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ABSTRACT 
 
 Land use and transportation interact to produce large urban concentrations in most 
major cities that create tremendous sprawl, noise, congestion, and environmental 
concerns. The desire to better understand this relationship has led to the development of 
land use–transport (LUT) models as an extension of more general urban models. The 
difficulties encountered in developing such models are many as local actions sum to form 
global patterns of land use change, producing complex interrelationships. Cellular 
automata (CA) simplify LUT model structure, promise resolution improvement, and 
effectively handle the dynamics of emergent growth. Artificial Neural Networks (ANN) 
can be used to quantify the complex relationships present in historical land use data as a 
means of calibrating a CA-LUT model. This study uses an ANN, slope, historical land 
use, and road data to calibrate a CA-LUT model for the I-140 corridor of Knoxville, TN. 
The resulting model was found to require a complex ANN, produce realistic emergent 
growth patterns, and shows promising simulation performance in several significant land 
classes such as single-family residential. Problems were encountered as the model was 
iterated due to the lack of a mechanism to extend the road network. The presence of local 
roads in the model’s configuration strengthened ability of the model to simulate historical 
development patterns. Shortcomings in certain aspects of the simulation performance 
point to the need for the addition of a socio-economic sub-model to assess demand for 
urban area and/or an equilibrium mechanism to arbitrate the supply of developable land. 
The model constructed in this study was found to hold considerable potential for local-
scale simulation and scenario testing given suitable modification to its structure and input 
parameters. 
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CHAPTER I 
INTRODUCTION 

 
Land use and transportation infrastructure interact in a reciprocal fashion. If the 

land use present in a particular area demands it, a road to service that area will likely be 
built. The new route improves the accessibility of the area, increasing its attractiveness to 
potential users for a given land use. This may in turn strengthen the impetus to create 
additional road capacity to better serve the area’s need. The cycle can also be initiated by 
changes in land use. This interdependence makes folly attempts to study one factor in 
isolation from the other. 

The notion of sustainable transportation, that being the meeting of today’s 
transportation needs without compromising the ability of future generations to meet 
theirs, is receiving increasing attention as the byproducts of our current transportation 
systems and the fossil fuels that power them mount. It can be argued that factors such as 
the limited nature of petroleum reserves, the negative impacts of petroleum-based 
emissions on air-quality, traffic-related injuries and deaths, congestion and urban sprawl 
make our current transportation system unsustainable (Black, 1997). 

Additional pressure is exerted by policies implemented by governments in most 
industrialized nations. The United States’ Intermodal Surface Transportation Efficiency 
Act (ISTEA) of 1991 specifies that “transportation plans must take into account the likely 
effect of transportation policy decisions on land use and development and the consistency 
of the transportation plans and programs with land use and development plans” (quoted 
in Miller, et al., 1999, p.3).  ISTEA was superceded in 1998 by The Transportation 
Equity Act for the 21st Century (TEA-21), which also recognizes the land use and 
transportation relationship within a broader context of economic development and 
environmental issues. 

Both measures require that transportation plans satisfy the requirements of the 
Clean Air Act Amendments (CAAA) passed in 1990. The inability of existing models to 
meet these legislative imperatives led the US Department of Transportation and the US 
Environmental Protection Agency to formulate the Travel Model Improvement Program 
(TMIP) of 1993 (Shaw and Xin, 2003). In Europe, the TRANSLAND research project 
conducted as part of the European Union’s Fourth Programme Framework examines 
innovative transportation policies and defines future research needs.    

Pressure to make astute urban policy decisions comes not only from governing 
bodies.  Of the United States’ 281,421,906 citizens, 222,360,539 reside in urban areas 
(SF1, 2000 US Census). Congestion is a pressing issue in most major American urban 
areas. While the average citizen may not be aware of the full range of causal factors for 
it, they can well appreciate the impact congestion has on their daily routine. And the 
congestion outlook is bleak, in that it will likely worsen over the foreseeable future due to 
continued suburbanization and increasing use of the automobile.  

These desires to understand the interactive relationship between transportation 
and land use, progress towards sustainability, obey governmental edict and harness the 
political will surrounding congestion and environmental issues has led to the 
development of land use—transportation (LUT) models as an extension of more general 
urban models. The challenges presented such models are significant. The relationships 
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involved in land use change are complex—variable through differences in site and 
situation, operating on differing temporal and spatial scales, and are the composite of 
individual actions typically established through personal decisions considered at a large 
scale. Also inherent in the notion of complexity is the phenomenon of emergence, to the 
extent that the study of complexity has been termed the science of emergence (Krugman, 
1996). 

In emergent phenomena a number of rules operating at the local level can 
generate complex global patterns. This is the case where land use is involved, as 
individual decisions considered at the local level sum to the overall pattern of land use 
noted. In similar fashion, individual travel needs and demands conspire to shape overall 
patterns of travel and the networks that facilitate them. Conventional LUT models 
struggle to depict the dynamics of land-use change, especially emergence. Temporal 
aspects enter the model only through cross-sectional data, or ‘snapshots’, which bear the 
full task of representing temporal change. Patterns cannot appear as evolutionary 
arrangements of more basic components, but rather appear as interpolations of the 
available snapshots of the existent input data.  

Microsimulation models are computer models that operate at the individual level 
of entities such as persons, families, or in the case of land use, parcels. Such models 
simulate large representative populations of these low-level entities in order to draw 
conclusions that apply to higher levels of aggregation such as an entire country. Cellular 
Automata (CA) belong to the general family microsimulation models and are gaining 
favor in urban modeling. In the classic CA the study area is divided into an orthogonal 
grid of cells. The next state of each cell is determined by simple rules repetitively applied 
(transition rules), typically reliant only on the states of adjacent cells, termed the 
neighborhood. 

Figure 1 illustrates a single iteration of a simple CA. For the sake of example we 
will define neighborhoods as being composed of the eight surrounding cells of any given 
cell. The 3x4 cell block contains two neighborhoods, one with central cell ‘A’ and one 
with central cell ‘B’. If we define the transition rule to be ‘the central cell changes to 
black if it has at least four black neighbors’, cell A retains its yellow color as a result of  
having fewer than four black neighbors. Conversely, cell B changes to black as its black 
neighboring cells do number four. Re-assembling the grid gives us the 3x4 output grid 
shown to the right, completing one iteration of our sample CA. Obviously, cell A 
transitions to black on the second iteration as black cells number four in both 
neighborhoods after the first iteration is processed, satisfying the transition rule’s 
condition. 

CA’s neighborhood-centric approach poses significant promise for LUT 
modeling. It has been recently demonstrated through statistical analysis that the land uses 
of neighboring land cells do influence those of central cells (Arai and Akiyama, 2004). 
This confirms that the basic operating principles of CA may be able to effectively model 
the interaction between land use and transportation at the micro level, albeit with 
modification to the classic CA configuration illustrated in figure 1. 

Since a local rule-based calculation lies at the heart of a CA it has exceptional 
ability to show emergence. And while it is true that more spatial parameters than the 
neighborhood statistics alone need be considered, GIS provides a ready means to 
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Figure 1 – One iteration of a cellular automata (CA) 

generate these from existing raster data, vector data converted to raster form, or from 
distance calculations to vector features. CA models that consider input parameters 
beyond neighborhood statistics are referred to as constrained CA (B. Straatman et al., 
2004). 

The formulation and calibration of a CA-based LUT model also offers appeal as a 
form of exploratory data analysis (EDA). Calibration is dependant on historical data, and 
the formulation of a system that adequately replicates historical data emphasizes the 
patterns and trends present in that data. Additionally, manipulation of the historical data 
and/or model structure can test various assumptions made concerning the nature of the 
land-use change present and the responsible driving factors. 

This paper details an experimental CA-based LUT model built to analyze 
historical land use and transportation structure at the local level. Historical land use data 
and road networks from a developing road corridor in southern Knoxville, TN were used 
to calibrate the model and assess its performance. The impact of various model inputs 
was explored, and implications regarding LUT model structure and historical LUT 
change in the study area noted. The general modeling limitations inherent in a simple 
model architecture with relatively few input parameters were also considered. 
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CHAPTER 2 
LITERATURE REVIEW 

1. Land Use—Transportation Modeling 
 

Batty (1994) summarizes the origin and development of large-scale urban models 
by tracing the evolution of the modeling paradigm and actual resulting models from the 
late 1950s. He describes how computer models of land use and transportation (LUT) 
were first developed in the positivist age dominated by a sense that successes in science 
could extend to the entire realm of human experience.  He follows the evolution of urban 
models through the decline of positivism, through the era of wholesale change that was 
the early 1970s, and the introduction of “normal science” to the domain. Batty goes on to 
describe the proliferation of comprehensive LUT models in the 1980s, the revolutionary 
impact of GIS in the 1990s and beyond,  and the challenges inherent in implementing 
urban theory within a GIS. Most importantly, Batty makes the following observation, 
“For a hundred years or more, urban theorists have treated cities as though equilibrium 
were their natural condition. However, as current events increasingly demonstrate, this is 
less and less true.” (Batty, 1994, p. 12) 

As suggested by the name, land use—transportation (LUT) models typically 
contain two separate systems, one considering land use and a second considering 
transportation. Linkages between these two systems vary, with a feedback mechanism 
advantageous to reflect the reciprocal nature of the land use—transportation relationship.  

