488 research outputs found

    Recommendation system for web article based on association rules and topic modelling

    Get PDF
    The World Wide Web is now the primary source for information discovery. A user visits websites that provide information and browse on the particular information in ac-cordance with their topic interest. Through the navigational process, visitors often had to jump over the menu to find the right content. Recommendation system can help the visitors to find the right content immediately. In this study, we propose a two-level recommendation system, based on association rule and topic similarity. We generate association rule by applying Apriori algorithm. The dataset for association rule mining is a session of topics that made by combining the result of sessionization and topic modeling. On the other hand, the topic similarity made by comparing the topic proportion of web article. This topic proportion inferred from the Latent Dirichlet Allocation (LDA). The results show that in our dataset there are not many interesting topic relations in one session. This result can be resolved, by utilizing the second level of recommendation by looking into the article that has the similar topic

    New Approach for Market Intelligence Using Artificial and Computational Intelligence

    Get PDF
    Small and medium sized retailers are central to the private sector and a vital contributor to economic growth, but often they face enormous challenges in unleashing their full potential. Financial pitfalls, lack of adequate access to markets, and difficulties in exploiting technology have prevented them from achieving optimal productivity. Market Intelligence (MI) is the knowledge extracted from numerous internal and external data sources, aimed at providing a holistic view of the state of the market and influence marketing related decision-making processes in real-time. A related, burgeoning phenomenon and crucial topic in the field of marketing is Artificial Intelligence (AI) that entails fundamental changes to the skillssets marketers require. A vast amount of knowledge is stored in retailers’ point-of-sales databases. The format of this data often makes the knowledge they store hard to access and identify. As a powerful AI technique, Association Rules Mining helps to identify frequently associated patterns stored in large databases to predict customers’ shopping journeys. Consequently, the method has emerged as the key driver of cross-selling and upselling in the retail industry. At the core of this approach is the Market Basket Analysis that captures knowledge from heterogeneous customer shopping patterns and examines the effects of marketing initiatives. Apriori, that enumerates frequent itemsets purchased together (as market baskets), is the central algorithm in the analysis process. Problems occur, as Apriori lacks computational speed and has weaknesses in providing intelligent decision support. With the growth of simultaneous database scans, the computation cost increases and results in dramatically decreasing performance. Moreover, there are shortages in decision support, especially in the methods of finding rarely occurring events and identifying the brand trending popularity before it peaks. As the objective of this research is to find intelligent ways to assist small and medium sized retailers grow with MI strategy, we demonstrate the effects of AI, with algorithms in data preprocessing, market segmentation, and finding market trends. We show with a sales database of a small, local retailer how our Åbo algorithm increases mining performance and intelligence, as well as how it helps to extract valuable marketing insights to assess demand dynamics and product popularity trends. We also show how this results in commercial advantage and tangible return on investment. Additionally, an enhanced normal distribution method assists data pre-processing and helps to explore different types of potential anomalies.Små och medelstora detaljhandlare är centrala aktörer i den privata sektorn och bidrar starkt till den ekonomiska tillväxten, men de möter ofta enorma utmaningar i att uppnå sin fulla potential. Finansiella svårigheter, brist på marknadstillträde och svårigheter att utnyttja teknologi har ofta hindrat dem från att nå optimal produktivitet. Marknadsintelligens (MI) består av kunskap som samlats in från olika interna externa källor av data och som syftar till att erbjuda en helhetssyn av marknadsläget samt möjliggöra beslutsfattande i realtid. Ett relaterat och växande fenomen, samt ett viktigt tema inom marknadsföring är artificiell intelligens (AI) som ställer nya krav på marknadsförarnas färdigheter. Enorma mängder kunskap finns sparade i databaser av transaktioner samlade från detaljhandlarnas försäljningsplatser. Ändå är formatet på dessa data ofta sådant att det inte är lätt att tillgå och utnyttja kunskapen. Som AI-verktyg erbjuder affinitetsanalys en effektiv teknik för att identifiera upprepade mönster som statistiska associationer i data lagrade i stora försäljningsdatabaser. De hittade mönstren kan sedan utnyttjas som regler som förutser kundernas köpbeteende. I detaljhandel har affinitetsanalys blivit en nyckelfaktor bakom kors- och uppförsäljning. Som den centrala metoden i denna process fungerar marknadskorgsanalys som fångar upp kunskap från de heterogena köpbeteendena i data och hjälper till att utreda hur effektiva marknadsföringsplaner är. Apriori, som räknar upp de vanligt förekommande produktkombinationerna som köps tillsammans (marknadskorgen), är den centrala algoritmen i analysprocessen. Trots detta har Apriori brister som algoritm gällande låg beräkningshastighet och svag intelligens. När antalet parallella databassökningar stiger, ökar också beräkningskostnaden, vilket har negativa effekter på prestanda. Dessutom finns det brister i beslutstödet, speciellt gällande metoder att hitta sällan förekommande produktkombinationer, och i att identifiera ökande popularitet av varumärken från trenddata och utnyttja det innan det når sin höjdpunkt. Eftersom målet för denna forskning är att hjälpa små och medelstora detaljhandlare att växa med hjälp av MI-strategier, demonstreras effekter av AI med hjälp av algoritmer i förberedelsen av data, marknadssegmentering och trendanalys. Med hjälp av försäljningsdata från en liten, lokal detaljhandlare visar vi hur Åbo-algoritmen ökar prestanda och intelligens i datautvinningsprocessen och hjälper till att avslöja värdefulla insikter för marknadsföring, framför allt gällande dynamiken i efterfrågan och trender i populariteten av produkterna. Ytterligare visas hur detta resulterar i kommersiella fördelar och konkret avkastning på investering. Dessutom hjälper den utvidgade normalfördelningsmetoden i förberedelsen av data och med att hitta olika slags anomalier

