161 research outputs found

    Bytewise Approximate Matching: The Good, The Bad, and The Unknown

    Get PDF
    Hash functions are established and well-known in digital forensics, where they are commonly used for proving integrity and file identification (i.e., hash all files on a seized device and compare the fingerprints against a reference database). However, with respect to the latter operation, an active adversary can easily overcome this approach because traditional hashes are designed to be sensitive to altering an input; output will significantly change if a single bit is flipped. Therefore, researchers developed approximate matching, which is a rather new, less prominent area but was conceived as a more robust counterpart to traditional hashing. Since the conception of approximate matching, the community has constructed numerous algorithms, extensions, and additional applications for this technology, and are still working on novel concepts to improve the status quo. In this survey article, we conduct a high-level review of the existing literature from a non-technical perspective and summarize the existing body of knowledge in approximate matching, with special focus on bytewise algorithms. Our contribution allows researchers and practitioners to receive an overview of the state of the art of approximate matching so that they may understand the capabilities and challenges of the field. Simply, we present the terminology, use cases, classification, requirements, testing methods, algorithms, applications, and a list of primary and secondary literature

    Automation for digital forensics: towards a definition for the community

    Get PDF
    With the increasing amount of digital evidence per case, the automation of investigative tasks is of utmost importance to the digital forensics community. Consequently, tools are published, frameworks are released, and artificial intelligence is explored. However, as the foundation, i.e., a definition, classification, and common terminology, is missing, this resembles the wild west: some consider keyword searches or file carving as automation while others do not. We, therefore, reviewed automation literature (in the domain of digital forensics as well as other domains), performed three practitioner interviews, and discussed the topic with domain experts from academia. On this basis, we propose a definition and then showcase several considerations with respect to automation for digital forensics, e.g., what we classify as no/basic automation as well as full automation (autonomous). We conclude that it requires these foundational discussions to promote and progress the discipline through a common understanding

    Advanced Techniques for Improving the Efficacy of Digital Forensics Investigations

    Get PDF
    Digital forensics is the science concerned with discovering, preserving, and analyzing evidence on digital devices. The intent is to be able to determine what events have taken place, when they occurred, who performed them, and how they were performed. In order for an investigation to be effective, it must exhibit several characteristics. The results produced must be reliable, or else the theory of events based on the results will be flawed. The investigation must be comprehensive, meaning that it must analyze all targets which may contain evidence of forensic interest. Since any investigation must be performed within the constraints of available time, storage, manpower, and computation, investigative techniques must be efficient. Finally, an investigation must provide a coherent view of the events under question using the evidence gathered. Unfortunately the set of currently available tools and techniques used in digital forensic investigations does a poor job of supporting these characteristics. Many tools used contain bugs which generate inaccurate results; there are many types of devices and data for which no analysis techniques exist; most existing tools are woefully inefficient, failing to take advantage of modern hardware; and the task of aggregating data into a coherent picture of events is largely left to the investigator to perform manually. To remedy this situation, we developed a set of techniques to facilitate more effective investigations. To improve reliability, we developed the Forensic Discovery Auditing Module, a mechanism for auditing and enforcing controls on accesses to evidence. To improve comprehensiveness, we developed ramparser, a tool for deep parsing of Linux RAM images, which provides previously inaccessible data on the live state of a machine. To improve efficiency, we developed a set of performance optimizations, and applied them to the Scalpel file carver, creating order of magnitude improvements to processing speed and storage requirements. Last, to facilitate more coherent investigations, we developed the Forensic Automated Coherence Engine, which generates a high-level view of a system from the data generated by low-level forensics tools. Together, these techniques significantly improve the effectiveness of digital forensic investigations conducted using them

    A forensics and compliance auditing framework for critical infrastructure protection

    Get PDF
    Contemporary societies are increasingly dependent on products and services provided by Critical Infrastructure (CI) such as power plants, energy distribution networks, transportation systems and manufacturing facilities. Due to their nature, size and complexity, such CIs are often supported by Industrial Automation and Control Systems (IACS), which are in charge of managing assets and controlling everyday operations. As these IACS become larger and more complex, encompassing a growing number of processes and interconnected monitoring and actuating devices, the attack surface of the underlying CIs increases. This situation calls for new strategies to improve Critical Infrastructure Protection (CIP) frameworks, based on evolved approaches for data analytics, able to gather insights from the CI. In this paper, we propose an Intrusion and Anomaly Detection System (IADS) framework that adopts forensics and compliance auditing capabilities at its core to improve CIP. Adopted forensics techniques help to address, for instance, post-incident analysis and investigation, while the support of continuous auditing processes simplifies compliance management and service quality assessment. More specifically, after discussing the rationale for such a framework, this paper presents a formal description of the proposed components and functions and discusses how the framework can be implemented using a cloud-native approach, to address both functional and non-functional requirements. An experimental analysis of the framework scalability is also provided.info:eu-repo/semantics/publishedVersio

    SENTIMENT AND BEHAVIORAL ANALYSIS IN EDISCOVERY

    Get PDF
    A suspect or person-of-interest during legal case review or forensic evidence review can exhibit signs of their individual personality through the digital evidence collected for the case. Such personality traits of interest can be analytically harvested for case investigators or case reviewers. However, manual review of evidence for such flags can take time and contribute to increased costs. This study focuses on certain use-case scenarios of behavior and sentiment analysis as a critical requirement for a legal case’s success. This study aims to quicken the review and analysis phase and offers a software prototype as a proof-of-concept. The study starts with the build and storage of Electronic Stored Information (ESI) datasets for three separate fictitious legal cases using publicly available data such as emails, Facebook posts, tweets, text messages and a few custom MS Word documents. The next step of this study leverages statistical algorithms and automation to propose approaches towards identifying human sentiments, behavior such as, evidence of financial fraud behavior, and evidence of sexual harassment behavior of a suspect or person-of-interest from the case ESI. The last stage of the study automates these approaches via a custom software and presents a user interface for eDiscovery teams and digital forensic investigators

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Cyber Threat Intelligence based Holistic Risk Quantification and Management

    Get PDF

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    corecore