Figure 2 illustrates such a model, depicting an equilibrium-based land use 
component coupled to one containing a four-step travel demand model via feedback  
loops (Torrens, 2000a). These models are referred to as composite models, as opposed to 
unified models which have a tightly integrated structure (Shaw and Xin, 2003). The land 
use component of this sample LUT model employs an equilibrium device that seeks to 
balance the supply of land with its demand. Location and development factors are 
considered, but there is no guarantee that land use seeks any particular equilibrium state. 
Additionally, location and development factors do not influence transport directly, but 
only through the feedback mechanism linking the land use component to the transport 
one. 

The transport component illustrated is the familiar four-step travel demand model. 
This spatial interaction approach divides an urban area into traffic analysis zones (TAZs), 
effectively limiting its spatial resolution to a fairly low level. Four sub-models addressing 
trip generation, trip distribution, modal split, and trip assignment to the road network are 
positioned sequentially (Miller and Shaw, 2001). Due to the composite nature of the 
model, changes in transportation have a limited ability to affect individual aspects of land 
use, such as the demand for or supply of developable land.  

Traditional LUT models also generally employ sub-models to reflect at least 
location and land development in addition to the equilibrium mechanism responsible for 
balancing the supply and demand of land. Serious concerns arise from the limitations of 
the linkages between component models and sub-models. The sub-models of the land use 
and transport component models illustrated are loosely coupled, with a unidirectional 
information flow. The model illustrated makes assumptions about the nature of the  
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Figure 2 - The general structure of a land use—transportation (LUT) model 

phenomenon being modeled, contain loosely coupled sub-models, and their generally low 
spatial resolution complicate the formulation of a feedback mechanism between the land 
use and transport components sufficient for the needs of the model (Torrens, 2000a). 

Many historical examples exist of equilibrium-based LUT models (e.g. Alonso, 
1964; Anas, 1982; Anas and Duann, 1986; Boyce, 1980, 1990; Hansen, 1959; Kim, 1983; 
Prastocos, 1986; Kim et al., 1989; and Hirschman and Henderson, 1990), and 
contemporary urban models often retain equilibrium concepts. Wegener (2004, pp.131-
39) discusses 20 such models that have reached an operational status, having been tested, 
validated and used for policy analysis in actual metropolitan areas. Nearly all rely on 
some form of an equilibrium device, and six do not in themselves model transport but 
rather must be linked to existing transport models. And perhaps more importantly for the 
purpose of modeling interactive nature of the land use—transportation relationship, 
factors as large as transportation or land use may be treated as a fixed entity in the 
component model or models responsible for the calculation of the other.  

Wegener notes a lack of spatial resolution in his survey of LUT models. Only 
three of the models discussed are disaggregate, the remaining aggregating urban entities 
into analysis zones. This approach, although necessary to make gravity and 
microeconomic-based models manageable, precludes exactly the type of resolution 
Wegener identifies as necessary to fully address the environmental concerns that in large 
part drive the development of such models. The typically aggregate nature Wegener 
reports also severely limits the ability of the model to substantially explore environmental 
impacts or to analyze issues of spatial equity. Most of the models seek solutions that 
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provide the greatest aggregate social good, which is of little use in assuring equity at the 
individual level and do not support the scale of analysis necessary for environmental 
study.  However, Wegener does see the situation improving. More powerful computers 
allow the spatial resolution of models to be increased while preserving their 
computability. The advent of high-resolution spatial data promises to reduce aggregation 
error. GIS is identified as the mainstream data organization of future models. Also raised 
is the notion that aggregate probabilistic models will be replaced by disaggregate 
stochastic microsimulation ones, producing vastly more detailed models. 

Microsimulation models operate at an individual level of entities such as persons, 
families, or in the case of land use, parcels. Such models simulate large representative 
populations of these low-level entities in order to draw conclusions that apply to higher 
levels of aggregation. First used in social science applications by Orcutt, et al. (1961), 
microsimulation techniques are gaining favor and have been adopted in three of the 
better-known LUT models: the US Department of Transportation’s Transportation 
Analysis Simulation System (TRANSIMS), U.C. Santa Barbara’s Slope, Land cover, 
Exclusion, Urbanization, Transportation, and Hillshade (SLEUTH) model, and ILUTE, 
the Integrated Land Use, Transportation, Environment modeling system (Salvini and 
Miller, 2003). 

2. Microsimulation and CA—Beyond the Aggregate 
 
  Bennenson and Torrens (2004) describe spatially explicit microsimulation (or 
geosimulation) efforts in more detail. They characterize recent modeling efforts as a new 
wave of urban models influenced by microsimulation techniques such as cellular 
automata (CA) and agent-based systems. These recent models are more likely to employ 
individual-scale urban objects and extensively model the rules governing their behavior. 

CA models were first suggested by English mathematician Alan Turing’s 
Universal Turing Machine of the 1930s (Batty, 1997), essentially a one-dimensional CA. 
Two-dimensional CA were devised in the 1940s by John von Neumann, originator of 
game theory and pioneer in set theory, quantum mechanics, and electronic computers and 
Stanislaw Ulam, known for his work on Monte Carlo simulations and set theory (Torrens, 
2000b). In the classic von Neuman-Ulam CA the study area is divided into an orthogonal 
grid of cells. The state of each cell is determined by simple rules repetitively applied 
(transition rules), typically reliant only on the states of adjacent cells. The selection of 
adjacent cells (neighborhood) can have a number of configurations, with classic CA 
generally formulating it as the eight surrounding cells (the Moore neighborhood), or an 
X-shaped configuration including the four corner surrounding cells (the von Neumann 
neighborhood). Because of the usual lattice-like arrangement of cell positions, CA are 
said to have a “natural affinity” with raster data (Couclelis, 1997). This factor produces 
considerable operational appeal as raster overlay computation is a core component of 
essentially all commercial GIS software packages. 

Torrens (2000b) details the operation and suitability of cellular models for urban 
systems.  He notes the changes in urban structure that occurred between the late 1950s 
era in which LUT modeling originated and the present. The essentially monocentric 
urban forms that most urban models presume are an extreme rarity today as cities have 
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spawned additional nuclei that assume CBD-like functions. This increases the importance 
of suburbs in the function of the city as a whole, and consequently urban modeling efforts 
have become outmoded in many cases. In addition to the obviously decreasing 
effectiveness of urban models, the early 1970s brought critical analyses of urban 
modeling that focused on the shortcomings of the construct of existing urban models as 
well as their theoretical foundation. Lee’s seminal Requiem for Large-Scale Models 
(1973) received considerable notoriety. He criticized their expense, data needs, hyper-
comprehensiveness, mechanical organization, resolution, transparency, dynamics, and 
inability to replicate their results. Some critics characterized the models of the day as 
error-ridden and failing to advance theory while simultaneously falling short of informing 
practice, and others pointed to their reliance on an assumption of predictability as a 
critical weakness. “CA models, while very much less than perfect, do address many of 
these concerns and deficiencies. In some key areas, CA models represent a significant 
improvement on previous generations of urban simulation models: spatiality, 
decentralization, affinity with new techniques for spatial analysis, attention to detail, 
linking function and form, dynamics, theory, simplicity, connection of micro- and macro-
approaches, and visualization” (Torrens, 2000b, p. 35). 

Spatial phenomena are well-represented by CA. All models are abstractions of 
reality, but traditional LUT models’ typically aggregate approaches tend to divorce a 
great degree of spatial detail. CA, on the other hand, make implicit use of spatial 
complexity (White, Engelen, and Uljee, 1997). Beyond the resolution advantages 
generally enjoyed by microsimulation approaches, a well-implemented CA can better 
represent the actual spatial distribution of a city’s elements at a given resolution level due 
to the absence of error inherent in aggregation and disaggregation processes.  

CA promise significantly greater attention to detail. Traditional methods attempt 
to compute average solutions, reliant on the assumption that this average behavior is the 
simple sum of average individual behaviors. This is problematic to the simulation of non-
linear behavior. The ability of CA to handle individual-scale dynamics while preserving 
computability offers the opportunity to implement more detailed models (Torrens, 
2000b). 

Dynamics are well represented by CA. Traditional urban models tend to treat time 
only through cross-sectional analyses at a limited number of discrete intervals. The jump 
from one interval to the next may represent years—long enough for considerable urban 
change to occur. This dynamic weakness is often the byproduct of calibrating the models 
via census demographic figures, which are collected only periodically, often every 10 
years. Even if the time period between intervals is reduced, the model still is an 
essentially static device, as it does not proceed from one interval to the next in an 
iterative fashion, rather using them as a schedule for cross-sectional updates. CA models 
treat time much more realistically. CA models move in time intervals, but the steps are 
truly iterative in that the output of one model state serves as the input for the next, 
allowing global patterns to emerge from local ones. The interval may be decreased to as 
short a period of time as the dynamics of the phenomenon being modeled require. This 
gives CA the potential to contribute to the understanding of the evolution of urban forms 
and structures (Li and Yeh, 2002). 
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Visualization is a prime CA advantage. “CA are, by their very nature, a highly 
visual environment for simulation” (Torrens, 2000b, p.41). This creates user interest, as 
well as allowing visual interaction with the model. Identification of pattern is greatly 
enhanced through graphic representation, and because the model is visually dynamic the 
potential for clearly portraying the emergence of pattern is improved. 

