1,269 research outputs found

    Towards Sampling and Simulation-Based Analysis of Featured Weighted Automata

    Get PDF
    International audienceWe consider the problem of model checking Variability-Intensive Systems (VIS) against non-functional requirements. These requirements are typically expressed as an optimization problem over quality attributes of interest, whose value is determined by the executions of the system. Identifying the optimal variant can be hard for two reasons. First, the state-explosion problem inherent to model checking makes it increasingly complex to find the optimal executions within a given variant. Second, the number of variants can grow exponentially with respect to the number of variation points in the VIS. In this paper, we lay the foundations for the application of smart sampling and statistical model checking to solve this problem faster. We design a simple method that samples variants and executions in a uniform manner from a featured weighted automaton and that assesses which of the sampled variants/executions are optimal. We implemented our approach on top of ProVeLines, a tool suite for model-checking VIS and carried out a preliminary evaluation on an industrial embedded system design case study. Our results tend to show that sampling-based approaches indeed holds the potential to improve scalability but should be supported by better sampling heuristics to be competitive

    Calibrating Generative Models: The Probabilistic Chomsky-SchĂźtzenberger Hierarchy

    Get PDF
    A probabilistic Chomsky–Schützenberger hierarchy of grammars is introduced and studied, with the aim of understanding the expressive power of generative models. We offer characterizations of the distributions definable at each level of the hierarchy, including probabilistic regular, context-free, (linear) indexed, context-sensitive, and unrestricted grammars, each corresponding to familiar probabilistic machine classes. Special attention is given to distributions on (unary notations for) positive integers. Unlike in the classical case where the "semi-linear" languages all collapse into the regular languages, using analytic tools adapted from the classical setting we show there is no collapse in the probabilistic hierarchy: more distributions become definable at each level. We also address related issues such as closure under probabilistic conditioning

    Land Use-Transportation Interaction: Lessons Learned from an Experimental Model using Cellular Automata and Artificial Neural Networks

    Get PDF
    Land use and transportation interact to produce large urban concentrations in most major cities that create tremendous sprawl, noise, congestion, and environmental concerns. The desire to better understand this relationship has led to the development of land use–transport (LUT) models as an extension of more general urban models. The difficulties encountered in developing such models are many as local actions sum to form global patterns of land use change, producing complex interrelationships. Cellular automata (CA) simplify LUT model structure, promise resolution improvement, and effectively handle the dynamics of emergent growth. Artificial Neural Networks (ANN) can be used to quantify the complex relationships present in historical land use data as a means of calibrating a CA-LUT model. This study uses an ANN, slope, historical land use, and road data to calibrate a CA-LUT model for the I-140 corridor of Knoxville, TN. The resulting model was found to require a complex ANN, produce realistic emergent growth patterns, and shows promising simulation performance in several significant land classes such as single-family residential. Problems were encountered as the model was iterated due to the lack of a mechanism to extend the road network. The presence of local roads in the model’s configuration strengthened ability of the model to simulate historical development patterns. Shortcomings in certain aspects of the simulation performance point to the need for the addition of a socio-economic sub-model to assess demand for urban area and/or an equilibrium mechanism to arbitrate the supply of developable land. The model constructed in this study was found to hold considerable potential for local-scale simulation and scenario testing given suitable modification to its structure and input parameters

    Geographic Information Science

    Get PDF
    This chapter begins with a definition of geographic information science (GIScience). We then discuss how this research area has been influenced by recent developments in computing and data-intensive analysis, before setting out its core organizing principles from a practical perspective. The following section reflects on the key characteristics of geographic information, the problems posed by large data volumes, the relevance of geographic scale, the remit of geographic simulation, and the key achievements of GIScience to date. Our subsequent review of changing scientific practices and the changing problems facing scientists addresses developments in high-performance computing, heightened awareness of the social context of geographic information systems (GISystems), and the importance of neogeography in providing new data sources, in driving the need for new techniques, and in heightening a human-centric perspective