    Pitako -- Recommending Game Design Elements in Cicero

    Full text link
    Recommender Systems are widely and successfully applied in e-commerce. Could they be used for design? In this paper, we introduce Pitako1, a tool that applies the Recommender System concept to assist humans in creative tasks. More specifically, Pitako provides suggestions by taking games designed by humans as inputs, and recommends mechanics and dynamics as outputs. Pitako is implemented as a new system within the mixed-initiative AI-based Game Design Assistant, Cicero. This paper discusses the motivation behind the implementation of Pitako as well as its technical details and presents usage examples. We believe that Pitako can influence the use of recommender systems to help humans in their daily tasks.Comment: Paper accepted in the IEEE Conference on Games 2019 (COG 2019

    Recommendation system for web article based on association rules and topic modelling

    Get PDF
    The World Wide Web is now the primary source for information discovery. A user visits websites that provide information and browse on the particular information in accordance   with their   topic interest.   Through  the  navigational process,  visitors  often  had  to  jump  over  the  menu  to  find  the right  content.  Recommendation system can help the visitors to find the right content immediately.  In this study, we propose a two-level recommendation system, based on association rule and topic similarity.  We generate association rule by applying Apriori algorithm.   The  dataset  for  association  rule  mining  is a  session of  topics  that  made  by  combining  the  result of  sessionization and  topic  modeling.  On  the  other   hand,   the  topic  similarity made  by  comparing   the  topic  proportion of  web  article.  This topic proportion inferred from the Latent Dirichlet Allocation (LDA). The results show that in our dataset there are not many interesting   topic relations in one session.  This  result  can  be resolved,  by  utilizing  the  second  level  of  recommendation  by looking into the article  that  has the similar  topic

    Bidirectional Growth based Mining and Cyclic Behaviour Analysis of Web Sequential Patterns

    Get PDF
    Web sequential patterns are important for analyzing and understanding users behaviour to improve the quality of service offered by the World Wide Web. Web Prefetching is one such technique that utilizes prefetching rules derived through Cyclic Model Analysis of the mined Web sequential patterns. The more accurate the prediction and more satisfying the results of prefetching if we use a highly efficient and scalable mining technique such as the Bidirectional Growth based Directed Acyclic Graph. In this paper, we propose a novel algorithm called Bidirectional Growth based mining Cyclic behavior Analysis of web sequential Patterns (BGCAP) that effectively combines these strategies to generate prefetching rules in the form of 2-sequence patterns with Periodicity and threshold of Cyclic Behaviour that can be utilized to effectively prefetch Web pages, thus reducing the users perceived latency. As BGCAP is based on Bidirectional pattern growth, it performs only (log n+1) levels of recursion for mining n Web sequential patterns. Our experimental results show that prefetching rules generated using BGCAP is 5-10 percent faster for different data sizes and 10-15% faster for a fixed data size than TD-Mine. In addition, BGCAP generates about 5-15 percent more prefetching rules than TD-Mine.Comment: 19 page