One potential advantage of CA models, both in comparison to other microsim-
ulation techniques such as agent-based modeling and genetic algorithm schemes as well 
as equilibrium-oriented models, is simplicity. Traditional LUT models that have reached 
operational status tend towards extreme complexity. CA radically simplifies the model’s 
design. Transition rules can be derived from theoretically informed research or 
numerically derived from historical data and complexity is allowed to emerge from the 
model’s operation rather than describe the model’s structure. The simplicity of CA can be 
viewed as a double-edged sword as well. All models are an abstraction of reality, and as 
such run the risk of de-emphasizing or omitting important aspects of the complex systems 
they are intended to represent. “No models based on toy values and the homogeneity, 
uniformity, universality, etc, assumptions of classic CA can have a claim to the status of 
explanatory tools for real-world applications” (Couclelis, 1997, p.167).  

The classic Neumann CA is too simplified and constrained to serve as an effective 
urban model (Torrens, 2000b). To ameliorate these concerns, Torrens details 
modifications to the classic Neumann CA for urban applications. No CA-based model 
needs pursue every possible modification (and doing so generally sacrifices the simplicity 
inherent in CA), but any will need some of these modifications if CA is to effectively 
model the specific phenomenon of urban interest.  In classic CA cells adopt states from a 
range of like elements. It is possible to define CA such that cells can exhibit states of 
different forms, perhaps some binary and others integer.  

A particularly compelling evolution of this idea is that of cell-state fixture (White 
and Engelen, 1997). Cells are regarded as ‘fixed’ or ‘functional’. Fixed cells might 
represent undevelopable areas, such as those covered by a body of water or other largely 
static element. Functional cells would form the active region of the CA, essentially 
deviating from the classic rectangular lattice to a spatial form that better approximates the 
urban area of application. This ability to be easily adapted to differing urban areas is a 
huge departure from the isotropic-assumptive approach of early urban models. 

Neighborhoods must also be adapted. The reliance on classic CA’s entirely 
adjacent neighborhood definition precludes distance influences, allowing them only to 
propagate through the intervening cells. It is possible to introduce distance-decay effects, 
or apply weights to neighborhoods in the transition calculation. Neighborhoods can be 
extended to comprise larger spaces (e.g. White and Engelen, 1997; White, Engelen, and 
Uljee, 1997). And just as ‘fixed’ and ‘functional’ states can serve to remove areas from 
the lattice, they can also serve to remove them from neighborhoods (Torrens, 2000b). 

Perhaps the biggest arena for modifications to the classic CA form is that of the 
transition rule. Transition rules in CA are responsible for implementing real-world 
behavior in the artificial world of the CA, essentially explaining how cities work 
(Torrens, 2000b). Classic CA use very basic deterministic transition rules, often a simple 
calculation based on the states of cells that constitute the neighborhood. Adapting CA to 
urban modeling demands serious fortification of transition rules if real-world behavior 
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and relationships are to be faithfully reflected. They might be reformulated as 
probabilistic expressions, introducing a randomness or ‘noise’. Transition rules can also 
be very complex mathematically or adopt methods from other simulation techniques. 
Genetic algorithms (see Mitchell, 1998) can be employed to give transition rules the 
ability to modify themselves (e.g. Colonna, et al., 1998). Economic principles such as 
utility maximization can also be incorporated into transition rules (e.g. Webster and Wu, 
1999), as well as accessibility algorithms based on spatial interaction (e.g. White, 
Engelen, and Uljee, 1997). Recent CA-based urban models generally consider physical 
factors such as slope or soil type as well as distances calculated form geographic entities 
such as roads or urban centers in addition to a classic neighborhood analysis (Li and Yeh, 
2001). 

3. Artificial Neural Networks and CA 
 

The responsibility given transition rules for implementing behavior creates the 
need for rigorous model calibration. The predicted cell states for a given CA are 
compared to known historical data, and the transition rules adjusted to calibrate the 
model. Calibration can take many forms, with brute force computation (e.g. SLUETH) 
and artificial neural networks (Clarke, Guan, and Wang, 2005; Li and Yeh, 2001, 2002) 
being workable approaches. An artificial neural network (ANN) is an artificial 
intelligence tool that identifies arbitrary and non-linear functions directly from 
experimental data (Almeida, 2002).  

ANNs are adept at dealing with noisy and voluminous data. ANNs are formed 
from multiple nodes, or neurons, producing a network structure intended to mimic the 
operating principles of the human mind (Miller and Shaw, 2001). Such a network can be 
“trained” with historical data and “learn” the relationships present. Once trained, the 
network can be used to estimate conversion probabilities to the various cell states 
supported by the model with the maximum value determining the next cell-state rather 
than the output of a theory-based transition (Li and Yeh, 2001, 2002). CA models that use 
ANNs to process transitions are referred to as ANN-CA. 

Brute force methods require substantial computational resources, and while neural 
network-based calibration offers potential relief it also entails considerable design effort 
and can be nearly as computationally-intensive if not implemented carefully. Although 
neural networks have substantial potential for automated and versatile calibration by 
dictating the entire transition, they in doing so turn CA into a ‘black-box’ modeling 
environment. The form of a theory-based transition rules can inform as to the nature of 
the process the CA models—if it can be calibrated. Deriving the transition rule 
numerically via an ANN removes this possibility, but that is not a significant drawback in 
all application domains. ANN-derived transitions are ideal for models built primarily to 
explore data, create visualizations, or perform scenario testing due to the ability to 
generate a new transition for various input data or model structures (Li and Yeh, 2001). 
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4. Recent land use—Transportation CA Models 
 

A review of recent CA LUT implementations reveals a variety of approaches.  
Colonna, et al. (1998) developed a custom CA for the city of Rome, Italy that 
incorporates a genetic algorithm in a ‘new rules generator’ that invents possible new rules 
to be evaluated from the existing. Evaluation takes place in a separate sub-model called 
the evaluation system. This system is essentially self-calibrating, with the evaluation 
system serving as an internal calibration device. This custom CA model deviates from the 
classic CA’s orthogonal grid, allowing a CA in which cells of any shape can be 
assembled in any way. The classic CA’s adjacency neighborhoods are supplemented with 
continuous measure of distance between cells to vary their at-a-distance influence. 

Candau, Clarke, and Rasmussen (2000) and Clarke and Silva (2004) used Keith 
C. Clarke’s Slope, Land cover, Exclusion, Urban, Transportation, and Hillshade 
(SLUETH) urban model (see Clarke, 1997, 1998). It was applied to the Mid-Atlantic 
Integrated Assessment (MAIA) study area and the metropolitan areas of Lisbon and 
Porto, Portugal, respectively. This popular model couples two CA and calibrates for 
historical time sequences using geocomputational methods (Silva and Clarke, 2002). One 
CA is responsible for the urban growth model and is coupled with the Deltratron Land 
use/Land Cover Model (DLM). Although self-modification of transition rules is 
permitted, the system has five transition rule parameters which must be optimized 
through brute force at considerable computational expense. The model does produce 
impressive results after calibration. 

Li and Yeh (2001) present a CA model using neural networks to simulate 
potential or alternative urban development patterns based on different planning objectives 
in Dongguan, China. Transition rules are determined by an artificial neural network with 
state changes exported to a GIS. Li and Yeh (2002) go on to create an ANN-based CA 
that simulates competing multiple land uses. These models have the advantage that they 
calibrate themselves without human intervention. This strategy removes subjective 
judgment from the formulation of transition rules, but does introduce the ‘black-box’ 
effect previously noted. For explanatory models this is a serious drawback, but for uses 
such as the exploration of the patterns of land use wrought by changes to the 
infrastructure (or vice-versa), this is not found to be a major consideration. 

Blecic, et al., (2004) create an advanced CA model for the city of Heraklion 
(Crete), Greece with the Cellular Automata General Environment (CAGE). CAGE 
provides for many advanced modifications to the classic CA formulation. These include 
vertical neighborhoods to allow separate model phenomenon interacting within the same 
physical scenario to be modeled. Transition rules can be specified at different spatial 
levels and can change with space and time, and can also depend on a local cell’s 
parameters as well as on global constraints and variables. Neighborhoods can be defined 
as abstract sets of cells satisfying abstract conditions and queries, and graphical 
representations of cells are considered attributes whose particular appearance is not 
subject to the constraints of spatial or temporal regularity. The CAGE development 
environment offers an exciting array of advanced modifications to the classic CA 
formulation, but calibration is not discussed in this paper. 
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Almeida, et al., (2005) applies the Centre for Remote Sensing of the Federal 
University of Minas Gerais’s DINAMICA CA urban model to Bauru, Brazil. This model 
is based on stochastic transition algorithms and employs a different calibration technique 
using empirical procedures. A visual comparative analysis is employed for each type of 
land use change amongst general trends of preliminary simulation results and transition 
probability and land use transition maps created. 

