47,636 research outputs found

    A Fine-Grained Approach for Automated Conversion of JUnit Assertions to English

    Full text link
    Converting source or unit test code to English has been shown to improve the maintainability, understandability, and analysis of software and tests. Code summarizers identify important statements in the source/tests and convert them to easily understood English sentences using static analysis and NLP techniques. However, current test summarization approaches handle only a subset of the variation and customization allowed in the JUnit assert API (a critical component of test cases) which may affect the accuracy of conversions. In this paper, we present our work towards improving JUnit test summarization with a detailed process for converting a total of 45 unique JUnit assertions to English, including 37 previously-unhandled variations of the assertThat method. This process has also been implemented and released as the AssertConvert tool. Initial evaluations have shown that this tool generates English conversions that accurately represent a wide variety of assertion statements which could be used for code summarization or other NLP analyses.Comment: In Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering (NL4SE 18), November 4, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 4 page

    DSpot: Test Amplification for Automatic Assessment of Computational Diversity

    Full text link
    Context: Computational diversity, i.e., the presence of a set of programs that all perform compatible services but that exhibit behavioral differences under certain conditions, is essential for fault tolerance and security. Objective: We aim at proposing an approach for automatically assessing the presence of computational diversity. In this work, computationally diverse variants are defined as (i) sharing the same API, (ii) behaving the same according to an input-output based specification (a test-suite) and (iii) exhibiting observable differences when they run outside the specified input space. Method: Our technique relies on test amplification. We propose source code transformations on test cases to explore the input domain and systematically sense the observation domain. We quantify computational diversity as the dissimilarity between observations on inputs that are outside the specified domain. Results: We run our experiments on 472 variants of 7 classes from open-source, large and thoroughly tested Java classes. Our test amplification multiplies by ten the number of input points in the test suite and is effective at detecting software diversity. Conclusion: The key insights of this study are: the systematic exploration of the observable output space of a class provides new insights about its degree of encapsulation; the behavioral diversity that we observe originates from areas of the code that are characterized by their flexibility (caching, checking, formatting, etc.).Comment: 12 page

    Visualizing test diversity to support test optimisation

    Full text link
    Diversity has been used as an effective criteria to optimise test suites for cost-effective testing. Particularly, diversity-based (alternatively referred to as similarity-based) techniques have the benefit of being generic and applicable across different Systems Under Test (SUT), and have been used to automatically select or prioritise large sets of test cases. However, it is a challenge to feedback diversity information to developers and testers since results are typically many-dimensional. Furthermore, the generality of diversity-based approaches makes it harder to choose when and where to apply them. In this paper we address these challenges by investigating: i) what are the trade-off in using different sources of diversity (e.g., diversity of test requirements or test scripts) to optimise large test suites, and ii) how visualisation of test diversity data can assist testers for test optimisation and improvement. We perform a case study on three industrial projects and present quantitative results on the fault detection capabilities and redundancy levels of different sets of test cases. Our key result is that test similarity maps, based on pair-wise diversity calculations, helped industrial practitioners identify issues with their test repositories and decide on actions to improve. We conclude that the visualisation of diversity information can assist testers in their maintenance and optimisation activities

    Finding The Lazy Programmer's Bugs

    Get PDF
    Traditionally developers and testers created huge numbers of explicit tests, enumerating interesting cases, perhaps biased by what they believe to be the current boundary conditions of the function being tested. Or at least, they were supposed to. A major step forward was the development of property testing. Property testing requires the user to write a few functional properties that are used to generate tests, and requires an external library or tool to create test data for the tests. As such many thousands of tests can be created for a single property. For the purely functional programming language Haskell there are several such libraries; for example QuickCheck [CH00], SmallCheck and Lazy SmallCheck [RNL08]. Unfortunately, property testing still requires the user to write explicit tests. Fortunately, we note there are already many implicit tests present in programs. Developers may throw assertion errors, or the compiler may silently insert runtime exceptions for incomplete pattern matches. We attempt to automate the testing process using these implicit tests. Our contributions are in four main areas: (1) We have developed algorithms to automatically infer appropriate constructors and functions needed to generate test data without requiring additional programmer work or annotations. (2) To combine the constructors and functions into test expressions we take advantage of Haskell's lazy evaluation semantics by applying the techniques of needed narrowing and lazy instantiation to guide generation. (3) We keep the type of test data at its most general, in order to prevent committing too early to monomorphic types that cause needless wasted tests. (4) We have developed novel ways of creating Haskell case expressions to inspect elements inside returned data structures, in order to discover exceptions that may be hidden by laziness, and to make our test data generation algorithm more expressive. In order to validate our claims, we have implemented these techniques in Irulan, a fully automatic tool for generating systematic black-box unit tests for Haskell library code. We have designed Irulan to generate high coverage test suites and detect common programming errors in the process

    Data collection procedures for the Software Engineering Laboratory (SEL) database

    Get PDF
    This document is a guidebook to collecting software engineering data on software development and maintenance efforts, as practiced in the Software Engineering Laboratory (SEL). It supersedes the document entitled Data Collection Procedures for the Rehosted SEL Database, number SEL-87-008 in the SEL series, which was published in October 1987. It presents procedures to be followed on software development and maintenance projects in the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC) for collecting data in support of SEL software engineering research activities. These procedures include detailed instructions for the completion and submission of SEL data collection forms

    The potential of LLMs for coding with low-resource and domain-specific programming languages

    Full text link
    This paper presents a study on the feasibility of using large language models (LLM) for coding with low-resource and domain-specific programming languages that typically lack the amount of data required for effective LLM processing techniques. This study focuses on the econometric scripting language named hansl of the open-source software gretl and employs a proprietary LLM based on GPT-3.5. Our findings suggest that LLMs can be a useful tool for writing, understanding, improving, and documenting gretl code, which includes generating descriptive docstrings for functions and providing precise explanations for abstract and poorly documented econometric code. While the LLM showcased promoting docstring-to-code translation capability, we also identify some limitations, such as its inability to improve certain sections of code and to write accurate unit tests. This study is a step towards leveraging the power of LLMs to facilitate software development in low-resource programming languages and ultimately to lower barriers to entry for their adoption

    NiftyNet: a deep-learning platform for medical imaging

    Get PDF
    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this application requires substantial implementation effort. Thus, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. NiftyNet provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on TensorFlow and supports TensorBoard visualization of 2D and 3D images and computational graphs by default. We present 3 illustrative medical image analysis applications built using NiftyNet: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. NiftyNet enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.Comment: Wenqi Li and Eli Gibson contributed equally to this work. M. Jorge Cardoso and Tom Vercauteren contributed equally to this work. 26 pages, 6 figures; Update includes additional applications, updated author list and formatting for journal submissio
    • …
    corecore