    A Survey of Sequential Pattern Based E-Commerce Recommendation Systems

    Get PDF
    E-commerce recommendation systems usually deal with massive customer sequential databases, such as historical purchase or click stream sequences. Recommendation systems’ accuracy can be improved if complex sequential patterns of user purchase behavior are learned by integrating sequential patterns of customer clicks and/or purchases into the user–item rating matrix input of collaborative filtering. This review focuses on algorithms of existing E-commerce recommendation systems that are sequential pattern-based. It provides a comprehensive and comparative performance analysis of these systems, exposing their methodologies, achievements, limitations, and potential for solving more important problems in this domain. The review shows that integrating sequential pattern mining of historical purchase and/or click sequences into a user–item matrix for collaborative filtering can (i) improve recommendation accuracy, (ii) reduce user–item rating data sparsity, (iii) increase the novelty rate of recommendations, and (iv) improve the scalability of recommendation systems

    New accurate, explainable, and unbiased machine learning models for recommendation with implicit feedback.

    Get PDF
    Recommender systems have become ubiquitous Artificial Intelligence (AI) tools that play an important role in filtering online information in our daily lives. Whether we are shopping, browsing movies, or listening to music online, AI recommender systems are working behind the scene to provide us with curated and personalized content, that has been predicted to be relevant to our interest. The increasing prevalence of recommender systems has challenged researchers to develop powerful algorithms that can deliver recommendations with increasing accuracy. In addition to the predictive accuracy of recommender systems, recent research has also started paying attention to their fairness, in particular with regard to the bias and transparency of their predictions. This dissertation contributes to advancing the state of the art in fairness in AI by proposing new Machine Learning models and algorithms that aim to improve the user\u27s experience when receiving recommendations, with a focus that is positioned at the nexus of three objectives, namely accuracy, transparency, and unbiasedness of the predictions. In our research, we focus on state-of-the-art Collaborative Filtering (CF) recommendation approaches trained on implicit feedback data. More specifically, we address the limitations of two established deep learning approaches in two distinct recommendation settings, namely recommendation with user profiles and sequential recommendation. First, we focus on a state of the art pairwise ranking model, namely Bayesian Personalized Ranking (BPR), which has been found to outperform pointwise models in predictive accuracy in the recommendation with the user profiles setting. Specifically, we address two limitations of BPR: (1) BPR is a black box model that does not explain its outputs, thus limiting the user\u27s trust in the recommendations, and the analyst\u27s ability to scrutinize a model\u27s outputs; and (2) BPR is vulnerable to exposure bias due to the data being Missing Not At Random (MNAR). This exposure bias usually translates into an unfairness against the least popular items because they risk being under-exposed by the recommender system. We propose a novel explainable loss function and a corresponding model called Explainable Bayesian Personalized Ranking (EBPR) that generates recommendations along with item-based explanations. Then, we theoretically quantify the additional exposure bias resulting from the explainability, and use it as a basis to propose an unbiased estimator for the ideal EBPR loss. This being done, we perform an empirical study on three real-world benchmarking datasets that demonstrate the advantages of our proposed models, compared to existing state of the art techniques. Next, we shift our attention to sequential recommendation systems and focus on modeling and mitigating exposure bias in BERT4Rec, which is a state-of-the-art recommendation approach based on bidirectional transformers. The bi-directional representation capacity in BERT4Rec is based on the Cloze task, a.k.a. Masked Language Model, which consists of predicting randomly masked items within the sequence, assuming that the true interacted item is the most relevant one. This results in an exposure bias, where non-interacted items with low exposure propensities are assumed to be irrelevant. Thus far, the most common approach to mitigating exposure bias in recommendation has been Inverse Propensity Scoring (IPS), which consists of down-weighting the interacted predictions in the loss function in proportion to their propensities of exposure, yielding a theoretically unbiased learning. We first argue and prove that IPS does not extend to sequential recommendation because it fails to account for the sequential nature of the problem. We then propose a novel propensity scoring mechanism, that we name Inverse Temporal Propensity Scoring (ITPS), which is used to theoretically debias the Cloze task in sequential recommendation. We also rely on the ITPS framework to propose a bidirectional transformer-based model called ITPS-BERT4Rec. Finally, we empirically demonstrate the debiasing capabilities of our proposed approach and its robustness to the severity of exposure bias. Our proposed explainable approach in recommendation with user profiles, EBPR, showed an increase in ranking accuracy of about 4% and an increase in explainability of about 7% over the baseline BPR model when performing experiments on real-world recommendation datasets. Moreover, experiments on a real-world unbiased dataset demonstrated the importance of coupling explainability and exposure debiasing in capturing the true preferences of the user with a significant improvement of 1% over the baseline unbiased model UBPR. Furthermore, coupling explainability with exposure debiasing was also empirically proven to mitigate popularity bias with an improvement in popularity debiasing metrics of over 10% on three real-world recommendation tasks over the unbiased UBPR model. These results demonstrate the viability of our proposed approaches in recommendation with user profiles and their capacity to improve the user\u27s experience in recommendation by better capturing and modeling their true preferences, improving the explainability of the recommendations, and presenting them with more diverse recommendations that span a larger portion of the item catalog. On the other hand, our proposed approach in sequential recommendation ITPS-BERT4Rec has demonstrated a significant increase of 1% in terms of modeling the true preferences of the user in a semi-synthetic setting over the state-of-the-art sequential recommendation model BERT4Rec while also being unbiased in terms of exposure. Similarly, ITPS-BERT4Rec showed an average increase of 8.7% over BERT4Rec in three real-world recommendation settings. Moreover, empirical experiments demonstrated the robustness of our proposed ITPS-BERT4Rec model to increasing levels of exposure bias and its stability in terms of variance. Furthermore, experiments on popularity debiasing showed a significant advantage of our proposed ITPS-BERT4Rec model for both the short and long term sequences. Finally, ITPS-BERT4Rec showed respective improvements of around 60%, 470%, and 150% over vanilla BERT4Rec in capturing the temporal dependencies between the items within the sequences of interactions for three different evaluation metrics. These results demonstrate the potential of our proposed unbiased estimator to improve the user experience in the context of sequential recommendation by presenting them with more accurate and diverse recommendations that better match their true preferences and the sequential dependencies between the recommended items