A sophisticated LUT model structure is presented by Guan, Clarke, and Wang 
(2005). This urban-growth CA of Beijing uses an artificial neural network (ANN) for 
internal calibration, easing the computational demands exemplified in SLUETH. The 
resulting ANN-Urban-CA model integrates a two-layer back-propagation (BP) neural 
network which estimates the probability of each cell transforming to a given land use 
type. This CA pairs its micro-scale geospatial model with a macro-scale socioeconomic 
sub-model to enhance forecast functionality. 
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CHAPTER III 
RESEARCH PLAN 

1. Study Area 
 

Land use and transportation interaction in the metro area of southwest 
Knox County, TN was explored. This formerly rural area south of Interstate 40 and west 
of US Highway 129 is now host to the southern extension of the Pellissippi Parkway, also 
known as US Interstate 140 (see figure 3). This major route connects Interstate 40 and the 
populous region of West Knoxville surrounding I-40 with US Highway 129 and the cities 
of Eagleton Village, Rockford, Maryville, and Alcoa that lie to the south. The corridor 
surrounding the new route has undergone considerable land-use change since the 
project’s inception.  

The I-140 construction project originated when officials from Blount County and 
the cities of Maryville and Alcoa asked the state of Tennessee to extend Pellissippi 
Parkway southward from its original southern terminus at I-40 in 1977. The originally 
proposed construction spanned 19.5 miles southward from I-40 to US 321 in eastern 
Blount County. By the end of 1992, the section from US 129 northward to S. Northshore 
Drive was complete, with the remaining distance from Northshore to I-40 finished in 
1997. A small extension to the southern end was completed shortly thereafter, bringing 
the total length of I-140 to 11.17 miles (Center for Transportation Research, UTK 2003).  

The I-140 designation stops at US 129, but an extension known as SR 162 was 
completed to SR 33 in 2001. Opposition from the Citizens Against the Pellissippi 
Parkway Extension (CAPPE) mounted a legal challenge to the completion of the project 
and in 2002 an injunction was granted to prohibit construction pending completion of an 
environmental impact study. CAPPE members cited concerns regarding sprawl, traffic, 
loss of farmland, and economic and environmental impacts (CAPPE, 2007). The project 
has been stalled since, despite the Tennessee Department of Transportation’s (TDOT) 
September, 2004 announcement that an environmental impact statement was being 
prepared and that construction would continue upon its completion.  

This study necessarily focuses on the northern 8.9 miles of I-140 that lie in Knox 
County, the segment between Interstate 40 and the Knox/Blount County line formed by 
the Tennessee River. This is due to the fact that parcel-level land use data is only 
available for Knox County. By 2002 on average nearly 39,000 vehicles traveled daily via 
I-140 to the Knox County border, with nearly 33,000 average daily trips between this 
point and the US 129 interchange (TDOT, 2002). A three-mile buffer around the 8.9 
mile-long northern segment of I-140 defines the eastern and western bounds, with the 
northern bound established one mile north of and parallel to I-40.   

This section of land offers an excellent opportunity to study land use and 
transportation interaction. This corridor was dominated by agricultural or undeveloped 
land usage until the imposition of one of the largest transportation infrastructure 
extensions seen in eastern Tennessee in the last three decades. The continued expansion 
of Knoxville to the north and Alcoa and Maryville to the south assures heavy utilization 
of the route. Land use conversion along its path is likely as the surrounding lands now  
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Figure 3 – Study area 
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enjoy excellent accessibility, with I-140 linking them efficiently to the opportunities 
found in the communities lying at its ends. 

2. Project Data 
 

Three primary datasets were used in this project: land use, road networks, and 
slope. The land use and road data were provided by the Knox County Metropolitan 
Planning Commission (MPC). This dataset was developed by the MPC in conjunction 
with the Knox County GIS (KGIS) using a best-source approach. Records from various 
public and private sources were used to define parcel-level polygons covering Knox 
County and assign a land use code to each.  

Nearly complete data was available for the nominal years of 1993, 1999, and 
2005. The supplied ESRI personal geodatabase feature classes were examined and 
corrected to make them more comparable. Slightly different classification schemes were 
used in the original data, but insight provided by the MPC was used to re-classify all 
three years to the scheme shown in Table 1. Rural residential parcels were defined in the 
original classification scheme as those covering an area of at least two acres, and this 
distinction was maintained. Class 5 includes transportation structures such as bus 
terminals or airports, but not the right-of-way surrounding roadways. 

One anomaly affecting all three datasets was corrected, that being the 
classification of certain roadways. Road corridors residing on privately-owned land were 
not coded as such in the data, rather as the land use class of the surrounding parcels. The 
affected areas were compared to aerial photography and corrected. The resulting layers 
were converted to raster datasets with a pixel size of 50 feet, yielding overall dimensions 
of 1276 x 807 pixels. 

The MPC also supplied road data for 1999 and 2006, with none being available 
for 1993. The roads were attributed with road name and class, with distinctions made for 
interstates, major, and local roads. A corresponding road layer for 1993 was constructed  

 
Table 1 – Land Use Classes 

 
LAND USE DESCRIPTION

1 Agriculture/Forested/Vacant Land
2 Commercial
3 Industrial/Manufacturing
4 Multi-Family Residential
5 Transportation/Community/Utility
6 Single-Family Residential
7 Rural Residential
8 Road Corridor
9 Public Land/Parks/Private Recreation

10 Office
11 Under Construction
12 Water  
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from the 1999 one, with the appropriate segments removed via comparison with aerial 
photography and period road maps. The road class designation from the 1999 dataset was 
retained. Distances to the nearest road feature of each class were calculated for each cell 
and used as an additional input parameter for the CA. 

As noted in the development of the SLEUTH model, slope is a key indicator for a 
parcel’s suitability for development—to the degree that Candau, Rasmussen, and Clark 
(2000) state that “Slope above 21% cannot be urbanized.” The USGS 10m resolution 
digital elevation models (DEMs) were obtained, mosiaced into a single layer, and output 
as an ESRI grid. From this layer a slope grid was produced retaining the 10m spatial 
resolution to be used as a CA input parameter. 

3. Project Objectives 
 

Several urban CA models using ANNs to process transitions have appeared (Li 
and Yeh 2001, 2002; Guan, Wang, and Clarke 2004, de Almeida and Gleriani, 2005). 
Although these models tread important ground in the design and implementation of 
constrained ANN-CA, they generally fail to deliver on CA’s promise of adequate 
resolution for modeling of local interaction. These models use pixel sizes ranging from 
50 to several hundred meters, a level of resolution inadequate to discern features such as 
a local road. These models also differ in approach, in that some include a sub-model. The 
2004 Guan, Wang, and Clarke model utilizes a Tientenburg socio-economic model 
loosely coupled to an ANN-CA. The Li and Yeh and de Almeida and Gleriani models are 
heavily constrained, in that the CA used consider multiple distance and geographic 
factors in addition to a neighborhood analysis, but do not include sub-models to augment 
the CA. Like CA in general, variation amongst ANN-CA models is the rule. Little 
discussion exists in the literature as to the general limits of a LUT model using CA alone.  

This project seeks to develop an ANN-CA LUT model for the study area 
described at the 50ft resolution of the produced land use grids, attempting to extend the 
advantages of ANN-CA models to a true local level of analysis. Road distance, present 
land use, land use in neighboring cells, and slope will be considered. The model will be 
calibrated and tested with historical land use data. The importance and effect of various 
model design features and model parameters will be investigated. The ability of the 
model to simulate historical land use change will be assessed, noting the implications 
regarding LUT model structure and historical LUT change in the study area. Through the 
adoption of a minimalist ANN-CA configuration the general limits of a simple 
constrained CA will be explored, clarifying the concerns that motivate more complex 
ANN-CA designs, such as those that use linked sub-models to augment their CA. 
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CHAPTER IV 
MODEL DESIGN AND CONTRUCTION 

1. CA Transition Formulation 
 
 The relationships present in LUT models are complex by their very nature. Local 
and global considerations combine to shape the actions of individuals, and these 
individual actions sum to form the overall patterns of land and transportation use. LUT 
models that discern many multiple land use classes, as opposed to binary urban 
development models, increase complexity. By definition a binary model supports but two 
classes, greatly simplifying the necessitated model structure via the reduction of solution 
space. The 12 land use classes used in this study produce 144 possible land use 
conversions, increasing the complexity of the problem and requiring vastly greater 
computational ability from the model. 
 The simple CA illustrated in the introduction of this paper (see figure 1) has a 
very simple transition rule—that being that the central cell turns to black when the 
neighborhood count of black cells reaches four. While this transition rule was arbitrarily 
chosen, its selection is somewhat illustrative in that this is the primary means by which 
the transition rule for any theory-based CA is chosen. It is very difficult to know in 
advance exactly what a transition rule’s formulation should be, or even the variables it 
needs consider. While theory may inform the choice, more often considerable trial and 
error will be required to identify a workable transition formulation. It is necessary to 
calibrate the model with historical data and then verify its performance on unseen data. 
Success in verification confirms the viability of the transition rule used and input 
parameters considered. 
 The important implication of a theory-based rule is that its form can inform as to 
the process driving the patterns seen in the historical data. But there is no guarantee we 
can construct such a rule for a given phenomenon, and no example of an entirely theory-
based CA urban model discerning multiple land use types was found in a survey of the 
literature. Due to the large solution space and highly non-linear associations present, the 
formulation of a CA’s transition is an excellent application for an artificial neural 
network (ANN).  A universal definition of an ANN does not exist, with most attempts 
referring to physical structure or function of the network as much as defining the 
principle of operation. Perhaps the most relevant functional description of an ANN is that 
they are “associators”, in that they can associate a given input pattern with a given output 
(Abdi, 1994). The model built in this study attempts to make associations between the 
input parameters with the various land use conversions present in the historical data, 
complex though they may be. 

