633 research outputs found

    A Systematic Review of Tracing Solutions in Software Product Lines

    Get PDF
    Software Product Lines are large-scale, multi-unit systems that enable massive, customized production. They consist of a base of reusable artifacts and points of variation that provide the system with flexibility, allowing generating customized products. However, maintaining a system with such complexity and flexibility could be error prone and time consuming. Indeed, any modification (addition, deletion or update) at the level of a product or an artifact would impact other elements. It would therefore be interesting to adopt an efficient and organized traceability solution to maintain the Software Product Line. Still, traceability is not systematically implemented. It is usually set up for specific constraints (e.g. certification requirements), but abandoned in other situations. In order to draw a picture of the actual conditions of traceability solutions in Software Product Lines context, we decided to address a literature review. This review as well as its findings is detailed in the present article.Comment: 22 pages, 9 figures, 7 table

    Software Product Line

    Get PDF
    The Software Product Line (SPL) is an emerging methodology for developing software products. Currently, there are two hot issues in the SPL: modelling and the analysis of the SPL. Variability modelling techniques have been developed to assist engineers in dealing with the complications of variability management. The principal goal of modelling variability techniques is to configure a successful software product by managing variability in domain-engineering. In other words, a good method for modelling variability is a prerequisite for a successful SPL. On the other hand, analysis of the SPL aids the extraction of useful information from the SPL and provides a control and planning strategy mechanism for engineers or experts. In addition, the analysis of the SPL provides a clear view for users. Moreover, it ensures the accuracy of the SPL. This book presents new techniques for modelling and new methods for SPL analysis

    A model-driven traceability framework for software product lines

    Get PDF
    International audienceSoftware product line (SPL) engineering is a recent approach to software development where a set of software products are derived for a well defined target application domain, from a common set of core assets using analogous means of production (for instance, through Model Driven Engineering). Therefore, such family of products are built from reuse, instead of developed individually from scratch. SPL promise to lower the costs of development, increase the quality of software, give clients more flexibility and reduce time to market. These benefits come with a set of new problems and turn some older problems possibly more complex. One of these problems is traceability management. In the Europe an AMPLE project we are creating a common traceability framework across the various activities of the SPL development. We identified four orthogonal traceability dimensions in SPL development, one of which is an extension of what is often considered as "traceability of variability". This constitutes one of the two contributions of this paper. The second contribution is the specification of a metamodel for a repository of traceability links in the context of SPL and the implementation of a respective traceability framework. This framework enables fundamental traceability management operations, such as trace import and export, modification, query and visualization. The power of our framework is highlighted with an example scenari

    Traceability support in software product lines

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Informática.Traceability is becoming a necessary quality of any modern software system. The complexity in modern systems is such that, if we cannot rely on good techniques and tools it becomes an unsustainable burden, where software artifacts can hardly be linked to their initial requirements. Modern software systems are composed by a many artifacts (models, code, etc.). Any change in one of them may have repercussions on many components. The assessment of this impact usually comes at a high cost and is highly error-prone. This complexity inherent to software development increases when it comes to Software Product Line Engineering. Traceability aims to respond to this challenge, by linking all the software artifacts that are used, in order to reason about how they influence each others. We propose to specify, design and implement an extensible Traceability Framework that will allow developers to provide traceability for a product line, or the possibility to extend it for other development scenarios. This MSc thesis work is to develop an extensible framework, using Model-Driven techniques and technologies, to provide traceability support for product lines. We also wish to provide basic and advanced traceability queries, and traceability views designed for the needs of each user

    Semantics of trace relations in requirements models for consistency checking and inferencing

    Get PDF
    Requirements traceability is the ability to relate requirements back to stakeholders and forward to corresponding design artifacts, code, and test cases. Although considerable research has been devoted to relating requirements in both forward and backward directions, less attention has been paid to relating requirements with other requirements. Relations between requirements influence a number of activities during software development such as consistency checking and change management. In most approaches and tools, there is a lack of precise definition of requirements relations. In this respect, deficient results may be produced. In this paper, we aim at formal definitions of the relation types in order to enable reasoning about requirements relations. We give a requirements metamodel with commonly used relation types. The semantics of the relations is provided with a formalization in first-order logic. We use the formalization for consistency checking of relations and for inferring new relations. A tool has been built to support both reasoning activities. We illustrate our approach in an example which shows that the formal semantics of relation types enables new relations to be inferred and contradicting relations in requirements documents to be determined. The application of requirements reasoning based on formal semantics resolves many of the deficiencies observed in other approaches. Our tool supports better understanding of dependencies between requirements

    Traceability for Model Driven, Software Product Line Engineering

    Get PDF
    Traceability is an important challenge for software organizations. This is true for traditional software development and even more so in new approaches that introduce more variety of artefacts such as Model Driven development or Software Product Lines. In this paper we look at some aspect of the interaction of Traceability, Model Driven development and Software Product Line

    Feature Model to Orthogonal Variability Model Transformation Towards Interoperability Between Tools

    Get PDF
    Feature Model (FM) and Orthogonal Variability Model (OVM) are both modelling approaches employed to represent variability in software product line engineering. The former is the most popular and it is mainly applied to domain engineering. The later is a more recent approach mainly used to document variability in design and realisation artifacts. in the scenario of interest of our research, which focuses on Application Lifecycle Management environment, it would be useful rely on the FM to OVM transformation. To the best of our knowledge, in the literature, there is no proposal for such transformation. in this paper, we propose an algorithm to transform FM into OVM. This algorithm transforms the variable features of a FM into an OVM, thus providing an explicit view of variability of software product line. When working on these transformation, some issues came to light, such as how to preserve semantics. We discuss some of them and suggest a possible solution to transform FM into OVM by extending OVM

    Spl needs an automatic holistic model for software reasoning with feature models

    Get PDF
    The number of features and their relations in a Software Product Line (SPL) may lead to have SPLs with a big number of potential products which may be difficult to manage. This number of potential products widely increases if, as well as functional features, extra–functional features are taken into account. There are several questions that a SPL engineer would like to ask to his SPL model such as: is it a valid model?, how many potential products a SPL has?, is there any product fulfilling the customer needs? and so forth. These types of questions are error prone to answer without an automatic support. The work reported in this position paper glipmses some misconceptions of previous related proposals: we uphold the need to have an holistic product line model were not distinction are made between functional and extra–functional features, we propose a model based on a formalism strong enough to support both type o features: contraint programming.Ministerio de Ciencia y Tecnología TIC2003-02737-C02-0
    corecore