8,693 research outputs found

    Deeply-Supervised CNN for Prostate Segmentation

    Full text link
    Prostate segmentation from Magnetic Resonance (MR) images plays an important role in image guided interven- tion. However, the lack of clear boundary specifically at the apex and base, and huge variation of shape and texture between the images from different patients make the task very challenging. To overcome these problems, in this paper, we propose a deeply supervised convolutional neural network (CNN) utilizing the convolutional information to accurately segment the prostate from MR images. The proposed model can effectively detect the prostate region with additional deeply supervised layers compared with other approaches. Since some information will be abandoned after convolution, it is necessary to pass the features extracted from early stages to later stages. The experimental results show that significant segmentation accuracy improvement has been achieved by our proposed method compared to other reported approaches.Comment: Due to a crucial sign error in equation

    Morphological operators for very low bit rate video coding

    Get PDF
    This paper deals with the use of some morphological tools for video coding at very low bit rates. Rather than describing a complete coding algorithm, the purpose of this paper is to focus on morphological connected operators and segmentation tools that have proved to be attractive for compression.Peer ReviewedPostprint (published version

    Segmentation of Radiographs of Hands with Joint Damage Using Customized Active Appearance Models

    Get PDF
    This paper is part of a project that investigates the possibilities of automating the assessment of joint damagein hand radiographs. Our goal is to design a robust segmentationalgorithm for the hand skeleton. The algorithm is\ud based on active appearance models (AAM) [1], which have been used for hand segmentation before [2]. The results will be used in the future for radiographic assessment of rheumatoid arthritis and the early detection of joint damage. New in this work with respect to [2] is the use of multiple object warps for each individual bone in a single AAM. This method prevents modelling and reconstruction defects caused when warping overlapping objects. This makes the algorithm more robust in cases where joint damage is present. The current implementation of the model includes the metacarpals, the phalanges, and the carpal region. For a first experimental evaluation a collection of 50 hand radiographs has been gathered. The image data set was split into a training set (40) and a test set (10) in order to evaluate the algorithm’s performance. First results show that in 8 images from the test set the bone contours are detected correctly within 1.3 mm (1 STD) at 15 pixels/cm resolution. In two images not all contours are detected correctly. Possibly this is caused by extreme deviations in these images that have not yet been incorporated in the model due to a limited training set. More training examples are needed to optimize the AAM and improve the quality and reliability of the results

    Image Segmentation Using Weak Shape Priors

    Full text link
    The problem of image segmentation is known to become particularly challenging in the case of partial occlusion of the object(s) of interest, background clutter, and the presence of strong noise. To overcome this problem, the present paper introduces a novel approach segmentation through the use of "weak" shape priors. Specifically, in the proposed method, an segmenting active contour is constrained to converge to a configuration at which its geometric parameters attain their empirical probability densities closely matching the corresponding model densities that are learned based on training samples. It is shown through numerical experiments that the proposed shape modeling can be regarded as "weak" in the sense that it minimally influences the segmentation, which is allowed to be dominated by data-related forces. On the other hand, the priors provide sufficient constraints to regularize the convergence of segmentation, while requiring substantially smaller training sets to yield less biased results as compared to the case of PCA-based regularization methods. The main advantages of the proposed technique over some existing alternatives is demonstrated in a series of experiments.Comment: 27 pages, 8 figure

    Medical Image Segmentation by Water Flow

    No full text
    We present a new image segmentation technique based on the paradigm of water flow and apply it to medical images. The force field analogy is used to implement the major water flow attributes like water pressure, surface tension and adhesion so that the model achieves topological adaptability and geometrical flexibility. A new snake-like force functional combining edge- and region-based forces is introduced to produce capability for both range and accuracy. The method has been assessed qualitatively and quantitatively, and shows decent detection performance as well as ability to handle noise
    corecore