2. Artificial Neural Networks 
 

Considerably more agreement exists on the structure of neural networks than does 
on their definition. The basic building block is the perceptron, also known as a 
processing element (PE) or artificial neuron (see figure 4). The perceptron accepts 
multiple inputs, with a corresponding weight w adjusting the signal flow to the input  
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Figure 4 – The perceptron or ‘processing element’ 
 

node, where the weighted input signals are summed and used as the input for an 
activation function (Abdi, 1994). The resultant output is useful for solving simple 
problems, but is more often used as the input activation, or signal, for another perceptron 
in a network, creating a feed-forward ANN. A variety of functions may be used, with the 
sigmoid or logistic (Equation 1) and tanh (Equation 2) being the most common. 

 

xe
y −+
=

1
1       (1) 

 
)tanh(xy =       (2) 

 
The sigmoid function spans a range of [0, 1], and the inputs are scaled to that range for 
use with it. Similarly, the inputs for a network using the tanh activation function will be 
scaled to a range of [-1, 1] to correspond with the range of the tanh function. 
 Figure 5 shows a number of PEs arranged in a multilayer network structure 
composed of three layers: input, hidden, and output. This general class of networks is 
known as a multi-layer perceptron (MLP). Why the increase in complexity? A perceptron 
can only discriminate linearly-separable functions, and it is difficult to calibrate its 
weights. The addition of a hidden layer or layers and an increase in the number of 
processing elements solves both problems (Abdi, 1994). With proper network 
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Figure 5 – Multi-Layer Perceptron (MLP) 
 
configuration it is possible to represent any continuous function provided a sufficient 
number of inputs is provided (Li and Yeh, 2001). The additional weighted connections 
between layers also enable the implementation of the popular back-propagation (BP) 
training approach illustrated in figure 6. 

BP training compares the actual output of the network to the desired output 
defined by historical data, and then adjusts the network weights to minimize this 
differential by propagating the error measurement back across the network. By 
processing many records from the historical data the network can “learn” the 
relationships present by adjusting its weights from an arbitrary initial selection to those 
that best allow replication of historical data. The relationships present in the training data 
are “learned” by the selection of weights that minimize error during training. The trained 
ANN is now fed data that it has not previously seen, with the output being the network’s 
estimation of the consequences of the initial conditions defined by that input data acted 
on by the relationships learned from the training data. 
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Figure 6 – Back-propagation (BP) training 

3. Model Design 
 
 Table 2 shows the input parameters considered by the constructed ANN-CA 
model. Since the current land use of a given cell is one of 12 discrete values, this 
parameter is expanded to 12 binary indicators corresponding to the 12 possible land use 
classes. The binary indicator corresponding to a given class will contain a one, the rest 
zeros. This presents the ANN with 28 actual inputs—12 for the categorical land use value 
of a given cell, 12 for the cell counts of each of the 12 classes neighboring that cell, 
 

 Table 2 – Model input parameters 
 

PARAMETER DESCRIPTION
slope slope derived from USGS 10m DEMs

NEAR_I distance to nearest interstate
NEAR_MR distance to nearest major road
NEAR_LR distance to nearest local road
LU_VAL current land use of cell

N1-N12 (12 total) cell count of each land use class in a ¼ mile radius  
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and four for the slope and road-distance parameters. Different ANN configurations were 
tested through variation in the number of PEs and hidden layers and the choice of 
activation function used, with two hidden layers and the tanh activation function 
producing the best simulation performance. 

Upon completion of training, the network is presented with the initial condition of 
the input parameters of the historical data, cell by cell. These are generated from the 1993 
land use grid and road layers in this case. The ANN returns a corresponding list of 
conversion probabilities, 12 for each cell. These probabilities indicate the network’s 
estimation of the likelihood of land use conversion to each of the 12 classes. The greatest 
of these values is the network’s prediction of the successive land use for a given cell. 
These maximum probabilities are compared against a threshold value used to control the 
rate of conversion in the model via limiting the number of converted cells per iteration. 
This threshold value is experimentally chosen relative to the goals of the model, with 
values in the 0.7-0.8 range often useful given adequate ANN performance (Li and Yeh, 
2002). Cells with maximum probabilities lower than the threshold retain their existing 
land use values. 

A threshold of 0.7 was used in the iterative experiments in this study. Once the 
new cell states are determined, a new land use grid can be constructed from them, 
completing the first iteration of the model. The second iteration restarts the process, re-
sampling the input parameters, sending them to the ANN for evaluation, resulting in 
another output land use grid. 
 
4. Model Construction 
 
 Training data were sampled via ESRI’s ArcGIS software using a random, 
stratified strategy. Two thousand point samples were selected from each of the 11 land 
use groups. The 12th group, water, was assumed un-developable and was left out of the 
training data for this reason. It was, however, included in the neighborhood counts to 
inform the network of the proximity to water enjoyed by a given parcel. After trimming 
the sample points that yielded no data on one of the various layers, 19,556 samples were 
retained. ArcGIS’s ‘extract values to points’ tool was used to sample the slope and land 
use grids. Since ArcGIS ‘s built-in tools have no local functions that permit cell counts 
within a neighborhood, the “landscape characterization” function of the freeware ArcGIS 
9x extension Hawth’s Tools was used. This extension also contains a point-intersection 
tool that proved faster than ArcGIS’s ‘extract values to points’ tool for grid sampling. 
 The ANN development package selected was NeuroDimensions’ NeuroSolutions 
5. This fully featured ANN development environment eases network design, training, and 
production via its advanced graphical interface and various design aids such as automated 
normalization of inputs, expansion of symbolic variables, and randomization of the 
records in the training data. It does, however, accept only text files as inputs, and the 
header format differs from that of the text table outputs from ArcGIS. A Microsoft 
Access database was used for various data processing tasks related to the data exchanges 
between the GIS and the ANN development environment.  

After the training was completed, input for the network was created by repeating 
the parameter collection routines in the GIS for every non-water cell in the grid, as 
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opposed to only those selected for training. At the 50ft. cell-size used, this resulted in 
nearly 460,000 samples. Once the initial state data was generated it was processed by the 
ANN, and the resultant conversion probabilities evaluated in ArcGIS using the VBA pre-
logic function in the field calculator. Scripts were written to select the maximum 
conversion probability, determine the land use class that probability corresponded to, and 
filter the indicated land use with respect to the threshold chosen. After the new land use 
for each cell was determined, ArcGIS’s ‘feature to raster’ tool was used to quickly 
convert the values into an output land use grid, completing the iteration. 

5. Training Performance and Network Complexity 
 

Standard statistical measures are used to assess the performance and terminate the 
training of an ANN at an appropriate place. The most succinct of these measures is the 
correlation measure r calculated from a comparison of the network’s predicted output to 
the desired response as defined by historical data. There is no established optimal struct-
ure for ANNs, and the precise configuration used varies greatly with application. In 
general, it is best to use the least complex neural network possible to improve comput- 

 

 
 

Figure 7 – ANN training results 
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ability and preserve the greatest degree of generalization possible (Li and Yeh, 2002). For 
this reason, initial training attempts were conducted with a very simple one hidden-layer 
design using the sigmoid activation. Training results with this configuration proved poor, 
struggling to reach an r value of 0.2. Analysis of the output data revealed the network 
was only able to assign probabilities above 0.7 for cells that did not change in the 
historical data, indicating it was not “learning” anything regarding the patterns of change. 
The relationships are too faint or complex in the historical data to be captured by the 
simple ANN network topology used. 
 The network topology was increased in complexity twice, arriving at a two 
hidden-layer topology with 30 PEs in the first hidden layer and 15 in the second. The 
tanh activation function was used. As shown in figure 7, this topology was able to capture 
the complex relationships present, achieving an r value of nearly 0.87. All further 
experiments used this network structure, or a variant thereof adjusted for experiments 
with fewer input parameters. 

