Controlled-Load Service”, in Proc.

IEEE Infocom, pp. 973-980, 1997

[141] Aleksandar Kuzmanovic, Edward Knightly, “Measurement-Based

Characterization and Classification of QoS-Enhanced Systems”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 14 , Issue 7, pp. 671-685,

July 2003

[142] Lee Breslau, Edward W. Knightly, Scott Shenker, Ion Stoica, Hui Zhang,

“Endpoint admission control: architectural issues and performance”, in Proc.

ACM SIGCOMM, pp. 57-69, August 2000

 188

[143] Seung Yeob Nam, Sunggon Kim, Dan Keun Sung, “Measurement-based

admission control at edge routers”, IEEE/ACM Transactions on Networking

(TON), Vol. 16, Issue 2, pp. 410-423, April 2008

[144] Thomas M. Chen, “Network Traffic Modeling”, Handbook of Computer

Networks, Hossein Bidgoli (ed.), Wiley, 2007

[145] Dimitri Bertsekas and Robert Gallager, “Data Networks”, Prentice-Hall, Inc.

ISBN:0-13-200916-1, 1992

[146] The Network Simulator - ns-2, http://isi.edu/nsnam/ns/

[147] WinPcap, http://www.winpcap.org

[148] Jena 2, http://www.hpl.hp.com/semweb/jena2.htm

[149] PlanetLab, http://www.planet-lab.org/

[150] SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/,

W3C Working Draft, 2006

[151] Anukool Lakhina, Mark Crovella and Christophe Diot, “Mining anomalies using

traffic feature distributions”, in Proc. ACM SIGCOMM, pp. 217-228, 2005

[152] W. Kaminski and P. Strumillo, “Kernel orthonormalization in radial basis

function neural networks”, IEEE Transactions on Neural Networks, Vol. 8, No.

5, pp. 1177-1183, 1997

[153] E. M. Stein and R. Shakarchi, “Real Analysis: Measure Theory, Integration, and

Hilbert Spaces”, Princeton University Press, 2005

[154] J. M. Ortega, “Matrix Theory”, Plenum Press, New York, 1987