    On the number of limit cycles in asymmetric neural networks

    Full text link
    The comprehension of the mechanisms at the basis of the functioning of complexly interconnected networks represents one of the main goals of neuroscience. In this work, we investigate how the structure of recurrent connectivity influences the ability of a network to have storable patterns and in particular limit cycles, by modeling a recurrent neural network with McCulloch-Pitts neurons as a content-addressable memory system. A key role in such models is played by the connectivity matrix, which, for neural networks, corresponds to a schematic representation of the "connectome": the set of chemical synapses and electrical junctions among neurons. The shape of the recurrent connectivity matrix plays a crucial role in the process of storing memories. This relation has already been exposed by the work of Tanaka and Edwards, which presents a theoretical approach to evaluate the mean number of fixed points in a fully connected model at thermodynamic limit. Interestingly, further studies on the same kind of model but with a finite number of nodes have shown how the symmetry parameter influences the types of attractors featured in the system. Our study extends the work of Tanaka and Edwards by providing a theoretical evaluation of the mean number of attractors of any given length LL for different degrees of symmetry in the connectivity matrices.Comment: 35 pages, 12 figure

    Efficient computation of the Shapley value for game-theoretic network centrality

    No full text
    The Shapley value—probably the most important normative payoff division scheme in coalitional games—has recently been advocated as a useful measure of centrality in networks. However, although this approach has a variety of real-world applications (including social and organisational networks, biological networks and communication networks), its computational properties have not been widely studied. To date, the only practicable approach to compute Shapley value-based centrality has been via Monte Carlo simulations which are computationally expensive and not guaranteed to give an exact answer. Against this background, this paper presents the first study of the computational aspects of the Shapley value for network centralities. Specifically, we develop exact analytical formulae for Shapley value-based centrality in both weighted and unweighted networks and develop efficient (polynomial time) and exact algorithms based on them. We empirically evaluate these algorithms on two real-life examples (an infrastructure network representing the topology of the Western States Power Grid and a collaboration network from the field of astrophysics) and demonstrate that they deliver significant speedups over the Monte Carlo approach. Fo

    Urban land cover change detection analysis and modeling spatio-temporal Growth dynamics using Remote Sensing and GIS Techniques: A case study of Dhaka, Bangladesh

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Dhaka, the capital of Bangladesh, has undergone radical changes in its physical form, not only in its vast territorial expansion, but also through internal physical transformations over the last decades. In the process of urbanization, the physical characteristic of Dhaka is gradually changing as open spaces have been transformed into building areas, low land and water bodies into reclaimed builtup lands etc. This new urban fabric should be analyzed to understand the changes that have led to its creation. The primary objective of this research is to predict and analyze the future urban growth of Dhaka City. Another objective is to quantify and investigate the characteristics of urban land cover changes (1989-2009) using the Landsat satellite images of 1989, 1999 and 2009. Dhaka City Corporation (DCC) and its surrounding impact areas have been selected as the study area. A fisher supervised classification method has been applied to prepare the base maps with five land cover classes. To observe the change detection, different spatial metrics have been used for quantitative analysis. Moreover, some postclassification change detection techniques have also been implemented. Then it is found that the ‘builtup area’ land cover type is increasing in high rate over the years. The major contributors to this change are ‘fallow land’ and ‘water body’ land cover types. In the next stage, three different models have been implemented to simulate the land cover map of Dhaka city of 2009. These are named as ‘Stochastic Markov (St_Markov)’ Model, ‘Cellular Automata Markov (CA_Markov)’ Model and ‘Multi Layer Perceptron Markov (MLP_Markov)’ Model. Then the best-fitted model has been selected based on various Kappa statistics values and also by implementing other model validation techniques. This is how the ‘Multi Layer Perceptron Markov (MLP_Markov)’ Model has been qualified as the most suitable model for this research. Later, using the MLP_Markov model, the land cover map of 2019 has been predicted. The MLP_Markov model shows that 58% of the total study area will be converted into builtup area cover type in 2019. The interpretation of depicting the future scenario in quantitative accounts, as demonstrated in this research, will be of great value to the urban planners and decision makers, for the future planning of modern Dhaka City

    Dagstuhl News January - December 2011

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic
    • …
    corecore