6. Computability Concerns 
 

The 50ft. cell size used was chosen to allow the model to discern individual land 
parcels and streets. As noted above, this generated nearly a half-million grid points for 
the study area—raising computability concerns. While the computational resources 
needed to prepare land use grids, create the training sets, train the network, and process 
the production sets are minimal, the calculation of the road distances and collection of the 
point samples for each of a half-million points is demanding. Using a powerful custom 
workstation PC, collection of the road distance measures for each cell in the study area 
takes several hours, and the extraction of the point values associated with each iteration 
of the model consumes nearly an hour.  

Although CA can model large-scale interaction and global patterns simultan-
eously, there are considerable practical performance limitations to the application of this 
approach—sure to be eased as technology continually provides faster computational 
platforms. Further discussion of measure s that might be taken to ease computability 
concerns are found in Chapter VI of this paper. 
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CHAPTER V 
RESULTS 

1. Historical Land Use Change 
 

Although 12 land use classes were preserved in the historical data, more notable 
change inevitably occurs in some classes than others. Table 3 summarizes the absolute 
and percent change for each land use class between the 1993 and 2005 datasets. The 
‘trans/communication/utilities’ class includes all transportation structures that are not 
roads, such as bus terminals or airports. Due to the relative lack of change and/or 
samples, specific performance regarding the ‘under construction’, trans/communication/ 
utilities’, and the ‘industrial/manufacturing’ categories will not be discussed. Although 
the water category did vary slightly in the historical data, water will be treated as a static 
quantity for the purposes of the model. The sample points that have land use value of 
water in any input layer or layers are excluded from the simulation, implementing a 
“fixed” cell state modification to the CA.  

An inconsistency in the classification schemes used in the historical data 
complicates comparison of performance regarding the rural residential class. Although 
the data supplier defined rural residential as residential parcels greater in area than two 
acres, the 1993 dataset contains many parcels smaller than two acres marked rural 
residential. This inconsistency was discovered but time did not permit correction of the 
input data for the purposes of this paper. Modeling performance for the remaining six 
land use classes will be detailed later in this chapter, with maps of the models’ predicted 
output overlying maps of the historical data for each land use class. 

 
Table 3 – Historical Land Use Change  

 
LAND USE 1993 2005 DIFFERENCE % CHANGE

Single-Family Residential 95511 125414 29903 31.3%
Parks/Public/Recreation 20589 34584 13995 68.0%

Road Corridor 48534 59506 10972 22.6%
Office 6074 14147 8073 132.9%

Multi-Family Residential 8961 15925 6964 77.7%
Commercial 13252 20068 6816 51.4%

Rural Residential 42993 47265 4272 9.9%
Under Construction 2791 3386 595 21.3%
Trans/Com/Utlities 2308 2653 345 14.9%

Water 86250 85913 -337 -0.4%
Industrial/Manufacturing 3376 2984 -392 -11.6%

Ag/Forest/Vacant 215231 133828 -81403 -37.8%
TOTAL 545870 545673 -197 -0.04%  
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2. Test Configurations 
 
 Four model configurations were evaluated, varying in their choice of input 
parameters or initial land use grids. All configurations consider slope, distance to 
interstates, distance to major roads, and the cell counts of each land use type present in a 
quarter-mile circular radius from each cell’s center. The first configuration considers the 
existent 1993 local roads, and allows the model to convert cells to the ‘road corridor’ land 
use class—the only configuration to do so. The second configuration is the same, except 
conversion to the road corridor class is prohibited. The third configuration does not 
consider local roads, and no conversion to road corridor is permitted. The final 
configuration imposes the full 2005 road network on the 1993 land use as the initial 
condition rather than using the 1993 road network as do the first three configurations. 
The first configuration was used only to demonstrate road corridor conversion 
limitations. The first-iteration performance in the other three configurations (henceforth 
referred to as ‘with 1993 local roads’, ‘no local roads’, and ‘with 2005 local roads’) will 
be detailed for the six selected land use classes identified in Section 1 of this chapter by 
comparing selected maps of the ANN predicted output for a land use class with one of the 
same class from the 2005 historical data, as well as characterized statistically.  

3. Road Corridors  
 
Due to the cellular organization inherent in CA and the limited input parameters 

considered by the model, it is not possible to effectively model the underlying network 
structure that translates to the road corridor cells in a given land use grid. Network 
representation in GIS typically is predicated on the presence of nodes and connections 
between those nodes, and these structures do not exist in CA. Although the output of the 
ANN may indicate a suitable conversion probability to the road corridor class, the cell in 
question will only by chance fall as an extension to the existing road network, as opposed 
to exhibiting an apparently random placement. Figure 8 illustrates a close-up of the I-
40/I140 interchange area. Note the orange cells; they do in fact change to road corridors 
by 2005. The ANN also indicates the pink cells transition to road corridor class, but this 
is wholly incorrect. Interestingly, several cells line up to form an apparent on-ramp to I-
40, but these are just placements that satisfy the parameter combinations identified in the 
historical data rather than an attempt to construct linear features, much less ones part of a 
network.  

Various adjustments to the input data were tried in an attempt to correct for this 
factor. The first variation was to simply not allow the model to convert cells to the road 
corridor class. Should the ANN dictate conversion to road corridor, the model would 
defer to the land use class with the second-highest conversion probability. And although 
this proved a workable adjustment for the first iteration, continued iteration of the model 
proved troublesome (see Section 4). The second method tested was to eliminate the local 
roads in the model due to the fact that they contain the vast majority of the yearly road 
change in the study area for this period. This led to a loss of model accuracy for some 
land use classes, as well as its own iteration side-effects. The third adjustment tried was 
to superimpose the complete 2005 road corridor class on the 1993 land use data as the  
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Figure 8 – Road Corridor Conversion 
 
initial condition for the iterative process, with road distance figured from the 2005 road 
features. This eased, but did not eliminate, the iteration problems and introduced a skew 
to the modeling performance in some classes. A vector road growth sub-model could 
produce accurate simulation results over multiple iterations of the model, as the road 
network and attendant road corridors must evolve gradually and realistically in order for 
the model’s training to be valid across multiple iterations. 
 A simpler scheme would be to establish the date of construction of the road 
features. From this data one could advance the road network to an appropriate level for 
each successive iteration of the model. This approach is more data intensive, but will 
produce more accurate simulation results through the elimination of the error inherent in 
a sub-model responsible for the estimation of road growth. The road data supplied did not 
establish a date of construction for the various road features. Period road maps and aerial 
photography were sought to establish the construction dates of the roads, but those found 
to exist for the area were too few in number to establish a date estimation for the features 
more finely-grained that the 6 years indicated by the nominal dates of the road datasets. 
This technique is not applicable to forecast usage, however, and for this reason as well as 
time constraints was not pursued. 
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4. Iteration 
 
 Two difficulties were discovered when multiple iterations were produced. First, as 
noted previously, there is no way to correctly transition road corridor cells and advance 
the road features. A skew in the neighborhood counts for the road corridor class is 
introduced and the road-distance parameters are left static in succeeding iterations. This 
has the effect of limiting conversion overall, as nearness to road features is indicated in 
the historical data for cells that transition to many land use classes. Most of the cells that 
lie appropriately close to roads convert on the first iteration, leaving fewer that meet 
those same conditions on the succeeding iterations. Consequently, the conversion that 
does happen in later iterations has an unnatural focus on areas whose road network is 
already saturated. Figure 9 shows close-ups of  the same sections of the 1993 and 1999 
historical data. Note the development in the areas marked A and B. In the first iteration 
from 1993, the balance of development that exists between them resembles that seen in 
the historical data. By the second iteration, however, development has stalled in area B 
but accelerated in a circular cluster in area A. These crops are taken from the 
configuration using the 2005 roads imposed as the initial condition, nevertheless, 
development is skewed towards area A. This is because area A better satisfies the 
conditions for development noted in the historical data—nearness to roads and high 
neighborhood counts of developed land types. Although the complete 2005 road network 
is given as the initial condition, the low neighborhood counts of developed land use types 
in area B leave it less highly rated for development by the model, a disadvantage that is 
maintained as iteration continues. This same effect was noted to a greater degree in the 
‘with 1993 local roads’ configuration—where the initial local roads are 1993’s. Nearly all 
the development present in the second iteration was located in area A. 

The second difficulty noted was the presence of glitches in the output of the 
model. One might refer to them as graphical glitches, but in this case, of course, they 
reveal errors in the output of the model. No cure was found, but since the difficulties 
were proved sensitive to the exact stopping point of the ANN training it would appear 
that they are a by-product of the complexity of the ANN used. Li and Yeh (2001, 2002) 
state that simpler ANNs are suitable for iterative models, but do not specify the exact root 
of this recommendation. Simpler ANNs do have a greater ability to generalize (Abdi, 
1994) though, and this factor would reduce the sensitivity to training variation. Figure 10 
shows a horizontal glitch visible as a line running horizontally across the land mass. No 
glitches were encountered on the first iteration of any network, but some were visible in 
the second iteration’s output of all but one configuration. No explanation was found for 
the exact location of the affected areas. This is additional impetus for the adoption of 
additional input parameters and/or sub-models to augment the CA, as the relationships 
present in the slope, road distance, and neighborhood factors used here are faint and 
complex enough as to mandate a very complex ANN to discern them. 