    Case Teknos Group Oy Paint Store Transaction Data

    Get PDF
    Companies operating in challenging business environments, characterized by the proliferation of disruptive technologies and intensifying competition, are obliged to re-evaluate their strategic approach. This has become the norm in the retail industry and traditional brick-and-mortar stores. Particularly local market players with scarce resources are looking into alternative solutions to delivering a unique customer experience with the intention to preserve their profitability. Customer experience has been an integral topic within academic research for decades, and has also substantiated its value in pragmatic contexts. Recent developments in this field have triggered the constitution of customer experience management functions, which aim to adopt a holistic approach to the customer experience. This enforces a quantitative perspective highlighting the role of customer transaction data. Association analysis is one of the most well-known methodology used to detect underlying patterns hidden in large transaction data sets. It uses machine learning techniques to firstly identify frequently purchased product combinations and secondly, to discover concealed associations among the products. The association rules derived and evaluated during the process can potentially reveal implicit, yet interesting customer insight, which may translate into actionable implications. The practical consequences in the framework of this study are referred to as sales increasing strategies, namely targeted marketing, cross-selling and space management. This thesis uses Python programming language in Anaconda’s Jupyter Notebook environment to perform association analysis on customer transaction data provided by the case company. The Apriori algorithm is applied to constitute the frequent itemsets and generate association rules between these itemsets. The interestingness and actionability of the rules will be evaluated based on various scoring measures computed for each rule. The outcomes of this study contribute to finding interesting customer insight and actionable recommendations for the case company to support their success in demanding market conditions. Furthermore, this research describes and discusses the relative success factors from the theoretical point of view and demonstrates the process of association rule mining when applied to customer transaction data
    corecore