1,605 research outputs found

    Context-based urban terrain reconstruction from uav-videos for geoinformation applications

    Get PDF
    Urban terrain reconstruction has many applications in areas of civil engineering, urban planning, surveillance and defense research. Therefore the needs of covering ad-hoc demand and performing a close-range urban terrain reconstruction with miniaturized and relatively inexpensive sensor platforms are constantly growing. Using (miniaturized) unmanned aerial vehicles, (M) UAVs, represents one of the most attractive alternatives to conventional large-scale aerial imagery. We cover in this paper a four-step procedure of obtaining georeferenced 3D urban models from video sequences. The four steps of the procedure - orientation, dense reconstruction, urban terrain modeling and geo-referencing - are robust, straight-forward, and nearly fully-automatic. The two last steps - namely, urban terrain modeling from almost-nadir videos and co-registration of models - represent the main contribution of this work and will therefore be covered with more detail. The essential substeps of the third step include digital terrain model (DTM) extraction, segregation of buildings from vegetation, as well as instantiation of building and tree models. The last step is subdivided into quasi-intrasensorial registration of Euclidean reconstructions and intersensorial registration with a geo-referenced orthophoto. Finally, we present reconstruction results from a real data-set and outline ideas for future work

    Active Image-based Modeling with a Toy Drone

    Full text link
    Image-based modeling techniques can now generate photo-realistic 3D models from images. But it is up to users to provide high quality images with good coverage and view overlap, which makes the data capturing process tedious and time consuming. We seek to automate data capturing for image-based modeling. The core of our system is an iterative linear method to solve the multi-view stereo (MVS) problem quickly and plan the Next-Best-View (NBV) effectively. Our fast MVS algorithm enables online model reconstruction and quality assessment to determine the NBVs on the fly. We test our system with a toy unmanned aerial vehicle (UAV) in simulated, indoor and outdoor experiments. Results show that our system improves the efficiency of data acquisition and ensures the completeness of the final model.Comment: To be published on International Conference on Robotics and Automation 2018, Brisbane, Australia. Project Page: https://huangrui815.github.io/active-image-based-modeling/ The author's personal page: http://www.sfu.ca/~rha55

    Semi-automatic 3D reconstruction of urban areas using epipolar geometry and template matching

    Get PDF
    WOS:000240143800002 (Nº de Acesso Web of Science)In this work we describe a novel technique for semi-automatic three-dimensional (3D) reconstruction of urban areas, from airborne stereo-pair images whose output is VRML or DXF. The main challenge is to compute the relevant information—building's height and volume, roof's description, and texture—algorithmically, because it is very time consuming and thus expensive to produce it manually for large urban areas. The algorithm requires some initial calibration input and is able to compute the above-mentioned building characteristics from the stereo pair and the availability of the 2D CAD and the digital elevation model of the same area, with no knowledge of the camera pose or its intrinsic parameters. To achieve this, we have used epipolar geometry, homography computation, automatic feature extraction and we have solved the feature correspondence problem in the stereo pair, by using template matching

    3D city scale reconstruction using wide area motion imagery

    Get PDF
    3D reconstruction is one of the most challenging but also most necessary part of computer vision. It is generally applied everywhere, from remote sensing to medical imaging and multimedia. Wide Area Motion Imagery is a field that has gained traction over the recent years. It consists in using an airborne large field of view sensor to cover a typically over a square kilometer area for each captured image. This is particularly valuable data for analysis but the amount of information is overwhelming for any human analyst. Algorithms to efficiently and automatically extract information are therefore needed and 3D reconstruction plays a critical part in it, along with detection and tracking. This dissertation work presents novel reconstruction algorithms to compute a 3D probabilistic space, a set of experiments to efficiently extract photo realistic 3D point clouds and a range of transformations for possible applications of the generated 3D data to filtering, data compression and mapping. The algorithms have been successfully tested on our own datasets provided by Transparent Sky and this thesis work also proposes methods to evaluate accuracy, completeness and photo-consistency. The generated data has been successfully used to improve detection and tracking performances, and allows data compression and extrapolation by generating synthetic images from new point of view, and data augmentation with the inferred occlusion areas.Includes bibliographical reference

    Automatic Registration of Optical Aerial Imagery to a LiDAR Point Cloud for Generation of City Models

    Get PDF
    This paper presents a framework for automatic registration of both the optical and 3D structural information extracted from oblique aerial imagery to a Light Detection and Ranging (LiDAR) point cloud without prior knowledge of an initial alignment. The framework employs a coarse to fine strategy in the estimation of the registration parameters. First, a dense 3D point cloud and the associated relative camera parameters are extracted from the optical aerial imagery using a state-of-the-art 3D reconstruction algorithm. Next, a digital surface model (DSM) is generated from both the LiDAR and the optical imagery-derived point clouds. Coarse registration parameters are then computed from salient features extracted from the LiDAR and optical imagery-derived DSMs. The registration parameters are further refined using the iterative closest point (ICP) algorithm to minimize global error between the registered point clouds. The novelty of the proposed approach is in the computation of salient features from the DSMs, and the selection of matching salient features using geometric invariants coupled with Normalized Cross Correlation (NCC) match validation. The feature extraction and matching process enables the automatic estimation of the coarse registration parameters required for initializing the fine registration process. The registration framework is tested on a simulated scene and aerial datasets acquired in real urban environments. Results demonstrates the robustness of the framework for registering optical and 3D structural information extracted from aerial imagery to a LiDAR point cloud, when co-existing initial registration parameters are unavailable
    • …
    corecore