In spite of the difficulties encountered, ability of the model to generate emergent 
growth patterns is promising. Figure 11 shows a section of the first three iterations of a 
simulation. Note the development of the single-family residential mass (shown as light  
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Figure 3 – Study area 

Figure 9 – Iteration Problem 
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Figure 10 – Horizontal output glitches 
 
orange cells) circled in the first iteration. As the model iterates, the group of cells spreads 
to surround the road corridors, joining the bright green (parks/public lands/recreation) 
cells to the west by the third iteration. The fourth frame shows the first iteration with no 
threshold applied, which shows an extension of the same cluster of single-family 
residential land use. Note that this form extends farther southward and does not reach as 
far west as the park. This is a demonstration of CA’s ability to provide emergent growth 
patterns rather than being limited to an interpolation or extrapolation of the historical 
data. The fourth frame depicts an essentially interpolated intermediate point between the 
earlier and later historical data snapshots, where the third one shows a true intermediate 
stage of development. 
 Maps of the first iteration of all three model configurations, the first three 
iterations of the model configuration with the 2005 roads superimposed, and the 1993, 
1999, and 2005 historical data are shown in the Appendix for closer examination. As it 
was used as the initial condition for the three-iteration sequence shown, the map of the 
1993 land use data with the 2005 roads superimposed is also included prior to that 
sequence. 
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Figure 11 – Iterative Growth 

Figure 9 – Iteration Problem 
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5. ANN-Prediction Accuracy 
 

Due to the iterative difficulties discussed in the preceding section, the first-
iteration performance with no development threshold applied will be examined to assess 
the models’ comparative potential to simulate development of the six selected land use 
classes identified in Section 1 of this chapter. Table 4 shows three performance measures 
for each of the six classes. The first indicates the cells in the model’s output that match 
the 2005 historical data for that land use class. The second shows the percentage of cells 
in the predicted output exhibiting a false positive (Type 1 error), with the third indicating 
false negatives (Type 2 errors). 

The model configuration using the 1993 local roads as the initial condition 
showed the highest accuracy, with an average 51.5% of its output across the six 

 
Table 4 – Model Accuracy Summary 

 

LAND USE CLASS
Percentage of Model 

Output  Matching 
2005

Percentage of cells 
exhibiting a false 

positive

Percentage of cells 
exhibiting a false 

negative

Single-Family Res. 71.3% 13.5% 15.2%
Multi-Family Res. 45.1% 10.2% 44.7%
Ag/Forest/Vacant 60.2% 28.7% 11.1%

Commercial 54.7% 29.8% 15.5%
Office 42.7% 14.2% 43.1%

Public/Parks/Rec. 57.3% 14.2% 28.5%
AVERAGE 51.5% 21.5% 27.1%

Single-Family Res. 61.2% 17.3% 10.9%
Multi-Family Res. 42.2% 8.7% 45.3%
Ag/Forest/Vacant 61.1% 24.3% 14.6%

Commercial 42.7% 23.5% 23.7%
Office 35.6% 15.0% 44.0%

Public/Parks/Rec. 55.6% 6.3% 34.6%
AVERAGE 48.4% 19.7% 29.3%

Single-Family Res. 70.8% 11.7% 17.5%
Multi-Family Res. 46.0% 7.8% 46.2%
Ag/Forest/Vacant 59.1% 32.3% 8.6%

Commercial 59.7% 15.4% 25.0%
Office 41.1% 16.7% 42.2%

Public/Parks/Rec. 57.3% 13.3% 29.4%
AVERAGE 50.1% 24.5% 25.4%

With 1993 Local Roads

With 2005 Local Roads

No Local Roads
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selected land use classes matching the historical data. Using the 2005 road network as the 
initial condition lessened model accuracy some 2.1% through an increase in Type 2 error. 
This is not surprising, as this configuration was chosen for its possible improvement in 
iterative performance, rather than the expectation of short-term accuracy. In this regard 
this modification is a failure, in that it only barely eases the difficulties encountered 
during iteration while generally degrading accuracy potential. The introduction of the 
2005 road network as the initial condition is not consistent with the historical data, and 
this discrepancy lessens the relevance of the parameter combinations the ANN has 
perceived in the historical data during training. The third configuration, no local roads, 
also proves less successful than the first configuration, this time through an increase in 
Type 1 error. In this configuration the model sees parameter combinations that are 
consistent with the historical data, but the exclusion of the local roads parameter 
diminishes the reliability of using them to infer land-use change. Stated another way, the 
inclusion of local roads improves the model’s descriptive power. 
 The relative performance of the three model configurations are now discussed for 
the six land use classes selected in Section 1, with comparison maps of various notable 
model outputs presented. The 2005 historical patterns are superimposed as white outlines 
on top of colored pixels that comprise the model’s output for the land use class discussed. 

6.  Single-Family Residential 
 

First iteration performance on the single-family residential class was uniformly 
the best of the six classes examined, with three tested configurations averaging 67.8% 
predicted cells matching the 2005 historical pattern. Variation exists between the tested 
configurations, however, with the configuration using the 1993 local roads producing the 
best statistical fit and apparent pattern (see figure 12). It produces a slight increase in 
statistical accuracy as compared to the configuration not considering local roads. 
Inspection of the available historical aerial photography makes clear that residential 
construction often starts before the road network is extended to that area, and this is borne 
out by the competitiveness of the ‘no local roads’ configuration’s performance. It would 
appear that the assumption made is that the attendant roads will be constructed later, and 
if the attendant roads are not constructed the development may not continue. The 
accuracy problems encountered iterating the models without road growth tends to support 
this assertion, in that it was characterized by a lack of development in the later iterations. 
Superimposing the 2005 roads as the initial condition produces an approximate 10% drop 
in accuracy over the other two configurations, with the output marked by false positives 
(see figure 13).  

Figure 15 shows a cropped section of figure 13, the single-family residential 
predicted output using the 2005 local roads. This area lies just north of the center of the 
study area, and shows a railroad corridor. The historical data reveals lessened single-
family residential development in this area, whereas the model’s output favors it for 
development. This is a shortcoming in the model to be addressed, as a railroad distance 
parameter and railroad land use class could be added and would likely improve the  
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Figure 12 – SFR prediction with 1993 local roads 
 

 
 

Figure 13 – SFR prediction with 2005 local roads 
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Figure 14 – SFR prediction with no local roads 
 

 

 
 

Figure 15 – Railroad Effect 
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model’s performance near railroad features. This limitation is common to all three model 
configurations with the effect most visible in the output pattern shown. 

7.  Multi-Family Residential 
 

Multi-family residential (MFR) performance is poor in all three configurations, 
with an average matching percentage of 44.5%. The bulk of the new MFR parcels are not 
reflected in the ANN predicted output, with Type 2 error rates similar to the matching 
rate. This suggests that MFR as a land use class is dominated by external factors not 
addressed by this model’s design. The pattern is not spread-centric enough nor related 
uniquely enough to its road distance or neighborhood parameters for this model to 
effectively model this class. A sub-model may be required to adequately address this 
concern, as significant inability to predict the typically disconnected new MFR sites is 
prevalent in the output of all three configurations. Guan, Wang, and Clarke (2005) 
augment the CA of their “ANN-Urban-CA Model” with a Tietenberg macro scale socio-
economic model to quantify the demand for urban space. This resource economics model 
can solve the problem of sustainable resource consumption, in this case land (Tietenberg, 
1992). This model treats land a finite resource consumed by urbanization. Inclusion of 
this information could inform the model of the severe underproduction in this land use 
class relative to the indicated demand for urban space. Figure 16 shows the output of the 
first model configuration (using 1993 roads) and is representative of the output of the 
other two model configurations. 

  

 
 

Figure 16 – Multi-family residential prediction with 1993 local roads 
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8. Agriculture/Forested/Vacant Land 
 

The primary stock being consumed by land-use conversion in the study area is the 
agriculture/forested/vacant land class (see Table 3). The remains predicted by the model 
emphasize the model’s ability to discern development as whole. All three model 
configurations hovered around a 60% match rate, with notable differences in the balance 
of the errors. The configuration considering no local roads produced a Type 1 error rate 
of 32.3%; it is more often than the other configurations predicting development in the 
wrong place. This reflects a decrease in the statistical significance of the parameters this 
configuration considers. Quite simply, distance to local roads improves the accuracy of 
land use-change predictions, all other factors being equal. The configuration considering 
the 1993 road network decreases the Type 1 error to 28.7%, with the configuration using 
the 2005 road network as the initial condition further reducing Type 1 error to 24.3%. 

Imposing the 2005 road network as the initial condition is a modification intended 
to inform the model of the extent of future road development as the model tended to 
predict less development than noted in the historical data. It had this effect, allowing 
more accurate identification of locations that have poor potential for future development. 
This does not mean the model knows what to convert more likely developable location 
to, as evidenced by the poorer short term accuracy indicated by the first iteration 
performance. The differences are more difficult to discern visually, and thus only the 
least-accurate prediction is shown (see figure 17). 

 

 
 

Figure 17 – Ag/Forested/Vacant prediction with no local roads 
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9. Commercial 
 

Statistical performance in the commercial land class varies widely, but the 
patterns produced are similar (see figures 18-20). The statistical accuracy and pattern 
produced in the 2005 local road configuration (figure 19) was poorer, as the premature 
road  development produced by the imposition of the 2005 road network made the sites 
that would eventually transition to commercial land uses prime targets for prior 
conversion to other classes such as single family residential. All three configurations 
predicted commercial development east of I-140 halfway between I-40 and the Knox 
County line that do not appear in the historical data, indicating that although these sites fit 
the historical patterns regarding road distance, neighborhood and slope factors, these 
factors poorly indicate likelihood for conversion to commercial use in this study area. It 
would appear other considerations figure as prominently in the determination of 
commercial land use. Incorporation of zoning data or other commercially restrictive 
legislative factors would allow the model to reject the false positives more effectively and 
thus more closely simulate the historical development pattern. 

 

 
 

Figure 18 – Commercial prediction with 1993 local roads 
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Figure 19 –Commercial prediction with 2005 local roads 
 

 
 

Figure 20 – Commercial prediction with no local roads 
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10. Office 
 

The performance on the office land use class was the poorest of the six selected 
classes, with an average matching rate of 39.8% among the three model configurations. 
Little difference was noted between the three configurations statistically or graphically, 
thus only the pattern for the first configuration is shown (see figure 21). This lack of 
variation demonstrates there is little sensitivity to the presence or absence of local roads. 
The similarity of overall patterns indicate the spatial preference for office and 
commercial land use to be similar, with neither sensitive to local roads. Performance on 
either could surely be improved by considering business-centric factors such as 
communication or zoning concerns, but there is undoubtedly more difficulty in predicting 
office locations than others. Type 2 error dominates in the office class results, indicating 
there simply isn’t much of a historical trend in the model parameters considered for the 
ANN to discover. 

Note that the performance on office land use prediction in the northern section of 
the study area is not nearly as accurate as is the commercial class’s, suggesting that 
distances to interstates or major roads don’t dictate office locations as directly as they do 
commercial ones—a notion consistent with the goods-transport needs of most 
commercial endeavors.  

 

 
 

Figure 21 – Office prediction with 1993 local roads 
 



 39

11. Parks/Public Land/Recreation 
 

Although a major statistical difference exists in the performance on this class, 
there is little difference observable in the patterns produced. For this reason, only the 
output of the first model configuration will be shown (see figure 22). The statistical 
difference was that the model configuration that superimposes the 2005 roads as the 
initial condition exhibited a large shift to Type 2 error, indicating that the historically 
inaccurate initial condition produced largely eliminates whatever statistical basis for 
prediction that exists. Major developments in this class located in the center and 
northwest corner were barely represented, if at all. The inescapable conclusion is that the 
model parameters used in this project poorly indicate development potential for this class. 
The central area is near the railroad, and adoption of a railroad distance as a model 
parameter as suggested in the single-family residential section may improve performance. 
Both areas are near clusters of residential land uses. Implementation of a cluster analysis 
on the residential land classes would allow the distances from these clusters to be 
included as an additional model parameter, likely improving the performance on this land 
use class. 
 
 

 
 

Figure 22 – Parks/Public Land/Recreation prediction with 1993 local roads 
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CHAPTER VI 
CONCLUSIONS AND FURTHER RESEARCH 

 
An experimental CA LUT model was created using an ANN to process the CA 

transitions for the I-140 study area. The model constructed considers slope, the distances 
to interstates, local, and major roads, as well as the current land use at a location as well 
as land uses present in a quarter-mile radius from that location. ANNs of various 
complexity levels were tried, with a second hidden layer and the tanh activation function 
providing the best simulation results. Simpler ANNs such as the commonly used single 
layer MLP were unable to discern the relationships present in the historical data. Once 
trained, the ANN was used to determine the successive land uses for each iteration of the 
CA, and graphical land use predictions were constructed from these. The predictions 
obtained without iteration were compared to the historical patterns for the six selected 
land use classes.  

The most obvious shortcoming of the model developed in this project is its 
inability to extend the road network in a realistic manner. While it is possible to convert 
cells to the road corridor land use, there is no means to do this as an addition to the 
existing road network. While it is possible to have the ANN output estimates for new 
road distances, it is impossible to do this in an incremental fashion or have those 
estimates correspond to a valid geographic configuration. In this CA implementation the 
input parameters include distances to road features, but there exists no representation of 
the geometry or flow inherent in a network. It is possible to create an input parameter for 
adjacency, but representations of the other considerations inherent in road planning and 
construction pose severe difficulties within the framework of the CA itself. A sub-model 
with a vector road network could better model this process, and its output could be 
seamlessly integrated into the existing CA as its role would be to grow the network from 
which the CA road-distance parameters are calculated. 
 Another direct consequence of the over-simplification of the model structure is 
the poor performance regarding land uses such as ‘commercial’, ‘office’, and 
‘parks/public land/recreation’ classes. While these land uses may have strong 
relationships to road distance factors (as noted in the ‘commercial’ class), they are also 
heavily influenced by socio-economic factors not modeled in this study. Possible sources 
of relief are the adoption of sub-models such as a Tietenberg socio-economic model to 
gauge demand for urban space. It may also be useful to employ equilibrium concepts in 
simulating competition for developable locations to better resolve locations that would be 
consumed by single-family residential usage and those that would fall to multi-family. It 
is also clear that input parameters need improvement. The addition of a railroad distance 
factor holds promise, and it may be advantageous to perform a cluster analysis on the 
existing residential land use to establish community centers to which distance metrics can 
be calculated for use as additional input parameters. 
 The simplicity of the model structure used in this study has consequence beyond a 
reduction in simulation performance, in that the ANN required to produce useful 
simulation performance is very complex. While the literature discourages complex 
networks, little explanation exists regarding the consequences of violating this edict. This 
model’s generally poor iterative performance in combination with the apparent 
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relationship between the stopping point of the ANN training procedure and the 
occurrence of linear glitches in the model’s iterative output indicates a low level of model 
generality. Although Li and Yeh (2001) recommend simple ANNs for iterative models, it 
is unclear whether this recommendation corresponds with the effects noted in this study 
or is motivated by computational concerns. And while it is true that more descriptive 
input parameters make for better models in the absolute sense, there is an apparent 
threshold level for input parameter quality that must be reached in order for the 
relationships present in an ANN-CA LUT model’s operation to be quantified by a simple 
ANN and thus iterate effectively. 
 Although computational concerns were considered prior to this study, their exact 
manifestation was surprising. Given a modern PC platform, the processing involved in 
training the ANN and using it to process each cells transition proved nearly negligible. 
The reliance on GIS spatial operations to sample the various grids (slope, land use, and 
neighborhood data) during parameter generation proved crippling, though. Likely relief 
from this factor lies in the integration of the ANN into the GIS environment. The 
NeuroDimensions NeuroSolutions ANN development environment has an optional 
component that can output an ANN to a dynamic link library (dll) file in a variety of 
languages, including Microsoft’s Visual Basic. The creation of a custom ArcGIS 
application that calls such a dll file is possible, and with astute program design the spatial 
operations might be avoided. This would improve simulation run-time by hours, in 
addition to and far in excess of the time saved via the elimination of the manual data 
exchange between the GIS and the ANN. 
 The degree of success with which this model simulates several important land use 
classes even in its current form is encouraging. The input parameters utilized in this 
study—slope, current land use, road distance, and neighborhood counts—do indeed 
affect land use conversion as evidenced by this success. But the relationships are 
complex, as evidenced by the ANN complexity needed to resolve them, and in the case of 
several land use classes, far from definitive. The contribution of road distance, as 
evidenced by the loss of model effectiveness noted from the removal of the local roads, is 
substantial. LUT models that seek to resolve to the local level need to model the local-
level roads, although this raises the data and computational needs of the model.  

Short term prediction, in this case that stemming from the first iteration of the 
model, is usefully accurate for several land use classes, and may extend into the iterative 
operation once road growth is achieved. Additionally, the model does demonstrate the 
ability to produce iterative growth, as opposed to mere cross-sectional slices. This 
encourages the belief that with resolution of the difficulties encountered during iteration 
the overall results could realize CA’s potential to effectively simulate emergent growth 
phenomenon as encountered in LUT scenarios. With the adoption of an appropriate sub-
model for the extension of the road network the dynamic update of all model parameters 
would be possible between each iteration, and the required ANN complexity would 
lessen due to a reduction in the complexity of the relationships it is tasked with 
quantifying. A sub-model to gauge the demand for urban land and/or a mechanism for 
arbitrating competition for developable land and the introduction of a cluster analysis on 
residential land use to define urban centers should improve simulation performance in 
several classes. There is no reason that local scale simulation and limited forecast 
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functionality cannot be effectively achieved with a development of this model, given an 
effective vector road growth sub-model combined and the other possible improvements 
discussed here. 
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